bsnes/ananke/nall/image.hpp

540 lines
16 KiB
C++
Raw Normal View History

Update to v091r11 release. byuu says: This release refines HSU1 support as a bidirectional protocol, nests SFC manifests as "release/cartridge" and "release/information" (but release/ is not guaranteed to be finalized just yet), removes the database integration, and adds support for ananke. ananke represents inevitability. It's a library that, when installed, higan can use to load files from the command-line, and also from a new File -> Load Game menu option. I need to change the build rules a bit for it to work on Windows (need to make phoenix a DLL, basically), but it works now on Linux. Right now, it only takes *.sfc file names, looks them up in the included database, converts them to game folders, and returns the game folder path for higan to load. The idea is to continue expanding it to support everything we can that I don't want in the higan core: - load *.sfc, *.smc, *.swc, *.fig files - remove SNES copier headers - split apart merged firmware files - pull in external firmware files (eg dsp1b.rom - these are staying merged, just as SPC7110 prg+dat are merged) - load *.zip and *.7z archives - prompt for selection on multi-file archives - generate manifest files based on heuristics - apply BPS patches The "Load" menu option has been renamed to "Library", to represent games in your library. I'm going to add some sort of suffix to indicate unverified games, and use a different folder icon for those (eg manifests built on heuristics rather than from the database.) So basically, to future end users: File -> Load Game will be how they play games. Library -> (specific system) can be thought of as an infinitely-sized recent games list. purify will likely become a simple stub that invokes ananke's functions. No reason to duplicate all that code.
2012-11-05 08:22:50 +00:00
#ifndef NALL_IMAGE_HPP
#define NALL_IMAGE_HPP
#include <nall/bmp.hpp>
#include <nall/filemap.hpp>
#include <nall/interpolation.hpp>
#include <nall/png.hpp>
#include <nall/stdint.hpp>
#include <algorithm>
namespace nall {
struct image {
uint8_t *data;
unsigned width;
unsigned height;
unsigned pitch;
bool endian; //0 = little, 1 = big
unsigned depth;
unsigned stride;
struct Channel {
uint64_t mask;
unsigned depth;
unsigned shift;
inline bool operator==(const Channel &source) {
return mask == source.mask && depth == source.depth && shift == source.shift;
}
inline bool operator!=(const Channel &source) {
return !operator==(source);
}
} alpha, red, green, blue;
typedef double (*interpolation)(double, double, double, double, double);
static inline unsigned bitDepth(uint64_t color);
static inline unsigned bitShift(uint64_t color);
static inline uint64_t normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth);
inline bool operator==(const image &source);
inline bool operator!=(const image &source);
inline image& operator=(const image &source);
inline image& operator=(image &&source);
inline image(const image &source);
inline image(image &&source);
inline image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline image(const string &filename);
inline image(const uint8_t *data, unsigned size);
inline image();
inline ~image();
inline uint64_t read(const uint8_t *data) const;
inline void write(uint8_t *data, uint64_t value) const;
inline void free();
inline bool empty() const;
inline void allocate(unsigned width, unsigned height);
inline void clear(uint64_t color);
inline bool load(const string &filename);
//inline bool loadBMP(const uint8_t *data, unsigned size);
inline bool loadPNG(const uint8_t *data, unsigned size);
inline void scale(unsigned width, unsigned height, interpolation op);
inline void transform(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline void alphaBlend(uint64_t alphaColor);
protected:
inline uint64_t interpolate(double mu, const uint64_t *s, interpolation op);
inline void scaleX(unsigned width, interpolation op);
inline void scaleY(unsigned height, interpolation op);
inline bool loadBMP(const string &filename);
inline bool loadPNG(const string &filename);
};
//static
unsigned image::bitDepth(uint64_t color) {
unsigned depth = 0;
if(color) while((color & 1) == 0) color >>= 1;
while((color & 1) == 1) { color >>= 1; depth++; }
return depth;
}
unsigned image::bitShift(uint64_t color) {
unsigned shift = 0;
if(color) while((color & 1) == 0) { color >>= 1; shift++; }
return shift;
}
uint64_t image::normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth) {
while(sourceDepth < targetDepth) {
color = (color << sourceDepth) | color;
sourceDepth += sourceDepth;
}
if(targetDepth < sourceDepth) color >>= (sourceDepth - targetDepth);
return color;
}
//public
bool image::operator==(const image &source) {
if(width != source.width) return false;
if(height != source.height) return false;
if(pitch != source.pitch) return false;
if(endian != source.endian) return false;
if(stride != source.stride) return false;
if(alpha != source.alpha) return false;
if(red != source.red) return false;
if(green != source.green) return false;
if(blue != source.blue) return false;
return memcmp(data, source.data, width * height * stride) == 0;
}
bool image::operator!=(const image &source) {
return !operator==(source);
}
image& image::operator=(const image &source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = new uint8_t[width * height * stride];
memcpy(data, source.data, width * height * stride);
return *this;
}
image& image::operator=(image &&source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = source.data;
source.data = nullptr;
return *this;
}
image::image(const image &source) : data(nullptr) {
operator=(source);
}
image::image(image &&source) : data(nullptr) {
operator=(std::forward<image>(source));
}
image::image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = endian;
this->depth = depth;
this->stride = (depth / 8) + ((depth & 7) > 0);
alpha.mask = alphaMask, red.mask = redMask, green.mask = greenMask, blue.mask = blueMask;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
}
image::image(const string &filename) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
load(filename);
}
image::image(const uint8_t *data, unsigned size) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
loadPNG(data, size);
}
image::image() : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
}
image::~image() {
free();
}
uint64_t image::read(const uint8_t *data) const {
uint64_t result = 0;
if(endian == 0) {
for(signed n = stride - 1; n >= 0; n--) result = (result << 8) | data[n];
} else {
for(signed n = 0; n < stride; n++) result = (result << 8) | data[n];
}
return result;
}
void image::write(uint8_t *data, uint64_t value) const {
if(endian == 0) {
for(signed n = 0; n < stride; n++) { data[n] = value; value >>= 8; }
} else {
for(signed n = stride - 1; n >= 0; n--) { data[n] = value; value >>= 8; }
}
}
void image::free() {
if(data) delete[] data;
data = nullptr;
}
bool image::empty() const {
if(data == nullptr) return true;
if(width == 0 || height == 0) return true;
return false;
}
void image::allocate(unsigned width, unsigned height) {
if(data != nullptr && this->width == width && this->height == height) return;
free();
data = new uint8_t[width * height * stride]();
pitch = width * stride;
this->width = width;
this->height = height;
}
void image::clear(uint64_t color) {
uint8_t *dp = data;
for(unsigned n = 0; n < width * height; n++) {
write(dp, color);
dp += stride;
}
}
bool image::load(const string &filename) {
if(loadBMP(filename) == true) return true;
if(loadPNG(filename) == true) return true;
return false;
}
void image::scale(unsigned outputWidth, unsigned outputHeight, interpolation op) {
if(width != outputWidth) scaleX(outputWidth, op);
if(height != outputHeight) scaleY(outputHeight, op);
}
void image::transform(bool outputEndian, unsigned outputDepth, uint64_t outputAlphaMask, uint64_t outputRedMask, uint64_t outputGreenMask, uint64_t outputBlueMask) {
image output(outputEndian, outputDepth, outputAlphaMask, outputRedMask, outputGreenMask, outputBlueMask);
output.allocate(width, height);
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = output.data + output.pitch * y;
uint8_t *sp = data + pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(sp);
sp += stride;
uint64_t a = (color & alpha.mask) >> alpha.shift;
uint64_t r = (color & red.mask) >> red.shift;
uint64_t g = (color & green.mask) >> green.shift;
uint64_t b = (color & blue.mask) >> blue.shift;
a = normalize(a, alpha.depth, output.alpha.depth);
r = normalize(r, red.depth, output.red.depth);
g = normalize(g, green.depth, output.green.depth);
b = normalize(b, blue.depth, output.blue.depth);
output.write(dp, (a << output.alpha.shift) | (r << output.red.shift) | (g << output.green.shift) | (b << output.blue.shift));
dp += output.stride;
}
}
operator=(std::move(output));
}
void image::alphaBlend(uint64_t alphaColor) {
uint64_t alphaR = (alphaColor & red.mask) >> red.shift;
uint64_t alphaG = (alphaColor & green.mask) >> green.shift;
uint64_t alphaB = (alphaColor & blue.mask) >> blue.shift;
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = data + pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(dp);
uint64_t colorA = (color & alpha.mask) >> alpha.shift;
uint64_t colorR = (color & red.mask) >> red.shift;
uint64_t colorG = (color & green.mask) >> green.shift;
uint64_t colorB = (color & blue.mask) >> blue.shift;
double alphaScale = (double)colorA / (double)((1 << alpha.depth) - 1);
colorA = (1 << alpha.depth) - 1;
colorR = (colorR * alphaScale) + (alphaR * (1.0 - alphaScale));
colorG = (colorG * alphaScale) + (alphaG * (1.0 - alphaScale));
colorB = (colorB * alphaScale) + (alphaB * (1.0 - alphaScale));
write(dp, (colorA << alpha.shift) | (colorR << red.shift) | (colorG << green.shift) | (colorB << blue.shift));
dp += stride;
}
}
}
//protected
uint64_t image::interpolate(double mu, const uint64_t *s, double (*op)(double, double, double, double, double)) {
uint64_t aa = (s[0] & alpha.mask) >> alpha.shift, ar = (s[0] & red.mask) >> red.shift,
ag = (s[0] & green.mask) >> green.shift, ab = (s[0] & blue.mask) >> blue.shift;
uint64_t ba = (s[1] & alpha.mask) >> alpha.shift, br = (s[1] & red.mask) >> red.shift,
bg = (s[1] & green.mask) >> green.shift, bb = (s[1] & blue.mask) >> blue.shift;
uint64_t ca = (s[2] & alpha.mask) >> alpha.shift, cr = (s[2] & red.mask) >> red.shift,
cg = (s[2] & green.mask) >> green.shift, cb = (s[2] & blue.mask) >> blue.shift;
uint64_t da = (s[3] & alpha.mask) >> alpha.shift, dr = (s[3] & red.mask) >> red.shift,
dg = (s[3] & green.mask) >> green.shift, db = (s[3] & blue.mask) >> blue.shift;
int64_t A = op(mu, aa, ba, ca, da);
int64_t R = op(mu, ar, br, cr, dr);
int64_t G = op(mu, ag, bg, cg, dg);
int64_t B = op(mu, ab, bb, cb, db);
A = max(0, min(A, (1 << alpha.depth) - 1));
R = max(0, min(R, (1 << red.depth) - 1));
G = max(0, min(G, (1 << green.depth) - 1));
B = max(0, min(B, (1 << blue.depth) - 1));
return (A << alpha.shift) | (R << red.shift) | (G << green.shift) | (B << blue.shift);
}
void image::scaleX(unsigned outputWidth, interpolation op) {
uint8_t *outputData = new uint8_t[outputWidth * height * stride];
unsigned outputPitch = outputWidth * stride;
double step = (double)width / (double)outputWidth;
const uint8_t *terminal = data + pitch * height;
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = outputData + outputPitch * y;
uint8_t *sp = data + pitch * y;
double fraction = 0.0;
uint64_t s[4] = { sp < terminal ? read(sp) : 0 }; //B,C (0,1) = center of kernel { 0, 0, 1, 2 }
s[1] = s[0];
s[2] = sp + stride < terminal ? read(sp += stride) : s[1];
s[3] = sp + stride < terminal ? read(sp += stride) : s[2];
for(unsigned x = 0; x < width; x++) {
while(fraction <= 1.0) {
if(dp >= outputData + outputPitch * height) break;
write(dp, interpolate(fraction, (const uint64_t*)&s, op));
dp += stride;
fraction += step;
}
s[0] = s[1]; s[1] = s[2]; s[2] = s[3];
if(sp + stride < terminal) s[3] = read(sp += stride);
fraction -= 1.0;
}
}
free();
data = outputData;
width = outputWidth;
pitch = width * stride;
}
void image::scaleY(unsigned outputHeight, interpolation op) {
uint8_t *outputData = new uint8_t[width * outputHeight * stride];
double step = (double)height / (double)outputHeight;
const uint8_t *terminal = data + pitch * height;
#pragma omp parallel for
for(unsigned x = 0; x < width; x++) {
uint8_t *dp = outputData + stride * x;
uint8_t *sp = data + stride * x;
double fraction = 0.0;
uint64_t s[4] = { sp < terminal ? read(sp) : 0 };
s[1] = s[0];
s[2] = sp + pitch < terminal ? read(sp += pitch) : s[1];
s[3] = sp + pitch < terminal ? read(sp += pitch) : s[2];
for(unsigned y = 0; y < height; y++) {
while(fraction <= 1.0) {
if(dp >= outputData + pitch * outputHeight) break;
write(dp, interpolate(fraction, (const uint64_t*)&s, op));
dp += pitch;
fraction += step;
}
s[0] = s[1]; s[1] = s[2]; s[2] = s[3];
if(sp + pitch < terminal) s[3] = read(sp += pitch);
fraction -= 1.0;
}
}
free();
data = outputData;
height = outputHeight;
}
bool image::loadBMP(const string &filename) {
uint32_t *outputData;
unsigned outputWidth, outputHeight;
if(bmp::read(filename, outputData, outputWidth, outputHeight) == false) return false;
allocate(outputWidth, outputHeight);
const uint32_t *sp = outputData;
uint8_t *dp = data;
for(unsigned y = 0; y < outputHeight; y++) {
for(unsigned x = 0; x < outputWidth; x++) {
uint32_t color = *sp++;
uint64_t a = normalize((uint8_t)(color >> 24), 8, alpha.depth);
uint64_t r = normalize((uint8_t)(color >> 16), 8, red.depth);
uint64_t g = normalize((uint8_t)(color >> 8), 8, green.depth);
uint64_t b = normalize((uint8_t)(color >> 0), 8, blue.depth);
write(dp, (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift));
dp += stride;
}
}
delete[] outputData;
return true;
}
bool image::loadPNG(const uint8_t *pngData, unsigned pngSize) {
png source;
if(source.decode(pngData, pngSize) == false) return false;
allocate(source.info.width, source.info.height);
const uint8_t *sp = source.data;
uint8_t *dp = data;
auto decode = [&]() -> uint64_t {
uint64_t p, r, g, b, a;
switch(source.info.colorType) {
case 0: //L
r = g = b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 2: //R,G,B
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 3: //P
p = source.readbits(sp);
r = source.info.palette[p][0];
g = source.info.palette[p][1];
b = source.info.palette[p][2];
a = (1 << source.info.bitDepth) - 1;
break;
case 4: //L,A
r = g = b = source.readbits(sp);
a = source.readbits(sp);
break;
case 6: //R,G,B,A
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = source.readbits(sp);
break;
}
a = normalize(a, source.info.bitDepth, alpha.depth);
r = normalize(r, source.info.bitDepth, red.depth);
g = normalize(g, source.info.bitDepth, green.depth);
b = normalize(b, source.info.bitDepth, blue.depth);
return (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift);
};
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
write(dp, decode());
dp += stride;
}
}
return true;
}
bool image::loadPNG(const string &filename) {
filemap map;
if(map.open(filename, filemap::mode::read) == false) return false;
return loadPNG(map.data(), map.size());
}
}
#endif