bsnes/nall/primitives/integer.hpp

88 lines
4.1 KiB
C++
Raw Normal View History

Update to v106r77 release. byuu says: So this turned out to be a rather unproductive ten-hour rabbit hole, but ... I reworked nall/primitives.hpp a lot. And because the changes are massive, testing of this WIP for regressions is critically important. I really can't stress that enough, we're almost certainly going to have some hidden regressions here ... We now have a nall/primitives/ subfolder that splits up the classes into manageable components. The bit-field support is now shared between both Natural and Integer. All of the assignment operator overloads are now templated and take references instead of values. Things like the GSU::Register class are non-copyable on account of the function<> object inside of it, and previously only operator= would work with classes like that. The big change is nall/primitives/operators.hpp, which is a really elaborate system to compute the minimum number of bits needed for any operation, and to return a Natural<T> or Integer<T> when one or both of the arguments are such a type. Unfortunately, it doesn't really work yet ... Kirby's Dream Land 3 breaks if we include operators.hpp. Zelda 3 runs fine with this, but I had to make a huge amount of core changes, including introducing a new ternary(bool, lhs, rhs) function to nall/algorithm to get past Natural<X> and Natural<Y> not being equivalent (is_integral types get a special exemption to ternary ?: type equivalence, yet it's impossible to simulate with our own classes, which is bullshit.) The horrifying part is that ternary() will evaluate both lhs and rhs, unlike ?: I converted some of the functions to test ? uint(x) : uint(y), and others to ternary(test, x, y) ... I don't have a strong preference either way yet. But the part where things may have gotten broken is in the changes to where ternary() was placed. Some cases like in the GBA PPU renderer, it was rather unclear the order of evaluations, so I may have made a mistake somewhere. So again, please please test this if you can. Or even better, look over the diff. Longer-term, I'd really like the enable nall/primitives/operators.hpp, but right now I'm not sure why Kirby's Dream Land 3 is breaking. Help would be appreciated, but ... it's gonna be really complex and difficult to debug, so I'm probably gonna be on my own here ... sigh.
2019-01-13 06:25:14 +00:00
#pragma once
namespace nall {
template<int RequestedPrecision> struct Integer {
enum : uint { Precision = RequestedPrecision < 1 ? 1 : RequestedPrecision > 64 ? 64 : RequestedPrecision };
static inline constexpr auto bits() -> uint { return Precision; }
using type =
typename conditional<bits() <= 8, int8_t,
typename conditional<bits() <= 16, int16_t,
typename conditional<bits() <= 32, int32_t,
typename conditional<bits() <= 64, int64_t,
void>::type>::type>::type>::type;
using utype = typename Natural<RequestedPrecision>::type;
static inline constexpr auto mask() -> utype { return ~0ull >> 64 - bits(); }
static inline constexpr auto sign() -> utype { return 1ull << Precision - 1; }
inline Integer() : data(0) {}
template<typename T> inline Integer(const T& value) { data = mask(value); }
explicit inline operator bool() const { return (bool)data; }
inline operator type() const { return data; }
inline auto operator++(int) { auto value = *this; data = mask(data + 1); return value; }
inline auto operator--(int) { auto value = *this; data = mask(data - 1); return value; }
inline auto& operator++() { data = mask(data + 1); return *this; }
inline auto& operator--() { data = mask(data - 1); return *this; }
inline auto operator!() const { return Integer{!data}; }
inline auto operator~() const { return Integer{~data}; }
inline auto operator+() const { return Integer{+data}; }
inline auto operator-() const { return Integer{-data}; }
#define lhs data
#define rhs value
template<typename T> inline auto& operator =(const T& value) { lhs = mask( rhs); return *this; }
template<typename T> inline auto& operator *=(const T& value) { lhs = mask(lhs * rhs); return *this; }
template<typename T> inline auto& operator /=(const T& value) { lhs = mask(lhs / rhs); return *this; }
template<typename T> inline auto& operator %=(const T& value) { lhs = mask(lhs % rhs); return *this; }
template<typename T> inline auto& operator +=(const T& value) { lhs = mask(lhs + rhs); return *this; }
template<typename T> inline auto& operator -=(const T& value) { lhs = mask(lhs - rhs); return *this; }
template<typename T> inline auto& operator<<=(const T& value) { lhs = mask(lhs << rhs); return *this; }
template<typename T> inline auto& operator>>=(const T& value) { lhs = mask(lhs >> rhs); return *this; }
template<typename T> inline auto& operator &=(const T& value) { lhs = mask(lhs & rhs); return *this; }
template<typename T> inline auto& operator ^=(const T& value) { lhs = mask(lhs ^ rhs); return *this; }
template<typename T> inline auto& operator |=(const T& value) { lhs = mask(lhs | rhs); return *this; }
#undef lhs
#undef rfs
inline auto serialize(serializer& s) { s(data); }
inline auto zero() const -> bool { return data == 0; }
inline auto positive() const -> bool { return data >= 0; }
inline auto negative() const -> bool { return data < 0; }
inline auto bits(uint lo, uint hi) -> BitRange<RequestedPrecision> { return {(utype&)data, lo, hi}; }
inline auto bit(uint index) -> BitRange<RequestedPrecision> { return {(utype&)data, index, index}; }
inline auto byte(uint index) -> BitRange<RequestedPrecision> { return {(utype&)data, index * 8 + 0, index * 8 + 7}; }
inline auto bits(uint lo, uint hi) const -> const BitRange<RequestedPrecision> { return {(utype&)*this, lo, lo}; }
inline auto bit(uint index) const -> const BitRange<RequestedPrecision> { return {(utype&)*this, index, index}; }
inline auto byte(uint index) const -> const BitRange<RequestedPrecision> { return {(utype&)*this, index * 8 + 0, index * 8 + 7}; }
inline auto clamp(uint bits) -> intmax {
const intmax b = 1ull << (bits - 1);
const intmax m = b - 1;
return data > m ? m : data < -b ? -b : data;
}
inline auto clip(uint bits) -> intmax {
const uintmax b = 1ull << (bits - 1);
const uintmax m = b * 2 - 1;
return ((data & m) ^ b) - b;
}
inline auto natural() const -> Natural<RequestedPrecision>;
private:
auto mask(type value) const -> type {
return (value & mask() ^ sign()) - sign();
}
type data;
};
}