2011-09-27 11:55:02 +00:00
|
|
|
struct Interface;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
#include "device.hpp"
|
|
|
|
|
2016-01-23 07:29:34 +00:00
|
|
|
struct System {
|
|
|
|
enum class Region : bool { NTSC = 0, PAL = 1 };
|
2015-11-10 11:02:29 +00:00
|
|
|
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
auto loaded() const -> bool;
|
2016-01-23 07:29:34 +00:00
|
|
|
auto region() const -> Region;
|
|
|
|
auto expansionPort() const -> Device::ID;
|
|
|
|
auto cpuFrequency() const -> uint;
|
|
|
|
auto apuFrequency() const -> uint;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto run() -> void;
|
|
|
|
auto runToSave() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto init() -> void;
|
|
|
|
auto term() -> void;
|
|
|
|
auto load() -> void;
|
|
|
|
auto unload() -> void;
|
|
|
|
auto power() -> void;
|
|
|
|
auto reset() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
2015-11-10 11:02:29 +00:00
|
|
|
auto serialize() -> serializer;
|
|
|
|
auto unserialize(serializer&) -> bool;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v094r39 release.
byuu says:
Changelog:
- SNES mid-scanline BGMODE fixes finally merged (can run
atx2.zip{mode7.smc}+mtest(2).sfc properly now)
- Makefile now discards all built-in rules and variables
- switch on bool warning disabled for GCC now as well (was already
disabled for Clang)
- when loading a game, if any required files are missing, display
a warning message box (manifest.bml, program.rom, bios.rom, etc)
- when loading a game (or a game slot), if manifest.bml is missing, it
will invoke icarus to try and generate it
- if that fails (icarus is missing or the folder is bad), you will get
a warning telling you that the manifest can't be loaded
The warning prompt on missing files work for both games and the .sys
folders and their files. For some reason, failing to load the DMG/CGB
BIOS is causing a crash before I can display the modal dialog. I have no
idea why, and the stack frame backtrace is junk.
I also can't seem to abort the failed loading process. If I call
Program::unloadMedia(), I get a nasty segfault. Again with a really
nasty stack trace. So for now, it'll just end up sitting there emulating
an empty ROM (solid black screen.) In time, I'd like to fix that too.
Lastly, I need a better method than popen for Windows. popen is kind of
ugly and flashes a console window for a brief second even if the
application launched is linked with -mwindows. Not sure if there even is
one (I need to read the stdout result, so CreateProcess may not work
unless I do something nasty like "> %tmp%/temp") I'm also using the
regular popen instead of _wpopen, so for this WIP, it won't work if your
game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
|
|
|
struct Information {
|
|
|
|
string manifest;
|
|
|
|
} information;
|
|
|
|
|
2010-08-09 13:28:56 +00:00
|
|
|
private:
|
2015-11-10 11:02:29 +00:00
|
|
|
auto serialize(serializer&) -> void;
|
|
|
|
auto serializeAll(serializer&) -> void;
|
|
|
|
auto serializeInit() -> void;
|
2010-08-09 13:28:56 +00:00
|
|
|
|
Update to v097r12 release.
byuu says:
Nothing WS-related this time.
First, I fixed expansion port device mapping. On first load, it was
mapping the expansion port device too late, so it ended up not taking
effect. I had to spin out the logic for that into
Program::connectDevices(). This was proving to be quite annoying while
testing eBoot (SNES-Hook simulation.)
Second, I fixed the audio->set(Frequency, Latency) functions to take
(uint) parameters from the configuration file, so the weird behavior
around changing settings in the audio panel should hopefully be gone
now.
Third, I rewrote the interface->load,unload functions to call into the
(Emulator)::System::load,unload functions. And I have those call out to
Cartridge::load,unload. Before, this was inverted, and Cartridge::load()
was invoking System::load(), which I felt was kind of backward.
The Super Game Boy really didn't like this change, however. And it took
me a few hours to power through it. Before, I had the Game Boy core
dummying out all the interface->(load,save)Request calls, and having the
SNES core make them for it. This is because the folder paths and IDs
will be different between the two cores.
I've redesigned things so that ICD2's Emulator::Interface overloads
loadRequest and saveRequest, and translates the requests into new
requests for the SuperFamicom core. This allows the Game Boy code to do
its own loading for everything without a bunch of Super Game Boy special
casing, and without any awkwardness around powering on with no cartridge
inserted.
This also lets the SNES side of things simply call into higher-level
GameBoy::interface->load,save(id, stream) functions instead of stabbing
at the raw underlying state inside of various Game Boy core emulation
classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
|
|
|
bool _loaded = false;
|
2016-01-23 07:29:34 +00:00
|
|
|
Region _region = Region::NTSC;
|
|
|
|
Device::ID _expansionPort = Device::ID::None;
|
|
|
|
uint _cpuFrequency = 0;
|
|
|
|
uint _apuFrequency = 0;
|
|
|
|
uint _serializeSize = 0;
|
|
|
|
|
2010-08-09 13:28:56 +00:00
|
|
|
friend class Cartridge;
|
2015-11-10 11:02:29 +00:00
|
|
|
friend class Device;
|
2010-08-09 13:28:56 +00:00
|
|
|
};
|
|
|
|
|
Update to v093r02 release.
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 11:45:54 +00:00
|
|
|
extern System system;
|
|
|
|
|
|
|
|
struct Random {
|
2016-01-23 07:29:34 +00:00
|
|
|
auto seed(uint seed) -> void;
|
|
|
|
auto operator()(uint result) -> uint;
|
|
|
|
auto serialize(serializer& s) -> void;
|
Update to v093r02 release.
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 11:45:54 +00:00
|
|
|
|
|
|
|
private:
|
2015-11-10 11:02:29 +00:00
|
|
|
uint iter = 0;
|
Update to v093r02 release.
byuu says:
Changelog:
- nall: fixed major memory leak in string class
- ruby: video shaders support #define-based settings now
- phoenix/GTK+: support > 256x256 icons for window / task bar / alt-tab
- sfc: remove random/ and config/, merge into system/
- ethos: delete higan.png (48x48), replace with higan512.png (512x512)
as new higan.png
- ethos: default gamma to 100% (no color adjustment)
- ethos: use "Video Shaders/Display Emulation/" instead of "Video
Shaders/Emulation/"
- use g++ instead of g++-4.7 (g++ -v must be >= 4.7)
- use -std=c++11 instead of -std=gnu++11
- applied a few patches from Debian upstream to make their packaging job
easier
So because colors are normalized in GLSL, I won't be able to offer video
shaders absolute color literals. We will have to perform basic color
conversion inside the core.
As such, the current plan is to create some sort of Emulator::Settings
interface. With that, I'll connect an option for color correction, which
will be on by default. For FC/SFC, that will mean gamma correction
(darker / stronger colors), and for GB/GBC/GBA, it will mean simulating
the weird brightness levels of the displays. I am undecided on whether
to use pea soup green for the GB or not. By not doing so, it'll be
easier for the display emulation shader to do it.
2013-11-09 11:45:54 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
extern Random random;
|