bsnes/shaders/CRT-Royale.shader/bloom-approx.fs

13973 lines
731 KiB
Forth
Raw Normal View History

#version 150
uniform sampler2D source[];
uniform vec4 sourceSize[];
uniform vec4 targetSize;
in Vertex {
vec2 vTexCoord;
vec2 tex_uv;
vec2 blur_dxdy;
vec2 uv_scanline_step;
float estimated_viewport_size_x;
vec2 texture_size_inv;
vec2 tex_uv_to_pixel_scale;
};
out vec4 FragColor;
// USER SETTINGS BLOCK //
#define crt_gamma 2.500000
#define lcd_gamma 2.200000
#define levels_contrast 1.0
#define halation_weight 0.0
#define diffusion_weight 0.075
#define bloom_underestimate_levels 0.8
#define bloom_excess 0.000000
#define beam_min_sigma 0.020000
#define beam_max_sigma 0.300000
#define beam_spot_power 0.330000
#define beam_min_shape 2.000000
#define beam_max_shape 4.000000
#define beam_shape_power 0.250000
#define beam_horiz_filter 0.000000
#define beam_horiz_sigma 0.35
#define beam_horiz_linear_rgb_weight 1.000000
#define convergence_offset_x_r -0.000000
#define convergence_offset_x_g 0.000000
#define convergence_offset_x_b 0.000000
#define convergence_offset_y_r 0.000000
#define convergence_offset_y_g -0.000000
#define convergence_offset_y_b 0.000000
#define mask_type 1.000000
#define mask_sample_mode_desired 0.000000
#define mask_specify_num_triads 0.000000
#define mask_triad_size_desired 3.000000
#define mask_num_triads_desired 480.000000
#define aa_subpixel_r_offset_x_runtime -0.0
#define aa_subpixel_r_offset_y_runtime 0.000000
#define aa_cubic_c 0.500000
#define aa_gauss_sigma 0.500000
#define geom_mode_runtime 0.000000
#define geom_radius 2.000000
#define geom_view_dist 2.000000
#define geom_tilt_angle_x 0.000000
#define geom_tilt_angle_y 0.000000
#define geom_aspect_ratio_x 432.000000
#define geom_aspect_ratio_y 329.000000
#define geom_overscan_x 1.000000
#define geom_overscan_y 1.000000
#define border_size 0.015
#define border_darkness 2.0
#define border_compress 2.500000
#define interlace_bff 0.000000
#define interlace_1080i 0.000000
// END USER SETTINGS BLOCK //
// compatibility macros for transparently converting HLSLisms into GLSLisms
#define mul(a,b) (b*a)
#define lerp(a,b,c) mix(a,b,c)
#define saturate(c) clamp(c, 0.0, 1.0)
#define frac(x) (fract(x))
#define float2 vec2
#define float3 vec3
#define float4 vec4
#define bool2 bvec2
#define bool3 bvec3
#define bool4 bvec4
#define float2x2 mat2x2
#define float3x3 mat3x3
#define float4x4 mat4x4
#define float4x3 mat4x3
#define float2x4 mat2x4
#define IN params
#define texture_size sourceSize[0].xy
#define video_size sourceSize[0].xy
#define output_size targetSize.xy
#define frame_count phase
#define static
#define inline
#define const
#define fmod(x,y) mod(x,y)
#define ddx(c) dFdx(c)
#define ddy(c) dFdy(c)
#define atan2(x,y) atan(y,x)
#define rsqrt(c) inversesqrt(c)
#define input_texture source[0]
#if defined(GL_ES)
#define COMPAT_PRECISION mediump
#else
#define COMPAT_PRECISION
#endif
#if __VERSION__ >= 130
#define COMPAT_TEXTURE texture
#else
#define COMPAT_TEXTURE texture2D
#endif
#define ORIG_LINEARIZEDvideo_size sourceSize[1].xy
#define ORIG_LINEARIZEDtexture_size sourceSize[1].xy
#define ORIG_LINEARIZED source[1]
float bloom_approx_scale_x = targetSize.x / sourceSize[0].y;
const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
/////////////////////////////// VERTEX INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
//////////////////////////// END USER-SETTINGS //////////////////////////
//#include "bind-shader-h"
///////////////////////////// BEGIN BIND-SHADER-PARAMS ////////////////////////////
#ifndef BIND_SHADER_PARAMS_H
#define BIND_SHADER_PARAMS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "derived-settings-and-constants.h"
///////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
//////////////////// END DERIVED-SETTINGS-AND-CONSTANTS /////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
// Override some parameters for gamma-management.h and tex2Dantialias.h:
#define OVERRIDE_DEVICE_GAMMA
static const float gba_gamma = 3.5; // Irrelevant but necessary to define.
#define ANTIALIAS_OVERRIDE_BASICS
#define ANTIALIAS_OVERRIDE_PARAMETERS
// Provide accessors for vector constants that pack scalar uniforms:
inline float2 get_aspect_vector(const float geom_aspect_ratio)
{
// Get an aspect ratio vector. Enforce geom_max_aspect_ratio, and prevent
// the absolute scale from affecting the uv-mapping for curvature:
const float geom_clamped_aspect_ratio =
min(geom_aspect_ratio, geom_max_aspect_ratio);
const float2 geom_aspect =
normalize(float2(geom_clamped_aspect_ratio, 1.0));
return geom_aspect;
}
inline float2 get_geom_overscan_vector()
{
return float2(geom_overscan_x, geom_overscan_y);
}
inline float2 get_geom_tilt_angle_vector()
{
return float2(geom_tilt_angle_x, geom_tilt_angle_y);
}
inline float3 get_convergence_offsets_x_vector()
{
return float3(convergence_offset_x_r, convergence_offset_x_g,
convergence_offset_x_b);
}
inline float3 get_convergence_offsets_y_vector()
{
return float3(convergence_offset_y_r, convergence_offset_y_g,
convergence_offset_y_b);
}
inline float2 get_convergence_offsets_r_vector()
{
return float2(convergence_offset_x_r, convergence_offset_y_r);
}
inline float2 get_convergence_offsets_g_vector()
{
return float2(convergence_offset_x_g, convergence_offset_y_g);
}
inline float2 get_convergence_offsets_b_vector()
{
return float2(convergence_offset_x_b, convergence_offset_y_b);
}
inline float2 get_aa_subpixel_r_offset()
{
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// WARNING: THIS IS EXTREMELY EXPENSIVE.
return float2(aa_subpixel_r_offset_x_runtime,
aa_subpixel_r_offset_y_runtime);
#else
return aa_subpixel_r_offset_static;
#endif
#else
return aa_subpixel_r_offset_static;
#endif
}
// Provide accessors settings which still need "cooking:"
inline float get_mask_amplify()
{
static const float mask_grille_amplify = 1.0/mask_grille_avg_color;
static const float mask_slot_amplify = 1.0/mask_slot_avg_color;
static const float mask_shadow_amplify = 1.0/mask_shadow_avg_color;
return mask_type < 0.5 ? mask_grille_amplify :
mask_type < 1.5 ? mask_slot_amplify :
mask_shadow_amplify;
}
inline float get_mask_sample_mode()
{
#ifdef RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
return mask_sample_mode_desired;
#else
return clamp(mask_sample_mode_desired, 1.0, 2.0);
#endif
#else
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
return mask_sample_mode_static;
#else
return clamp(mask_sample_mode_static, 1.0, 2.0);
#endif
#endif
}
#endif // BIND_SHADER_PARAMS_H
//////////////////////////// END BIND-SHADER-PARAMS ///////////////////////////
//#include "../../../../include/gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//#include "derived-settings-and-constants.h"
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
//#include "scanline-functions.h"
///////////////////////////// BEGIN SCANLINE-FUNCTIONS ////////////////////////////
#ifndef SCANLINE_FUNCTIONS_H
#define SCANLINE_FUNCTIONS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
//////////////////////////// END USER-SETTINGS //////////////////////////
//#include "derived-settings-and-constants.h"
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
//#include "../../../../include/special-functions.h"
/////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
#ifndef SPECIAL_FUNCTIONS_H
#define SPECIAL_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file implements the following mathematical special functions:
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
// 2.) gamma(s), a real-numbered extension of the integer factorial function
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
// be called with an _impl suffix to use an implementation version with a few
// extra precomputed parameters (which may be useful for the caller to reuse).
// See below for details.
//
// Design Rationale:
// Pretty much every line of code in this file is duplicated four times for
// different input types (float4/float3/float2/float). This is unfortunate,
// but Cg doesn't allow function templates. Macros would be far less verbose,
// but they would make the code harder to document and read. I don't expect
// these functions will require a whole lot of maintenance changes unless
// someone ever has need for more robust incomplete gamma functions, so code
// duplication seems to be the lesser evil in this case.
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
float4 erf6(float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
// This approximation has a max absolute error of 2.5*10**-5
// with solid numerical robustness and efficiency. See:
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
static const float4 one = float4(1.0);
const float4 sign_x = sign(x);
const float4 t = one/(one + 0.47047*abs(x));
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float3 erf6(const float3 x)
{
// Float3 version:
static const float3 one = float3(1.0);
const float3 sign_x = sign(x);
const float3 t = one/(one + 0.47047*abs(x));
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float2 erf6(const float2 x)
{
// Float2 version:
static const float2 one = float2(1.0);
const float2 sign_x = sign(x);
const float2 t = one/(one + 0.47047*abs(x));
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float erf6(const float x)
{
// Float version:
const float sign_x = sign(x);
const float t = 1.0/(1.0 + 0.47047*abs(x));
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float4 erft(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Approximate erf() with the hyperbolic tangent. The error is
// visually noticeable, but it's blazing fast and perceptually
// close...at least on ATI hardware. See:
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
// Warning: Only use this if your hardware drivers correctly implement
// tanh(): My nVidia 8800GTS returns garbage output.
return tanh(1.202760580 * x);
}
float3 erft(const float3 x)
{
// Float3 version:
return tanh(1.202760580 * x);
}
float2 erft(const float2 x)
{
// Float2 version:
return tanh(1.202760580 * x);
}
float erft(const float x)
{
// Float version:
return tanh(1.202760580 * x);
}
inline float4 erf(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Some approximation of erf(x), depending on user settings.
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float3 erf(const float3 x)
{
// Float3 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float2 erf(const float2 x)
{
// Float2 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float erf(const float x)
{
// Float version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
float4 gamma_impl(const float4 s, const float4 s_inv)
{
// Requires: 1.) s is the standard parameter to the gamma function, and
// it should lie in the [0, 36] range.
// 2.) s_inv = 1.0/s. This implementation function requires
// the caller to precompute this value, giving users the
// opportunity to reuse it.
// Returns: Return approximate gamma function (real-numbered factorial)
// output using the Lanczos approximation with two coefficients
// calculated using Paul Godfrey's method here:
// http://my.fit.edu/~gabdo/gamma.txt
// An optimal g value for s in [0, 36] is ~1.12906830989, with
// a maximum relative error of 0.000463 for 2**16 equally
// evals. We could use three coeffs (0.0000346 error) without
// hurting latency, but this allows more parallelism with
// outside instructions.
static const float4 g = float4(1.12906830989);
static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
static const float4 e = float4(2.71828182845904523536028747135266249775724709);
const float4 sph = s + float4(0.5);
const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
// This has less error for small s's than (s -= 1.0) at the beginning.
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float3 gamma_impl(const float3 s, const float3 s_inv)
{
// Float3 version:
static const float3 g = float3(1.12906830989);
static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
static const float3 e = float3(2.71828182845904523536028747135266249775724709);
const float3 sph = s + float3(0.5);
const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
const float3 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float2 gamma_impl(const float2 s, const float2 s_inv)
{
// Float2 version:
static const float2 g = float2(1.12906830989);
static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
static const float2 e = float2(2.71828182845904523536028747135266249775724709);
const float2 sph = s + float2(0.5);
const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
const float2 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float gamma_impl(const float s, const float s_inv)
{
// Float version:
static const float g = 1.12906830989;
static const float c0 = 0.8109119309638332633713423362694399653724431;
static const float c1 = 0.4808354605142681877121661197951496120000040;
static const float e = 2.71828182845904523536028747135266249775724709;
const float sph = s + 0.5;
const float lanczos_sum = c0 + c1/(s + 1.0);
const float base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float4 gamma(const float4 s)
{
// Requires: s is the standard parameter to the gamma function, and it
// should lie in the [0, 36] range.
// Returns: Return approximate gamma function output with a maximum
// relative error of 0.000463. See gamma_impl for details.
return gamma_impl(s, float4(1.0)/s);
}
float3 gamma(const float3 s)
{
// Float3 version:
return gamma_impl(s, float3(1.0)/s);
}
float2 gamma(const float2 s)
{
// Float2 version:
return gamma_impl(s, float2(1.0)/s);
}
float gamma(const float s)
{
// Float version:
return gamma_impl(s, 1.0/s);
}
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
// Lower incomplete gamma function for small s and z (implementation):
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) z <= ~0.775075
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
// Returns: A series representation for the lower incomplete gamma
// function for small s and small z (4 terms).
// The actual "rolled up" summation looks like:
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
// sum = last_sign * last_pow / ((s + k) * last_factorial)
// for(int i = 0; i < 4; ++i)
// {
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
// sum += last_sign * last_pow / ((s + k) * last_factorial);
// }
// Unrolled, constant-unfolded and arranged for madds and parallelism:
const float4 scale = pow(z, s);
float4 sum = s_inv; // Summation iteration 0 result
// Summation iterations 1, 2, and 3:
const float4 z_sq = z*z;
const float4 denom1 = s + float4(1.0);
const float4 denom2 = 2.0*s + float4(4.0);
const float4 denom3 = 6.0*s + float4(18.0);
//float4 denom4 = 24.0*s + float4(96.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
//sum += z_sq * z_sq / denom4;
// Scale and return:
return scale * sum;
}
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
{
// Float3 version:
const float3 scale = pow(z, s);
float3 sum = s_inv;
const float3 z_sq = z*z;
const float3 denom1 = s + float3(1.0);
const float3 denom2 = 2.0*s + float3(4.0);
const float3 denom3 = 6.0*s + float3(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
{
// Float2 version:
const float2 scale = pow(z, s);
float2 sum = s_inv;
const float2 z_sq = z*z;
const float2 denom1 = s + float2(1.0);
const float2 denom2 = 2.0*s + float2(4.0);
const float2 denom3 = 6.0*s + float2(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
{
// Float version:
const float scale = pow(z, s);
float sum = s_inv;
const float z_sq = z*z;
const float denom1 = s + 1.0;
const float denom2 = 2.0*s + 4.0;
const float denom3 = 6.0*s + 18.0;
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
// Upper incomplete gamma function for small s and large z (implementation):
float4 uigamma_large_z_impl(const float4 s, const float4 z)
{
// Requires: 1.) s < ~0.5
// 2.) z > ~0.775075
// Returns: Gauss's continued fraction representation for the upper
// incomplete gamma function (4 terms).
// The "rolled up" continued fraction looks like this. The denominator
// is truncated, and it's calculated "from the bottom up:"
// denom = float4('inf');
// float4 one = float4(1.0);
// for(int i = 4; i > 0; --i)
// {
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
// }
// Unrolled and constant-unfolded for madds and parallelism:
const float4 numerator = pow(z, s) * exp(-z);
float4 denom = float4(7.0) + z - s;
denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
return numerator / denom;
}
float3 uigamma_large_z_impl(const float3 s, const float3 z)
{
// Float3 version:
const float3 numerator = pow(z, s) * exp(-z);
float3 denom = float3(7.0) + z - s;
denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
return numerator / denom;
}
float2 uigamma_large_z_impl(const float2 s, const float2 z)
{
// Float2 version:
const float2 numerator = pow(z, s) * exp(-z);
float2 denom = float2(7.0) + z - s;
denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
return numerator / denom;
}
float uigamma_large_z_impl(const float s, const float z)
{
// Float version:
const float numerator = pow(z, s) * exp(-z);
float denom = 7.0 + z - s;
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
denom = 1.0 + z - s + (s - 1.0)/denom;
return numerator / denom;
}
// Normalized lower incomplete gamma function for small s (implementation):
float4 normalized_ligamma_impl(const float4 s, const float4 z,
const float4 s_inv, const float4 gamma_s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) s_inv = 1/s (precomputed for outside reuse)
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. Since we only care about s < 0.5, we only need
// to evaluate two branches (not four) based on z. Each branch
// uses four terms, with a max relative error of ~0.00182. The
// branch threshold and specifics were adapted for fewer terms
// from Gil/Segura/Temme's paper here:
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
// Evaluate both branches: Real branches test slower even when available.
static const float4 thresh = float4(0.775075);
bool4 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
z_is_large.w = z.w > thresh.w;
const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
// Combine the results from both branches:
bool4 inverse_z_is_large = not(z_is_large);
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
}
float3 normalized_ligamma_impl(const float3 s, const float3 z,
const float3 s_inv, const float3 gamma_s_inv)
{
// Float3 version:
static const float3 thresh = float3(0.775075);
bool3 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool3 inverse_z_is_large = not(z_is_large);
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
}
float2 normalized_ligamma_impl(const float2 s, const float2 z,
const float2 s_inv, const float2 gamma_s_inv)
{
// Float2 version:
static const float2 thresh = float2(0.775075);
bool2 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool2 inverse_z_is_large = not(z_is_large);
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
}
float normalized_ligamma_impl(const float s, const float z,
const float s_inv, const float gamma_s_inv)
{
// Float version:
static const float thresh = 0.775075;
const bool z_is_large = z > thresh;
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
return large_z * float(z_is_large) + small_z * float(!z_is_large);
}
// Normalized lower incomplete gamma function for small s:
float4 normalized_ligamma(const float4 s, const float4 z)
{
// Requires: s < ~0.5
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. See normalized_ligamma_impl() for details.
const float4 s_inv = float4(1.0)/s;
const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float3 normalized_ligamma(const float3 s, const float3 z)
{
// Float3 version:
const float3 s_inv = float3(1.0)/s;
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float2 normalized_ligamma(const float2 s, const float2 z)
{
// Float2 version:
const float2 s_inv = float2(1.0)/s;
const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float normalized_ligamma(const float s, const float z)
{
// Float version:
const float s_inv = 1.0/s;
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
#endif // SPECIAL_FUNCTIONS_H
//////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
//#include "../../../../include/gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(texture(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
///////////////////////////// SCANLINE FUNCTIONS /////////////////////////////
inline float3 get_gaussian_sigma(const float3 color, const float sigma_range)
{
// Requires: Globals:
// 1.) beam_min_sigma and beam_max_sigma are global floats
// containing the desired minimum and maximum beam standard
// deviations, for dim and bright colors respectively.
// 2.) beam_max_sigma must be > 0.0
// 3.) beam_min_sigma must be in (0.0, beam_max_sigma]
// 4.) beam_spot_power must be defined as a global float.
// Parameters:
// 1.) color is the underlying source color along a scanline
// 2.) sigma_range = beam_max_sigma - beam_min_sigma; we take
// sigma_range as a parameter to avoid repeated computation
// when beam_{min, max}_sigma are runtime shader parameters
// Optional: Users may set beam_spot_shape_function to 1 to define the
// inner f(color) subfunction (see below) as:
// f(color) = sqrt(1.0 - (color - 1.0)*(color - 1.0))
// Otherwise (technically, if beam_spot_shape_function < 0.5):
// f(color) = pow(color, beam_spot_power)
// Returns: The standard deviation of the Gaussian beam for "color:"
// sigma = beam_min_sigma + sigma_range * f(color)
// Details/Discussion:
// The beam's spot shape vaguely resembles an aspect-corrected f() in the
// range [0, 1] (not quite, but it's related). f(color) = color makes
// spots look like diamonds, and a spherical function or cube balances
// between variable width and a soft/realistic shape. A beam_spot_power
// > 1.0 can produce an ugly spot shape and more initial clipping, but the
// final shape also differs based on the horizontal resampling filter and
// the phosphor bloom. For instance, resampling horizontally in nonlinear
// light and/or with a sharp (e.g. Lanczos) filter will sharpen the spot
// shape, but a sixth root is still quite soft. A power function (default
// 1.0/3.0 beam_spot_power) is most flexible, but a fixed spherical curve
// has the highest variability without an awful spot shape.
//
// beam_min_sigma affects scanline sharpness/aliasing in dim areas, and its
// difference from beam_max_sigma affects beam width variability. It only
// affects clipping [for pure Gaussians] if beam_spot_power > 1.0 (which is
// a conservative estimate for a more complex constraint).
//
// beam_max_sigma affects clipping and increasing scanline width/softness
// as color increases. The wider this is, the more scanlines need to be
// evaluated to avoid distortion. For a pure Gaussian, the max_beam_sigma
// at which the first unused scanline always has a weight < 1.0/255.0 is:
// num scanlines = 2, max_beam_sigma = 0.2089; distortions begin ~0.34
// num scanlines = 3, max_beam_sigma = 0.3879; distortions begin ~0.52
// num scanlines = 4, max_beam_sigma = 0.5723; distortions begin ~0.70
// num scanlines = 5, max_beam_sigma = 0.7591; distortions begin ~0.89
// num scanlines = 6, max_beam_sigma = 0.9483; distortions begin ~1.08
// Generalized Gaussians permit more leeway here as steepness increases.
if(beam_spot_shape_function < 0.5)
{
// Use a power function:
return float3(beam_min_sigma) + sigma_range *
pow(color, float3(beam_spot_power));
}
else
{
// Use a spherical function:
const float3 color_minus_1 = color - float3(1.0);
return float3(beam_min_sigma) + sigma_range *
sqrt(float3(1.0) - color_minus_1*color_minus_1);
}
}
inline float3 get_generalized_gaussian_beta(const float3 color,
const float shape_range)
{
// Requires: Globals:
// 1.) beam_min_shape and beam_max_shape are global floats
// containing the desired min/max generalized Gaussian
// beta parameters, for dim and bright colors respectively.
// 2.) beam_max_shape must be >= 2.0
// 3.) beam_min_shape must be in [2.0, beam_max_shape]
// 4.) beam_shape_power must be defined as a global float.
// Parameters:
// 1.) color is the underlying source color along a scanline
// 2.) shape_range = beam_max_shape - beam_min_shape; we take
// shape_range as a parameter to avoid repeated computation
// when beam_{min, max}_shape are runtime shader parameters
// Returns: The type-I generalized Gaussian "shape" parameter beta for
// the given color.
// Details/Discussion:
// Beta affects the scanline distribution as follows:
// a.) beta < 2.0 narrows the peak to a spike with a discontinuous slope
// b.) beta == 2.0 just degenerates to a Gaussian
// c.) beta > 2.0 flattens and widens the peak, then drops off more steeply
// than a Gaussian. Whereas high sigmas widen and soften peaks, high
// beta widen and sharpen peaks at the risk of aliasing.
// Unlike high beam_spot_powers, high beam_shape_powers actually soften shape
// transitions, whereas lower ones sharpen them (at the risk of aliasing).
return beam_min_shape + shape_range * pow(color, float3(beam_shape_power));
}
float3 scanline_gaussian_integral_contrib(const float3 dist,
const float3 color, const float pixel_height, const float sigma_range)
{
// Requires: 1.) dist is the distance of the [potentially separate R/G/B]
// point(s) from a scanline in units of scanlines, where
// 1.0 means the sample point straddles the next scanline.
// 2.) color is the underlying source color along a scanline.
// 3.) pixel_height is the output pixel height in scanlines.
// 4.) Requirements of get_gaussian_sigma() must be met.
// Returns: Return a scanline's light output over a given pixel.
// Details:
// The CRT beam profile follows a roughly Gaussian distribution which is
// wider for bright colors than dark ones. The integral over the full
// range of a Gaussian function is always 1.0, so we can vary the beam
// with a standard deviation without affecting brightness. 'x' = distance:
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
// gaussian integral = 0.5 (1.0 + erf(x/(sigma * sqrt(2))))
// Use a numerical approximation of the "error function" (the Gaussian
// indefinite integral) to find the definite integral of the scanline's
// average brightness over a given pixel area. Even if curved coords were
// used in this pass, a flat scalar pixel height works almost as well as a
// pixel height computed from a full pixel-space to scanline-space matrix.
const float3 sigma = get_gaussian_sigma(color, sigma_range);
const float3 ph_offset = float3(pixel_height * 0.5);
const float3 denom_inv = 1.0/(sigma*sqrt(2.0));
const float3 integral_high = erf((dist + ph_offset)*denom_inv);
const float3 integral_low = erf((dist - ph_offset)*denom_inv);
return color * 0.5*(integral_high - integral_low)/pixel_height;
}
float3 scanline_generalized_gaussian_integral_contrib(float3 dist,
float3 color, float pixel_height, float sigma_range,
float shape_range)
{
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
// must be met.
// 2.) Requirements of get_gaussian_sigma() must be met.
// 3.) Requirements of get_generalized_gaussian_beta() must be
// met.
// Returns: Return a scanline's light output over a given pixel.
// A generalized Gaussian distribution allows the shape (beta) to vary
// as well as the width (alpha). "gamma" refers to the gamma function:
// generalized sample =
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
// ligamma(s, z) is the lower incomplete gamma function, for which we only
// implement two of four branches (because we keep 1/beta <= 0.5):
// generalized integral = 0.5 + 0.5* sign(x) *
// ligamma(1/beta, (|x|/alpha)**beta)/gamma(1/beta)
// See get_generalized_gaussian_beta() for a discussion of beta.
// We base alpha on the intended Gaussian sigma, but it only strictly
// models models standard deviation at beta == 2, because the standard
// deviation depends on both alpha and beta (keeping alpha independent is
// faster and preserves intuitive behavior and a full spectrum of results).
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
const float3 alpha_inv = float3(1.0)/alpha;
const float3 s = float3(1.0)/beta;
const float3 ph_offset = float3(pixel_height * 0.5);
// Pass beta to gamma_impl to avoid repeated divides. Similarly pass
// beta (i.e. 1/s) and 1/gamma(s) to normalized_ligamma_impl.
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, beta);
const float3 dist1 = dist + ph_offset;
const float3 dist0 = dist - ph_offset;
const float3 integral_high = sign(dist1) * normalized_ligamma_impl(
s, pow(abs(dist1)*alpha_inv, beta), beta, gamma_s_inv);
const float3 integral_low = sign(dist0) * normalized_ligamma_impl(
s, pow(abs(dist0)*alpha_inv, beta), beta, gamma_s_inv);
return color * 0.5*(integral_high - integral_low)/pixel_height;
}
float3 scanline_gaussian_sampled_contrib(const float3 dist, const float3 color,
const float pixel_height, const float sigma_range)
{
// See scanline_gaussian integral_contrib() for detailed comments!
// gaussian sample = 1/(sigma*sqrt(2*pi)) * e**(-(x**2)/(2*sigma**2))
const float3 sigma = get_gaussian_sigma(color, sigma_range);
// Avoid repeated divides:
const float3 sigma_inv = float3(1.0)/sigma;
const float3 inner_denom_inv = 0.5 * sigma_inv * sigma_inv;
const float3 outer_denom_inv = sigma_inv/sqrt(2.0*pi);
if(beam_antialias_level > 0.5)
{
// Sample 1/3 pixel away in each direction as well:
const float3 sample_offset = float3(pixel_height/3.0);
const float3 dist2 = dist + sample_offset;
const float3 dist3 = abs(dist - sample_offset);
// Average three pure Gaussian samples:
const float3 scale = color/3.0 * outer_denom_inv;
const float3 weight1 = exp(-(dist*dist)*inner_denom_inv);
const float3 weight2 = exp(-(dist2*dist2)*inner_denom_inv);
const float3 weight3 = exp(-(dist3*dist3)*inner_denom_inv);
return scale * (weight1 + weight2 + weight3);
}
else
{
return color*exp(-(dist*dist)*inner_denom_inv)*outer_denom_inv;
}
}
float3 scanline_generalized_gaussian_sampled_contrib(float3 dist,
float3 color, float pixel_height, float sigma_range,
float shape_range)
{
// See scanline_generalized_gaussian_integral_contrib() for details!
// generalized sample =
// beta/(2*alpha*gamma(1/beta)) * e**(-(|x|/alpha)**beta)
const float3 alpha = sqrt(2.0) * get_gaussian_sigma(color, sigma_range);
const float3 beta = get_generalized_gaussian_beta(color, shape_range);
// Avoid repeated divides:
const float3 alpha_inv = float3(1.0)/alpha;
const float3 beta_inv = float3(1.0)/beta;
const float3 scale = color * beta * 0.5 * alpha_inv /
gamma_impl(beta_inv, beta);
if(beam_antialias_level > 0.5)
{
// Sample 1/3 pixel closer to and farther from the scanline too.
const float3 sample_offset = float3(pixel_height/3.0);
const float3 dist2 = dist + sample_offset;
const float3 dist3 = abs(dist - sample_offset);
// Average three generalized Gaussian samples:
const float3 weight1 = exp(-pow(abs(dist*alpha_inv), beta));
const float3 weight2 = exp(-pow(abs(dist2*alpha_inv), beta));
const float3 weight3 = exp(-pow(abs(dist3*alpha_inv), beta));
return scale/3.0 * (weight1 + weight2 + weight3);
}
else
{
return scale * exp(-pow(abs(dist*alpha_inv), beta));
}
}
inline float3 scanline_contrib(float3 dist, float3 color,
float pixel_height, const float sigma_range, const float shape_range)
{
// Requires: 1.) Requirements of scanline_gaussian_integral_contrib()
// must be met.
// 2.) Requirements of get_gaussian_sigma() must be met.
// 3.) Requirements of get_generalized_gaussian_beta() must be
// met.
// Returns: Return a scanline's light output over a given pixel, using
// a generalized or pure Gaussian distribution and sampling or
// integrals as desired by user codepath choices.
if(beam_generalized_gaussian)
{
if(beam_antialias_level > 1.5)
{
return scanline_generalized_gaussian_integral_contrib(
dist, color, pixel_height, sigma_range, shape_range);
}
else
{
return scanline_generalized_gaussian_sampled_contrib(
dist, color, pixel_height, sigma_range, shape_range);
}
}
else
{
if(beam_antialias_level > 1.5)
{
return scanline_gaussian_integral_contrib(
dist, color, pixel_height, sigma_range);
}
else
{
return scanline_gaussian_sampled_contrib(
dist, color, pixel_height, sigma_range);
}
}
}
inline float3 get_raw_interpolated_color(const float3 color0,
const float3 color1, const float3 color2, const float3 color3,
const float4 weights)
{
// Use max to avoid bizarre artifacts from negative colors:
return max(mul(weights, float4x3(color0, color1, color2, color3)), 0.0);
}
float3 get_interpolated_linear_color(const float3 color0, const float3 color1,
const float3 color2, const float3 color3, const float4 weights)
{
// Requires: 1.) Requirements of include/gamma-management.h must be met:
// intermediate_gamma must be globally defined, and input
// colors are interpreted as linear RGB unless you #define
// GAMMA_ENCODE_EVERY_FBO (in which case they are
// interpreted as gamma-encoded with intermediate_gamma).
// 2.) color0-3 are colors sampled from a texture with tex2D().
// They are interpreted as defined in requirement 1.
// 3.) weights contains weights for each color, summing to 1.0.
// 4.) beam_horiz_linear_rgb_weight must be defined as a global
// float in [0.0, 1.0] describing how much blending should
// be done in linear RGB (rest is gamma-corrected RGB).
// 5.) RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE must be #defined
// if beam_horiz_linear_rgb_weight is anything other than a
// static constant, or we may try branching at runtime
// without dynamic branches allowed (slow).
// Returns: Return an interpolated color lookup between the four input
// colors based on the weights in weights. The final color will
// be a linear RGB value, but the blending will be done as
// indicated above.
const float intermediate_gamma = get_intermediate_gamma();
// Branch if beam_horiz_linear_rgb_weight is static (for free) or if the
// profile allows dynamic branches (faster than computing extra pows):
#ifndef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
#else
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
#endif
#endif
#ifdef SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
// beam_horiz_linear_rgb_weight is static, so we can branch:
#ifdef GAMMA_ENCODE_EVERY_FBO
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
color0, color1, color2, color3, weights), float3(intermediate_gamma));
if(beam_horiz_linear_rgb_weight > 0.0)
{
const float3 linear_mixed_color = get_raw_interpolated_color(
pow(color0, float3(intermediate_gamma)),
pow(color1, float3(intermediate_gamma)),
pow(color2, float3(intermediate_gamma)),
pow(color3, float3(intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
}
else
{
return gamma_mixed_color;
}
#else
const float3 linear_mixed_color = get_raw_interpolated_color(
color0, color1, color2, color3, weights);
if(beam_horiz_linear_rgb_weight < 1.0)
{
const float3 gamma_mixed_color = get_raw_interpolated_color(
pow(color0, float3(1.0/intermediate_gamma)),
pow(color1, float3(1.0/intermediate_gamma)),
pow(color2, float3(1.0/intermediate_gamma)),
pow(color3, float3(1.0/intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
}
else
{
return linear_mixed_color;
}
#endif // GAMMA_ENCODE_EVERY_FBO
#else
#ifdef GAMMA_ENCODE_EVERY_FBO
// Inputs: color0-3 are colors in gamma-encoded RGB.
const float3 gamma_mixed_color = pow(get_raw_interpolated_color(
color0, color1, color2, color3, weights), intermediate_gamma);
const float3 linear_mixed_color = get_raw_interpolated_color(
pow(color0, float3(intermediate_gamma)),
pow(color1, float3(intermediate_gamma)),
pow(color2, float3(intermediate_gamma)),
pow(color3, float3(intermediate_gamma)),
weights);
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
#else
// Inputs: color0-3 are colors in linear RGB.
const float3 linear_mixed_color = get_raw_interpolated_color(
color0, color1, color2, color3, weights);
const float3 gamma_mixed_color = get_raw_interpolated_color(
pow(color0, float3(1.0/intermediate_gamma)),
pow(color1, float3(1.0/intermediate_gamma)),
pow(color2, float3(1.0/intermediate_gamma)),
pow(color3, float3(1.0/intermediate_gamma)),
weights);
// wtf fixme
// const float beam_horiz_linear_rgb_weight1 = 1.0;
return lerp(gamma_mixed_color, linear_mixed_color,
beam_horiz_linear_rgb_weight);
#endif // GAMMA_ENCODE_EVERY_FBO
#endif // SCANLINES_BRANCH_FOR_LINEAR_RGB_WEIGHT
}
float3 get_scanline_color(const sampler2D tex, const float2 scanline_uv,
const float2 uv_step_x, const float4 weights)
{
// Requires: 1.) scanline_uv must be vertically snapped to the caller's
// desired line or scanline and horizontally snapped to the
// texel just left of the output pixel (color1)
// 2.) uv_step_x must contain the horizontal uv distance
// between texels.
// 3.) weights must contain interpolation filter weights for
// color0, color1, color2, and color3, where color1 is just
// left of the output pixel.
// Returns: Return a horizontally interpolated texture lookup using 2-4
// nearby texels, according to weights and the conventions of
// get_interpolated_linear_color().
// We can ignore the outside texture lookups for Quilez resampling.
const float3 color1 = COMPAT_TEXTURE(tex, scanline_uv).rgb;
const float3 color2 = COMPAT_TEXTURE(tex, scanline_uv + uv_step_x).rgb;
float3 color0 = float3(0.0);
float3 color3 = float3(0.0);
if(beam_horiz_filter > 0.5)
{
color0 = COMPAT_TEXTURE(tex, scanline_uv - uv_step_x).rgb;
color3 = COMPAT_TEXTURE(tex, scanline_uv + 2.0 * uv_step_x).rgb;
}
// Sample the texture as-is, whether it's linear or gamma-encoded:
// get_interpolated_linear_color() will handle the difference.
return get_interpolated_linear_color(color0, color1, color2, color3, weights);
}
float3 sample_single_scanline_horizontal(const sampler2D tex,
const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv)
{
// TODO: Add function requirements.
// Snap to the previous texel and get sample dists from 2/4 nearby texels:
const float2 curr_texel = tex_uv * tex_size;
// Use under_half to fix a rounding bug right around exact texel locations.
const float2 prev_texel =
floor(curr_texel - float2(under_half)) + float2(0.5);
const float2 prev_texel_hor = float2(prev_texel.x, curr_texel.y);
const float2 prev_texel_hor_uv = prev_texel_hor * texture_size_inv;
const float prev_dist = curr_texel.x - prev_texel_hor.x;
const float4 sample_dists = float4(1.0 + prev_dist, prev_dist,
1.0 - prev_dist, 2.0 - prev_dist);
// Get Quilez, Lanczos2, or Gaussian resize weights for 2/4 nearby texels:
float4 weights;
if(beam_horiz_filter < 0.5)
{
// Quilez:
const float x = sample_dists.y;
const float w2 = x*x*x*(x*(x*6.0 - 15.0) + 10.0);
weights = float4(0.0, 1.0 - w2, w2, 0.0);
}
else if(beam_horiz_filter < 1.5)
{
// Gaussian:
float inner_denom_inv = 1.0/(2.0*beam_horiz_sigma*beam_horiz_sigma);
weights = exp(-(sample_dists*sample_dists)*inner_denom_inv);
}
else
{
// Lanczos2:
const float4 pi_dists = FIX_ZERO(sample_dists * pi);
weights = 2.0 * sin(pi_dists) * sin(pi_dists * 0.5) /
(pi_dists * pi_dists);
}
// Ensure the weight sum == 1.0:
const float4 final_weights = weights/dot(weights, float4(1.0));
// Get the interpolated horizontal scanline color:
const float2 uv_step_x = float2(texture_size_inv.x, 0.0);
return get_scanline_color(
tex, prev_texel_hor_uv, uv_step_x, final_weights);
}
float3 sample_rgb_scanline_horizontal(const sampler2D tex,
const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv)
{
// TODO: Add function requirements.
// Rely on a helper to make convergence easier.
if(beam_misconvergence)
{
const float3 convergence_offsets_rgb =
get_convergence_offsets_x_vector();
const float3 offset_u_rgb =
convergence_offsets_rgb * texture_size_inv.xxx;
const float2 scanline_uv_r = tex_uv - float2(offset_u_rgb.r, 0.0);
const float2 scanline_uv_g = tex_uv - float2(offset_u_rgb.g, 0.0);
const float2 scanline_uv_b = tex_uv - float2(offset_u_rgb.b, 0.0);
const float3 sample_r = sample_single_scanline_horizontal(
tex, scanline_uv_r, tex_size, texture_size_inv);
const float3 sample_g = sample_single_scanline_horizontal(
tex, scanline_uv_g, tex_size, texture_size_inv);
const float3 sample_b = sample_single_scanline_horizontal(
tex, scanline_uv_b, tex_size, texture_size_inv);
return float3(sample_r.r, sample_g.g, sample_b.b);
}
else
{
return sample_single_scanline_horizontal(tex, tex_uv, tex_size,
texture_size_inv);
}
}
float2 get_last_scanline_uv(const float2 tex_uv, const float2 tex_size,
const float2 texture_size_inv, const float2 il_step_multiple,
const float frame_count, out float dist)
{
// Compute texture coords for the last/upper scanline, accounting for
// interlacing: With interlacing, only consider even/odd scanlines every
// other frame. Top-field first (TFF) order puts even scanlines on even
// frames, and BFF order puts them on odd frames. Texels are centered at:
// frac(tex_uv * tex_size) == x.5
// Caution: If these coordinates ever seem incorrect, first make sure it's
// not because anisotropic filtering is blurring across field boundaries.
// Note: TFF/BFF won't matter for sources that double-weave or similar.
// wtf fixme
// const float interlace_bff1 = 1.0;
const float field_offset = floor(il_step_multiple.y * 0.75) *
fmod(frame_count + float(interlace_bff), 2.0);
const float2 curr_texel = tex_uv * tex_size;
// Use under_half to fix a rounding bug right around exact texel locations.
const float2 prev_texel_num = floor(curr_texel - float2(under_half));
const float wrong_field = fmod(
prev_texel_num.y + field_offset, il_step_multiple.y);
const float2 scanline_texel_num = prev_texel_num - float2(0.0, wrong_field);
// Snap to the center of the previous scanline in the current field:
const float2 scanline_texel = scanline_texel_num + float2(0.5);
const float2 scanline_uv = scanline_texel * texture_size_inv;
// Save the sample's distance from the scanline, in units of scanlines:
dist = (curr_texel.y - scanline_texel.y)/il_step_multiple.y;
return scanline_uv;
}
inline bool is_interlaced(float num_lines)
{
// Detect interlacing based on the number of lines in the source.
if(interlace_detect)
{
// NTSC: 525 lines, 262.5/field; 486 active (2 half-lines), 243/field
// NTSC Emulators: Typically 224 or 240 lines
// PAL: 625 lines, 312.5/field; 576 active (typical), 288/field
// PAL Emulators: ?
// ATSC: 720p, 1080i, 1080p
// Where do we place our cutoffs? Assumptions:
// 1.) We only need to care about active lines.
// 2.) Anything > 288 and <= 576 lines is probably interlaced.
// 3.) Anything > 576 lines is probably not interlaced...
// 4.) ...except 1080 lines, which is a crapshoot (user decision).
// 5.) Just in case the main program uses calculated video sizes,
// we should nudge the float thresholds a bit.
const bool sd_interlace = ((num_lines > 288.5) && (num_lines < 576.5));
const bool hd_interlace = bool(interlace_1080i) ?
((num_lines > 1079.5) && (num_lines < 1080.5)) :
false;
return (sd_interlace || hd_interlace);
}
else
{
return false;
}
}
#endif // SCANLINE_FUNCTIONS_H
///////////////////////////// END SCANLINE-FUNCTIONS ////////////////////////////
/////////////////////////////// END VERTEX INCLUDES /////////////////////////////
////////////////////////////// FRAGMENT INCLUDES //////////////////////////////
//#include "../../../../include/blur-functions.h"
//////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
#ifndef BLUR_FUNCTIONS_H
#define BLUR_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides reusable one-pass and separable (two-pass) blurs.
// Requires: All blurs share these requirements (dxdy requirement is split):
// 1.) All requirements of gamma-management.h must be satisfied!
// 2.) filter_linearN must == "true" in your .cgp preset unless
// you're using tex2DblurNresize at 1x scale.
// 3.) mipmap_inputN must == "true" in your .cgp preset if
// output_size < video_size.
// 4.) output_size == video_size / pow(2, M), where M is some
// positive integer. tex2Dblur*resize can resize arbitrarily
// (and the blur will be done after resizing), but arbitrary
// resizes "fail" with other blurs due to the way they mix
// static weights with bilinear sample exploitation.
// 5.) In general, dxdy should contain the uv pixel spacing:
// dxdy = (video_size/output_size)/texture_size
// 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
// zero out the dxdy component in the unblurred dimension:
// dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
// Many blurs share these requirements:
// 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
// or they will blur more in the lower-scaled dimension.
// 2.) One-pass shared sample blurs require ddx(), ddy(), and
// tex2Dlod() to be supported by the current Cg profile, and
// the drivers must support high-quality derivatives.
// 3.) One-pass shared sample blurs require:
// tex_uv.w == log2(video_size/output_size).y;
// Non-wrapper blurs share this requirement:
// 1.) sigma is the intended standard deviation of the blur
// Wrapper blurs share this requirement, which is automatically
// met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
// 1.) blurN_std_dev must be global static const float values
// specifying standard deviations for Nx blurs in units
// of destination pixels
// Optional: 1.) The including file (or an earlier included file) may
// optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
// default standard deviations with those matching a binomial
// distribution. (See below for details/properties.)
// 2.) The including file (or an earlier included file) may
// optionally #define OVERRIDE_BLUR_STD_DEVS and override:
// static const float blur3_std_dev
// static const float blur4_std_dev
// static const float blur5_std_dev
// static const float blur6_std_dev
// static const float blur7_std_dev
// static const float blur8_std_dev
// static const float blur9_std_dev
// static const float blur10_std_dev
// static const float blur11_std_dev
// static const float blur12_std_dev
// static const float blur17_std_dev
// static const float blur25_std_dev
// static const float blur31_std_dev
// static const float blur43_std_dev
// 3.) The including file (or an earlier included file) may
// optionally #define OVERRIDE_ERROR_BLURRING and override:
// static const float error_blurring
// This tuning value helps mitigate weighting errors from one-
// pass shared-sample blurs sharing bilinear samples between
// fragments. Values closer to 0.0 have "correct" blurriness
// but allow more artifacts, and values closer to 1.0 blur away
// artifacts by sampling closer to halfway between texels.
// UPDATE 6/21/14: The above static constants may now be overridden
// by non-static uniform constants. This permits exposing blur
// standard deviations as runtime GUI shader parameters. However,
// using them keeps weights from being statically computed, and the
// speed hit depends on the blur: On my machine, uniforms kill over
// 53% of the framerate with tex2Dblur12x12shared, but they only
// drop the framerate by about 18% with tex2Dblur11fast.
// Quality and Performance Comparisons:
// For the purposes of the following discussion, "no sRGB" means
// GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
// 1.) tex2DblurNfast is always faster than tex2DblurNresize.
// 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
// well, because they're the only ones that don't exploit bilinear samples.
// This also means they're the only functions which can be truly gamma-
// correct without linear (or sRGB FBO) input, but only at 1x scale.
// 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
// They also have some inaccuracies due to their shared-[bilinear-]sample
// design, which grow increasingly bothersome for smaller blurs and higher-
// frequency source images (relative to their resolution). I had high
// hopes for them, but their most realistic use case is limited to quickly
// reblurring an already blurred input at full resolution. Otherwise:
// a.) If you're blurring a low-resolution source, you want a better blur.
// b.) If you're blurring a lower mipmap, you want a better blur.
// c.) If you're blurring a high-resolution, high-frequency source, you
// want a better blur.
// 4.) The one-pass blurs without shared samples grow slower for larger blurs,
// but they're competitive with separable blurs at 5x5 and smaller, and
// even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
// Here are some framerates from a GeForce 8800GTS. The first pass resizes to
// viewport size (4x in this test) and linearizes for sRGB codepaths, and the
// remaining passes perform 6 full blurs. Mipmapped tests are performed at the
// same scale, so they just measure the cost of mipmapping each FBO (only every
// other FBO is mipmapped for separable blurs, to mimic realistic usage).
// Mipmap Neither sRGB+Mipmap sRGB Function
// 76.0 92.3 131.3 193.7 tex2Dblur3fast
// 63.2 74.4 122.4 175.5 tex2Dblur3resize
// 93.7 121.2 159.3 263.2 tex2Dblur3x3
// 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
// 63.2 74.4 122.4 175.5 tex2Dblur5fast
// 49.3 54.8 100.0 132.7 tex2Dblur5resize
// 59.7 68.7 115.4 162.1 tex2Dblur5x5
// 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
// 55.8 63.7 110.4 151.8 tex2Dblur7fast
// 39.8 43.9 83.9 105.8 tex2Dblur7resize
// 40.0 44.2 83.2 104.9 tex2Dblur7x7
// 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
// 49.3 55.1 99.9 132.5 tex2Dblur9fast
// 33.3 36.2 72.4 88.0 tex2Dblur9resize
// 27.8 29.7 61.3 72.2 tex2Dblur9x9
// 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
// 44.4 49.5 91.3 117.8 tex2Dblur11fast
// 28.8 30.8 63.6 75.4 tex2Dblur11resize
// 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
// TODO: Fill in benchmarks for new untested blurs.
// tex2Dblur17fast
// tex2Dblur25fast
// tex2Dblur31fast
// tex2Dblur43fast
// tex2Dblur3x3resize
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
// Set static standard deviations, but allow users to override them with their
// own constants (even non-static uniforms if they're okay with the speed hit):
#ifndef OVERRIDE_BLUR_STD_DEVS
// blurN_std_dev values are specified in terms of dxdy strides.
#ifdef USE_BINOMIAL_BLUR_STD_DEVS
// By request, we can define standard deviations corresponding to a
// binomial distribution with p = 0.5 (related to Pascal's triangle).
// This distribution works such that blurring multiple times should
// have the same result as a single larger blur. These values are
// larger than default for blurs up to 6x and smaller thereafter.
static const float blur3_std_dev = 0.84931640625;
static const float blur4_std_dev = 0.84931640625;
static const float blur5_std_dev = 1.0595703125;
static const float blur6_std_dev = 1.06591796875;
static const float blur7_std_dev = 1.17041015625;
static const float blur8_std_dev = 1.1720703125;
static const float blur9_std_dev = 1.2259765625;
static const float blur10_std_dev = 1.21982421875;
static const float blur11_std_dev = 1.25361328125;
static const float blur12_std_dev = 1.2423828125;
static const float blur17_std_dev = 1.27783203125;
static const float blur25_std_dev = 1.2810546875;
static const float blur31_std_dev = 1.28125;
static const float blur43_std_dev = 1.28125;
#else
// The defaults are the largest values that keep the largest unused
// blur term on each side <= 1.0/256.0. (We could get away with more
// or be more conservative, but this compromise is pretty reasonable.)
static const float blur3_std_dev = 0.62666015625;
static const float blur4_std_dev = 0.66171875;
static const float blur5_std_dev = 0.9845703125;
static const float blur6_std_dev = 1.02626953125;
static const float blur7_std_dev = 1.36103515625;
static const float blur8_std_dev = 1.4080078125;
static const float blur9_std_dev = 1.7533203125;
static const float blur10_std_dev = 1.80478515625;
static const float blur11_std_dev = 2.15986328125;
static const float blur12_std_dev = 2.215234375;
static const float blur17_std_dev = 3.45535583496;
static const float blur25_std_dev = 5.3409576416;
static const float blur31_std_dev = 6.86488037109;
static const float blur43_std_dev = 10.1852050781;
#endif // USE_BINOMIAL_BLUR_STD_DEVS
#endif // OVERRIDE_BLUR_STD_DEVS
#ifndef OVERRIDE_ERROR_BLURRING
// error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
// in shared-sample blurs but increase blurring and feature shifting.
static const float error_blurring = 0.5;
#endif
////////////////////////////////// INCLUDES //////////////////////////////////
// gamma-management.h relies on pass-specific settings to guide its behavior:
// FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
//#include "gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//#include "quad-pixel-communication.h"
/////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
#ifndef QUAD_PIXEL_COMMUNICATION_H
#define QUAD_PIXEL_COMMUNICATION_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey*
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DISCLAIMER /////////////////////////////////
// *This code was inspired by "Shader Amortization using Pixel Quad Message
// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
// is not to plagiarize his fundamentally similar code and assert my own
// copyright, but the algorithmic helper functions require so little code that
// implementations can't vary by much except bugfixes and conventions. I just
// wanted to license my own particular code here to avoid ambiguity and make it
// clear that as far as I'm concerned, people can do as they please with it.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// Given screen pixel numbers, derive a "quad vector" describing a fragment's
// position in its 2x2 pixel quad. Given that vector, obtain the values of any
// variable at neighboring fragments.
// Requires: Using this file in general requires:
// 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) The GPU driver is using fine/high-quality derivatives.
// Functions will give incorrect results if this is not true,
// so a test function is included.
///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
{
// Requires: Two measures of the current fragment's output pixel number
// in the range ([0, output_size.x), [0, output_size.y)):
// 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
// 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
// Returns: Two measures of the fragment's position in its 2x2 quad:
// 1.) The .xy components are its 2x2 placement with respect to
// uv direction (the origin (0, 0) is at the top-left):
// top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
// bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
// You need this to arrange/weight shared texture samples.
// 2.) The .zw components are its 2x2 placement with respect to
// screen xy direction (position); the origin varies.
// quad_gather needs this measure to work correctly.
// Note: quad_vector.zw = quad_vector.xy * float2(
// ddx(output_pixel_num_wrt_uvxy.x),
// ddy(output_pixel_num_wrt_uvxy.y));
// Caveats: This function assumes the GPU driver always starts 2x2 pixel
// quads at even pixel numbers. This assumption can be wrong
// for odd output resolutions (nondeterministically so).
float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
return quad_vector;
}
float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
{
// Requires: Same as get_quad_vector_naive() (see that first).
// Returns: Same as get_quad_vector_naive() (see that first), but it's
// correct even if the 2x2 pixel quad starts at an odd pixel,
// which can occur at odd resolutions.
float4 quad_vector_guess =
get_quad_vector_naive(output_pixel_num_wrt_uvxy);
// If quad_vector_guess.zw doesn't increase with screen xy, we know
// the 2x2 pixel quad starts at an odd pixel:
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
ddy(quad_vector_guess.w));
return quad_vector_guess * odd_start_mirror.xyxy;
}
float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) output_pixel_num_wrt_uv must increase with uv coords and
// measure the current fragment's output pixel number in:
// ([0, output_size.x), [0, output_size.y))
// Returns: Same as get_quad_vector_naive() (see that first), but it's
// correct even if the 2x2 pixel quad starts at an odd pixel,
// which can occur at odd resolutions.
// Caveats: This function requires less information than the version
// taking a float4, but it's potentially slower.
// Do screen coords increase with or against uv? Get the direction
// with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
ddy(output_pixel_num_wrt_uv.y));
float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
// If quad_vector_screen_guess doesn't increase with screen xy, we know
// the 2x2 pixel quad starts at an odd pixel:
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
ddy(quad_vector_screen_guess.y));
float4 quad_vector_guess = float4(
quad_vector_uv_guess, quad_vector_screen_guess);
return quad_vector_guess * odd_start_mirror.xyxy;
}
void quad_gather(float4 quad_vector, float4 curr,
out float4 adjx, out float4 adjy, out float4 diag)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) The GPU driver is using fine/high-quality derivatives.
// 3.) quad_vector describes the current fragment's location in
// its 2x2 pixel quad using get_quad_vector()'s conventions.
// 4.) curr is any vector you wish to get neighboring values of.
// Returns: Values of an input vector (curr) at neighboring fragments
// adjacent x, adjacent y, and diagonal (via out parameters).
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
void quad_gather(float4 quad_vector, float3 curr,
out float3 adjx, out float3 adjy, out float3 diag)
{
// Float3 version
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
void quad_gather(float4 quad_vector, float2 curr,
out float2 adjx, out float2 adjy, out float2 diag)
{
// Float2 version
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
float4 quad_gather(float4 quad_vector, float curr)
{
// Float version:
// Returns: return.x == current
// return.y == adjacent x
// return.z == adjacent y
// return.w == diagonal
float4 all = float4(curr);
all.y = all.x - ddx(all.x) * quad_vector.z;
all.zw = all.xy - ddy(all.xy) * quad_vector.w;
return all;
}
float4 quad_gather_sum(float4 quad_vector, float4 curr)
{
// Requires: Same as quad_gather()
// Returns: Sum of an input vector (curr) at all fragments in a quad.
float4 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float3 quad_gather_sum(float4 quad_vector, float3 curr)
{
// Float3 version:
float3 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float2 quad_gather_sum(float4 quad_vector, float2 curr)
{
// Float2 version:
float2 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float quad_gather_sum(float4 quad_vector, float curr)
{
// Float version:
float4 all_values = quad_gather(quad_vector, curr);
return (all_values.x + all_values.y + all_values.z + all_values.w);
}
bool fine_derivatives_working(float4 quad_vector, float4 curr)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) quad_vector describes the current fragment's location in
// its 2x2 pixel quad using get_quad_vector()'s conventions.
// 3.) curr must be a test vector with non-constant derivatives
// (its value should change nonlinearly across fragments).
// Returns: true if fine/hybrid/high-quality derivatives are used, or
// false if coarse derivatives are used or inconclusive
// Usage: Test whether quad-pixel communication is working!
// Method: We can confirm fine derivatives are used if the following
// holds (ever, for any value at any fragment):
// (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
// The more values we test (e.g. test a float4 two ways), the
// easier it is to demonstrate fine derivatives are working.
// TODO: Check for floating point exact comparison issues!
float4 ddx_curr = ddx(curr);
float4 ddy_curr = ddy(curr);
float4 adjx = curr - ddx_curr * quad_vector.z;
float4 adjy = curr - ddy_curr * quad_vector.w;
bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
return any(bool2(ddy_different, ddx_different));
}
bool fine_derivatives_working_fast(float4 quad_vector, float curr)
{
// Requires: Same as fine_derivatives_working()
// Returns: Same as fine_derivatives_working()
// Usage: This is faster than fine_derivatives_working() but more
// likely to return false negatives, so it's less useful for
// offline testing/debugging. It's also useless as the basis
// for dynamic runtime branching as of May 2014: Derivatives
// (and quad-pixel communication) are currently disallowed in
// branches. However, future GPU's may allow you to use them
// in dynamic branches if you promise the branch condition
// evaluates the same for every fragment in the quad (and/or if
// the driver enforces that promise by making a single fragment
// control branch decisions). If that ever happens, this
// version may become a more economical choice.
float ddx_curr = ddx(curr);
float ddy_curr = ddy(curr);
float adjx = curr - ddx_curr * quad_vector.z;
return (ddy_curr != ddy(adjx));
}
#endif // QUAD_PIXEL_COMMUNICATION_H
//////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
//#include "special-functions.h"
/////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
#ifndef SPECIAL_FUNCTIONS_H
#define SPECIAL_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file implements the following mathematical special functions:
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
// 2.) gamma(s), a real-numbered extension of the integer factorial function
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
// be called with an _impl suffix to use an implementation version with a few
// extra precomputed parameters (which may be useful for the caller to reuse).
// See below for details.
//
// Design Rationale:
// Pretty much every line of code in this file is duplicated four times for
// different input types (float4/float3/float2/float). This is unfortunate,
// but Cg doesn't allow function templates. Macros would be far less verbose,
// but they would make the code harder to document and read. I don't expect
// these functions will require a whole lot of maintenance changes unless
// someone ever has need for more robust incomplete gamma functions, so code
// duplication seems to be the lesser evil in this case.
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
float4 erf6(float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
// This approximation has a max absolute error of 2.5*10**-5
// with solid numerical robustness and efficiency. See:
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
static const float4 one = float4(1.0);
const float4 sign_x = sign(x);
const float4 t = one/(one + 0.47047*abs(x));
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float3 erf6(const float3 x)
{
// Float3 version:
static const float3 one = float3(1.0);
const float3 sign_x = sign(x);
const float3 t = one/(one + 0.47047*abs(x));
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float2 erf6(const float2 x)
{
// Float2 version:
static const float2 one = float2(1.0);
const float2 sign_x = sign(x);
const float2 t = one/(one + 0.47047*abs(x));
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float erf6(const float x)
{
// Float version:
const float sign_x = sign(x);
const float t = 1.0/(1.0 + 0.47047*abs(x));
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float4 erft(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Approximate erf() with the hyperbolic tangent. The error is
// visually noticeable, but it's blazing fast and perceptually
// close...at least on ATI hardware. See:
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
// Warning: Only use this if your hardware drivers correctly implement
// tanh(): My nVidia 8800GTS returns garbage output.
return tanh(1.202760580 * x);
}
float3 erft(const float3 x)
{
// Float3 version:
return tanh(1.202760580 * x);
}
float2 erft(const float2 x)
{
// Float2 version:
return tanh(1.202760580 * x);
}
float erft(const float x)
{
// Float version:
return tanh(1.202760580 * x);
}
inline float4 erf(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Some approximation of erf(x), depending on user settings.
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float3 erf(const float3 x)
{
// Float3 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float2 erf(const float2 x)
{
// Float2 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float erf(const float x)
{
// Float version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
float4 gamma_impl(const float4 s, const float4 s_inv)
{
// Requires: 1.) s is the standard parameter to the gamma function, and
// it should lie in the [0, 36] range.
// 2.) s_inv = 1.0/s. This implementation function requires
// the caller to precompute this value, giving users the
// opportunity to reuse it.
// Returns: Return approximate gamma function (real-numbered factorial)
// output using the Lanczos approximation with two coefficients
// calculated using Paul Godfrey's method here:
// http://my.fit.edu/~gabdo/gamma.txt
// An optimal g value for s in [0, 36] is ~1.12906830989, with
// a maximum relative error of 0.000463 for 2**16 equally
// evals. We could use three coeffs (0.0000346 error) without
// hurting latency, but this allows more parallelism with
// outside instructions.
static const float4 g = float4(1.12906830989);
static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
static const float4 e = float4(2.71828182845904523536028747135266249775724709);
const float4 sph = s + float4(0.5);
const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
// This has less error for small s's than (s -= 1.0) at the beginning.
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float3 gamma_impl(const float3 s, const float3 s_inv)
{
// Float3 version:
static const float3 g = float3(1.12906830989);
static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
static const float3 e = float3(2.71828182845904523536028747135266249775724709);
const float3 sph = s + float3(0.5);
const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
const float3 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float2 gamma_impl(const float2 s, const float2 s_inv)
{
// Float2 version:
static const float2 g = float2(1.12906830989);
static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
static const float2 e = float2(2.71828182845904523536028747135266249775724709);
const float2 sph = s + float2(0.5);
const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
const float2 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float gamma_impl(const float s, const float s_inv)
{
// Float version:
static const float g = 1.12906830989;
static const float c0 = 0.8109119309638332633713423362694399653724431;
static const float c1 = 0.4808354605142681877121661197951496120000040;
static const float e = 2.71828182845904523536028747135266249775724709;
const float sph = s + 0.5;
const float lanczos_sum = c0 + c1/(s + 1.0);
const float base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float4 gamma(const float4 s)
{
// Requires: s is the standard parameter to the gamma function, and it
// should lie in the [0, 36] range.
// Returns: Return approximate gamma function output with a maximum
// relative error of 0.000463. See gamma_impl for details.
return gamma_impl(s, float4(1.0)/s);
}
float3 gamma(const float3 s)
{
// Float3 version:
return gamma_impl(s, float3(1.0)/s);
}
float2 gamma(const float2 s)
{
// Float2 version:
return gamma_impl(s, float2(1.0)/s);
}
float gamma(const float s)
{
// Float version:
return gamma_impl(s, 1.0/s);
}
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
// Lower incomplete gamma function for small s and z (implementation):
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) z <= ~0.775075
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
// Returns: A series representation for the lower incomplete gamma
// function for small s and small z (4 terms).
// The actual "rolled up" summation looks like:
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
// sum = last_sign * last_pow / ((s + k) * last_factorial)
// for(int i = 0; i < 4; ++i)
// {
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
// sum += last_sign * last_pow / ((s + k) * last_factorial);
// }
// Unrolled, constant-unfolded and arranged for madds and parallelism:
const float4 scale = pow(z, s);
float4 sum = s_inv; // Summation iteration 0 result
// Summation iterations 1, 2, and 3:
const float4 z_sq = z*z;
const float4 denom1 = s + float4(1.0);
const float4 denom2 = 2.0*s + float4(4.0);
const float4 denom3 = 6.0*s + float4(18.0);
//float4 denom4 = 24.0*s + float4(96.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
//sum += z_sq * z_sq / denom4;
// Scale and return:
return scale * sum;
}
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
{
// Float3 version:
const float3 scale = pow(z, s);
float3 sum = s_inv;
const float3 z_sq = z*z;
const float3 denom1 = s + float3(1.0);
const float3 denom2 = 2.0*s + float3(4.0);
const float3 denom3 = 6.0*s + float3(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
{
// Float2 version:
const float2 scale = pow(z, s);
float2 sum = s_inv;
const float2 z_sq = z*z;
const float2 denom1 = s + float2(1.0);
const float2 denom2 = 2.0*s + float2(4.0);
const float2 denom3 = 6.0*s + float2(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
{
// Float version:
const float scale = pow(z, s);
float sum = s_inv;
const float z_sq = z*z;
const float denom1 = s + 1.0;
const float denom2 = 2.0*s + 4.0;
const float denom3 = 6.0*s + 18.0;
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
// Upper incomplete gamma function for small s and large z (implementation):
float4 uigamma_large_z_impl(const float4 s, const float4 z)
{
// Requires: 1.) s < ~0.5
// 2.) z > ~0.775075
// Returns: Gauss's continued fraction representation for the upper
// incomplete gamma function (4 terms).
// The "rolled up" continued fraction looks like this. The denominator
// is truncated, and it's calculated "from the bottom up:"
// denom = float4('inf');
// float4 one = float4(1.0);
// for(int i = 4; i > 0; --i)
// {
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
// }
// Unrolled and constant-unfolded for madds and parallelism:
const float4 numerator = pow(z, s) * exp(-z);
float4 denom = float4(7.0) + z - s;
denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
return numerator / denom;
}
float3 uigamma_large_z_impl(const float3 s, const float3 z)
{
// Float3 version:
const float3 numerator = pow(z, s) * exp(-z);
float3 denom = float3(7.0) + z - s;
denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
return numerator / denom;
}
float2 uigamma_large_z_impl(const float2 s, const float2 z)
{
// Float2 version:
const float2 numerator = pow(z, s) * exp(-z);
float2 denom = float2(7.0) + z - s;
denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
return numerator / denom;
}
float uigamma_large_z_impl(const float s, const float z)
{
// Float version:
const float numerator = pow(z, s) * exp(-z);
float denom = 7.0 + z - s;
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
denom = 1.0 + z - s + (s - 1.0)/denom;
return numerator / denom;
}
// Normalized lower incomplete gamma function for small s (implementation):
float4 normalized_ligamma_impl(const float4 s, const float4 z,
const float4 s_inv, const float4 gamma_s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) s_inv = 1/s (precomputed for outside reuse)
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. Since we only care about s < 0.5, we only need
// to evaluate two branches (not four) based on z. Each branch
// uses four terms, with a max relative error of ~0.00182. The
// branch threshold and specifics were adapted for fewer terms
// from Gil/Segura/Temme's paper here:
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
// Evaluate both branches: Real branches test slower even when available.
static const float4 thresh = float4(0.775075);
bool4 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
z_is_large.w = z.w > thresh.w;
const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
// Combine the results from both branches:
bool4 inverse_z_is_large = not(z_is_large);
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
}
float3 normalized_ligamma_impl(const float3 s, const float3 z,
const float3 s_inv, const float3 gamma_s_inv)
{
// Float3 version:
static const float3 thresh = float3(0.775075);
bool3 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool3 inverse_z_is_large = not(z_is_large);
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
}
float2 normalized_ligamma_impl(const float2 s, const float2 z,
const float2 s_inv, const float2 gamma_s_inv)
{
// Float2 version:
static const float2 thresh = float2(0.775075);
bool2 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool2 inverse_z_is_large = not(z_is_large);
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
}
float normalized_ligamma_impl(const float s, const float z,
const float s_inv, const float gamma_s_inv)
{
// Float version:
static const float thresh = 0.775075;
const bool z_is_large = z > thresh;
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
return large_z * float(z_is_large) + small_z * float(!z_is_large);
}
// Normalized lower incomplete gamma function for small s:
float4 normalized_ligamma(const float4 s, const float4 z)
{
// Requires: s < ~0.5
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. See normalized_ligamma_impl() for details.
const float4 s_inv = float4(1.0)/s;
const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float3 normalized_ligamma(const float3 s, const float3 z)
{
// Float3 version:
const float3 s_inv = float3(1.0)/s;
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float2 normalized_ligamma(const float2 s, const float2 z)
{
// Float2 version:
const float2 s_inv = float2(1.0)/s;
const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float normalized_ligamma(const float s, const float z)
{
// Float version:
const float s_inv = 1.0/s;
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
#endif // SPECIAL_FUNCTIONS_H
//////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////////// HELPERS //////////////////////////////////
inline float4 uv2_to_uv4(float2 tex_uv)
{
// Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
return float4(tex_uv, 0.0, 0.0);
}
// Make a length squared helper macro (for usage with static constants):
#define LENGTH_SQ(vec) (dot(vec, vec))
inline float get_fast_gaussian_weight_sum_inv(const float sigma)
{
// We can use the Gaussian integral to calculate the asymptotic weight for
// the center pixel. Since the unnormalized center pixel weight is 1.0,
// the normalized weight is the same as the weight sum inverse. Given a
// large enough blur (9+), the asymptotic weight sum is close and faster:
// center_weight = 0.5 *
// (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
// erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
// However, we can get even faster results with curve-fitting. These are
// also closer than the asymptotic results, because they were constructed
// from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
// (0, blurN_std_dev), so the results for smaller sigmas are biased toward
// smaller blurs. The max error is 0.0031793913.
// Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
//static const float temp = 0.5/sqrt(2.0);
//return erf(temp/sigma);
return min(exp(exp(0.348348412457428/
(sigma - 0.0860587260734721))), 0.399334576340352/sigma);
}
//////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
// It may be mipmapped depending on settings and dxdy.
// Calculate Gaussian blur kernel weights and a normalization factor for
// distances of 0-4, ignoring constant factors (since we're normalizing).
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
// Statically normalize weights, sum weighted samples, and return. Blurs are
// currently optimized for dynamic weights.
float3 sum = float3(0.0,0.0,0.0);
sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
/////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: 1.) Global requirements must be met (see file description).
// 2.) filter_linearN must = "true" in your .cgp file.
// 3.) For gamma-correct bilinear filtering, global
// gamma_aware_bilinear == true (from gamma-management.h)
// Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w23 = w2 + w3;
const float w45 = w4 + w5;
const float w01_ratio = w1/w01;
const float w23_ratio = w3/w23;
const float w45_ratio = w5/w45;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
// neighbor and 4 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
// Calculate combined weights and linear sample ratios between texel pairs.
const float w12 = w1 + w2;
const float w34 = w3 + w4;
const float w12_ratio = w2/w12;
const float w34_ratio = w4/w34;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w23 = w2 + w3;
const float w01_ratio = w1/w01;
const float w23_ratio = w3/w23;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
// neighbor and 2 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
// Calculate combined weights and linear sample ratios between texel pairs.
const float w12 = w1 + w2;
const float w12_ratio = w2/w12;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w01_ratio = w1/w01;
// Weights for all samples are the same, so just average them:
return 0.5 * (
tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
}
//////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
// Huge separable blurs come only in "fast" versions.
float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
const float w13 = exp(-169.0 * denom_inv);
const float w14 = exp(-196.0 * denom_inv);
const float w15 = exp(-225.0 * denom_inv);
const float w16 = exp(-256.0 * denom_inv);
const float w17 = exp(-289.0 * denom_inv);
const float w18 = exp(-324.0 * denom_inv);
const float w19 = exp(-361.0 * denom_inv);
const float w20 = exp(-400.0 * denom_inv);
const float w21 = exp(-441.0 * denom_inv);
//const float weight_sum_inv = 1.0 /
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
// w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w0_1 = w0 * 0.5 + w1;
const float w2_3 = w2 + w3;
const float w4_5 = w4 + w5;
const float w6_7 = w6 + w7;
const float w8_9 = w8 + w9;
const float w10_11 = w10 + w11;
const float w12_13 = w12 + w13;
const float w14_15 = w14 + w15;
const float w16_17 = w16 + w17;
const float w18_19 = w18 + w19;
const float w20_21 = w20 + w21;
const float w0_1_ratio = w1/w0_1;
const float w2_3_ratio = w3/w2_3;
const float w4_5_ratio = w5/w4_5;
const float w6_7_ratio = w7/w6_7;
const float w8_9_ratio = w9/w8_9;
const float w10_11_ratio = w11/w10_11;
const float w12_13_ratio = w13/w12_13;
const float w14_15_ratio = w15/w14_15;
const float w16_17_ratio = w17/w16_17;
const float w18_19_ratio = w19/w18_19;
const float w20_21_ratio = w21/w20_21;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
const float w13 = exp(-169.0 * denom_inv);
const float w14 = exp(-196.0 * denom_inv);
const float w15 = exp(-225.0 * denom_inv);
//const float weight_sum_inv = 1.0 /
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
// w9 + w10 + w11 + w12 + w13 + w14 + w15));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w0_1 = w0 * 0.5 + w1;
const float w2_3 = w2 + w3;
const float w4_5 = w4 + w5;
const float w6_7 = w6 + w7;
const float w8_9 = w8 + w9;
const float w10_11 = w10 + w11;
const float w12_13 = w12 + w13;
const float w14_15 = w14 + w15;
const float w0_1_ratio = w1/w0_1;
const float w2_3_ratio = w3/w2_3;
const float w4_5_ratio = w5/w4_5;
const float w6_7_ratio = w7/w6_7;
const float w8_9_ratio = w9/w8_9;
const float w10_11_ratio = w11/w10_11;
const float w12_13_ratio = w13/w12_13;
const float w14_15_ratio = w15/w14_15;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
// neighbor and 12 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
const float w1_2 = w1 + w2;
const float w3_4 = w3 + w4;
const float w5_6 = w5 + w6;
const float w7_8 = w7 + w8;
const float w9_10 = w9 + w10;
const float w11_12 = w11 + w12;
const float w1_2_ratio = w2/w1_2;
const float w3_4_ratio = w4/w3_4;
const float w5_6_ratio = w6/w5_6;
const float w7_8_ratio = w8/w7_8;
const float w9_10_ratio = w10/w9_10;
const float w11_12_ratio = w12/w11_12;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
// neighbor and 8 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
const float w1_2 = w1 + w2;
const float w3_4 = w3 + w4;
const float w5_6 = w5 + w6;
const float w7_8 = w7 + w8;
const float w1_2_ratio = w2/w1_2;
const float w3_4_ratio = w4/w3_4;
const float w5_6_ratio = w6/w5_6;
const float w7_8_ratio = w8/w7_8;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
//////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
// resized input.
// Description:
// This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
// would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
const float denom_inv = 0.5/(sigma*sigma);
// Load each sample. We need all 3x3 samples. Quad-pixel communication
// won't help either: This should perform like tex2Dblur5x5, but sharing a
// 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
const float2 sample4_uv = tex_uv;
const float2 dx = float2(dxdy.x, 0.0);
const float2 dy = float2(0.0, dxdy.y);
const float2 sample1_uv = sample4_uv - dy;
const float2 sample7_uv = sample4_uv + dy;
const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
// Statically compute Gaussian sample weights:
const float w4 = 1.0;
const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
// Weight and sum the samples:
const float3 sum = w4 * sample4 +
w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
return sum * weight_sum_inv;
}
//////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
// 5x5 carefully selected bilinear samples.
// Description:
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
// bilinear sample location to reflect the true Gaussian weights for each
// underlying texel. The following diagram illustrates the relative
// locations of bilinear samples. Each sample with the same number has the
// same weight (notice the symmetry). The letters a, b, c, d distinguish
// quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
// distinguish 1D directions along the line containing the pixel center:
// 6a 5a 2U 5b 6b
// 4a 3a 1U 3b 4b
// 2L 1L 0C 1R 2R
// 4c 3c 1D 3d 4d
// 6c 5c 2D 5d 6d
// The following diagram illustrates the underlying equally spaced texels,
// named after the sample that accesses them and subnamed by their location
// within their 2x2, 2x1, 1x2, or 1x1 texel block:
// 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
// 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
// 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
// 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
// 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
// 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
// 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
// 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
// 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
// Note there is only one C texel and only two texels for each U, D, L, or
// R sample. The center sample is effectively a nearest neighbor sample,
// and the U/D/L/R samples use 1D linear filtering. All other texels are
// read with bilinear samples somewhere within their 2x2 texel blocks.
// COMPUTE TEXTURE COORDS:
// Statically compute sampling offsets within each 2x2 texel block, based
// on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
// the center, and reuse them independently for both dimensions. Compute
// these offsets based on the relative 1D Gaussian weights of the texels
// in question. (w1off means "Gaussian weight for the texel 1.0 texels
// away from the pixel center," etc.).
const float denom_inv = 0.5/(sigma*sigma);
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float w3off = exp(-9.0 * denom_inv);
const float w4off = exp(-16.0 * denom_inv);
const float texel1to2ratio = w2off/(w1off + w2off);
const float texel3to4ratio = w4off/(w3off + w4off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1R1 = w1off;
const float w1R2 = w2off;
const float w2R1 = w3off;
const float w2R2 = w4off;
const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights:
const float w0 = 1.0;
const float w1 = w1R1 + w1R2;
const float w2 = w2R1 + w2R2;
const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
const float w5 = w4;
const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv =
1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
// LOAD TEXTURE SAMPLES:
// Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
// Sampling order doesn't seem to affect performance, so just be clear:
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = w0 * sample0C;
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
sum += w2 * (sample2R + sample2D + sample2L + sample2U);
sum += w3 * (sample3d + sample3c + sample3b + sample3a);
sum += w4 * (sample4d + sample4c + sample4b + sample4a);
sum += w5 * (sample5d + sample5c + sample5b + sample5a);
sum += w6 * (sample6d + sample6c + sample6b + sample6a);
return sum * weight_sum_inv;
}
float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
// 4x4 carefully selected bilinear samples.
// Description:
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
// blur mixes concepts from both. The sample layout is as follows:
// 4a 3a 3b 4b
// 2a 1a 1b 2b
// 2c 1c 1d 2d
// 4c 3c 3d 4d
// The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
// and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
// 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
// the center texel):
// 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
// 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
// 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
// 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
// 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
// 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
// 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float w3off = exp(-9.0 * denom_inv);
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
const float texel2to3ratio = w3off/(w2off + w3off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including axis-aligned:
const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1abcd = 1.0;
const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights.
// Split weights for shared texels between samples sharing them:
const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv =
1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
// LOAD TEXTURE SAMPLES:
// Load all 16 samples using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = float3(0.0,0.0,0.0);
sum += w1 * (sample1a + sample1b + sample1c + sample1d);
sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
sum += w4 * (sample4a + sample4b + sample4c + sample4d);
return sum * weight_sum_inv;
}
float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
// 3x3 carefully selected bilinear samples.
// Description:
// First see the description for tex2Dblur9x9(). This blur uses the same
// concept and sample/texel locations except on a smaller scale. Samples:
// 2a 1U 2b
// 1L 0C 1R
// 2c 1D 2d
// Texels:
// 2a4 2a3 1U2 2b3 2b4
// 2a2 2a1 1U1 2b1 2b2
// 1L2 1L1 0C1 1R1 1R2
// 2c2 2c1 1D1 2d1 2d2
// 2c4 2c3 1D2 2d3 2d4
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float texel1to2ratio = w2off/(w1off + w2off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1R1 = w1off;
const float w1R2 = w2off;
const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights:
const float w0 = 1.0;
const float w1 = w1R1 + w1R2;
const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
// LOAD TEXTURE SAMPLES:
// Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = w0 * sample0C;
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
sum += w2 * (sample2a + sample2b + sample2c + sample2d);
return sum * weight_sum_inv;
}
float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
// 2x2 carefully selected bilinear samples.
// Description:
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
// blur mixes concepts from both. The sample layout is as follows:
// 0a 0b
// 0c 0d
// The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
// a vertical column of texels, and samples 0a/0c and 0b/0d share a
// horizontal row of texels (all samples share the center texel):
// 0a3 0ab2 0b3
// 0ac1 0*0 0bd1
// 0c3 0cd2 0d3
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w1off = exp(-1.0 * denom_inv);
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including axis-aligned:
const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
// LOAD TEXTURE SAMPLES:
// Load all 4 samples using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Weights for all samples are the same, so just average them:
return 0.25 * (sample0a + sample0b + sample0c + sample0d);
}
////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
float3 tex2Dblur12x12shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: 1.) Same as tex2Dblur9()
// 2.) ddx() and ddy() are present in the current Cg profile.
// 3.) The GPU driver is using fine/high-quality derivatives.
// 4.) quad_vector *correctly* describes the current fragment's
// location in its pixel quad, by the conventions noted in
// get_quad_vector[_naive].
// 5.) tex_uv.w = log2(video_size/output_size).y
// 6.) tex2Dlod() is present in the current Cg profile.
// Optional: Tune artifacts vs. excessive blurriness with the global
// float error_blurring.
// Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
// blur (a 6x6 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// Perform a 1-pass blur with shared texture lookups across a pixel quad.
// We'll get neighboring samples with high-quality ddx/ddy derivatives, as
// in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
// Message Passing" by Eric Penner.
//
// Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
// bilinear samples, where bilinear sampling positions are computed from
// the relative Gaussian weights of the 4 surrounding texels. The catch is
// that the appropriate texel weights and sample coords differ for each
// fragment, but we're reusing most of the same samples across a quad of
// destination fragments. (We do use unique coords for the four nearest
// samples at each fragment.) Mixing bilinear filtering and sample-sharing
// therefore introduces some error into the weights, and this can get nasty
// when the source image is small or high-frequency. Computing bilinear
// ratios based on weights at the sample field center results in sharpening
// and ringing artifacts, but we can move samples closer to halfway between
// texels to try blurring away the error (which can move features around by
// a texel or so). Tune this with the global float "error_blurring".
//
// The pixel quad's sample field covers 12x12 texels, accessed through 6x6
// bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
// texels (5x5 bilinear taps), and each fragment is responsible for loading
// a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
// to use unique bilinear coords for sample0* for each fragment. This
// diagram illustrates the relative locations of bilinear samples 1-9 for
// each quadrant a, b, c, d (note samples will not be equally spaced):
// 8a 7a 6a 6b 7b 8b
// 5a 4a 3a 3b 4b 5b
// 2a 1a 0a 0b 1b 2b
// 2c 1c 0c 0d 1d 2d
// 5c 4c 3c 3d 4d 5d
// 8c 7c 6c 6d 7d 8d
// The following diagram illustrates the underlying equally spaced texels,
// named after the sample that accesses them and subnamed by their location
// within their 2x2 texel block:
// 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
// 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
// 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
// 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
// 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
// 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
// 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
// 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
// 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
// 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
// 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
// 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
// With this symmetric arrangement, we don't have to know which absolute
// quadrant a sample lies in to assign kernel weights; it's enough to know
// the sample number and the relative quadrant of the sample (relative to
// the current quadrant):
// {current, adjacent x, adjacent y, diagonal}
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute sampling offsets within each 2x2 texel block, based
// on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
// and [4, 5] away from the fragment, and reuse them independently for both
// dimensions. Use the sample field center as the estimated destination,
// but nudge the result closer to halfway between texels to blur error.
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// based on the sum of their 4 underlying texel weights. Assume a same-
// resolution blur, so each symmetrically named sample weight will compute
// the same at every fragment in the pixel quad: We can therefore compute
// texel weights based only on the bottom-right quadrant (fragment at 0d0).
// Too avoid too much boilerplate code, use a macro to get all 4 texel
// weights for a bilinear sample based on the offset of its top-left texel:
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Statically pack weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
// Get the weight sum inverse (normalization factor):
const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
const float weight_sum = weight_sum2.x + weight_sum2.y;
const float weight_sum_inv = 1.0/(weight_sum);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
float3 sample4adjx, sample4adjy, sample4diag;
float3 sample5adjx, sample5adjy, sample5diag;
float3 sample6adjx, sample6adjy, sample6diag;
float3 sample7adjx, sample7adjy, sample7diag;
float3 sample8adjx, sample8adjy, sample8diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
return sum * weight_sum_inv;
}
float3 tex2Dblur10x10shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
// blur (a 5x5 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur12x12shared(). This
// function shares the same concept and sample placement, but each fragment
// only uses 25 of the 36 samples taken across the pixel quad (to cover a
// 5x5 sample area, or 10x10 texel area), and it uses a lower standard
// deviation to compensate. Thanks to symmetry, the 11 omitted samples
// are always the "same:"
// 8adjx, 2adjx, 5adjx,
// 6adjy, 7adjy, 8adjy,
// 2diag, 5diag, 6diag, 7diag, 8diag
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
// We only need 25 of the 36 sample weights. Skip the following weights:
// 8adjx, 2adjx, 5adjx,
// 6adjy, 7adjy, 8adjy,
// 2diag, 5diag, 6diag, 7diag, 8diag
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
w4curr + w5curr + w6curr + w7curr + w8curr +
w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
w0diag + w1diag + w3diag + w4diag);
// Statically pack most weights for runtime. Note the mixed packing:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad in order of need:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
float3 sample4adjx, sample4adjy, sample4diag;
float3 sample5adjx, sample5adjy, sample5diag;
float3 sample6adjx, sample6adjy, sample6diag;
float3 sample7adjx, sample7adjy, sample7diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result. First do the simple ones:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
// Now do the mixed-sample ones:
sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
sum += w8curr * sample8curr;
// Normalize the sum (so the weights add to 1.0) and return:
return sum * weight_sum_inv;
}
float3 tex2Dblur8x8shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
// blur (a 4x4 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur12x12shared(). This function
// shares the same concept and a similar sample placement, except each
// quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
// respectively. There could be a total of 16 samples, 4 of which each
// fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
// its own offset to reduce shared sample artifacts, bringing the sample
// count for each fragment to 7. Sample placement:
// 3a 2a 2b 3b
// 1a 0a 0b 1b
// 1c 0c 0d 1d
// 3c 2c 2d 3d
// Texel placement:
// 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
// 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
// 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
// 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
// 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
// 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
// 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
// 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Statically pack weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
// Get the weight sum inverse (normalization factor):
const float4 weight_sum4 = w0 + w1 + w2 + w3;
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
const float weight_sum = weight_sum2.x + weight_sum2.y;
const float weight_sum_inv = 1.0/(weight_sum);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
return sum * weight_sum_inv;
}
float3 tex2Dblur6x6shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
// blur (a 3x3 blur of carefully selected bilinear samples)
// of the given mip level. There will be some inaccuracies,subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur8x8shared(). This
// function shares the same concept and sample placement, but each fragment
// only uses 9 of the 16 samples taken across the pixel quad (to cover a
// 3x3 sample area, or 6x6 texel area), and it uses a lower standard
// deviation to compensate. Thanks to symmetry, the 7 omitted samples
// are always the "same:"
// 1adjx, 3adjx
// 2adjy, 3adjy
// 1diag, 2diag, 3diag
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
// We only need 9 of the 16 sample weights. Skip the following weights:
// 1adjx, 3adjx
// 2adjy, 3adjy
// 1diag, 2diag, 3diag
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
// Statically pack some weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result for sample1*, and handle the rest
// of the weights more directly/verbosely:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
w2adjx * sample2adjx + w3curr * sample3curr;
return sum * weight_sum_inv;
}
/////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
// The following blurs are static wrappers around the dynamic blurs above.
// HOPEFULLY, the compiler will be smart enough to do constant-folding.
// Resizable separable blurs:
inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
}
inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
}
// Fast separable blurs:
inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
}
inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
}
// Huge, "fast" separable blurs:
inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
}
inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
}
inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
}
inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
}
// Resizable one-pass blurs:
inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
}
// "Fast" one-pass blurs:
inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
}
// "Fast" shared-sample one-pass blurs:
inline float3 tex2Dblur12x12shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
}
inline float3 tex2Dblur10x10shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
}
inline float3 tex2Dblur8x8shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
}
inline float3 tex2Dblur6x6shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
}
#endif // BLUR_FUNCTIONS_H
//////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
//#include "bloom-functions.h"
//////////////////////////// BEGIN BLOOM-FUNCTIONS ///////////////////////////
#ifndef BLOOM_FUNCTIONS_H
#define BLOOM_FUNCTIONS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These utility functions and constants help several passes determine the
// size and center texel weight of the phosphor bloom in a uniform manner.
////////////////////////////////// INCLUDES //////////////////////////////////
// We need to calculate the correct blur sigma using some .cgp constants:
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
//////////////////////////// END USER-SETTINGS //////////////////////////
//#include "derived-settings-and-constants.h"
//////////////////// BEGIN DERIVED-SETTINGS-AND-CONSTANTS ////////////////////
#ifndef DERIVED_SETTINGS_AND_CONSTANTS_H
#define DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// GPL LICENSE NOTICE /////////////////////////////
// crt-royale: A full-featured CRT shader, with cheese.
// Copyright (C) 2014 TroggleMonkey <trogglemonkey@gmx.com>
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU General Public License as published by the Free
// Software Foundation; either version 2 of the License, or any later version.
//
// This program is distributed in the hope that it will be useful, but WITHOUT
// ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
// FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
// more details.
//
// You should have received a copy of the GNU General Public License along with
// this program; if not, write to the Free Software Foundation, Inc., 59 Temple
// Place, Suite 330, Boston, MA 02111-1307 USA
///////////////////////////////// DESCRIPTION ////////////////////////////////
// These macros and constants can be used across the whole codebase.
// Unlike the values in user-settings.cgh, end users shouldn't modify these.
/////////////////////////////// BEGIN INCLUDES ///////////////////////////////
//#include "../user-settings.h"
///////////////////////////// BEGIN USER-SETTINGS ////////////////////////////
#ifndef USER_SETTINGS_H
#define USER_SETTINGS_H
///////////////////////////// DRIVER CAPABILITIES ////////////////////////////
// The Cg compiler uses different "profiles" with different capabilities.
// This shader requires a Cg compilation profile >= arbfp1, but a few options
// require higher profiles like fp30 or fp40. The shader can't detect profile
// or driver capabilities, so instead you must comment or uncomment the lines
// below with "//" before "#define." Disable an option if you get compilation
// errors resembling those listed. Generally speaking, all of these options
// will run on nVidia cards, but only DRIVERS_ALLOW_TEX2DBIAS (if that) is
// likely to run on ATI/AMD, due to the Cg compiler's profile limitations.
// Derivatives: Unsupported on fp20, ps_1_1, ps_1_2, ps_1_3, and arbfp1.
// Among other things, derivatives help us fix anisotropic filtering artifacts
// with curved manually tiled phosphor mask coords. Related errors:
// error C3004: function "float2 ddx(float2);" not supported in this profile
// error C3004: function "float2 ddy(float2);" not supported in this profile
//#define DRIVERS_ALLOW_DERIVATIVES
// Fine derivatives: Unsupported on older ATI cards.
// Fine derivatives enable 2x2 fragment block communication, letting us perform
// fast single-pass blur operations. If your card uses coarse derivatives and
// these are enabled, blurs could look broken. Derivatives are a prerequisite.
#ifdef DRIVERS_ALLOW_DERIVATIVES
#define DRIVERS_ALLOW_FINE_DERIVATIVES
#endif
// Dynamic looping: Requires an fp30 or newer profile.
// This makes phosphor mask resampling faster in some cases. Related errors:
// error C5013: profile does not support "for" statements and "for" could not
// be unrolled
//#define DRIVERS_ALLOW_DYNAMIC_BRANCHES
// Without DRIVERS_ALLOW_DYNAMIC_BRANCHES, we need to use unrollable loops.
// Using one static loop avoids overhead if the user is right, but if the user
// is wrong (loops are allowed), breaking a loop into if-blocked pieces with a
// binary search can potentially save some iterations. However, it may fail:
// error C6001: Temporary register limit of 32 exceeded; 35 registers
// needed to compile program
//#define ACCOMODATE_POSSIBLE_DYNAMIC_LOOPS
// tex2Dlod: Requires an fp40 or newer profile. This can be used to disable
// anisotropic filtering, thereby fixing related artifacts. Related errors:
// error C3004: function "float4 tex2Dlod(sampler2D, float4);" not supported in
// this profile
//#define DRIVERS_ALLOW_TEX2DLOD
// tex2Dbias: Requires an fp30 or newer profile. This can be used to alleviate
// artifacts from anisotropic filtering and mipmapping. Related errors:
// error C3004: function "float4 tex2Dbias(sampler2D, float4);" not supported
// in this profile
//#define DRIVERS_ALLOW_TEX2DBIAS
// Integrated graphics compatibility: Integrated graphics like Intel HD 4000
// impose stricter limitations on register counts and instructions. Enable
// INTEGRATED_GRAPHICS_COMPATIBILITY_MODE if you still see error C6001 or:
// error C6002: Instruction limit of 1024 exceeded: 1523 instructions needed
// to compile program.
// Enabling integrated graphics compatibility mode will automatically disable:
// 1.) PHOSPHOR_MASK_MANUALLY_RESIZE: The phosphor mask will be softer.
// (This may be reenabled in a later release.)
// 2.) RUNTIME_GEOMETRY_MODE
// 3.) The high-quality 4x4 Gaussian resize for the bloom approximation
//#define INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
//////////////////////////// USER CODEPATH OPTIONS ///////////////////////////
// To disable a #define option, turn its line into a comment with "//."
// RUNTIME VS. COMPILE-TIME OPTIONS (Major Performance Implications):
// Enable runtime shader parameters in the Retroarch (etc.) GUI? They override
// many of the options in this file and allow real-time tuning, but many of
// them are slower. Disabling them and using this text file will boost FPS.
#define RUNTIME_SHADER_PARAMS_ENABLE
// Specify the phosphor bloom sigma at runtime? This option is 10% slower, but
// it's the only way to do a wide-enough full bloom with a runtime dot pitch.
#define RUNTIME_PHOSPHOR_BLOOM_SIGMA
// Specify antialiasing weight parameters at runtime? (Costs ~20% with cubics)
#define RUNTIME_ANTIALIAS_WEIGHTS
// Specify subpixel offsets at runtime? (WARNING: EXTREMELY EXPENSIVE!)
//#define RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
// Make beam_horiz_filter and beam_horiz_linear_rgb_weight into runtime shader
// parameters? This will require more math or dynamic branching.
#define RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
// Specify the tilt at runtime? This makes things about 3% slower.
#define RUNTIME_GEOMETRY_TILT
// Specify the geometry mode at runtime?
#define RUNTIME_GEOMETRY_MODE
// Specify the phosphor mask type (aperture grille, slot mask, shadow mask) and
// mode (Lanczos-resize, hardware resize, or tile 1:1) at runtime, even without
// dynamic branches? This is cheap if mask_resize_viewport_scale is small.
#define FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
// PHOSPHOR MASK:
// Manually resize the phosphor mask for best results (slower)? Disabling this
// removes the option to do so, but it may be faster without dynamic branches.
#define PHOSPHOR_MASK_MANUALLY_RESIZE
// If we sinc-resize the mask, should we Lanczos-window it (slower but better)?
#define PHOSPHOR_MASK_RESIZE_LANCZOS_WINDOW
// Larger blurs are expensive, but we need them to blur larger triads. We can
// detect the right blur if the triad size is static or our profile allows
// dynamic branches, but otherwise we use the largest blur the user indicates
// they might need:
#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
//#define PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// Here's a helpful chart:
// MaxTriadSize BlurSize MinTriadCountsByResolution
// 3.0 9.0 480/640/960/1920 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 6.0 17.0 240/320/480/960 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 9.0 25.0 160/213/320/640 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 12.0 31.0 120/160/240/480 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
// 18.0 43.0 80/107/160/320 triads at 1080p/1440p/2160p/4320p, 4:3 aspect
/////////////////////////////// USER PARAMETERS //////////////////////////////
// Note: Many of these static parameters are overridden by runtime shader
// parameters when those are enabled. However, many others are static codepath
// options that were cleaner or more convert to code as static constants.
// GAMMA:
static const float crt_gamma_static = 2.5; // range [1, 5]
static const float lcd_gamma_static = 2.2; // range [1, 5]
// LEVELS MANAGEMENT:
// Control the final multiplicative image contrast:
static const float levels_contrast_static = 1.0; // range [0, 4)
// We auto-dim to avoid clipping between passes and restore brightness
// later. Control the dim factor here: Lower values clip less but crush
// blacks more (static only for now).
static const float levels_autodim_temp = 0.5; // range (0, 1] default is 0.5 but that was unnecessarily dark for me, so I set it to 1.0
// HALATION/DIFFUSION/BLOOM:
// Halation weight: How much energy should be lost to electrons bounding
// around under the CRT glass and exciting random phosphors?
static const float halation_weight_static = 0.0; // range [0, 1]
// Refractive diffusion weight: How much light should spread/diffuse from
// refracting through the CRT glass?
static const float diffusion_weight_static = 0.075; // range [0, 1]
// Underestimate brightness: Bright areas bloom more, but we can base the
// bloom brightpass on a lower brightness to sharpen phosphors, or a higher
// brightness to soften them. Low values clip, but >= 0.8 looks okay.
static const float bloom_underestimate_levels_static = 0.8; // range [0, 5]
// Blur all colors more than necessary for a softer phosphor bloom?
static const float bloom_excess_static = 0.0; // range [0, 1]
// The BLOOM_APPROX pass approximates a phosphor blur early on with a small
// blurred resize of the input (convergence offsets are applied as well).
// There are three filter options (static option only for now):
// 0.) Bilinear resize: A fast, close approximation to a 4x4 resize
// if min_allowed_viewport_triads and the BLOOM_APPROX resolution are sane
// and beam_max_sigma is low.
// 1.) 3x3 resize blur: Medium speed, soft/smeared from bilinear blurring,
// always uses a static sigma regardless of beam_max_sigma or
// mask_num_triads_desired.
// 2.) True 4x4 Gaussian resize: Slowest, technically correct.
// These options are more pronounced for the fast, unbloomed shader version.
#ifndef RADEON_FIX
static const float bloom_approx_filter_static = 2.0;
#else
static const float bloom_approx_filter_static = 1.0;
#endif
// ELECTRON BEAM SCANLINE DISTRIBUTION:
// How many scanlines should contribute light to each pixel? Using more
// scanlines is slower (especially for a generalized Gaussian) but less
// distorted with larger beam sigmas (especially for a pure Gaussian). The
// max_beam_sigma at which the closest unused weight is guaranteed <
// 1.0/255.0 (for a 3x antialiased pure Gaussian) is:
// 2 scanlines: max_beam_sigma = 0.2089; distortions begin ~0.34; 141.7 FPS pure, 131.9 FPS generalized
// 3 scanlines, max_beam_sigma = 0.3879; distortions begin ~0.52; 137.5 FPS pure; 123.8 FPS generalized
// 4 scanlines, max_beam_sigma = 0.5723; distortions begin ~0.70; 134.7 FPS pure; 117.2 FPS generalized
// 5 scanlines, max_beam_sigma = 0.7591; distortions begin ~0.89; 131.6 FPS pure; 112.1 FPS generalized
// 6 scanlines, max_beam_sigma = 0.9483; distortions begin ~1.08; 127.9 FPS pure; 105.6 FPS generalized
static const float beam_num_scanlines = 3.0; // range [2, 6]
// A generalized Gaussian beam varies shape with color too, now just width.
// It's slower but more flexible (static option only for now).
static const bool beam_generalized_gaussian = true;
// What kind of scanline antialiasing do you want?
// 0: Sample weights at 1x; 1: Sample weights at 3x; 2: Compute an integral
// Integrals are slow (especially for generalized Gaussians) and rarely any
// better than 3x antialiasing (static option only for now).
static const float beam_antialias_level = 1.0; // range [0, 2]
// Min/max standard deviations for scanline beams: Higher values widen and
// soften scanlines. Depending on other options, low min sigmas can alias.
static const float beam_min_sigma_static = 0.02; // range (0, 1]
static const float beam_max_sigma_static = 0.3; // range (0, 1]
// Beam width varies as a function of color: A power function (0) is more
// configurable, but a spherical function (1) gives the widest beam
// variability without aliasing (static option only for now).
static const float beam_spot_shape_function = 0.0;
// Spot shape power: Powers <= 1 give smoother spot shapes but lower
// sharpness. Powers >= 1.0 are awful unless mix/max sigmas are close.
static const float beam_spot_power_static = 1.0/3.0; // range (0, 16]
// Generalized Gaussian max shape parameters: Higher values give flatter
// scanline plateaus and steeper dropoffs, simultaneously widening and
// sharpening scanlines at the cost of aliasing. 2.0 is pure Gaussian, and
// values > ~40.0 cause artifacts with integrals.
static const float beam_min_shape_static = 2.0; // range [2, 32]
static const float beam_max_shape_static = 4.0; // range [2, 32]
// Generalized Gaussian shape power: Affects how quickly the distribution
// changes shape from Gaussian to steep/plateaued as color increases from 0
// to 1.0. Higher powers appear softer for most colors, and lower powers
// appear sharper for most colors.
static const float beam_shape_power_static = 1.0/4.0; // range (0, 16]
// What filter should be used to sample scanlines horizontally?
// 0: Quilez (fast), 1: Gaussian (configurable), 2: Lanczos2 (sharp)
static const float beam_horiz_filter_static = 0.0;
// Standard deviation for horizontal Gaussian resampling:
static const float beam_horiz_sigma_static = 0.35; // range (0, 2/3]
// Do horizontal scanline sampling in linear RGB (correct light mixing),
// gamma-encoded RGB (darker, hard spot shape, may better match bandwidth-
// limiting circuitry in some CRT's), or a weighted avg.?
static const float beam_horiz_linear_rgb_weight_static = 1.0; // range [0, 1]
// Simulate scanline misconvergence? This needs 3x horizontal texture
// samples and 3x texture samples of BLOOM_APPROX and HALATION_BLUR in
// later passes (static option only for now).
static const bool beam_misconvergence = true;
// Convergence offsets in x/y directions for R/G/B scanline beams in units
// of scanlines. Positive offsets go right/down; ranges [-2, 2]
static const float2 convergence_offsets_r_static = float2(0.1, 0.2);
static const float2 convergence_offsets_g_static = float2(0.3, 0.4);
static const float2 convergence_offsets_b_static = float2(0.5, 0.6);
// Detect interlacing (static option only for now)?
static const bool interlace_detect = true;
// Assume 1080-line sources are interlaced?
static const bool interlace_1080i_static = false;
// For interlaced sources, assume TFF (top-field first) or BFF order?
// (Whether this matters depends on the nature of the interlaced input.)
static const bool interlace_bff_static = false;
// ANTIALIASING:
// What AA level do you want for curvature/overscan/subpixels? Options:
// 0x (none), 1x (sample subpixels), 4x, 5x, 6x, 7x, 8x, 12x, 16x, 20x, 24x
// (Static option only for now)
static const float aa_level = 12.0; // range [0, 24]
// What antialiasing filter do you want (static option only)? Options:
// 0: Box (separable), 1: Box (cylindrical),
// 2: Tent (separable), 3: Tent (cylindrical),
// 4: Gaussian (separable), 5: Gaussian (cylindrical),
// 6: Cubic* (separable), 7: Cubic* (cylindrical, poor)
// 8: Lanczos Sinc (separable), 9: Lanczos Jinc (cylindrical, poor)
// * = Especially slow with RUNTIME_ANTIALIAS_WEIGHTS
static const float aa_filter = 6.0; // range [0, 9]
// Flip the sample grid on odd/even frames (static option only for now)?
static const bool aa_temporal = false;
// Use RGB subpixel offsets for antialiasing? The pixel is at green, and
// the blue offset is the negative r offset; range [0, 0.5]
static const float2 aa_subpixel_r_offset_static = float2(-1.0/3.0, 0.0);//float2(0.0);
// Cubics: See http://www.imagemagick.org/Usage/filter/#mitchell
// 1.) "Keys cubics" with B = 1 - 2C are considered the highest quality.
// 2.) C = 0.5 (default) is Catmull-Rom; higher C's apply sharpening.
// 3.) C = 1.0/3.0 is the Mitchell-Netravali filter.
// 4.) C = 0.0 is a soft spline filter.
static const float aa_cubic_c_static = 0.5; // range [0, 4]
// Standard deviation for Gaussian antialiasing: Try 0.5/aa_pixel_diameter.
static const float aa_gauss_sigma_static = 0.5; // range [0.0625, 1.0]
// PHOSPHOR MASK:
// Mask type: 0 = aperture grille, 1 = slot mask, 2 = EDP shadow mask
static const float mask_type_static = 1.0; // range [0, 2]
// We can sample the mask three ways. Pick 2/3 from: Pretty/Fast/Flexible.
// 0.) Sinc-resize to the desired dot pitch manually (pretty/slow/flexible).
// This requires PHOSPHOR_MASK_MANUALLY_RESIZE to be #defined.
// 1.) Hardware-resize to the desired dot pitch (ugly/fast/flexible). This
// is halfway decent with LUT mipmapping but atrocious without it.
// 2.) Tile it without resizing at a 1:1 texel:pixel ratio for flat coords
// (pretty/fast/inflexible). Each input LUT has a fixed dot pitch.
// This mode reuses the same masks, so triads will be enormous unless
// you change the mask LUT filenames in your .cgp file.
static const float mask_sample_mode_static = 0.0; // range [0, 2]
// Prefer setting the triad size (0.0) or number on the screen (1.0)?
// If RUNTIME_PHOSPHOR_BLOOM_SIGMA isn't #defined, the specified triad size
// will always be used to calculate the full bloom sigma statically.
static const float mask_specify_num_triads_static = 0.0; // range [0, 1]
// Specify the phosphor triad size, in pixels. Each tile (usually with 8
// triads) will be rounded to the nearest integer tile size and clamped to
// obey minimum size constraints (imposed to reduce downsize taps) and
// maximum size constraints (imposed to have a sane MASK_RESIZE FBO size).
// To increase the size limit, double the viewport-relative scales for the
// two MASK_RESIZE passes in crt-royale.cgp and user-cgp-contants.h.
// range [1, mask_texture_small_size/mask_triads_per_tile]
static const float mask_triad_size_desired_static = 24.0 / 8.0;
// If mask_specify_num_triads is 1.0/true, we'll go by this instead (the
// final size will be rounded and constrained as above); default 480.0
static const float mask_num_triads_desired_static = 480.0;
// How many lobes should the sinc/Lanczos resizer use? More lobes require
// more samples and avoid moire a bit better, but some is unavoidable
// depending on the destination size (static option for now).
static const float mask_sinc_lobes = 3.0; // range [2, 4]
// The mask is resized using a variable number of taps in each dimension,
// but some Cg profiles always fetch a constant number of taps no matter
// what (no dynamic branching). We can limit the maximum number of taps if
// we statically limit the minimum phosphor triad size. Larger values are
// faster, but the limit IS enforced (static option only, forever);
// range [1, mask_texture_small_size/mask_triads_per_tile]
// TODO: Make this 1.0 and compensate with smarter sampling!
static const float mask_min_allowed_triad_size = 2.0;
// GEOMETRY:
// Geometry mode:
// 0: Off (default), 1: Spherical mapping (like cgwg's),
// 2: Alt. spherical mapping (more bulbous), 3: Cylindrical/Trinitron
static const float geom_mode_static = 0.0; // range [0, 3]
// Radius of curvature: Measured in units of your viewport's diagonal size.
static const float geom_radius_static = 2.0; // range [1/(2*pi), 1024]
// View dist is the distance from the player to their physical screen, in
// units of the viewport's diagonal size. It controls the field of view.
static const float geom_view_dist_static = 2.0; // range [0.5, 1024]
// Tilt angle in radians (clockwise around up and right vectors):
static const float2 geom_tilt_angle_static = float2(0.0, 0.0); // range [-pi, pi]
// Aspect ratio: When the true viewport size is unknown, this value is used
// to help convert between the phosphor triad size and count, along with
// the mask_resize_viewport_scale constant from user-cgp-constants.h. Set
// this equal to Retroarch's display aspect ratio (DAR) for best results;
// range [1, geom_max_aspect_ratio from user-cgp-constants.h];
// default (256/224)*(54/47) = 1.313069909 (see below)
static const float geom_aspect_ratio_static = 1.313069909;
// Before getting into overscan, here's some general aspect ratio info:
// - DAR = display aspect ratio = SAR * PAR; as in your Retroarch setting
// - SAR = storage aspect ratio = DAR / PAR; square pixel emulator frame AR
// - PAR = pixel aspect ratio = DAR / SAR; holds regardless of cropping
// Geometry processing has to "undo" the screen-space 2D DAR to calculate
// 3D view vectors, then reapplies the aspect ratio to the simulated CRT in
// uv-space. To ensure the source SAR is intended for a ~4:3 DAR, either:
// a.) Enable Retroarch's "Crop Overscan"
// b.) Readd horizontal padding: Set overscan to e.g. N*(1.0, 240.0/224.0)
// Real consoles use horizontal black padding in the signal, but emulators
// often crop this without cropping the vertical padding; a 256x224 [S]NES
// frame (8:7 SAR) is intended for a ~4:3 DAR, but a 256x240 frame is not.
// The correct [S]NES PAR is 54:47, found by blargg and NewRisingSun:
// http://board.zsnes.com/phpBB3/viewtopic.php?f=22&t=11928&start=50
// http://forums.nesdev.com/viewtopic.php?p=24815#p24815
// For flat output, it's okay to set DAR = [existing] SAR * [correct] PAR
// without doing a. or b., but horizontal image borders will be tighter
// than vertical ones, messing up curvature and overscan. Fixing the
// padding first corrects this.
// Overscan: Amount to "zoom in" before cropping. You can zoom uniformly
// or adjust x/y independently to e.g. readd horizontal padding, as noted
// above: Values < 1.0 zoom out; range (0, inf)
static const float2 geom_overscan_static = float2(1.0, 1.0);// * 1.005 * (1.0, 240/224.0)
// Compute a proper pixel-space to texture-space matrix even without ddx()/
// ddy()? This is ~8.5% slower but improves antialiasing/subpixel filtering
// with strong curvature (static option only for now).
static const bool geom_force_correct_tangent_matrix = true;
// BORDERS:
// Rounded border size in texture uv coords:
static const float border_size_static = 0.015; // range [0, 0.5]
// Border darkness: Moderate values darken the border smoothly, and high
// values make the image very dark just inside the border:
static const float border_darkness_static = 2.0; // range [0, inf)
// Border compression: High numbers compress border transitions, narrowing
// the dark border area.
static const float border_compress_static = 2.5; // range [1, inf)
#endif // USER_SETTINGS_H
///////////////////////////// END USER-SETTINGS ////////////////////////////
//#include "user-cgp-constants.h"
///////////////////////// BEGIN USER-CGP-CONSTANTS /////////////////////////
#ifndef USER_CGP_CONSTANTS_H
#define USER_CGP_CONSTANTS_H
// IMPORTANT:
// These constants MUST be set appropriately for the settings in crt-royale.cgp
// (or whatever related .cgp file you're using). If they aren't, you're likely
// to get artifacts, the wrong phosphor mask size, etc. I wish these could be
// set directly in the .cgp file to make things easier, but...they can't.
// PASS SCALES AND RELATED CONSTANTS:
// Copy the absolute scale_x for BLOOM_APPROX. There are two major versions of
// this shader: One does a viewport-scale bloom, and the other skips it. The
// latter benefits from a higher bloom_approx_scale_x, so save both separately:
static const float bloom_approx_size_x = 320.0;
static const float bloom_approx_size_x_for_fake = 400.0;
// Copy the viewport-relative scales of the phosphor mask resize passes
// (MASK_RESIZE and the pass immediately preceding it):
static const float2 mask_resize_viewport_scale = float2(0.0625, 0.0625);
// Copy the geom_max_aspect_ratio used to calculate the MASK_RESIZE scales, etc.:
static const float geom_max_aspect_ratio = 4.0/3.0;
// PHOSPHOR MASK TEXTURE CONSTANTS:
// Set the following constants to reflect the properties of the phosphor mask
// texture named in crt-royale.cgp. The shader optionally resizes a mask tile
// based on user settings, then repeats a single tile until filling the screen.
// The shader must know the input texture size (default 64x64), and to manually
// resize, it must also know the horizontal triads per tile (default 8).
static const float2 mask_texture_small_size = float2(64.0, 64.0);
static const float2 mask_texture_large_size = float2(512.0, 512.0);
static const float mask_triads_per_tile = 8.0;
// We need the average brightness of the phosphor mask to compensate for the
// dimming it causes. The following four values are roughly correct for the
// masks included with the shader. Update the value for any LUT texture you
// change. [Un]comment "#define PHOSPHOR_MASK_GRILLE14" depending on whether
// the loaded aperture grille uses 14-pixel or 15-pixel stripes (default 15).
//#define PHOSPHOR_MASK_GRILLE14
static const float mask_grille14_avg_color = 50.6666666/255.0;
// TileableLinearApertureGrille14Wide7d33Spacing*.png
// TileableLinearApertureGrille14Wide10And6Spacing*.png
static const float mask_grille15_avg_color = 53.0/255.0;
// TileableLinearApertureGrille15Wide6d33Spacing*.png
// TileableLinearApertureGrille15Wide8And5d5Spacing*.png
static const float mask_slot_avg_color = 46.0/255.0;
// TileableLinearSlotMask15Wide9And4d5Horizontal8VerticalSpacing*.png
// TileableLinearSlotMaskTall15Wide9And4d5Horizontal9d14VerticalSpacing*.png
static const float mask_shadow_avg_color = 41.0/255.0;
// TileableLinearShadowMask*.png
// TileableLinearShadowMaskEDP*.png
#ifdef PHOSPHOR_MASK_GRILLE14
static const float mask_grille_avg_color = mask_grille14_avg_color;
#else
static const float mask_grille_avg_color = mask_grille15_avg_color;
#endif
#endif // USER_CGP_CONSTANTS_H
////////////////////////// END USER-CGP-CONSTANTS //////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////// FIXED SETTINGS ///////////////////////////////
// Avoid dividing by zero; using a macro overloads for float, float2, etc.:
#define FIX_ZERO(c) (max(abs(c), 0.0000152587890625)) // 2^-16
// Ensure the first pass decodes CRT gamma and the last encodes LCD gamma.
#ifndef SIMULATE_CRT_ON_LCD
#define SIMULATE_CRT_ON_LCD
#endif
// Manually tiling a manually resized texture creates texture coord derivative
// discontinuities and confuses anisotropic filtering, causing discolored tile
// seams in the phosphor mask. Workarounds:
// a.) Using tex2Dlod disables anisotropic filtering for tiled masks. It's
// downgraded to tex2Dbias without DRIVERS_ALLOW_TEX2DLOD #defined and
// disabled without DRIVERS_ALLOW_TEX2DBIAS #defined either.
// b.) "Tile flat twice" requires drawing two full tiles without border padding
// to the resized mask FBO, and it's incompatible with same-pass curvature.
// (Same-pass curvature isn't used but could be in the future...maybe.)
// c.) "Fix discontinuities" requires derivatives and drawing one tile with
// border padding to the resized mask FBO, but it works with same-pass
// curvature. It's disabled without DRIVERS_ALLOW_DERIVATIVES #defined.
// Precedence: a, then, b, then c (if multiple strategies are #defined).
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD // 129.7 FPS, 4x, flat; 101.8 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE // 128.1 FPS, 4x, flat; 101.5 at fullscreen
#define ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES // 124.4 FPS, 4x, flat; 97.4 at fullscreen
// Also, manually resampling the phosphor mask is slightly blurrier with
// anisotropic filtering. (Resampling with mipmapping is even worse: It
// creates artifacts, but only with the fully bloomed shader.) The difference
// is subtle with small triads, but you can fix it for a small cost.
//#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
////////////////////////////// DERIVED SETTINGS //////////////////////////////
// Intel HD 4000 GPU's can't handle manual mask resizing (for now), setting the
// geometry mode at runtime, or a 4x4 true Gaussian resize. Disable
// incompatible settings ASAP. (INTEGRATED_GRAPHICS_COMPATIBILITY_MODE may be
// #defined by either user-settings.h or a wrapper .cg that #includes the
// current .cg pass.)
#ifdef INTEGRATED_GRAPHICS_COMPATIBILITY_MODE
#ifdef PHOSPHOR_MASK_MANUALLY_RESIZE
#undef PHOSPHOR_MASK_MANUALLY_RESIZE
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
// Mode 2 (4x4 Gaussian resize) won't work, and mode 1 (3x3 blur) is
// inferior in most cases, so replace 2.0 with 0.0:
static const float bloom_approx_filter =
bloom_approx_filter_static > 1.5 ? 0.0 : bloom_approx_filter_static;
#else
static const float bloom_approx_filter = bloom_approx_filter_static;
#endif
// Disable slow runtime paths if static parameters are used. Most of these
// won't be a problem anyway once the params are disabled, but some will.
#ifndef RUNTIME_SHADER_PARAMS_ENABLE
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#undef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#endif
#ifdef RUNTIME_ANTIALIAS_WEIGHTS
#undef RUNTIME_ANTIALIAS_WEIGHTS
#endif
#ifdef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#undef RUNTIME_ANTIALIAS_SUBPIXEL_OFFSETS
#endif
#ifdef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#undef RUNTIME_SCANLINES_HORIZ_FILTER_COLORSPACE
#endif
#ifdef RUNTIME_GEOMETRY_TILT
#undef RUNTIME_GEOMETRY_TILT
#endif
#ifdef RUNTIME_GEOMETRY_MODE
#undef RUNTIME_GEOMETRY_MODE
#endif
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#undef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// Make tex2Dbias a backup for tex2Dlod for wider compatibility.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#define ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
// Rule out unavailable anisotropic compatibility strategies:
#ifndef DRIVERS_ALLOW_DERIVATIVES
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#endif
#ifdef ANTIALIAS_DISABLE_ANISOTROPIC
#undef ANTIALIAS_DISABLE_ANISOTROPIC
#endif
#endif
#ifndef DRIVERS_ALLOW_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
// Prioritize anisotropic tiling compatibility strategies by performance and
// disable unused strategies. This concentrates all the nesting in one place.
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#undef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#else
// ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE is only compatible with
// flat texture coords in the same pass, but that's all we use.
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#undef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
#endif
#endif
#endif
#endif
// The tex2Dlod and tex2Dbias strategies share a lot in common, and we can
// reduce some #ifdef nesting in the next section by essentially OR'ing them:
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DLOD
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
#ifdef ANISOTROPIC_TILING_COMPAT_TEX2DBIAS
#define ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
#endif
// Prioritize anisotropic resampling compatibility strategies the same way:
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#undef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DBIAS
#endif
#endif
/////////////////////// DERIVED PHOSPHOR MASK CONSTANTS //////////////////////
// If we can use the large mipmapped LUT without mipmapping artifacts, we
// should: It gives us more options for using fewer samples.
#ifdef DRIVERS_ALLOW_TEX2DLOD
#ifdef ANISOTROPIC_RESAMPLING_COMPAT_TEX2DLOD
// TODO: Take advantage of this!
#define PHOSPHOR_MASK_RESIZE_MIPMAPPED_LUT
static const float2 mask_resize_src_lut_size = mask_texture_large_size;
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
#else
static const float2 mask_resize_src_lut_size = mask_texture_small_size;
#endif
// tex2D's sampler2D parameter MUST be a uniform global, a uniform input to
// main_fragment, or a static alias of one of the above. This makes it hard
// to select the phosphor mask at runtime: We can't even assign to a uniform
// global in the vertex shader or select a sampler2D in the vertex shader and
// pass it to the fragment shader (even with explicit TEXUNIT# bindings),
// because it just gives us the input texture or a black screen. However, we
// can get around these limitations by calling tex2D three times with different
// uniform samplers (or resizing the phosphor mask three times altogether).
// With dynamic branches, we can process only one of these branches on top of
// quickly discarding fragments we don't need (cgc seems able to overcome
// limigations around dependent texture fetches inside of branches). Without
// dynamic branches, we have to process every branch for every fragment...which
// is slower. Runtime sampling mode selection is slower without dynamic
// branches as well. Let the user's static #defines decide if it's worth it.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#else
#ifdef FORCE_RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#define RUNTIME_PHOSPHOR_MASK_MODE_TYPE_SELECT
#endif
#endif
// We need to render some minimum number of tiles in the resize passes.
// We need at least 1.0 just to repeat a single tile, and we need extra
// padding beyond that for anisotropic filtering, discontinuitity fixing,
// antialiasing, same-pass curvature (not currently used), etc. First
// determine how many border texels and tiles we need, based on how the result
// will be sampled:
#ifdef GEOMETRY_EARLY
static const float max_subpixel_offset = aa_subpixel_r_offset_static.x;
// Most antialiasing filters have a base radius of 4.0 pixels:
static const float max_aa_base_pixel_border = 4.0 +
max_subpixel_offset;
#else
static const float max_aa_base_pixel_border = 0.0;
#endif
// Anisotropic filtering adds about 0.5 to the pixel border:
#ifndef ANISOTROPIC_TILING_COMPAT_TEX2DLOD_FAMILY
static const float max_aniso_pixel_border = max_aa_base_pixel_border + 0.5;
#else
static const float max_aniso_pixel_border = max_aa_base_pixel_border;
#endif
// Fixing discontinuities adds 1.0 more to the pixel border:
#ifdef ANISOTROPIC_TILING_COMPAT_FIX_DISCONTINUITIES
static const float max_tiled_pixel_border = max_aniso_pixel_border + 1.0;
#else
static const float max_tiled_pixel_border = max_aniso_pixel_border;
#endif
// Convert the pixel border to an integer texel border. Assume same-pass
// curvature about triples the texel frequency:
#ifdef GEOMETRY_EARLY
static const float max_mask_texel_border =
ceil(max_tiled_pixel_border * 3.0);
#else
static const float max_mask_texel_border = ceil(max_tiled_pixel_border);
#endif
// Convert the texel border to a tile border using worst-case assumptions:
static const float max_mask_tile_border = max_mask_texel_border/
(mask_min_allowed_triad_size * mask_triads_per_tile);
// Finally, set the number of resized tiles to render to MASK_RESIZE, and set
// the starting texel (inside borders) for sampling it.
#ifndef GEOMETRY_EARLY
#ifdef ANISOTROPIC_TILING_COMPAT_TILE_FLAT_TWICE
// Special case: Render two tiles without borders. Anisotropic
// filtering doesn't seem to be a problem here.
static const float mask_resize_num_tiles = 1.0 + 1.0;
static const float mask_start_texels = 0.0;
#else
static const float mask_resize_num_tiles = 1.0 +
2.0 * max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
#else
static const float mask_resize_num_tiles = 1.0 + 2.0*max_mask_tile_border;
static const float mask_start_texels = max_mask_texel_border;
#endif
// We have to fit mask_resize_num_tiles into an FBO with a viewport scale of
// mask_resize_viewport_scale. This limits the maximum final triad size.
// Estimate the minimum number of triads we can split the screen into in each
// dimension (we'll be as correct as mask_resize_viewport_scale is):
static const float mask_resize_num_triads =
mask_resize_num_tiles * mask_triads_per_tile;
static const float2 min_allowed_viewport_triads =
float2(mask_resize_num_triads) / mask_resize_viewport_scale;
//////////////////////// COMMON MATHEMATICAL CONSTANTS ///////////////////////
static const float pi = 3.141592653589;
// We often want to find the location of the previous texel, e.g.:
// const float2 curr_texel = uv * texture_size;
// const float2 prev_texel = floor(curr_texel - float2(0.5)) + float2(0.5);
// const float2 prev_texel_uv = prev_texel / texture_size;
// However, many GPU drivers round incorrectly around exact texel locations.
// We need to subtract a little less than 0.5 before flooring, and some GPU's
// require this value to be farther from 0.5 than others; define it here.
// const float2 prev_texel =
// floor(curr_texel - float2(under_half)) + float2(0.5);
static const float under_half = 0.4995;
#endif // DERIVED_SETTINGS_AND_CONSTANTS_H
///////////////////////////// END DERIVED-SETTINGS-AND-CONSTANTS ////////////////////////////
//#include "../../../../include/blur-functions.h"
//////////////////////////// BEGIN BLUR-FUNCTIONS ///////////////////////////
#ifndef BLUR_FUNCTIONS_H
#define BLUR_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides reusable one-pass and separable (two-pass) blurs.
// Requires: All blurs share these requirements (dxdy requirement is split):
// 1.) All requirements of gamma-management.h must be satisfied!
// 2.) filter_linearN must == "true" in your .cgp preset unless
// you're using tex2DblurNresize at 1x scale.
// 3.) mipmap_inputN must == "true" in your .cgp preset if
// output_size < video_size.
// 4.) output_size == video_size / pow(2, M), where M is some
// positive integer. tex2Dblur*resize can resize arbitrarily
// (and the blur will be done after resizing), but arbitrary
// resizes "fail" with other blurs due to the way they mix
// static weights with bilinear sample exploitation.
// 5.) In general, dxdy should contain the uv pixel spacing:
// dxdy = (video_size/output_size)/texture_size
// 6.) For separable blurs (tex2DblurNresize and tex2DblurNfast),
// zero out the dxdy component in the unblurred dimension:
// dxdy = float2(dxdy.x, 0.0) or float2(0.0, dxdy.y)
// Many blurs share these requirements:
// 1.) One-pass blurs require scale_xN == scale_yN or scales > 1.0,
// or they will blur more in the lower-scaled dimension.
// 2.) One-pass shared sample blurs require ddx(), ddy(), and
// tex2Dlod() to be supported by the current Cg profile, and
// the drivers must support high-quality derivatives.
// 3.) One-pass shared sample blurs require:
// tex_uv.w == log2(video_size/output_size).y;
// Non-wrapper blurs share this requirement:
// 1.) sigma is the intended standard deviation of the blur
// Wrapper blurs share this requirement, which is automatically
// met (unless OVERRIDE_BLUR_STD_DEVS is #defined; see below):
// 1.) blurN_std_dev must be global static const float values
// specifying standard deviations for Nx blurs in units
// of destination pixels
// Optional: 1.) The including file (or an earlier included file) may
// optionally #define USE_BINOMIAL_BLUR_STD_DEVS to replace
// default standard deviations with those matching a binomial
// distribution. (See below for details/properties.)
// 2.) The including file (or an earlier included file) may
// optionally #define OVERRIDE_BLUR_STD_DEVS and override:
// static const float blur3_std_dev
// static const float blur4_std_dev
// static const float blur5_std_dev
// static const float blur6_std_dev
// static const float blur7_std_dev
// static const float blur8_std_dev
// static const float blur9_std_dev
// static const float blur10_std_dev
// static const float blur11_std_dev
// static const float blur12_std_dev
// static const float blur17_std_dev
// static const float blur25_std_dev
// static const float blur31_std_dev
// static const float blur43_std_dev
// 3.) The including file (or an earlier included file) may
// optionally #define OVERRIDE_ERROR_BLURRING and override:
// static const float error_blurring
// This tuning value helps mitigate weighting errors from one-
// pass shared-sample blurs sharing bilinear samples between
// fragments. Values closer to 0.0 have "correct" blurriness
// but allow more artifacts, and values closer to 1.0 blur away
// artifacts by sampling closer to halfway between texels.
// UPDATE 6/21/14: The above static constants may now be overridden
// by non-static uniform constants. This permits exposing blur
// standard deviations as runtime GUI shader parameters. However,
// using them keeps weights from being statically computed, and the
// speed hit depends on the blur: On my machine, uniforms kill over
// 53% of the framerate with tex2Dblur12x12shared, but they only
// drop the framerate by about 18% with tex2Dblur11fast.
// Quality and Performance Comparisons:
// For the purposes of the following discussion, "no sRGB" means
// GAMMA_ENCODE_EVERY_FBO is #defined, and "sRGB" means it isn't.
// 1.) tex2DblurNfast is always faster than tex2DblurNresize.
// 2.) tex2DblurNresize functions are the only ones that can arbitrarily resize
// well, because they're the only ones that don't exploit bilinear samples.
// This also means they're the only functions which can be truly gamma-
// correct without linear (or sRGB FBO) input, but only at 1x scale.
// 3.) One-pass shared sample blurs only have a speed advantage without sRGB.
// They also have some inaccuracies due to their shared-[bilinear-]sample
// design, which grow increasingly bothersome for smaller blurs and higher-
// frequency source images (relative to their resolution). I had high
// hopes for them, but their most realistic use case is limited to quickly
// reblurring an already blurred input at full resolution. Otherwise:
// a.) If you're blurring a low-resolution source, you want a better blur.
// b.) If you're blurring a lower mipmap, you want a better blur.
// c.) If you're blurring a high-resolution, high-frequency source, you
// want a better blur.
// 4.) The one-pass blurs without shared samples grow slower for larger blurs,
// but they're competitive with separable blurs at 5x5 and smaller, and
// even tex2Dblur7x7 isn't bad if you're wanting to conserve passes.
// Here are some framerates from a GeForce 8800GTS. The first pass resizes to
// viewport size (4x in this test) and linearizes for sRGB codepaths, and the
// remaining passes perform 6 full blurs. Mipmapped tests are performed at the
// same scale, so they just measure the cost of mipmapping each FBO (only every
// other FBO is mipmapped for separable blurs, to mimic realistic usage).
// Mipmap Neither sRGB+Mipmap sRGB Function
// 76.0 92.3 131.3 193.7 tex2Dblur3fast
// 63.2 74.4 122.4 175.5 tex2Dblur3resize
// 93.7 121.2 159.3 263.2 tex2Dblur3x3
// 59.7 68.7 115.4 162.1 tex2Dblur3x3resize
// 63.2 74.4 122.4 175.5 tex2Dblur5fast
// 49.3 54.8 100.0 132.7 tex2Dblur5resize
// 59.7 68.7 115.4 162.1 tex2Dblur5x5
// 64.9 77.2 99.1 137.2 tex2Dblur6x6shared
// 55.8 63.7 110.4 151.8 tex2Dblur7fast
// 39.8 43.9 83.9 105.8 tex2Dblur7resize
// 40.0 44.2 83.2 104.9 tex2Dblur7x7
// 56.4 65.5 71.9 87.9 tex2Dblur8x8shared
// 49.3 55.1 99.9 132.5 tex2Dblur9fast
// 33.3 36.2 72.4 88.0 tex2Dblur9resize
// 27.8 29.7 61.3 72.2 tex2Dblur9x9
// 37.2 41.1 52.6 60.2 tex2Dblur10x10shared
// 44.4 49.5 91.3 117.8 tex2Dblur11fast
// 28.8 30.8 63.6 75.4 tex2Dblur11resize
// 33.6 36.5 40.9 45.5 tex2Dblur12x12shared
// TODO: Fill in benchmarks for new untested blurs.
// tex2Dblur17fast
// tex2Dblur25fast
// tex2Dblur31fast
// tex2Dblur43fast
// tex2Dblur3x3resize
///////////////////////////// SETTINGS MANAGEMENT ////////////////////////////
// Set static standard deviations, but allow users to override them with their
// own constants (even non-static uniforms if they're okay with the speed hit):
#ifndef OVERRIDE_BLUR_STD_DEVS
// blurN_std_dev values are specified in terms of dxdy strides.
#ifdef USE_BINOMIAL_BLUR_STD_DEVS
// By request, we can define standard deviations corresponding to a
// binomial distribution with p = 0.5 (related to Pascal's triangle).
// This distribution works such that blurring multiple times should
// have the same result as a single larger blur. These values are
// larger than default for blurs up to 6x and smaller thereafter.
static const float blur3_std_dev = 0.84931640625;
static const float blur4_std_dev = 0.84931640625;
static const float blur5_std_dev = 1.0595703125;
static const float blur6_std_dev = 1.06591796875;
static const float blur7_std_dev = 1.17041015625;
static const float blur8_std_dev = 1.1720703125;
static const float blur9_std_dev = 1.2259765625;
static const float blur10_std_dev = 1.21982421875;
static const float blur11_std_dev = 1.25361328125;
static const float blur12_std_dev = 1.2423828125;
static const float blur17_std_dev = 1.27783203125;
static const float blur25_std_dev = 1.2810546875;
static const float blur31_std_dev = 1.28125;
static const float blur43_std_dev = 1.28125;
#else
// The defaults are the largest values that keep the largest unused
// blur term on each side <= 1.0/256.0. (We could get away with more
// or be more conservative, but this compromise is pretty reasonable.)
static const float blur3_std_dev = 0.62666015625;
static const float blur4_std_dev = 0.66171875;
static const float blur5_std_dev = 0.9845703125;
static const float blur6_std_dev = 1.02626953125;
static const float blur7_std_dev = 1.36103515625;
static const float blur8_std_dev = 1.4080078125;
static const float blur9_std_dev = 1.7533203125;
static const float blur10_std_dev = 1.80478515625;
static const float blur11_std_dev = 2.15986328125;
static const float blur12_std_dev = 2.215234375;
static const float blur17_std_dev = 3.45535583496;
static const float blur25_std_dev = 5.3409576416;
static const float blur31_std_dev = 6.86488037109;
static const float blur43_std_dev = 10.1852050781;
#endif // USE_BINOMIAL_BLUR_STD_DEVS
#endif // OVERRIDE_BLUR_STD_DEVS
#ifndef OVERRIDE_ERROR_BLURRING
// error_blurring should be in [0.0, 1.0]. Higher values reduce ringing
// in shared-sample blurs but increase blurring and feature shifting.
static const float error_blurring = 0.5;
#endif
////////////////////////////////// INCLUDES //////////////////////////////////
// gamma-management.h relies on pass-specific settings to guide its behavior:
// FIRST_PASS, LAST_PASS, GAMMA_ENCODE_EVERY_FBO, etc. See it for details.
//#include "gamma-management.h"
//////////////////////////// BEGIN GAMMA-MANAGEMENT //////////////////////////
#ifndef GAMMA_MANAGEMENT_H
#define GAMMA_MANAGEMENT_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file provides gamma-aware tex*D*() and encode_output() functions.
// Requires: Before #include-ing this file, the including file must #define
// the following macros when applicable and follow their rules:
// 1.) #define FIRST_PASS if this is the first pass.
// 2.) #define LAST_PASS if this is the last pass.
// 3.) If sRGB is available, set srgb_framebufferN = "true" for
// every pass except the last in your .cgp preset.
// 4.) If sRGB isn't available but you want gamma-correctness with
// no banding, #define GAMMA_ENCODE_EVERY_FBO each pass.
// 5.) #define SIMULATE_CRT_ON_LCD if desired (precedence over 5-7)
// 6.) #define SIMULATE_GBA_ON_LCD if desired (precedence over 6-7)
// 7.) #define SIMULATE_LCD_ON_CRT if desired (precedence over 7)
// 8.) #define SIMULATE_GBA_ON_CRT if desired (precedence over -)
// If an option in [5, 8] is #defined in the first or last pass, it
// should be #defined for both. It shouldn't make a difference
// whether it's #defined for intermediate passes or not.
// Optional: The including file (or an earlier included file) may optionally
// #define a number of macros indicating it will override certain
// macros and associated constants are as follows:
// static constants with either static or uniform constants. The
// 1.) OVERRIDE_STANDARD_GAMMA: The user must first define:
// static const float ntsc_gamma
// static const float pal_gamma
// static const float crt_reference_gamma_high
// static const float crt_reference_gamma_low
// static const float lcd_reference_gamma
// static const float crt_office_gamma
// static const float lcd_office_gamma
// 2.) OVERRIDE_DEVICE_GAMMA: The user must first define:
// static const float crt_gamma
// static const float gba_gamma
// static const float lcd_gamma
// 3.) OVERRIDE_FINAL_GAMMA: The user must first define:
// static const float input_gamma
// static const float intermediate_gamma
// static const float output_gamma
// (intermediate_gamma is for GAMMA_ENCODE_EVERY_FBO.)
// 4.) OVERRIDE_ALPHA_ASSUMPTIONS: The user must first define:
// static const bool assume_opaque_alpha
// The gamma constant overrides must be used in every pass or none,
// and OVERRIDE_FINAL_GAMMA bypasses all of the SIMULATE* macros.
// OVERRIDE_ALPHA_ASSUMPTIONS may be set on a per-pass basis.
// Usage: After setting macros appropriately, ignore gamma correction and
// replace all tex*D*() calls with equivalent gamma-aware
// tex*D*_linearize calls, except:
// 1.) When you read an LUT, use regular tex*D or a gamma-specified
// function, depending on its gamma encoding:
// tex*D*_linearize_gamma (takes a runtime gamma parameter)
// 2.) If you must read pass0's original input in a later pass, use
// tex2D_linearize_ntsc_gamma. If you want to read pass0's
// input with gamma-corrected bilinear filtering, consider
// creating a first linearizing pass and reading from the input
// of pass1 later.
// Then, return encode_output(color) from every fragment shader.
// Finally, use the global gamma_aware_bilinear boolean if you want
// to statically branch based on whether bilinear filtering is
// gamma-correct or not (e.g. for placing Gaussian blur samples).
//
// Detailed Policy:
// tex*D*_linearize() functions enforce a consistent gamma-management policy
// based on the FIRST_PASS and GAMMA_ENCODE_EVERY_FBO settings. They assume
// their input texture has the same encoding characteristics as the input for
// the current pass (which doesn't apply to the exceptions listed above).
// Similarly, encode_output() enforces a policy based on the LAST_PASS and
// GAMMA_ENCODE_EVERY_FBO settings. Together, they result in one of the
// following two pipelines.
// Typical pipeline with intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = linear_color; // Automatic sRGB encoding
// linear_color = intermediate_output; // Automatic sRGB decoding
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Typical pipeline without intermediate sRGB framebuffers:
// linear_color = pow(pass0_encoded_color, input_gamma);
// intermediate_output = pow(linear_color, 1.0/intermediate_gamma);
// linear_color = pow(intermediate_output, intermediate_gamma);
// final_output = pow(intermediate_output, 1.0/output_gamma);
// Using GAMMA_ENCODE_EVERY_FBO is much slower, but it's provided as a way to
// easily get gamma-correctness without banding on devices where sRGB isn't
// supported.
//
// Use This Header to Maximize Code Reuse:
// The purpose of this header is to provide a consistent interface for texture
// reads and output gamma-encoding that localizes and abstracts away all the
// annoying details. This greatly reduces the amount of code in each shader
// pass that depends on the pass number in the .cgp preset or whether sRGB
// FBO's are being used: You can trivially change the gamma behavior of your
// whole pass by commenting or uncommenting 1-3 #defines. To reuse the same
// code in your first, Nth, and last passes, you can even put it all in another
// header file and #include it from skeleton .cg files that #define the
// appropriate pass-specific settings.
//
// Rationale for Using Three Macros:
// This file uses GAMMA_ENCODE_EVERY_FBO instead of an opposite macro like
// SRGB_PIPELINE to ensure sRGB is assumed by default, which hopefully imposes
// a lower maintenance burden on each pass. At first glance it seems we could
// accomplish everything with two macros: GAMMA_CORRECT_IN / GAMMA_CORRECT_OUT.
// This works for simple use cases where input_gamma == output_gamma, but it
// breaks down for more complex scenarios like CRT simulation, where the pass
// number determines the gamma encoding of the input and output.
/////////////////////////////// BASE CONSTANTS ///////////////////////////////
// Set standard gamma constants, but allow users to override them:
#ifndef OVERRIDE_STANDARD_GAMMA
// Standard encoding gammas:
static const float ntsc_gamma = 2.2; // Best to use NTSC for PAL too?
static const float pal_gamma = 2.8; // Never actually 2.8 in practice
// Typical device decoding gammas (only use for emulating devices):
// CRT/LCD reference gammas are higher than NTSC and Rec.709 video standard
// gammas: The standards purposely undercorrected for an analog CRT's
// assumed 2.5 reference display gamma to maintain contrast in assumed
// [dark] viewing conditions: http://www.poynton.com/PDFs/GammaFAQ.pdf
// These unstated assumptions about display gamma and perceptual rendering
// intent caused a lot of confusion, and more modern CRT's seemed to target
// NTSC 2.2 gamma with circuitry. LCD displays seem to have followed suit
// (they struggle near black with 2.5 gamma anyway), especially PC/laptop
// displays designed to view sRGB in bright environments. (Standards are
// also in flux again with BT.1886, but it's underspecified for displays.)
static const float crt_reference_gamma_high = 2.5; // In (2.35, 2.55)
static const float crt_reference_gamma_low = 2.35; // In (2.35, 2.55)
static const float lcd_reference_gamma = 2.5; // To match CRT
static const float crt_office_gamma = 2.2; // Circuitry-adjusted for NTSC
static const float lcd_office_gamma = 2.2; // Approximates sRGB
#endif // OVERRIDE_STANDARD_GAMMA
// Assuming alpha == 1.0 might make it easier for users to avoid some bugs,
// but only if they're aware of it.
#ifndef OVERRIDE_ALPHA_ASSUMPTIONS
static const bool assume_opaque_alpha = false;
#endif
/////////////////////// DERIVED CONSTANTS AS FUNCTIONS ///////////////////////
// gamma-management.h should be compatible with overriding gamma values with
// runtime user parameters, but we can only define other global constants in
// terms of static constants, not uniform user parameters. To get around this
// limitation, we need to define derived constants using functions.
// Set device gamma constants, but allow users to override them:
#ifdef OVERRIDE_DEVICE_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_crt_gamma() { return crt_gamma; }
inline float get_gba_gamma() { return gba_gamma; }
inline float get_lcd_gamma() { return lcd_gamma; }
#else
inline float get_crt_gamma() { return crt_reference_gamma_high; }
inline float get_gba_gamma() { return 3.5; } // Game Boy Advance; in (3.0, 4.0)
inline float get_lcd_gamma() { return lcd_office_gamma; }
#endif // OVERRIDE_DEVICE_GAMMA
// Set decoding/encoding gammas for the first/lass passes, but allow overrides:
#ifdef OVERRIDE_FINAL_GAMMA
// The user promises to globally define the appropriate constants:
inline float get_intermediate_gamma() { return intermediate_gamma; }
inline float get_input_gamma() { return input_gamma; }
inline float get_output_gamma() { return output_gamma; }
#else
// If we gamma-correct every pass, always use ntsc_gamma between passes to
// ensure middle passes don't need to care if anything is being simulated:
inline float get_intermediate_gamma() { return ntsc_gamma; }
#ifdef SIMULATE_CRT_ON_LCD
inline float get_input_gamma() { return get_crt_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_LCD
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_lcd_gamma(); }
#else
#ifdef SIMULATE_LCD_ON_CRT
inline float get_input_gamma() { return get_lcd_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else
#ifdef SIMULATE_GBA_ON_CRT
inline float get_input_gamma() { return get_gba_gamma(); }
inline float get_output_gamma() { return get_crt_gamma(); }
#else // Don't simulate anything:
inline float get_input_gamma() { return ntsc_gamma; }
inline float get_output_gamma() { return ntsc_gamma; }
#endif // SIMULATE_GBA_ON_CRT
#endif // SIMULATE_LCD_ON_CRT
#endif // SIMULATE_GBA_ON_LCD
#endif // SIMULATE_CRT_ON_LCD
#endif // OVERRIDE_FINAL_GAMMA
// Set decoding/encoding gammas for the current pass. Use static constants for
// linearize_input and gamma_encode_output, because they aren't derived, and
// they let the compiler do dead-code elimination.
#ifndef GAMMA_ENCODE_EVERY_FBO
#ifdef FIRST_PASS
static const bool linearize_input = true;
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
static const bool linearize_input = false;
inline float get_pass_input_gamma() { return 1.0; }
#endif
#ifdef LAST_PASS
static const bool gamma_encode_output = true;
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
static const bool gamma_encode_output = false;
inline float get_pass_output_gamma() { return 1.0; }
#endif
#else
static const bool linearize_input = true;
static const bool gamma_encode_output = true;
#ifdef FIRST_PASS
inline float get_pass_input_gamma() { return get_input_gamma(); }
#else
inline float get_pass_input_gamma() { return get_intermediate_gamma(); }
#endif
#ifdef LAST_PASS
inline float get_pass_output_gamma() { return get_output_gamma(); }
#else
inline float get_pass_output_gamma() { return get_intermediate_gamma(); }
#endif
#endif
// Users might want to know if bilinear filtering will be gamma-correct:
static const bool gamma_aware_bilinear = !linearize_input;
////////////////////// COLOR ENCODING/DECODING FUNCTIONS /////////////////////
inline float4 encode_output(const float4 color)
{
if(gamma_encode_output)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(1.0/get_pass_output_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_input(const float4 color)
{
if(linearize_input)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), 1.0);
}
else
{
return float4(pow(color.rgb, float3(get_pass_input_gamma())), color.a);
}
}
else
{
return color;
}
}
inline float4 decode_gamma_input(const float4 color, const float3 gamma)
{
if(assume_opaque_alpha)
{
return float4(pow(color.rgb, gamma), 1.0);
}
else
{
return float4(pow(color.rgb, gamma), color.a);
}
}
//TODO/FIXME: I have no idea why replacing the lookup wrappers with this macro fixes the blurs being offset ¯\_(ツ)_/¯
//#define tex2D_linearize(C, D) decode_input(vec4(COMPAT_TEXTURE(C, D)))
// EDIT: it's the 'const' in front of the coords that's doing it
/////////////////////////// TEXTURE LOOKUP WRAPPERS //////////////////////////
// "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a wide array of linearizing texture lookup wrapper functions. The
// Cg shader spec Retroarch uses only allows for 2D textures, but 1D and 3D
// lookups are provided for completeness in case that changes someday. Nobody
// is likely to use the *fetch and *proj functions, but they're included just
// in case. The only tex*D texture sampling functions omitted are:
// - tex*Dcmpbias
// - tex*Dcmplod
// - tex*DARRAY*
// - tex*DMS*
// - Variants returning integers
// Standard line length restrictions are ignored below for vertical brevity.
/*
// tex1D:
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1D(tex, tex_coords)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy)
{ return decode_input(tex1D(tex, tex_coords, dx, dy)); }
inline float4 tex1D_linearize(const sampler1D tex, const float tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
inline float4 tex1D_linearize(const sampler1D tex, const float2 tex_coords, const float dx, const float dy, const int texel_off)
{ return decode_input(tex1D(tex, tex_coords, dx, dy, texel_off)); }
// tex1Dbias:
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dbias(tex, tex_coords)); }
inline float4 tex1Dbias_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dbias(tex, tex_coords, texel_off)); }
// tex1Dfetch:
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords)
{ return decode_input(tex1Dfetch(tex, tex_coords)); }
inline float4 tex1Dfetch_linearize(const sampler1D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex1Dfetch(tex, tex_coords, texel_off)); }
// tex1Dlod:
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords)
{ return decode_input(tex1Dlod(tex, tex_coords)); }
inline float4 tex1Dlod_linearize(const sampler1D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex1Dlod(tex, tex_coords, texel_off)); }
// tex1Dproj:
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords)
{ return decode_input(tex1Dproj(tex, tex_coords)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float2 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
inline float4 tex1Dproj_linearize(const sampler1D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex1Dproj(tex, tex_coords, texel_off)); }
*/
// tex2D:
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords)
{ return decode_input(COMPAT_TEXTURE(tex, tex_coords.xy)); }
inline float4 tex2D_linearize(const sampler2D tex, float2 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords, texel_off)); }
inline float4 tex2D_linearize(const sampler2D tex, float3 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
//inline float4 tex2D_linearize(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off)
//{ return decode_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off)); }
// tex2Dbias:
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords)
//{ return decode_input(tex2Dbias(tex, tex_coords)); }
//inline float4 tex2Dbias_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dbias(tex, tex_coords, texel_off)); }
// tex2Dfetch:
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords)
//{ return decode_input(tex2Dfetch(tex, tex_coords)); }
//inline float4 tex2Dfetch_linearize(const sampler2D tex, const int4 tex_coords, const int texel_off)
//{ return decode_input(tex2Dfetch(tex, tex_coords, texel_off)); }
// tex2Dlod:
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords)
{ return decode_input(textureLod(tex, tex_coords.xy, 0.0)); }
inline float4 tex2Dlod_linearize(const sampler2D tex, float4 tex_coords, int texel_off)
{ return decode_input(textureLod(tex, tex_coords.xy, texel_off)); }
/*
// tex2Dproj:
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords)
{ return decode_input(tex2Dproj(tex, tex_coords)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
inline float4 tex2Dproj_linearize(const sampler2D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex2Dproj(tex, tex_coords, texel_off)); }
*/
/*
// tex3D:
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords)
{ return decode_input(tex3D(tex, tex_coords)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, texel_off)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy)
{ return decode_input(tex3D(tex, tex_coords, dx, dy)); }
inline float4 tex3D_linearize(const sampler3D tex, const float3 tex_coords, const float3 dx, const float3 dy, const int texel_off)
{ return decode_input(tex3D(tex, tex_coords, dx, dy, texel_off)); }
// tex3Dbias:
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dbias(tex, tex_coords)); }
inline float4 tex3Dbias_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dbias(tex, tex_coords, texel_off)); }
// tex3Dfetch:
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords)
{ return decode_input(tex3Dfetch(tex, tex_coords)); }
inline float4 tex3Dfetch_linearize(const sampler3D tex, const int4 tex_coords, const int texel_off)
{ return decode_input(tex3Dfetch(tex, tex_coords, texel_off)); }
// tex3Dlod:
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dlod(tex, tex_coords)); }
inline float4 tex3Dlod_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dlod(tex, tex_coords, texel_off)); }
// tex3Dproj:
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords)
{ return decode_input(tex3Dproj(tex, tex_coords)); }
inline float4 tex3Dproj_linearize(const sampler3D tex, const float4 tex_coords, const int texel_off)
{ return decode_input(tex3Dproj(tex, tex_coords, texel_off)); }
/////////*
// NONSTANDARD "SMART" LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// This narrow selection of nonstandard tex2D* functions can be useful:
// tex2Dlod0: Automatically fill in the tex2D LOD parameter for mip level 0.
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0))); }
//inline float4 tex2Dlod0_linearize(const sampler2D tex, const float2 tex_coords, const int texel_off)
//{ return decode_input(tex2Dlod(tex, float4(tex_coords, 0.0, 0.0), texel_off)); }
// MANUALLY LINEARIZING TEXTURE LOOKUP FUNCTIONS:
// Provide a narrower selection of tex2D* wrapper functions that decode an
// input sample with a specified gamma value. These are useful for reading
// LUT's and for reading the input of pass0 in a later pass.
// tex2D:
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords), gamma); }
inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float3 gamma)
{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords.xy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float2 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
//inline float4 tex2D_linearize_gamma(const sampler2D tex, const float3 tex_coords, const float2 dx, const float2 dy, const int texel_off, const float3 gamma)
//{ return decode_gamma_input(COMPAT_TEXTURE(tex, tex_coords, dx, dy, texel_off), gamma); }
/*
// tex2Dbias:
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords), gamma); }
inline float4 tex2Dbias_linearize_gamma(const sampler2D tex, const float4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dbias(tex, tex_coords, texel_off), gamma); }
// tex2Dfetch:
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords), gamma); }
inline float4 tex2Dfetch_linearize_gamma(const sampler2D tex, const int4 tex_coords, const int texel_off, const float3 gamma)
{ return decode_gamma_input(tex2Dfetch(tex, tex_coords, texel_off), gamma); }
*/
// tex2Dlod:
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, 0.0), gamma); }
inline float4 tex2Dlod_linearize_gamma(const sampler2D tex, float4 tex_coords, int texel_off, float3 gamma)
{ return decode_gamma_input(textureLod(tex, tex_coords.xy, texel_off), gamma); }
#endif // GAMMA_MANAGEMENT_H
//////////////////////////// END GAMMA-MANAGEMENT //////////////////////////
//#include "quad-pixel-communication.h"
/////////////////////// BEGIN QUAD-PIXEL-COMMUNICATION //////////////////////
#ifndef QUAD_PIXEL_COMMUNICATION_H
#define QUAD_PIXEL_COMMUNICATION_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey*
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DISCLAIMER /////////////////////////////////
// *This code was inspired by "Shader Amortization using Pixel Quad Message
// Passing" by Eric Penner, published in GPU Pro 2, Chapter VI.2. My intent
// is not to plagiarize his fundamentally similar code and assert my own
// copyright, but the algorithmic helper functions require so little code that
// implementations can't vary by much except bugfixes and conventions. I just
// wanted to license my own particular code here to avoid ambiguity and make it
// clear that as far as I'm concerned, people can do as they please with it.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// Given screen pixel numbers, derive a "quad vector" describing a fragment's
// position in its 2x2 pixel quad. Given that vector, obtain the values of any
// variable at neighboring fragments.
// Requires: Using this file in general requires:
// 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) The GPU driver is using fine/high-quality derivatives.
// Functions will give incorrect results if this is not true,
// so a test function is included.
///////////////////// QUAD-PIXEL COMMUNICATION PRIMITIVES ////////////////////
float4 get_quad_vector_naive(float4 output_pixel_num_wrt_uvxy)
{
// Requires: Two measures of the current fragment's output pixel number
// in the range ([0, output_size.x), [0, output_size.y)):
// 1.) output_pixel_num_wrt_uvxy.xy increase with uv coords.
// 2.) output_pixel_num_wrt_uvxy.zw increase with screen xy.
// Returns: Two measures of the fragment's position in its 2x2 quad:
// 1.) The .xy components are its 2x2 placement with respect to
// uv direction (the origin (0, 0) is at the top-left):
// top-left = (-1.0, -1.0) top-right = ( 1.0, -1.0)
// bottom-left = (-1.0, 1.0) bottom-right = ( 1.0, 1.0)
// You need this to arrange/weight shared texture samples.
// 2.) The .zw components are its 2x2 placement with respect to
// screen xy direction (position); the origin varies.
// quad_gather needs this measure to work correctly.
// Note: quad_vector.zw = quad_vector.xy * float2(
// ddx(output_pixel_num_wrt_uvxy.x),
// ddy(output_pixel_num_wrt_uvxy.y));
// Caveats: This function assumes the GPU driver always starts 2x2 pixel
// quads at even pixel numbers. This assumption can be wrong
// for odd output resolutions (nondeterministically so).
float4 pixel_odd = frac(output_pixel_num_wrt_uvxy * 0.5) * 2.0;
float4 quad_vector = pixel_odd * 2.0 - float4(1.0);
return quad_vector;
}
float4 get_quad_vector(float4 output_pixel_num_wrt_uvxy)
{
// Requires: Same as get_quad_vector_naive() (see that first).
// Returns: Same as get_quad_vector_naive() (see that first), but it's
// correct even if the 2x2 pixel quad starts at an odd pixel,
// which can occur at odd resolutions.
float4 quad_vector_guess =
get_quad_vector_naive(output_pixel_num_wrt_uvxy);
// If quad_vector_guess.zw doesn't increase with screen xy, we know
// the 2x2 pixel quad starts at an odd pixel:
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_guess.z),
ddy(quad_vector_guess.w));
return quad_vector_guess * odd_start_mirror.xyxy;
}
float4 get_quad_vector(float2 output_pixel_num_wrt_uv)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) output_pixel_num_wrt_uv must increase with uv coords and
// measure the current fragment's output pixel number in:
// ([0, output_size.x), [0, output_size.y))
// Returns: Same as get_quad_vector_naive() (see that first), but it's
// correct even if the 2x2 pixel quad starts at an odd pixel,
// which can occur at odd resolutions.
// Caveats: This function requires less information than the version
// taking a float4, but it's potentially slower.
// Do screen coords increase with or against uv? Get the direction
// with respect to (uv.x, uv.y) for (screen.x, screen.y) in {-1, 1}.
float2 screen_uv_mirror = float2(ddx(output_pixel_num_wrt_uv.x),
ddy(output_pixel_num_wrt_uv.y));
float2 pixel_odd_wrt_uv = frac(output_pixel_num_wrt_uv * 0.5) * 2.0;
float2 quad_vector_uv_guess = (pixel_odd_wrt_uv - float2(0.5)) * 2.0;
float2 quad_vector_screen_guess = quad_vector_uv_guess * screen_uv_mirror;
// If quad_vector_screen_guess doesn't increase with screen xy, we know
// the 2x2 pixel quad starts at an odd pixel:
float2 odd_start_mirror = 0.5 * float2(ddx(quad_vector_screen_guess.x),
ddy(quad_vector_screen_guess.y));
float4 quad_vector_guess = float4(
quad_vector_uv_guess, quad_vector_screen_guess);
return quad_vector_guess * odd_start_mirror.xyxy;
}
void quad_gather(float4 quad_vector, float4 curr,
out float4 adjx, out float4 adjy, out float4 diag)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) The GPU driver is using fine/high-quality derivatives.
// 3.) quad_vector describes the current fragment's location in
// its 2x2 pixel quad using get_quad_vector()'s conventions.
// 4.) curr is any vector you wish to get neighboring values of.
// Returns: Values of an input vector (curr) at neighboring fragments
// adjacent x, adjacent y, and diagonal (via out parameters).
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
void quad_gather(float4 quad_vector, float3 curr,
out float3 adjx, out float3 adjy, out float3 diag)
{
// Float3 version
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
void quad_gather(float4 quad_vector, float2 curr,
out float2 adjx, out float2 adjy, out float2 diag)
{
// Float2 version
adjx = curr - ddx(curr) * quad_vector.z;
adjy = curr - ddy(curr) * quad_vector.w;
diag = adjx - ddy(adjx) * quad_vector.w;
}
float4 quad_gather(float4 quad_vector, float curr)
{
// Float version:
// Returns: return.x == current
// return.y == adjacent x
// return.z == adjacent y
// return.w == diagonal
float4 all = float4(curr);
all.y = all.x - ddx(all.x) * quad_vector.z;
all.zw = all.xy - ddy(all.xy) * quad_vector.w;
return all;
}
float4 quad_gather_sum(float4 quad_vector, float4 curr)
{
// Requires: Same as quad_gather()
// Returns: Sum of an input vector (curr) at all fragments in a quad.
float4 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float3 quad_gather_sum(float4 quad_vector, float3 curr)
{
// Float3 version:
float3 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float2 quad_gather_sum(float4 quad_vector, float2 curr)
{
// Float2 version:
float2 adjx, adjy, diag;
quad_gather(quad_vector, curr, adjx, adjy, diag);
return (curr + adjx + adjy + diag);
}
float quad_gather_sum(float4 quad_vector, float curr)
{
// Float version:
float4 all_values = quad_gather(quad_vector, curr);
return (all_values.x + all_values.y + all_values.z + all_values.w);
}
bool fine_derivatives_working(float4 quad_vector, float4 curr)
{
// Requires: 1.) ddx() and ddy() are present in the current Cg profile.
// 2.) quad_vector describes the current fragment's location in
// its 2x2 pixel quad using get_quad_vector()'s conventions.
// 3.) curr must be a test vector with non-constant derivatives
// (its value should change nonlinearly across fragments).
// Returns: true if fine/hybrid/high-quality derivatives are used, or
// false if coarse derivatives are used or inconclusive
// Usage: Test whether quad-pixel communication is working!
// Method: We can confirm fine derivatives are used if the following
// holds (ever, for any value at any fragment):
// (ddy(curr) != ddy(adjx)) or (ddx(curr) != ddx(adjy))
// The more values we test (e.g. test a float4 two ways), the
// easier it is to demonstrate fine derivatives are working.
// TODO: Check for floating point exact comparison issues!
float4 ddx_curr = ddx(curr);
float4 ddy_curr = ddy(curr);
float4 adjx = curr - ddx_curr * quad_vector.z;
float4 adjy = curr - ddy_curr * quad_vector.w;
bool ddy_different = any(bool4(ddy_curr.x != ddy(adjx).x, ddy_curr.y != ddy(adjx).y, ddy_curr.z != ddy(adjx).z, ddy_curr.w != ddy(adjx).w));
bool ddx_different = any(bool4(ddx_curr.x != ddx(adjy).x, ddx_curr.y != ddx(adjy).y, ddx_curr.z != ddx(adjy).z, ddx_curr.w != ddx(adjy).w));
return any(bool2(ddy_different, ddx_different));
}
bool fine_derivatives_working_fast(float4 quad_vector, float curr)
{
// Requires: Same as fine_derivatives_working()
// Returns: Same as fine_derivatives_working()
// Usage: This is faster than fine_derivatives_working() but more
// likely to return false negatives, so it's less useful for
// offline testing/debugging. It's also useless as the basis
// for dynamic runtime branching as of May 2014: Derivatives
// (and quad-pixel communication) are currently disallowed in
// branches. However, future GPU's may allow you to use them
// in dynamic branches if you promise the branch condition
// evaluates the same for every fragment in the quad (and/or if
// the driver enforces that promise by making a single fragment
// control branch decisions). If that ever happens, this
// version may become a more economical choice.
float ddx_curr = ddx(curr);
float ddy_curr = ddy(curr);
float adjx = curr - ddx_curr * quad_vector.z;
return (ddy_curr != ddy(adjx));
}
#endif // QUAD_PIXEL_COMMUNICATION_H
//////////////////////// END QUAD-PIXEL-COMMUNICATION ///////////////////////
//#include "special-functions.h"
/////////////////////////// BEGIN SPECIAL-FUNCTIONS //////////////////////////
#ifndef SPECIAL_FUNCTIONS_H
#define SPECIAL_FUNCTIONS_H
///////////////////////////////// MIT LICENSE ////////////////////////////////
// Copyright (C) 2014 TroggleMonkey
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to
// deal in the Software without restriction, including without limitation the
// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
// sell copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
// IN THE SOFTWARE.
///////////////////////////////// DESCRIPTION ////////////////////////////////
// This file implements the following mathematical special functions:
// 1.) erf() = 2/sqrt(pi) * indefinite_integral(e**(-x**2))
// 2.) gamma(s), a real-numbered extension of the integer factorial function
// It also implements normalized_ligamma(s, z), a normalized lower incomplete
// gamma function for s < 0.5 only. Both gamma() and normalized_ligamma() can
// be called with an _impl suffix to use an implementation version with a few
// extra precomputed parameters (which may be useful for the caller to reuse).
// See below for details.
//
// Design Rationale:
// Pretty much every line of code in this file is duplicated four times for
// different input types (float4/float3/float2/float). This is unfortunate,
// but Cg doesn't allow function templates. Macros would be far less verbose,
// but they would make the code harder to document and read. I don't expect
// these functions will require a whole lot of maintenance changes unless
// someone ever has need for more robust incomplete gamma functions, so code
// duplication seems to be the lesser evil in this case.
/////////////////////////// GAUSSIAN ERROR FUNCTION //////////////////////////
float4 erf6(float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Return an Abramowitz/Stegun approximation of erf(), where:
// erf(x) = 2/sqrt(pi) * integral(e**(-x**2))
// This approximation has a max absolute error of 2.5*10**-5
// with solid numerical robustness and efficiency. See:
// https://en.wikipedia.org/wiki/Error_function#Approximation_with_elementary_functions
static const float4 one = float4(1.0);
const float4 sign_x = sign(x);
const float4 t = one/(one + 0.47047*abs(x));
const float4 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float3 erf6(const float3 x)
{
// Float3 version:
static const float3 one = float3(1.0);
const float3 sign_x = sign(x);
const float3 t = one/(one + 0.47047*abs(x));
const float3 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float2 erf6(const float2 x)
{
// Float2 version:
static const float2 one = float2(1.0);
const float2 sign_x = sign(x);
const float2 t = one/(one + 0.47047*abs(x));
const float2 result = one - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float erf6(const float x)
{
// Float version:
const float sign_x = sign(x);
const float t = 1.0/(1.0 + 0.47047*abs(x));
const float result = 1.0 - t*(0.3480242 + t*(-0.0958798 + t*0.7478556))*
exp(-(x*x));
return result * sign_x;
}
float4 erft(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Approximate erf() with the hyperbolic tangent. The error is
// visually noticeable, but it's blazing fast and perceptually
// close...at least on ATI hardware. See:
// http://www.maplesoft.com/applications/view.aspx?SID=5525&view=html
// Warning: Only use this if your hardware drivers correctly implement
// tanh(): My nVidia 8800GTS returns garbage output.
return tanh(1.202760580 * x);
}
float3 erft(const float3 x)
{
// Float3 version:
return tanh(1.202760580 * x);
}
float2 erft(const float2 x)
{
// Float2 version:
return tanh(1.202760580 * x);
}
float erft(const float x)
{
// Float version:
return tanh(1.202760580 * x);
}
inline float4 erf(const float4 x)
{
// Requires: x is the standard parameter to erf().
// Returns: Some approximation of erf(x), depending on user settings.
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float3 erf(const float3 x)
{
// Float3 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float2 erf(const float2 x)
{
// Float2 version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
inline float erf(const float x)
{
// Float version:
#ifdef ERF_FAST_APPROXIMATION
return erft(x);
#else
return erf6(x);
#endif
}
/////////////////////////// COMPLETE GAMMA FUNCTION //////////////////////////
float4 gamma_impl(const float4 s, const float4 s_inv)
{
// Requires: 1.) s is the standard parameter to the gamma function, and
// it should lie in the [0, 36] range.
// 2.) s_inv = 1.0/s. This implementation function requires
// the caller to precompute this value, giving users the
// opportunity to reuse it.
// Returns: Return approximate gamma function (real-numbered factorial)
// output using the Lanczos approximation with two coefficients
// calculated using Paul Godfrey's method here:
// http://my.fit.edu/~gabdo/gamma.txt
// An optimal g value for s in [0, 36] is ~1.12906830989, with
// a maximum relative error of 0.000463 for 2**16 equally
// evals. We could use three coeffs (0.0000346 error) without
// hurting latency, but this allows more parallelism with
// outside instructions.
static const float4 g = float4(1.12906830989);
static const float4 c0 = float4(0.8109119309638332633713423362694399653724431);
static const float4 c1 = float4(0.4808354605142681877121661197951496120000040);
static const float4 e = float4(2.71828182845904523536028747135266249775724709);
const float4 sph = s + float4(0.5);
const float4 lanczos_sum = c0 + c1/(s + float4(1.0));
const float4 base = (sph + g)/e; // or (s + g + float4(0.5))/e
// gamma(s + 1) = base**sph * lanczos_sum; divide by s for gamma(s).
// This has less error for small s's than (s -= 1.0) at the beginning.
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float3 gamma_impl(const float3 s, const float3 s_inv)
{
// Float3 version:
static const float3 g = float3(1.12906830989);
static const float3 c0 = float3(0.8109119309638332633713423362694399653724431);
static const float3 c1 = float3(0.4808354605142681877121661197951496120000040);
static const float3 e = float3(2.71828182845904523536028747135266249775724709);
const float3 sph = s + float3(0.5);
const float3 lanczos_sum = c0 + c1/(s + float3(1.0));
const float3 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float2 gamma_impl(const float2 s, const float2 s_inv)
{
// Float2 version:
static const float2 g = float2(1.12906830989);
static const float2 c0 = float2(0.8109119309638332633713423362694399653724431);
static const float2 c1 = float2(0.4808354605142681877121661197951496120000040);
static const float2 e = float2(2.71828182845904523536028747135266249775724709);
const float2 sph = s + float2(0.5);
const float2 lanczos_sum = c0 + c1/(s + float2(1.0));
const float2 base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float gamma_impl(const float s, const float s_inv)
{
// Float version:
static const float g = 1.12906830989;
static const float c0 = 0.8109119309638332633713423362694399653724431;
static const float c1 = 0.4808354605142681877121661197951496120000040;
static const float e = 2.71828182845904523536028747135266249775724709;
const float sph = s + 0.5;
const float lanczos_sum = c0 + c1/(s + 1.0);
const float base = (sph + g)/e;
return (pow(base, sph) * lanczos_sum) * s_inv;
}
float4 gamma(const float4 s)
{
// Requires: s is the standard parameter to the gamma function, and it
// should lie in the [0, 36] range.
// Returns: Return approximate gamma function output with a maximum
// relative error of 0.000463. See gamma_impl for details.
return gamma_impl(s, float4(1.0)/s);
}
float3 gamma(const float3 s)
{
// Float3 version:
return gamma_impl(s, float3(1.0)/s);
}
float2 gamma(const float2 s)
{
// Float2 version:
return gamma_impl(s, float2(1.0)/s);
}
float gamma(const float s)
{
// Float version:
return gamma_impl(s, 1.0/s);
}
//////////////// INCOMPLETE GAMMA FUNCTIONS (RESTRICTED INPUT) ///////////////
// Lower incomplete gamma function for small s and z (implementation):
float4 ligamma_small_z_impl(const float4 s, const float4 z, const float4 s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) z <= ~0.775075
// 3.) s_inv = 1.0/s (precomputed for outside reuse)
// Returns: A series representation for the lower incomplete gamma
// function for small s and small z (4 terms).
// The actual "rolled up" summation looks like:
// last_sign = 1.0; last_pow = 1.0; last_factorial = 1.0;
// sum = last_sign * last_pow / ((s + k) * last_factorial)
// for(int i = 0; i < 4; ++i)
// {
// last_sign *= -1.0; last_pow *= z; last_factorial *= i;
// sum += last_sign * last_pow / ((s + k) * last_factorial);
// }
// Unrolled, constant-unfolded and arranged for madds and parallelism:
const float4 scale = pow(z, s);
float4 sum = s_inv; // Summation iteration 0 result
// Summation iterations 1, 2, and 3:
const float4 z_sq = z*z;
const float4 denom1 = s + float4(1.0);
const float4 denom2 = 2.0*s + float4(4.0);
const float4 denom3 = 6.0*s + float4(18.0);
//float4 denom4 = 24.0*s + float4(96.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
//sum += z_sq * z_sq / denom4;
// Scale and return:
return scale * sum;
}
float3 ligamma_small_z_impl(const float3 s, const float3 z, const float3 s_inv)
{
// Float3 version:
const float3 scale = pow(z, s);
float3 sum = s_inv;
const float3 z_sq = z*z;
const float3 denom1 = s + float3(1.0);
const float3 denom2 = 2.0*s + float3(4.0);
const float3 denom3 = 6.0*s + float3(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float2 ligamma_small_z_impl(const float2 s, const float2 z, const float2 s_inv)
{
// Float2 version:
const float2 scale = pow(z, s);
float2 sum = s_inv;
const float2 z_sq = z*z;
const float2 denom1 = s + float2(1.0);
const float2 denom2 = 2.0*s + float2(4.0);
const float2 denom3 = 6.0*s + float2(18.0);
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
float ligamma_small_z_impl(const float s, const float z, const float s_inv)
{
// Float version:
const float scale = pow(z, s);
float sum = s_inv;
const float z_sq = z*z;
const float denom1 = s + 1.0;
const float denom2 = 2.0*s + 4.0;
const float denom3 = 6.0*s + 18.0;
sum -= z/denom1;
sum += z_sq/denom2;
sum -= z * z_sq/denom3;
return scale * sum;
}
// Upper incomplete gamma function for small s and large z (implementation):
float4 uigamma_large_z_impl(const float4 s, const float4 z)
{
// Requires: 1.) s < ~0.5
// 2.) z > ~0.775075
// Returns: Gauss's continued fraction representation for the upper
// incomplete gamma function (4 terms).
// The "rolled up" continued fraction looks like this. The denominator
// is truncated, and it's calculated "from the bottom up:"
// denom = float4('inf');
// float4 one = float4(1.0);
// for(int i = 4; i > 0; --i)
// {
// denom = ((i * 2.0) - one) + z - s + (i * (s - i))/denom;
// }
// Unrolled and constant-unfolded for madds and parallelism:
const float4 numerator = pow(z, s) * exp(-z);
float4 denom = float4(7.0) + z - s;
denom = float4(5.0) + z - s + (3.0*s - float4(9.0))/denom;
denom = float4(3.0) + z - s + (2.0*s - float4(4.0))/denom;
denom = float4(1.0) + z - s + (s - float4(1.0))/denom;
return numerator / denom;
}
float3 uigamma_large_z_impl(const float3 s, const float3 z)
{
// Float3 version:
const float3 numerator = pow(z, s) * exp(-z);
float3 denom = float3(7.0) + z - s;
denom = float3(5.0) + z - s + (3.0*s - float3(9.0))/denom;
denom = float3(3.0) + z - s + (2.0*s - float3(4.0))/denom;
denom = float3(1.0) + z - s + (s - float3(1.0))/denom;
return numerator / denom;
}
float2 uigamma_large_z_impl(const float2 s, const float2 z)
{
// Float2 version:
const float2 numerator = pow(z, s) * exp(-z);
float2 denom = float2(7.0) + z - s;
denom = float2(5.0) + z - s + (3.0*s - float2(9.0))/denom;
denom = float2(3.0) + z - s + (2.0*s - float2(4.0))/denom;
denom = float2(1.0) + z - s + (s - float2(1.0))/denom;
return numerator / denom;
}
float uigamma_large_z_impl(const float s, const float z)
{
// Float version:
const float numerator = pow(z, s) * exp(-z);
float denom = 7.0 + z - s;
denom = 5.0 + z - s + (3.0*s - 9.0)/denom;
denom = 3.0 + z - s + (2.0*s - 4.0)/denom;
denom = 1.0 + z - s + (s - 1.0)/denom;
return numerator / denom;
}
// Normalized lower incomplete gamma function for small s (implementation):
float4 normalized_ligamma_impl(const float4 s, const float4 z,
const float4 s_inv, const float4 gamma_s_inv)
{
// Requires: 1.) s < ~0.5
// 2.) s_inv = 1/s (precomputed for outside reuse)
// 3.) gamma_s_inv = 1/gamma(s) (precomputed for outside reuse)
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. Since we only care about s < 0.5, we only need
// to evaluate two branches (not four) based on z. Each branch
// uses four terms, with a max relative error of ~0.00182. The
// branch threshold and specifics were adapted for fewer terms
// from Gil/Segura/Temme's paper here:
// http://oai.cwi.nl/oai/asset/20433/20433B.pdf
// Evaluate both branches: Real branches test slower even when available.
static const float4 thresh = float4(0.775075);
bool4 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
z_is_large.w = z.w > thresh.w;
const float4 large_z = float4(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float4 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
// Combine the results from both branches:
bool4 inverse_z_is_large = not(z_is_large);
return large_z * float4(z_is_large) + small_z * float4(inverse_z_is_large);
}
float3 normalized_ligamma_impl(const float3 s, const float3 z,
const float3 s_inv, const float3 gamma_s_inv)
{
// Float3 version:
static const float3 thresh = float3(0.775075);
bool3 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
z_is_large.z = z.z > thresh.z;
const float3 large_z = float3(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float3 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool3 inverse_z_is_large = not(z_is_large);
return large_z * float3(z_is_large) + small_z * float3(inverse_z_is_large);
}
float2 normalized_ligamma_impl(const float2 s, const float2 z,
const float2 s_inv, const float2 gamma_s_inv)
{
// Float2 version:
static const float2 thresh = float2(0.775075);
bool2 z_is_large;
z_is_large.x = z.x > thresh.x;
z_is_large.y = z.y > thresh.y;
const float2 large_z = float2(1.0) - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float2 small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
bool2 inverse_z_is_large = not(z_is_large);
return large_z * float2(z_is_large) + small_z * float2(inverse_z_is_large);
}
float normalized_ligamma_impl(const float s, const float z,
const float s_inv, const float gamma_s_inv)
{
// Float version:
static const float thresh = 0.775075;
const bool z_is_large = z > thresh;
const float large_z = 1.0 - uigamma_large_z_impl(s, z) * gamma_s_inv;
const float small_z = ligamma_small_z_impl(s, z, s_inv) * gamma_s_inv;
return large_z * float(z_is_large) + small_z * float(!z_is_large);
}
// Normalized lower incomplete gamma function for small s:
float4 normalized_ligamma(const float4 s, const float4 z)
{
// Requires: s < ~0.5
// Returns: Approximate the normalized lower incomplete gamma function
// for s < 0.5. See normalized_ligamma_impl() for details.
const float4 s_inv = float4(1.0)/s;
const float4 gamma_s_inv = float4(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float3 normalized_ligamma(const float3 s, const float3 z)
{
// Float3 version:
const float3 s_inv = float3(1.0)/s;
const float3 gamma_s_inv = float3(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float2 normalized_ligamma(const float2 s, const float2 z)
{
// Float2 version:
const float2 s_inv = float2(1.0)/s;
const float2 gamma_s_inv = float2(1.0)/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
float normalized_ligamma(const float s, const float z)
{
// Float version:
const float s_inv = 1.0/s;
const float gamma_s_inv = 1.0/gamma_impl(s, s_inv);
return normalized_ligamma_impl(s, z, s_inv, gamma_s_inv);
}
#endif // SPECIAL_FUNCTIONS_H
//////////////////////////// END SPECIAL-FUNCTIONS ///////////////////////////
//////////////////////////////// END INCLUDES ////////////////////////////////
/////////////////////////////////// HELPERS //////////////////////////////////
inline float4 uv2_to_uv4(float2 tex_uv)
{
// Make a float2 uv offset safe for adding to float4 tex2Dlod coords:
return float4(tex_uv, 0.0, 0.0);
}
// Make a length squared helper macro (for usage with static constants):
#define LENGTH_SQ(vec) (dot(vec, vec))
inline float get_fast_gaussian_weight_sum_inv(const float sigma)
{
// We can use the Gaussian integral to calculate the asymptotic weight for
// the center pixel. Since the unnormalized center pixel weight is 1.0,
// the normalized weight is the same as the weight sum inverse. Given a
// large enough blur (9+), the asymptotic weight sum is close and faster:
// center_weight = 0.5 *
// (erf(0.5/(sigma*sqrt(2.0))) - erf(-0.5/(sigma*sqrt(2.0))))
// erf(-x) == -erf(x), so we get 0.5 * (2.0 * erf(blah blah)):
// However, we can get even faster results with curve-fitting. These are
// also closer than the asymptotic results, because they were constructed
// from 64 blurs sizes from [3, 131) and 255 equally-spaced sigmas from
// (0, blurN_std_dev), so the results for smaller sigmas are biased toward
// smaller blurs. The max error is 0.0031793913.
// Relative FPS: 134.3 with erf, 135.8 with curve-fitting.
//static const float temp = 0.5/sqrt(2.0);
//return erf(temp/sigma);
return min(exp(exp(0.348348412457428/
(sigma - 0.0860587260734721))), 0.399334576340352/sigma);
}
//////////////////// ARBITRARILY RESIZABLE SEPARABLE BLURS ///////////////////
float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 11x Gaussian blurred texture lookup using a 11-tap blur.
// It may be mipmapped depending on settings and dxdy.
// Calculate Gaussian blur kernel weights and a normalization factor for
// distances of 0-4, ignoring constant factors (since we're normalizing).
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
// Statically normalize weights, sum weighted samples, and return. Blurs are
// currently optimized for dynamic weights.
float3 sum = float3(0.0,0.0,0.0);
sum += w5 * tex2D_linearize(tex, tex_uv - 5.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
sum += w5 * tex2D_linearize(tex, tex_uv + 5.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 9x Gaussian blurred texture lookup using a 9-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w4 * tex2D_linearize(tex, tex_uv - 4.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
sum += w4 * tex2D_linearize(tex, tex_uv + 4.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 7x Gaussian blurred texture lookup using a 7-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w3 * tex2D_linearize(tex, tex_uv - 3.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
sum += w3 * tex2D_linearize(tex, tex_uv + 3.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 5x Gaussian blurred texture lookup using a 5-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w2 * tex2D_linearize(tex, tex_uv - 2.0 * dxdy).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
sum += w2 * tex2D_linearize(tex, tex_uv + 2.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 1D 3x Gaussian blurred texture lookup using a 3-tap blur.
// It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w1 * tex2D_linearize(tex, tex_uv - 1.0 * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1 * tex2D_linearize(tex, tex_uv + 1.0 * dxdy).rgb;
return sum * weight_sum_inv;
}
/////////////////////////// FAST SEPARABLE BLURS ///////////////////////////
float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: 1.) Global requirements must be met (see file description).
// 2.) filter_linearN must = "true" in your .cgp file.
// 3.) For gamma-correct bilinear filtering, global
// gamma_aware_bilinear == true (from gamma-management.h)
// Returns: A 1D 11x Gaussian blurred texture lookup using 6 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5));
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w23 = w2 + w3;
const float w45 = w4 + w5;
const float w01_ratio = w1/w01;
const float w23_ratio = w3/w23;
const float w45_ratio = w5/w45;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w45 * tex2D_linearize(tex, tex_uv - (4.0 + w45_ratio) * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
sum += w45 * tex2D_linearize(tex, tex_uv + (4.0 + w45_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 9x Gaussian blurred texture lookup using 1 nearest
// neighbor and 4 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
// Calculate combined weights and linear sample ratios between texel pairs.
const float w12 = w1 + w2;
const float w34 = w3 + w4;
const float w12_ratio = w2/w12;
const float w34_ratio = w4/w34;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w34 * tex2D_linearize(tex, tex_uv - (3.0 + w34_ratio) * dxdy).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
sum += w34 * tex2D_linearize(tex, tex_uv + (3.0 + w34_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 7x Gaussian blurred texture lookup using 4 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3));
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w23 = w2 + w3;
const float w01_ratio = w1/w01;
const float w23_ratio = w3/w23;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w23 * tex2D_linearize(tex, tex_uv - (2.0 + w23_ratio) * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb;
sum += w01 * tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb;
sum += w23 * tex2D_linearize(tex, tex_uv + (2.0 + w23_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 5x Gaussian blurred texture lookup using 1 nearest
// neighbor and 2 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2));
// Calculate combined weights and linear sample ratios between texel pairs.
const float w12 = w1 + w2;
const float w12_ratio = w2/w12;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w12 * tex2D_linearize(tex, tex_uv - (1.0 + w12_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w12 * tex2D_linearize(tex, tex_uv + (1.0 + w12_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 3x Gaussian blurred texture lookup using 2 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float weight_sum_inv = 1.0 / (w0 + 2.0 * w1);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w01 = w0 * 0.5 + w1;
const float w01_ratio = w1/w01;
// Weights for all samples are the same, so just average them:
return 0.5 * (
tex2D_linearize(tex, tex_uv - w01_ratio * dxdy).rgb +
tex2D_linearize(tex, tex_uv + w01_ratio * dxdy).rgb);
}
//////////////////////////// HUGE SEPARABLE BLURS ////////////////////////////
// Huge separable blurs come only in "fast" versions.
float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 43x Gaussian blurred texture lookup using 22 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
const float w13 = exp(-169.0 * denom_inv);
const float w14 = exp(-196.0 * denom_inv);
const float w15 = exp(-225.0 * denom_inv);
const float w16 = exp(-256.0 * denom_inv);
const float w17 = exp(-289.0 * denom_inv);
const float w18 = exp(-324.0 * denom_inv);
const float w19 = exp(-361.0 * denom_inv);
const float w20 = exp(-400.0 * denom_inv);
const float w21 = exp(-441.0 * denom_inv);
//const float weight_sum_inv = 1.0 /
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 +
// w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w0_1 = w0 * 0.5 + w1;
const float w2_3 = w2 + w3;
const float w4_5 = w4 + w5;
const float w6_7 = w6 + w7;
const float w8_9 = w8 + w9;
const float w10_11 = w10 + w11;
const float w12_13 = w12 + w13;
const float w14_15 = w14 + w15;
const float w16_17 = w16 + w17;
const float w18_19 = w18 + w19;
const float w20_21 = w20 + w21;
const float w0_1_ratio = w1/w0_1;
const float w2_3_ratio = w3/w2_3;
const float w4_5_ratio = w5/w4_5;
const float w6_7_ratio = w7/w6_7;
const float w8_9_ratio = w9/w8_9;
const float w10_11_ratio = w11/w10_11;
const float w12_13_ratio = w13/w12_13;
const float w14_15_ratio = w15/w14_15;
const float w16_17_ratio = w17/w16_17;
const float w18_19_ratio = w19/w18_19;
const float w20_21_ratio = w21/w20_21;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w20_21 * tex2D_linearize(tex, tex_uv - (20.0 + w20_21_ratio) * dxdy).rgb;
sum += w18_19 * tex2D_linearize(tex, tex_uv - (18.0 + w18_19_ratio) * dxdy).rgb;
sum += w16_17 * tex2D_linearize(tex, tex_uv - (16.0 + w16_17_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w16_17 * tex2D_linearize(tex, tex_uv + (16.0 + w16_17_ratio) * dxdy).rgb;
sum += w18_19 * tex2D_linearize(tex, tex_uv + (18.0 + w18_19_ratio) * dxdy).rgb;
sum += w20_21 * tex2D_linearize(tex, tex_uv + (20.0 + w20_21_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 31x Gaussian blurred texture lookup using 16 linear
// taps. It may be mipmapped depending on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
const float w13 = exp(-169.0 * denom_inv);
const float w14 = exp(-196.0 * denom_inv);
const float w15 = exp(-225.0 * denom_inv);
//const float weight_sum_inv = 1.0 /
// (w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 +
// w9 + w10 + w11 + w12 + w13 + w14 + w15));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
// The center texel (with weight w0) is used twice, so halve its weight.
const float w0_1 = w0 * 0.5 + w1;
const float w2_3 = w2 + w3;
const float w4_5 = w4 + w5;
const float w6_7 = w6 + w7;
const float w8_9 = w8 + w9;
const float w10_11 = w10 + w11;
const float w12_13 = w12 + w13;
const float w14_15 = w14 + w15;
const float w0_1_ratio = w1/w0_1;
const float w2_3_ratio = w3/w2_3;
const float w4_5_ratio = w5/w4_5;
const float w6_7_ratio = w7/w6_7;
const float w8_9_ratio = w9/w8_9;
const float w10_11_ratio = w11/w10_11;
const float w12_13_ratio = w13/w12_13;
const float w14_15_ratio = w15/w14_15;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w14_15 * tex2D_linearize(tex, tex_uv - (14.0 + w14_15_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv - (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv - (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv - (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv - (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv - (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv - (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv - w0_1_ratio * dxdy).rgb;
sum += w0_1 * tex2D_linearize(tex, tex_uv + w0_1_ratio * dxdy).rgb;
sum += w2_3 * tex2D_linearize(tex, tex_uv + (2.0 + w2_3_ratio) * dxdy).rgb;
sum += w4_5 * tex2D_linearize(tex, tex_uv + (4.0 + w4_5_ratio) * dxdy).rgb;
sum += w6_7 * tex2D_linearize(tex, tex_uv + (6.0 + w6_7_ratio) * dxdy).rgb;
sum += w8_9 * tex2D_linearize(tex, tex_uv + (8.0 + w8_9_ratio) * dxdy).rgb;
sum += w10_11 * tex2D_linearize(tex, tex_uv + (10.0 + w10_11_ratio) * dxdy).rgb;
sum += w12_13 * tex2D_linearize(tex, tex_uv + (12.0 + w12_13_ratio) * dxdy).rgb;
sum += w14_15 * tex2D_linearize(tex, tex_uv + (14.0 + w14_15_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 25x Gaussian blurred texture lookup using 1 nearest
// neighbor and 12 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
const float w1_2 = w1 + w2;
const float w3_4 = w3 + w4;
const float w5_6 = w5 + w6;
const float w7_8 = w7 + w8;
const float w9_10 = w9 + w10;
const float w11_12 = w11 + w12;
const float w1_2_ratio = w2/w1_2;
const float w3_4_ratio = w4/w3_4;
const float w5_6_ratio = w6/w5_6;
const float w7_8_ratio = w8/w7_8;
const float w9_10_ratio = w10/w9_10;
const float w11_12_ratio = w12/w11_12;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w11_12 * tex2D_linearize(tex, tex_uv - (11.0 + w11_12_ratio) * dxdy).rgb;
sum += w9_10 * tex2D_linearize(tex, tex_uv - (9.0 + w9_10_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w9_10 * tex2D_linearize(tex, tex_uv + (9.0 + w9_10_ratio) * dxdy).rgb;
sum += w11_12 * tex2D_linearize(tex, tex_uv + (11.0 + w11_12_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Same as tex2Dblur11()
// Returns: A 1D 17x Gaussian blurred texture lookup using 1 nearest
// neighbor and 8 linear taps. It may be mipmapped depending
// on settings and dxdy.
// First get the texel weights and normalization factor as above.
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
//const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
// w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
const float weight_sum_inv = get_fast_gaussian_weight_sum_inv(sigma);
// Calculate combined weights and linear sample ratios between texel pairs.
const float w1_2 = w1 + w2;
const float w3_4 = w3 + w4;
const float w5_6 = w5 + w6;
const float w7_8 = w7 + w8;
const float w1_2_ratio = w2/w1_2;
const float w3_4_ratio = w4/w3_4;
const float w5_6_ratio = w6/w5_6;
const float w7_8_ratio = w8/w7_8;
// Statically normalize weights, sum weighted samples, and return:
float3 sum = float3(0.0,0.0,0.0);
sum += w7_8 * tex2D_linearize(tex, tex_uv - (7.0 + w7_8_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv - (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv - (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv - (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w0 * tex2D_linearize(tex, tex_uv).rgb;
sum += w1_2 * tex2D_linearize(tex, tex_uv + (1.0 + w1_2_ratio) * dxdy).rgb;
sum += w3_4 * tex2D_linearize(tex, tex_uv + (3.0 + w3_4_ratio) * dxdy).rgb;
sum += w5_6 * tex2D_linearize(tex, tex_uv + (5.0 + w5_6_ratio) * dxdy).rgb;
sum += w7_8 * tex2D_linearize(tex, tex_uv + (7.0 + w7_8_ratio) * dxdy).rgb;
return sum * weight_sum_inv;
}
//////////////////// ARBITRARILY RESIZABLE ONE-PASS BLURS ////////////////////
float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Requires: Global requirements must be met (see file description).
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup of the
// resized input.
// Description:
// This is the only arbitrarily resizable one-pass blur; tex2Dblur5x5resize
// would perform like tex2Dblur9x9, MUCH slower than tex2Dblur5resize.
const float denom_inv = 0.5/(sigma*sigma);
// Load each sample. We need all 3x3 samples. Quad-pixel communication
// won't help either: This should perform like tex2Dblur5x5, but sharing a
// 4x4 sample field would perform more like tex2Dblur8x8shared (worse).
const float2 sample4_uv = tex_uv;
const float2 dx = float2(dxdy.x, 0.0);
const float2 dy = float2(0.0, dxdy.y);
const float2 sample1_uv = sample4_uv - dy;
const float2 sample7_uv = sample4_uv + dy;
const float3 sample0 = tex2D_linearize(tex, sample1_uv - dx).rgb;
const float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
const float3 sample2 = tex2D_linearize(tex, sample1_uv + dx).rgb;
const float3 sample3 = tex2D_linearize(tex, sample4_uv - dx).rgb;
const float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
const float3 sample5 = tex2D_linearize(tex, sample4_uv + dx).rgb;
const float3 sample6 = tex2D_linearize(tex, sample7_uv - dx).rgb;
const float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
const float3 sample8 = tex2D_linearize(tex, sample7_uv + dx).rgb;
// Statically compute Gaussian sample weights:
const float w4 = 1.0;
const float w1_3_5_7 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
const float w0_2_6_8 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float weight_sum_inv = 1.0/(w4 + 4.0 * (w1_3_5_7 + w0_2_6_8));
// Weight and sum the samples:
const float3 sum = w4 * sample4 +
w1_3_5_7 * (sample1 + sample3 + sample5 + sample7) +
w0_2_6_8 * (sample0 + sample2 + sample6 + sample8);
return sum * weight_sum_inv;
}
//////////////////////////// FASTER ONE-PASS BLURS ///////////////////////////
float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 9x9 Gaussian blurred mipmapped texture lookup composed of
// 5x5 carefully selected bilinear samples.
// Description:
// Perform a 1-pass 9x9 blur with 5x5 bilinear samples. Adjust the
// bilinear sample location to reflect the true Gaussian weights for each
// underlying texel. The following diagram illustrates the relative
// locations of bilinear samples. Each sample with the same number has the
// same weight (notice the symmetry). The letters a, b, c, d distinguish
// quadrants, and the letters U, D, L, R, C (up, down, left, right, center)
// distinguish 1D directions along the line containing the pixel center:
// 6a 5a 2U 5b 6b
// 4a 3a 1U 3b 4b
// 2L 1L 0C 1R 2R
// 4c 3c 1D 3d 4d
// 6c 5c 2D 5d 6d
// The following diagram illustrates the underlying equally spaced texels,
// named after the sample that accesses them and subnamed by their location
// within their 2x2, 2x1, 1x2, or 1x1 texel block:
// 6a4 6a3 5a4 5a3 2U2 5b3 5b4 6b3 6b4
// 6a2 6a1 5a2 5a1 2U1 5b1 5b2 6b1 6b2
// 4a4 4a3 3a4 3a3 1U2 3b3 3b4 4b3 4b4
// 4a2 4a1 3a2 3a1 1U1 3b1 3b2 4b1 4b2
// 2L2 2L1 1L2 1L1 0C1 1R1 1R2 2R1 2R2
// 4c2 4c1 3c2 3c1 1D1 3d1 3d2 4d1 4d2
// 4c4 4c3 3c4 3c3 1D2 3d3 3d4 4d3 4d4
// 6c2 6c1 5c2 5c1 2D1 5d1 5d2 6d1 6d2
// 6c4 6c3 5c4 5c3 2D2 5d3 5d4 6d3 6d4
// Note there is only one C texel and only two texels for each U, D, L, or
// R sample. The center sample is effectively a nearest neighbor sample,
// and the U/D/L/R samples use 1D linear filtering. All other texels are
// read with bilinear samples somewhere within their 2x2 texel blocks.
// COMPUTE TEXTURE COORDS:
// Statically compute sampling offsets within each 2x2 texel block, based
// on 1D sampling ratios between texels [1, 2] and [3, 4] texels away from
// the center, and reuse them independently for both dimensions. Compute
// these offsets based on the relative 1D Gaussian weights of the texels
// in question. (w1off means "Gaussian weight for the texel 1.0 texels
// away from the pixel center," etc.).
const float denom_inv = 0.5/(sigma*sigma);
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float w3off = exp(-9.0 * denom_inv);
const float w4off = exp(-16.0 * denom_inv);
const float texel1to2ratio = w2off/(w1off + w2off);
const float texel3to4ratio = w4off/(w3off + w4off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
const float2 sample2R_texel_offset = float2(3.0, 0.0) + float2(texel3to4ratio, 0.0);
const float2 sample3d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
const float2 sample4d_texel_offset = float2(3.0, 1.0) + float2(texel3to4ratio, texel1to2ratio);
const float2 sample5d_texel_offset = float2(1.0, 3.0) + float2(texel1to2ratio, texel3to4ratio);
const float2 sample6d_texel_offset = float2(3.0, 3.0) + float2(texel3to4ratio, texel3to4ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1R1 = w1off;
const float w1R2 = w2off;
const float w2R1 = w3off;
const float w2R2 = w4off;
const float w3d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w3d2_3d3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w3d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
const float w4d1_5d1 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
const float w4d2_5d3 = exp(-LENGTH_SQ(float2(4.0, 1.0)) * denom_inv);
const float w4d3_5d2 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
const float w4d4_5d4 = exp(-LENGTH_SQ(float2(4.0, 2.0)) * denom_inv);
const float w6d1 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
const float w6d2_6d3 = exp(-LENGTH_SQ(float2(4.0, 3.0)) * denom_inv);
const float w6d4 = exp(-LENGTH_SQ(float2(4.0, 4.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights:
const float w0 = 1.0;
const float w1 = w1R1 + w1R2;
const float w2 = w2R1 + w2R2;
const float w3 = w3d1 + 2.0 * w3d2_3d3 + w3d4;
const float w4 = w4d1_5d1 + w4d2_5d3 + w4d3_5d2 + w4d4_5d4;
const float w5 = w4;
const float w6 = w6d1 + 2.0 * w6d2_6d3 + w6d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv =
1.0/(w0 + 4.0 * (w1 + w2 + w3 + w4 + w5 + w6));
// LOAD TEXTURE SAMPLES:
// Load all 25 samples (1 nearest, 8 linear, 16 bilinear) using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
// Sampling order doesn't seem to affect performance, so just be clear:
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample2R = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset).rgb;
const float3 sample2D = tex2D_linearize(tex, tex_uv + dxdy * sample2R_texel_offset.yx).rgb;
const float3 sample2L = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset).rgb;
const float3 sample2U = tex2D_linearize(tex, tex_uv - dxdy * sample2R_texel_offset.yx).rgb;
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
const float3 sample5d = tex2D_linearize(tex, tex_uv + dxdy * sample5d_texel_offset).rgb;
const float3 sample5c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample5d_texel_offset).rgb;
const float3 sample5b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample5d_texel_offset).rgb;
const float3 sample5a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample5d_texel_offset).rgb;
const float3 sample6d = tex2D_linearize(tex, tex_uv + dxdy * sample6d_texel_offset).rgb;
const float3 sample6c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample6d_texel_offset).rgb;
const float3 sample6b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample6d_texel_offset).rgb;
const float3 sample6a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample6d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = w0 * sample0C;
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
sum += w2 * (sample2R + sample2D + sample2L + sample2U);
sum += w3 * (sample3d + sample3c + sample3b + sample3a);
sum += w4 * (sample4d + sample4c + sample4b + sample4a);
sum += w5 * (sample5d + sample5c + sample5b + sample5a);
sum += w6 * (sample6d + sample6c + sample6b + sample6a);
return sum * weight_sum_inv;
}
float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 7x7 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 7x7 Gaussian blurred mipmapped texture lookup composed of
// 4x4 carefully selected bilinear samples.
// Description:
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
// blur mixes concepts from both. The sample layout is as follows:
// 4a 3a 3b 4b
// 2a 1a 1b 2b
// 2c 1c 1d 2d
// 4c 3c 3d 4d
// The texel layout is as follows. Note that samples 3a/3b, 1a/1b, 1c/1d,
// and 3c/3d share a vertical column of texels, and samples 2a/2c, 1a/1c,
// 1b/1d, and 2b/2d share a horizontal row of texels (all sample1's share
// the center texel):
// 4a4 4a3 3a4 3ab3 3b4 4b3 4b4
// 4a2 4a1 3a2 3ab1 3b2 4b1 4b2
// 2a4 2a3 1a4 1ab3 1b4 2b3 2b4
// 2ac2 2ac1 1ac2 1* 1bd2 2bd1 2bd2
// 2c4 2c3 1c4 1cd3 1d4 2d3 2d4
// 4c2 4c1 3c2 3cd1 3d2 4d1 4d2
// 4c4 4c3 3c4 3cd3 3d4 4d3 4d4
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float w3off = exp(-9.0 * denom_inv);
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
const float texel2to3ratio = w3off/(w2off + w3off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including axis-aligned:
const float2 sample1d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
const float2 sample2d_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample3d_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4d_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1abcd = 1.0;
const float w1bd2_1cd3 = exp(-LENGTH_SQ(float2(1.0, 0.0)) * denom_inv);
const float w2bd1_3cd1 = exp(-LENGTH_SQ(float2(2.0, 0.0)) * denom_inv);
const float w2bd2_3cd2 = exp(-LENGTH_SQ(float2(3.0, 0.0)) * denom_inv);
const float w1d4 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w2d3_3d2 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w2d4_3d4 = exp(-LENGTH_SQ(float2(3.0, 1.0)) * denom_inv);
const float w4d1 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
const float w4d2_4d3 = exp(-LENGTH_SQ(float2(3.0, 2.0)) * denom_inv);
const float w4d4 = exp(-LENGTH_SQ(float2(3.0, 3.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights.
// Split weights for shared texels between samples sharing them:
const float w1 = w1abcd * 0.25 + w1bd2_1cd3 + w1d4;
const float w2_3 = (w2bd1_3cd1 + w2bd2_3cd2) * 0.5 + w2d3_3d2 + w2d4_3d4;
const float w4 = w4d1 + 2.0 * w4d2_4d3 + w4d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv =
1.0/(4.0 * (w1 + 2.0 * w2_3 + w4));
// LOAD TEXTURE SAMPLES:
// Load all 16 samples using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample1a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample1d_texel_offset).rgb;
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
const float3 sample3a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample3d_texel_offset).rgb;
const float3 sample4a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample4d_texel_offset).rgb;
const float3 sample1b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample1d_texel_offset).rgb;
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
const float3 sample3b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample3d_texel_offset).rgb;
const float3 sample4b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample4d_texel_offset).rgb;
const float3 sample1c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample1d_texel_offset).rgb;
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
const float3 sample3c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample3d_texel_offset).rgb;
const float3 sample4c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample4d_texel_offset).rgb;
const float3 sample1d = tex2D_linearize(tex, tex_uv + dxdy * sample1d_texel_offset).rgb;
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
const float3 sample3d = tex2D_linearize(tex, tex_uv + dxdy * sample3d_texel_offset).rgb;
const float3 sample4d = tex2D_linearize(tex, tex_uv + dxdy * sample4d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = float3(0.0,0.0,0.0);
sum += w1 * (sample1a + sample1b + sample1c + sample1d);
sum += w2_3 * (sample2a + sample2b + sample2c + sample2d);
sum += w2_3 * (sample3a + sample3b + sample3c + sample3d);
sum += w4 * (sample4a + sample4b + sample4c + sample4d);
return sum * weight_sum_inv;
}
float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 5x5 blur with 3x3 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 5x5 Gaussian blurred mipmapped texture lookup composed of
// 3x3 carefully selected bilinear samples.
// Description:
// First see the description for tex2Dblur9x9(). This blur uses the same
// concept and sample/texel locations except on a smaller scale. Samples:
// 2a 1U 2b
// 1L 0C 1R
// 2c 1D 2d
// Texels:
// 2a4 2a3 1U2 2b3 2b4
// 2a2 2a1 1U1 2b1 2b2
// 1L2 1L1 0C1 1R1 1R2
// 2c2 2c1 1D1 2d1 2d2
// 2c4 2c3 1D2 2d3 2d4
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w1off = exp(-1.0 * denom_inv);
const float w2off = exp(-4.0 * denom_inv);
const float texel1to2ratio = w2off/(w1off + w2off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including x-axis-aligned:
const float2 sample1R_texel_offset = float2(1.0, 0.0) + float2(texel1to2ratio, 0.0);
const float2 sample2d_texel_offset = float2(1.0, 1.0) + float2(texel1to2ratio, texel1to2ratio);
// CALCULATE KERNEL WEIGHTS FOR ALL SAMPLES:
// Statically compute Gaussian texel weights for the bottom-right quadrant.
// Read underscores as "and."
const float w1R1 = w1off;
const float w1R2 = w2off;
const float w2d1 = exp(-LENGTH_SQ(float2(1.0, 1.0)) * denom_inv);
const float w2d2_3 = exp(-LENGTH_SQ(float2(2.0, 1.0)) * denom_inv);
const float w2d4 = exp(-LENGTH_SQ(float2(2.0, 2.0)) * denom_inv);
// Statically add texel weights in each sample to get sample weights:
const float w0 = 1.0;
const float w1 = w1R1 + w1R2;
const float w2 = w2d1 + 2.0 * w2d2_3 + w2d4;
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0 + 4.0 * (w1 + w2));
// LOAD TEXTURE SAMPLES:
// Load all 9 samples (1 nearest, 4 linear, 4 bilinear) using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample0C = tex2D_linearize(tex, tex_uv).rgb;
const float3 sample1R = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset).rgb;
const float3 sample1D = tex2D_linearize(tex, tex_uv + dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample1L = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset).rgb;
const float3 sample1U = tex2D_linearize(tex, tex_uv - dxdy * sample1R_texel_offset.yx).rgb;
const float3 sample2d = tex2D_linearize(tex, tex_uv + dxdy * sample2d_texel_offset).rgb;
const float3 sample2c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample2d_texel_offset).rgb;
const float3 sample2b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample2d_texel_offset).rgb;
const float3 sample2a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample2d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Statically normalize weights (so total = 1.0), and sum weighted samples.
float3 sum = w0 * sample0C;
sum += w1 * (sample1R + sample1D + sample1L + sample1U);
sum += w2 * (sample2a + sample2b + sample2c + sample2d);
return sum * weight_sum_inv;
}
float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// Perform a 1-pass 3x3 blur with 5x5 bilinear samples.
// Requires: Same as tex2Dblur9()
// Returns: A 3x3 Gaussian blurred mipmapped texture lookup composed of
// 2x2 carefully selected bilinear samples.
// Description:
// First see the descriptions for tex2Dblur9x9() and tex2Dblur7(). This
// blur mixes concepts from both. The sample layout is as follows:
// 0a 0b
// 0c 0d
// The texel layout is as follows. Note that samples 0a/0b and 0c/0d share
// a vertical column of texels, and samples 0a/0c and 0b/0d share a
// horizontal row of texels (all samples share the center texel):
// 0a3 0ab2 0b3
// 0ac1 0*0 0bd1
// 0c3 0cd2 0d3
// COMPUTE TEXTURE COORDS:
// Statically compute bilinear sampling offsets (details in tex2Dblur9x9).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w1off = exp(-1.0 * denom_inv);
const float texel0to1ratio = w1off/(w0off * 0.5 + w1off);
// Statically compute texel offsets from the fragment center to each
// bilinear sample in the bottom-right quadrant, including axis-aligned:
const float2 sample0d_texel_offset = float2(texel0to1ratio, texel0to1ratio);
// LOAD TEXTURE SAMPLES:
// Load all 4 samples using symmetry:
const float2 mirror_x = float2(-1.0, 1.0);
const float2 mirror_y = float2(1.0, -1.0);
const float2 mirror_xy = float2(-1.0, -1.0);
const float2 dxdy_mirror_x = dxdy * mirror_x;
const float2 dxdy_mirror_y = dxdy * mirror_y;
const float2 dxdy_mirror_xy = dxdy * mirror_xy;
const float3 sample0a = tex2D_linearize(tex, tex_uv + dxdy_mirror_xy * sample0d_texel_offset).rgb;
const float3 sample0b = tex2D_linearize(tex, tex_uv + dxdy_mirror_y * sample0d_texel_offset).rgb;
const float3 sample0c = tex2D_linearize(tex, tex_uv + dxdy_mirror_x * sample0d_texel_offset).rgb;
const float3 sample0d = tex2D_linearize(tex, tex_uv + dxdy * sample0d_texel_offset).rgb;
// SUM WEIGHTED SAMPLES:
// Weights for all samples are the same, so just average them:
return 0.25 * (sample0a + sample0b + sample0c + sample0d);
}
////////////////// LINEAR ONE-PASS BLURS WITH SHARED SAMPLES /////////////////
float3 tex2Dblur12x12shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: 1.) Same as tex2Dblur9()
// 2.) ddx() and ddy() are present in the current Cg profile.
// 3.) The GPU driver is using fine/high-quality derivatives.
// 4.) quad_vector *correctly* describes the current fragment's
// location in its pixel quad, by the conventions noted in
// get_quad_vector[_naive].
// 5.) tex_uv.w = log2(video_size/output_size).y
// 6.) tex2Dlod() is present in the current Cg profile.
// Optional: Tune artifacts vs. excessive blurriness with the global
// float error_blurring.
// Returns: A blurred texture lookup using a "virtual" 12x12 Gaussian
// blur (a 6x6 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// Perform a 1-pass blur with shared texture lookups across a pixel quad.
// We'll get neighboring samples with high-quality ddx/ddy derivatives, as
// in GPU Pro 2, Chapter VI.2, "Shader Amortization using Pixel Quad
// Message Passing" by Eric Penner.
//
// Our "virtual" 12x12 blur will be comprised of ((6 - 1)^2)/4 + 3 = 12
// bilinear samples, where bilinear sampling positions are computed from
// the relative Gaussian weights of the 4 surrounding texels. The catch is
// that the appropriate texel weights and sample coords differ for each
// fragment, but we're reusing most of the same samples across a quad of
// destination fragments. (We do use unique coords for the four nearest
// samples at each fragment.) Mixing bilinear filtering and sample-sharing
// therefore introduces some error into the weights, and this can get nasty
// when the source image is small or high-frequency. Computing bilinear
// ratios based on weights at the sample field center results in sharpening
// and ringing artifacts, but we can move samples closer to halfway between
// texels to try blurring away the error (which can move features around by
// a texel or so). Tune this with the global float "error_blurring".
//
// The pixel quad's sample field covers 12x12 texels, accessed through 6x6
// bilinear (2x2 texel) taps. Each fragment depends on a window of 10x10
// texels (5x5 bilinear taps), and each fragment is responsible for loading
// a 6x6 texel quadrant as a 3x3 block of bilinear taps, plus 3 more taps
// to use unique bilinear coords for sample0* for each fragment. This
// diagram illustrates the relative locations of bilinear samples 1-9 for
// each quadrant a, b, c, d (note samples will not be equally spaced):
// 8a 7a 6a 6b 7b 8b
// 5a 4a 3a 3b 4b 5b
// 2a 1a 0a 0b 1b 2b
// 2c 1c 0c 0d 1d 2d
// 5c 4c 3c 3d 4d 5d
// 8c 7c 6c 6d 7d 8d
// The following diagram illustrates the underlying equally spaced texels,
// named after the sample that accesses them and subnamed by their location
// within their 2x2 texel block:
// 8a3 8a2 7a3 7a2 6a3 6a2 6b2 6b3 7b2 7b3 8b2 8b3
// 8a1 8a0 7a1 7a0 6a1 6a0 6b0 6b1 7b0 7b1 8b0 8b1
// 5a3 5a2 4a3 4a2 3a3 3a2 3b2 3b3 4b2 4b3 5b2 5b3
// 5a1 5a0 4a1 4a0 3a1 3a0 3b0 3b1 4b0 4b1 5b0 5b1
// 2a3 2a2 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3 2b2 2b3
// 2a1 2a0 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1 2b0 2b1
// 2c1 2c0 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1 2d0 2d1
// 2c3 2c2 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3 2d2 2d3
// 5c1 5c0 4c1 4c0 3c1 3c0 3d0 3d1 4d0 4d1 5d0 5d1
// 5c3 5c2 4c3 4c2 3c3 3c2 3d2 3d3 4d2 4d3 5d2 5d3
// 8c1 8c0 7c1 7c0 6c1 6c0 6d0 6d1 7d0 7d1 8d0 8d1
// 8c3 8c2 7c3 7c2 6c3 6c2 6d2 6d3 7d2 7d3 8d2 8d3
// With this symmetric arrangement, we don't have to know which absolute
// quadrant a sample lies in to assign kernel weights; it's enough to know
// the sample number and the relative quadrant of the sample (relative to
// the current quadrant):
// {current, adjacent x, adjacent y, diagonal}
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute sampling offsets within each 2x2 texel block, based
// on appropriate 1D Gaussian sampling ratio between texels [0, 1], [2, 3],
// and [4, 5] away from the fragment, and reuse them independently for both
// dimensions. Use the sample field center as the estimated destination,
// but nudge the result closer to halfway between texels to blur error.
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// based on the sum of their 4 underlying texel weights. Assume a same-
// resolution blur, so each symmetrically named sample weight will compute
// the same at every fragment in the pixel quad: We can therefore compute
// texel weights based only on the bottom-right quadrant (fragment at 0d0).
// Too avoid too much boilerplate code, use a macro to get all 4 texel
// weights for a bilinear sample based on the offset of its top-left texel:
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
const float w8diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -6.0);
const float w7diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -6.0);
const float w6diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -6.0);
const float w6adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -6.0);
const float w7adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -6.0);
const float w8adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -6.0);
const float w5diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -4.0);
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-6.0, -2.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 0.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
const float w5adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 2.0);
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
const float w8adjx = GET_TEXEL_QUAD_WEIGHTS(-6.0, 4.0);
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Statically pack weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
const float4 w5 = float4(w5curr, w5adjx, w5adjy, w5diag);
const float4 w6 = float4(w6curr, w6adjx, w6adjy, w6diag);
const float4 w7 = float4(w7curr, w7adjx, w7adjy, w7diag);
const float4 w8 = float4(w8curr, w8adjx, w8adjy, w8diag);
// Get the weight sum inverse (normalization factor):
const float4 weight_sum4 = w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8;
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
const float weight_sum = weight_sum2.x + weight_sum2.y;
const float weight_sum_inv = 1.0/(weight_sum);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
float3 sample4adjx, sample4adjy, sample4diag;
float3 sample5adjx, sample5adjy, sample5diag;
float3 sample6adjx, sample6adjy, sample6diag;
float3 sample7adjx, sample7adjy, sample7diag;
float3 sample8adjx, sample8adjy, sample8diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
quad_gather(quad_vector, sample8curr, sample8adjx, sample8adjy, sample8diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
sum += mul(w5, float4x3(sample5curr, sample5adjx, sample5adjy, sample5diag));
sum += mul(w6, float4x3(sample6curr, sample6adjx, sample6adjy, sample6diag));
sum += mul(w7, float4x3(sample7curr, sample7adjx, sample7adjy, sample7diag));
sum += mul(w8, float4x3(sample8curr, sample8adjx, sample8adjy, sample8diag));
return sum * weight_sum_inv;
}
float3 tex2Dblur10x10shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 10x10 Gaussian
// blur (a 5x5 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur12x12shared(). This
// function shares the same concept and sample placement, but each fragment
// only uses 25 of the 36 samples taken across the pixel quad (to cover a
// 5x5 sample area, or 10x10 texel area), and it uses a lower standard
// deviation to compensate. Thanks to symmetry, the 11 omitted samples
// are always the "same:"
// 8adjx, 2adjx, 5adjx,
// 6adjy, 7adjy, 8adjy,
// 2diag, 5diag, 6diag, 7diag, 8diag
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float w4_5off = exp(-(4.5*4.5) * denom_inv);
const float w5_5off = exp(-(5.5*5.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
const float texel4to5ratio = lerp(w5_5off/(w4_5off + w5_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(4.0, 0.0) + float2(texel4to5ratio, texel0to1ratio);
const float2 sample3_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample4_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
const float2 sample5_texel_offset = float2(4.0, 2.0) + float2(texel4to5ratio, texel2to3ratio);
const float2 sample6_texel_offset = float2(0.0, 4.0) + float2(texel0to1ratio, texel4to5ratio);
const float2 sample7_texel_offset = float2(2.0, 4.0) + float2(texel2to3ratio, texel4to5ratio);
const float2 sample8_texel_offset = float2(4.0, 4.0) + float2(texel4to5ratio, texel4to5ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
// We only need 25 of the 36 sample weights. Skip the following weights:
// 8adjx, 2adjx, 5adjx,
// 6adjy, 7adjy, 8adjy,
// 2diag, 5diag, 6diag, 7diag, 8diag
const float w4diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w4adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w5adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -4.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(4.0, -2.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 0.0);
const float w4adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w4curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
const float w5curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 2.0);
const float w7adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 4.0);
const float w6adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 4.0);
const float w6curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 4.0);
const float w7curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 4.0);
const float w8curr = GET_TEXEL_QUAD_WEIGHTS(4.0, 4.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
w4curr + w5curr + w6curr + w7curr + w8curr +
w0adjx + w1adjx + w3adjx + w4adjx + w6adjx + w7adjx +
w0adjy + w1adjy + w2adjy + w3adjy + w4adjy + w5adjy +
w0diag + w1diag + w3diag + w4diag);
// Statically pack most weights for runtime. Note the mixed packing:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
const float4 w4 = float4(w4curr, w4adjx, w4adjy, w4diag);
const float4 w2and5 = float4(w2curr, w2adjy, w5curr, w5adjy);
const float4 w6and7 = float4(w6curr, w6adjx, w7curr, w7adjx);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
const float3 sample4curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample4_texel_offset)).rgb;
const float3 sample5curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample5_texel_offset)).rgb;
const float3 sample6curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample6_texel_offset)).rgb;
const float3 sample7curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample7_texel_offset)).rgb;
const float3 sample8curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample8_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad in order of need:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
float3 sample4adjx, sample4adjy, sample4diag;
float3 sample5adjx, sample5adjy, sample5diag;
float3 sample6adjx, sample6adjy, sample6diag;
float3 sample7adjx, sample7adjy, sample7diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
quad_gather(quad_vector, sample4curr, sample4adjx, sample4adjy, sample4diag);
quad_gather(quad_vector, sample5curr, sample5adjx, sample5adjy, sample5diag);
quad_gather(quad_vector, sample6curr, sample6adjx, sample6adjy, sample6diag);
quad_gather(quad_vector, sample7curr, sample7adjx, sample7adjy, sample7diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result. First do the simple ones:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
sum += mul(w4, float4x3(sample4curr, sample4adjx, sample4adjy, sample4diag));
// Now do the mixed-sample ones:
sum += mul(w2and5, float4x3(sample2curr, sample2adjy, sample5curr, sample5adjy));
sum += mul(w6and7, float4x3(sample6curr, sample6adjx, sample7curr, sample7adjx));
sum += w8curr * sample8curr;
// Normalize the sum (so the weights add to 1.0) and return:
return sum * weight_sum_inv;
}
float3 tex2Dblur8x8shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 8x8 Gaussian
// blur (a 4x4 blur of carefully selected bilinear samples)
// of the given mip level. There will be subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur12x12shared(). This function
// shares the same concept and a similar sample placement, except each
// quadrant contains 4x4 texels and 2x2 samples instead of 6x6 and 3x3
// respectively. There could be a total of 16 samples, 4 of which each
// fragment is responsible for, but each fragment loads 0a/0b/0c/0d with
// its own offset to reduce shared sample artifacts, bringing the sample
// count for each fragment to 7. Sample placement:
// 3a 2a 2b 3b
// 1a 0a 0b 1b
// 1c 0c 0d 1d
// 3c 2c 2d 3d
// Texel placement:
// 3a3 3a2 2a3 2a2 2b2 2b3 3b2 3b3
// 3a1 3a0 2a1 2a0 2b0 2b1 3b0 3b1
// 1a3 1a2 0a3 0a2 0b2 0b3 1b2 1b3
// 1a1 1a0 0a1 0a0 0b0 0b1 1b0 1b1
// 1c1 1c0 0c1 0c0 0d0 0d1 1d0 1d1
// 1c3 1c2 0c3 0c2 0d2 0d3 1d2 1d3
// 3c1 3c0 2c1 2c0 2d0 2d1 3d0 4d1
// 3c3 3c2 2c3 2c2 2d2 2d3 3d2 4d3
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
const float w3diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -4.0);
const float w2diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -4.0);
const float w2adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -4.0);
const float w3adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -4.0);
const float w1diag = GET_TEXEL_QUAD_WEIGHTS(-4.0, -2.0);
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w1adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 0.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w3adjx = GET_TEXEL_QUAD_WEIGHTS(-4.0, 2.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Statically pack weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
const float4 w1 = float4(w1curr, w1adjx, w1adjy, w1diag);
const float4 w2 = float4(w2curr, w2adjx, w2adjy, w2diag);
const float4 w3 = float4(w3curr, w3adjx, w3adjy, w3diag);
// Get the weight sum inverse (normalization factor):
const float4 weight_sum4 = w0 + w1 + w2 + w3;
const float2 weight_sum2 = weight_sum4.xy + weight_sum4.zw;
const float weight_sum = weight_sum2.x + weight_sum2.y;
const float weight_sum_inv = 1.0/(weight_sum);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
float3 sample3adjx, sample3adjy, sample3diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
quad_gather(quad_vector, sample3curr, sample3adjx, sample3adjy, sample3diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += mul(w1, float4x3(sample1curr, sample1adjx, sample1adjy, sample1diag));
sum += mul(w2, float4x3(sample2curr, sample2adjx, sample2adjy, sample2diag));
sum += mul(w3, float4x3(sample3curr, sample3adjx, sample3adjy, sample3diag));
return sum * weight_sum_inv;
}
float3 tex2Dblur6x6shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector,
const float sigma)
{
// Perform a 1-pass mipmapped blur with shared samples across a pixel quad.
// Requires: Same as tex2Dblur12x12shared()
// Returns: A blurred texture lookup using a "virtual" 6x6 Gaussian
// blur (a 3x3 blur of carefully selected bilinear samples)
// of the given mip level. There will be some inaccuracies,subtle inaccuracies,
// especially for small or high-frequency detailed sources.
// Description:
// First see the description for tex2Dblur8x8shared(). This
// function shares the same concept and sample placement, but each fragment
// only uses 9 of the 16 samples taken across the pixel quad (to cover a
// 3x3 sample area, or 6x6 texel area), and it uses a lower standard
// deviation to compensate. Thanks to symmetry, the 7 omitted samples
// are always the "same:"
// 1adjx, 3adjx
// 2adjy, 3adjy
// 1diag, 2diag, 3diag
// COMPUTE COORDS FOR TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Statically compute bilinear sampling offsets (details in tex2Dblur12x12shared).
const float denom_inv = 0.5/(sigma*sigma);
const float w0off = 1.0;
const float w0_5off = exp(-(0.5*0.5) * denom_inv);
const float w1off = exp(-(1.0*1.0) * denom_inv);
const float w1_5off = exp(-(1.5*1.5) * denom_inv);
const float w2off = exp(-(2.0*2.0) * denom_inv);
const float w2_5off = exp(-(2.5*2.5) * denom_inv);
const float w3_5off = exp(-(3.5*3.5) * denom_inv);
const float texel0to1ratio = lerp(w1_5off/(w0_5off + w1_5off), 0.5, error_blurring);
const float texel2to3ratio = lerp(w3_5off/(w2_5off + w3_5off), 0.5, error_blurring);
// We don't share sample0*, so use the nearest destination fragment:
const float texel0to1ratio_nearest = w1off/(w0off + w1off);
const float texel1to2ratio_nearest = w2off/(w1off + w2off);
// Statically compute texel offsets from the bottom-right fragment to each
// bilinear sample in the bottom-right quadrant:
const float2 sample0curr_texel_offset = float2(0.0, 0.0) + float2(texel0to1ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjx_texel_offset = float2(-1.0, 0.0) + float2(-texel1to2ratio_nearest, texel0to1ratio_nearest);
const float2 sample0adjy_texel_offset = float2(0.0, -1.0) + float2(texel0to1ratio_nearest, -texel1to2ratio_nearest);
const float2 sample0diag_texel_offset = float2(-1.0, -1.0) + float2(-texel1to2ratio_nearest, -texel1to2ratio_nearest);
const float2 sample1_texel_offset = float2(2.0, 0.0) + float2(texel2to3ratio, texel0to1ratio);
const float2 sample2_texel_offset = float2(0.0, 2.0) + float2(texel0to1ratio, texel2to3ratio);
const float2 sample3_texel_offset = float2(2.0, 2.0) + float2(texel2to3ratio, texel2to3ratio);
// CALCULATE KERNEL WEIGHTS:
// Statically compute bilinear sample weights at each destination fragment
// from the sum of their 4 texel weights (details in tex2Dblur12x12shared).
#define GET_TEXEL_QUAD_WEIGHTS(xoff, yoff) \
(exp(-LENGTH_SQ(float2(xoff, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff, yoff + 1.0)) * denom_inv) + \
exp(-LENGTH_SQ(float2(xoff + 1.0, yoff + 1.0)) * denom_inv))
// We only need 9 of the 16 sample weights. Skip the following weights:
// 1adjx, 3adjx
// 2adjy, 3adjy
// 1diag, 2diag, 3diag
const float w0diag = GET_TEXEL_QUAD_WEIGHTS(-2.0, -2.0);
const float w0adjy = GET_TEXEL_QUAD_WEIGHTS(0.0, -2.0);
const float w1adjy = GET_TEXEL_QUAD_WEIGHTS(2.0, -2.0);
const float w0adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 0.0);
const float w0curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 0.0);
const float w1curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 0.0);
const float w2adjx = GET_TEXEL_QUAD_WEIGHTS(-2.0, 2.0);
const float w2curr = GET_TEXEL_QUAD_WEIGHTS(0.0, 2.0);
const float w3curr = GET_TEXEL_QUAD_WEIGHTS(2.0, 2.0);
#undef GET_TEXEL_QUAD_WEIGHTS
// Get the weight sum inverse (normalization factor):
const float weight_sum_inv = 1.0/(w0curr + w1curr + w2curr + w3curr +
w0adjx + w2adjx + w0adjy + w1adjy + w0diag);
// Statically pack some weights for runtime:
const float4 w0 = float4(w0curr, w0adjx, w0adjy, w0diag);
// LOAD TEXTURE SAMPLES THIS FRAGMENT IS RESPONSIBLE FOR:
// Get a uv vector from texel 0q0 of this quadrant to texel 0q3:
const float2 dxdy_curr = dxdy * quad_vector.xy;
// Load bilinear samples for the current quadrant (for this fragment):
const float3 sample0curr = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0curr_texel_offset).rgb;
const float3 sample0adjx = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjx_texel_offset).rgb;
const float3 sample0adjy = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0adjy_texel_offset).rgb;
const float3 sample0diag = tex2D_linearize(tex, tex_uv.xy + dxdy_curr * sample0diag_texel_offset).rgb;
const float3 sample1curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample1_texel_offset)).rgb;
const float3 sample2curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample2_texel_offset)).rgb;
const float3 sample3curr = tex2Dlod_linearize(tex, tex_uv + uv2_to_uv4(dxdy_curr * sample3_texel_offset)).rgb;
// GATHER NEIGHBORING SAMPLES AND SUM WEIGHTED SAMPLES:
// Fetch the samples from other fragments in the 2x2 quad:
float3 sample1adjx, sample1adjy, sample1diag;
float3 sample2adjx, sample2adjy, sample2diag;
quad_gather(quad_vector, sample1curr, sample1adjx, sample1adjy, sample1diag);
quad_gather(quad_vector, sample2curr, sample2adjx, sample2adjy, sample2diag);
// Statically normalize weights (so total = 1.0), and sum weighted samples.
// Fill each row of a matrix with an rgb sample and pre-multiply by the
// weights to obtain a weighted result for sample1*, and handle the rest
// of the weights more directly/verbosely:
float3 sum = float3(0.0,0.0,0.0);
sum += mul(w0, float4x3(sample0curr, sample0adjx, sample0adjy, sample0diag));
sum += w1curr * sample1curr + w1adjy * sample1adjy + w2curr * sample2curr +
w2adjx * sample2adjx + w3curr * sample3curr;
return sum * weight_sum_inv;
}
/////////////////////// MAX OPTIMAL SIGMA BLUR WRAPPERS //////////////////////
// The following blurs are static wrappers around the dynamic blurs above.
// HOPEFULLY, the compiler will be smart enough to do constant-folding.
// Resizable separable blurs:
inline float3 tex2Dblur11resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur11resize(tex, tex_uv, dxdy, blur11_std_dev);
}
inline float3 tex2Dblur9resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9resize(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7resize(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5resize(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3resize(tex, tex_uv, dxdy, blur3_std_dev);
}
// Fast separable blurs:
inline float3 tex2Dblur11fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur11fast(tex, tex_uv, dxdy, blur11_std_dev);
}
inline float3 tex2Dblur9fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9fast(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7fast(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5fast(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3fast(tex, tex_uv, dxdy, blur3_std_dev);
}
// Huge, "fast" separable blurs:
inline float3 tex2Dblur43fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur43fast(tex, tex_uv, dxdy, blur43_std_dev);
}
inline float3 tex2Dblur31fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur31fast(tex, tex_uv, dxdy, blur31_std_dev);
}
inline float3 tex2Dblur25fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur25fast(tex, tex_uv, dxdy, blur25_std_dev);
}
inline float3 tex2Dblur17fast(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur17fast(tex, tex_uv, dxdy, blur17_std_dev);
}
// Resizable one-pass blurs:
inline float3 tex2Dblur3x3resize(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3x3resize(tex, tex_uv, dxdy, blur3_std_dev);
}
// "Fast" one-pass blurs:
inline float3 tex2Dblur9x9(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur9x9(tex, tex_uv, dxdy, blur9_std_dev);
}
inline float3 tex2Dblur7x7(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur7x7(tex, tex_uv, dxdy, blur7_std_dev);
}
inline float3 tex2Dblur5x5(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur5x5(tex, tex_uv, dxdy, blur5_std_dev);
}
inline float3 tex2Dblur3x3(const sampler2D tex, const float2 tex_uv,
const float2 dxdy)
{
return tex2Dblur3x3(tex, tex_uv, dxdy, blur3_std_dev);
}
// "Fast" shared-sample one-pass blurs:
inline float3 tex2Dblur12x12shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur12x12shared(tex, tex_uv, dxdy, quad_vector, blur12_std_dev);
}
inline float3 tex2Dblur10x10shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur10x10shared(tex, tex_uv, dxdy, quad_vector, blur10_std_dev);
}
inline float3 tex2Dblur8x8shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur8x8shared(tex, tex_uv, dxdy, quad_vector, blur8_std_dev);
}
inline float3 tex2Dblur6x6shared(const sampler2D tex,
const float4 tex_uv, const float2 dxdy, const float4 quad_vector)
{
return tex2Dblur6x6shared(tex, tex_uv, dxdy, quad_vector, blur6_std_dev);
}
#endif // BLUR_FUNCTIONS_H
//////////////////////////// END BLUR-FUNCTIONS ///////////////////////////
/////////////////////////////// BLOOM CONSTANTS //////////////////////////////
// Compute constants with manual inlines of the functions below:
static const float bloom_diff_thresh = 1.0/256.0;
/////////////////////////////////// HELPERS //////////////////////////////////
inline float get_min_sigma_to_blur_triad(const float triad_size,
const float thresh)
{
// Requires: 1.) triad_size is the final phosphor triad size in pixels
// 2.) thresh is the max desired pixel difference in the
// blurred triad (e.g. 1.0/256.0).
// Returns: Return the minimum sigma that will fully blur a phosphor
// triad on the screen to an even color, within thresh.
// This closed-form function was found by curve-fitting data.
// Estimate: max error = ~0.086036, mean sq. error = ~0.0013387:
return -0.05168 + 0.6113*triad_size -
1.122*triad_size*sqrt(0.000416 + thresh);
// Estimate: max error = ~0.16486, mean sq. error = ~0.0041041:
//return 0.5985*triad_size - triad_size*sqrt(thresh)
}
inline float get_absolute_scale_blur_sigma(const float thresh)
{
// Requires: 1.) min_expected_triads must be a global float. The number
// of horizontal phosphor triads in the final image must be
// >= min_allowed_viewport_triads.x for realistic results.
// 2.) bloom_approx_scale_x must be a global float equal to the
// absolute horizontal scale of BLOOM_APPROX.
// 3.) bloom_approx_scale_x/min_allowed_viewport_triads.x
// should be <= 1.1658025090 to keep the final result <
// 0.62666015625 (the largest sigma ensuring the largest
// unused texel weight stays < 1.0/256.0 for a 3x3 blur).
// 4.) thresh is the max desired pixel difference in the
// blurred triad (e.g. 1.0/256.0).
// Returns: Return the minimum Gaussian sigma that will blur the pass
// output as much as it would have taken to blur away
// bloom_approx_scale_x horizontal phosphor triads.
// Description:
// BLOOM_APPROX should look like a downscaled phosphor blur. Ideally, we'd
// use the same blur sigma as the actual phosphor bloom and scale it down
// to the current resolution with (bloom_approx_scale_x/viewport_size_x), but
// we don't know the viewport size in this pass. Instead, we'll blur as
// much as it would take to blur away min_allowed_viewport_triads.x. This
// will blur "more than necessary" if the user actually uses more triads,
// but that's not terrible either, because blurring a constant fraction of
// the viewport may better resemble a true optical bloom anyway (since the
// viewport will generally be about the same fraction of each player's
// field of view, regardless of screen size and resolution).
// Assume an extremely large viewport size for asymptotic results.
return bloom_approx_scale_x/max_viewport_size_x *
get_min_sigma_to_blur_triad(
max_viewport_size_x/min_allowed_viewport_triads.x, thresh);
}
inline float get_center_weight(const float sigma)
{
// Given a Gaussian blur sigma, get the blur weight for the center texel.
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
return get_fast_gaussian_weight_sum_inv(sigma);
#else
const float denom_inv = 0.5/(sigma*sigma);
const float w0 = 1.0;
const float w1 = exp(-1.0 * denom_inv);
const float w2 = exp(-4.0 * denom_inv);
const float w3 = exp(-9.0 * denom_inv);
const float w4 = exp(-16.0 * denom_inv);
const float w5 = exp(-25.0 * denom_inv);
const float w6 = exp(-36.0 * denom_inv);
const float w7 = exp(-49.0 * denom_inv);
const float w8 = exp(-64.0 * denom_inv);
const float w9 = exp(-81.0 * denom_inv);
const float w10 = exp(-100.0 * denom_inv);
const float w11 = exp(-121.0 * denom_inv);
const float w12 = exp(-144.0 * denom_inv);
const float w13 = exp(-169.0 * denom_inv);
const float w14 = exp(-196.0 * denom_inv);
const float w15 = exp(-225.0 * denom_inv);
const float w16 = exp(-256.0 * denom_inv);
const float w17 = exp(-289.0 * denom_inv);
const float w18 = exp(-324.0 * denom_inv);
const float w19 = exp(-361.0 * denom_inv);
const float w20 = exp(-400.0 * denom_inv);
const float w21 = exp(-441.0 * denom_inv);
// Note: If the implementation uses a smaller blur than the max allowed,
// the worst case scenario is that the center weight will be overestimated,
// so we'll put a bit more energy into the brightpass...no huge deal.
// Then again, if the implementation uses a larger blur than the max
// "allowed" because of dynamic branching, the center weight could be
// underestimated, which is more of a problem...consider always using
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
// 43x blur:
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 +
w11 + w12 + w13 + w14 + w15 + w16 + w17 + w18 + w19 + w20 + w21));
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
// 31x blur:
const float weight_sum_inv = 1.0 /
(w0 + 2.0 * (w1 + w2 + w3 + w4 + w5 + w6 + w7 +
w8 + w9 + w10 + w11 + w12 + w13 + w14 + w15));
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
// 25x blur:
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8 + w9 + w10 + w11 + w12));
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
// 17x blur:
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (
w1 + w2 + w3 + w4 + w5 + w6 + w7 + w8));
#else
// 9x blur:
const float weight_sum_inv = 1.0 / (w0 + 2.0 * (w1 + w2 + w3 + w4));
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
const float center_weight = weight_sum_inv * weight_sum_inv;
return center_weight;
#endif
}
inline float3 tex2DblurNfast(const sampler2D texture, const float2 tex_uv,
const float2 dxdy, const float sigma)
{
// If sigma is static, we can safely branch and use the smallest blur
// that's big enough. Ignore #define hints, because we'll only use a
// large blur if we actually need it, and the branches cost nothing.
#ifndef RUNTIME_PHOSPHOR_BLOOM_SIGMA
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
#else
// It's still worth branching if the profile supports dynamic branches:
// It's much faster than using a hugely excessive blur, but each branch
// eats ~1% FPS.
#ifdef DRIVERS_ALLOW_DYNAMIC_BRANCHES
#define PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
#endif
#endif
// Failed optimization notes:
// I originally created a same-size mipmapped 5-tap separable blur10 that
// could handle any sigma by reaching into lower mip levels. It was
// as fast as blur25fast for runtime sigmas and a tad faster than
// blur31fast for static sigmas, but mipmapping two viewport-size passes
// ate 10% of FPS across all codepaths, so it wasn't worth it.
#ifdef PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
if(sigma <= blur9_std_dev)
{
return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
}
else if(sigma <= blur17_std_dev)
{
return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
}
else if(sigma <= blur25_std_dev)
{
return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
}
else if(sigma <= blur31_std_dev)
{
return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
}
else
{
return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
}
#else
// If we can't afford to branch, we can only guess at what blur
// size we need. Therefore, use the largest blur allowed.
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
return tex2Dblur43fast(texture, tex_uv, dxdy, sigma);
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
return tex2Dblur31fast(texture, tex_uv, dxdy, sigma);
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
return tex2Dblur25fast(texture, tex_uv, dxdy, sigma);
#else
#ifdef PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
return tex2Dblur17fast(texture, tex_uv, dxdy, sigma);
#else
return tex2Dblur9fast(texture, tex_uv, dxdy, sigma);
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_3_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_6_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_9_PIXELS
#endif // PHOSPHOR_BLOOM_TRIADS_LARGER_THAN_12_PIXELS
#endif // PHOSPHOR_BLOOM_BRANCH_FOR_BLUR_SIZE
}
inline float get_bloom_approx_sigma(const float output_size_x_runtime,
const float estimated_viewport_size_x)
{
// Requires: 1.) output_size_x_runtime == BLOOM_APPROX.output_size.x.
// This is included for dynamic codepaths just in case the
// following two globals are incorrect:
// 2.) bloom_approx_size_x_for_skip should == the same
// if PHOSPHOR_BLOOM_FAKE is #defined
// 3.) bloom_approx_size_x should == the same otherwise
// Returns: For gaussian4x4, return a dynamic small bloom sigma that's
// as close to optimal as possible given available information.
// For blur3x3, return the a static small bloom sigma that
// works well for typical cases. Otherwise, we're using simple
// bilinear filtering, so use static calculations.
// Assume the default static value. This is a compromise that ensures
// typical triads are blurred, even if unusually large ones aren't.
static const float mask_num_triads_static =
max(min_allowed_viewport_triads.x, mask_num_triads_desired_static);
const float mask_num_triads_from_size =
estimated_viewport_size_x/mask_triad_size_desired;
const float mask_num_triads_runtime = max(min_allowed_viewport_triads.x,
lerp(mask_num_triads_from_size, mask_num_triads_desired,
mask_specify_num_triads));
// Assume an extremely large viewport size for asymptotic results:
static const float max_viewport_size_x = 1080.0*1024.0*(4.0/3.0);
if(bloom_approx_filter > 1.5) // 4x4 true Gaussian resize
{
// Use the runtime num triads and output size:
const float asymptotic_triad_size =
max_viewport_size_x/mask_num_triads_runtime;
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
asymptotic_triad_size, bloom_diff_thresh);
const float bloom_approx_sigma =
asymptotic_sigma * output_size_x_runtime/max_viewport_size_x;
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
// account for the Gaussian scanline sigma from the last pass too.
// The bloom will be too wide horizontally but tall enough vertically.
return length(float2(bloom_approx_sigma, beam_max_sigma));
}
else // 3x3 blur resize (the bilinear resize doesn't need a sigma)
{
// We're either using blur3x3 or bilinear filtering. The biggest
// reason to choose blur3x3 is to avoid dynamic weights, so use a
// static calculation.
#ifdef PHOSPHOR_BLOOM_FAKE
static const float output_size_x_static =
bloom_approx_size_x_for_fake;
#else
static const float output_size_x_static = bloom_approx_size_x;
#endif
static const float asymptotic_triad_size =
max_viewport_size_x/mask_num_triads_static;
const float asymptotic_sigma = get_min_sigma_to_blur_triad(
asymptotic_triad_size, bloom_diff_thresh);
const float bloom_approx_sigma =
asymptotic_sigma * output_size_x_static/max_viewport_size_x;
// The BLOOM_APPROX input has to be ORIG_LINEARIZED to avoid moire, but
// try accounting for the Gaussian scanline sigma from the last pass
// too; use the static default value:
return length(float2(bloom_approx_sigma, beam_max_sigma_static));
}
}
inline float get_final_bloom_sigma(const float bloom_sigma_runtime)
{
// Requires: 1.) bloom_sigma_runtime is a precalculated sigma that's
// optimal for the [known] triad size.
// 2.) Call this from a fragment shader (not a vertex shader),
// or blurring with static sigmas won't be constant-folded.
// Returns: Return the optimistic static sigma if the triad size is
// known at compile time. Otherwise return the optimal runtime
// sigma (10% slower) or an implementation-specific compromise
// between an optimistic or pessimistic static sigma.
// Notes: Call this from the fragment shader, NOT the vertex shader,
// so static sigmas can be constant-folded!
const float bloom_sigma_optimistic = get_min_sigma_to_blur_triad(
mask_triad_size_desired_static, bloom_diff_thresh);
#ifdef RUNTIME_PHOSPHOR_BLOOM_SIGMA
return bloom_sigma_runtime;
#else
// Overblurring looks as bad as underblurring, so assume average-size
// triads, not worst-case huge triads:
return bloom_sigma_optimistic;
#endif
}
#endif // BLOOM_FUNCTIONS_H
//////////////////////////// END BLOOM-FUNCTIONS ///////////////////////////
//#include "../../../../include/gamma-management.h"
/////////////////////////////////// HELPERS //////////////////////////////////
float3 tex2Dresize_gaussian4x4(sampler2D tex, float2 tex_uv, float2 dxdy, float2 tex_size, float2 texture_size_inv, float2 tex_uv_to_pixel_scale, float sigma)
{
// Requires: 1.) All requirements of gamma-management.h must be satisfied!
// 2.) filter_linearN must == "true" in your .cgp preset.
// 3.) mipmap_inputN must == "true" in your .cgp preset if
// output_size << SRC.video_size.
// 4.) dxdy should contain the uv pixel spacing:
// dxdy = max(float2(1.0),
// SRC.video_size/output_size)/SRC.texture_size;
// 5.) texture_size == SRC.texture_size
// 6.) texture_size_inv == float2(1.0)/SRC.texture_size
// 7.) tex_uv_to_pixel_scale == output_size *
// SRC.texture_size / SRC.video_size;
// 8.) sigma is the desired Gaussian standard deviation, in
// terms of output pixels. It should be < ~0.66171875 to
// ensure the first unused sample (outside the 4x4 box) has
// a weight < 1.0/256.0.
// Returns: A true 4x4 Gaussian resize of the input.
// Description:
// Given correct inputs, this Gaussian resizer samples 4 pixel locations
// along each downsized dimension and/or 4 texel locations along each
// upsized dimension. It computes dynamic weights based on the pixel-space
// distance of each sample from the destination pixel. It is arbitrarily
// resizable and higher quality than tex2Dblur3x3_resize, but it's slower.
// TODO: Move this to a more suitable file once there are others like it.
const float denom_inv = 0.5/(sigma*sigma);
// We're taking 4x4 samples, and we're snapping to texels for upsizing.
// Find texture coords for sample 5 (second row, second column):
const float2 curr_texel = tex_uv * tex_size;
const float2 prev_texel =
floor(curr_texel - float2(under_half)) + float2(0.5);
const float2 prev_texel_uv = prev_texel * texture_size_inv;
const float2 snap = float2((dxdy.x <= texture_size_inv.x), (dxdy.y <= texture_size_inv.y));
const float2 sample5_downsize_uv = tex_uv - 0.5 * dxdy;
const float2 sample5_uv = lerp(sample5_downsize_uv, prev_texel_uv, snap);
// Compute texture coords for other samples:
const float2 dx = float2(dxdy.x, 0.0);
const float2 sample0_uv = sample5_uv - dxdy;
const float2 sample10_uv = sample5_uv + dxdy;
const float2 sample15_uv = sample5_uv + 2.0 * dxdy;
const float2 sample1_uv = sample0_uv + dx;
const float2 sample2_uv = sample0_uv + 2.0 * dx;
const float2 sample3_uv = sample0_uv + 3.0 * dx;
const float2 sample4_uv = sample5_uv - dx;
const float2 sample6_uv = sample5_uv + dx;
const float2 sample7_uv = sample5_uv + 2.0 * dx;
const float2 sample8_uv = sample10_uv - 2.0 * dx;
const float2 sample9_uv = sample10_uv - dx;
const float2 sample11_uv = sample10_uv + dx;
const float2 sample12_uv = sample15_uv - 3.0 * dx;
const float2 sample13_uv = sample15_uv - 2.0 * dx;
const float2 sample14_uv = sample15_uv - dx;
// Load each sample:
float3 sample0 = tex2D_linearize(tex, sample0_uv).rgb;
float3 sample1 = tex2D_linearize(tex, sample1_uv).rgb;
float3 sample2 = tex2D_linearize(tex, dx).rgb;
float3 sample3 = tex2D_linearize(tex, sample3_uv).rgb;
float3 sample4 = tex2D_linearize(tex, sample4_uv).rgb;
float3 sample5 = tex2D_linearize(tex, sample5_uv).rgb;
float3 sample6 = tex2D_linearize(tex, sample6_uv).rgb;
float3 sample7 = tex2D_linearize(tex, sample7_uv).rgb;
float3 sample8 = tex2D_linearize(tex, sample8_uv).rgb;
float3 sample9 = tex2D_linearize(tex, sample9_uv).rgb;
float3 sample10 = tex2D_linearize(tex, sample10_uv).rgb;
float3 sample11 = tex2D_linearize(tex, sample11_uv).rgb;
float3 sample12 = tex2D_linearize(tex, sample12_uv).rgb;
float3 sample13 = tex2D_linearize(tex, sample13_uv).rgb;
float3 sample14 = tex2D_linearize(tex, sample14_uv).rgb;
float3 sample15 = tex2D_linearize(tex, sample15_uv).rgb;
// Compute destination pixel offsets for each sample:
const float2 dest_pixel = tex_uv * tex_uv_to_pixel_scale;
const float2 sample0_offset = sample0_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample1_offset = sample1_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample2_offset = sample2_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample3_offset = sample3_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample4_offset = sample4_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample5_offset = sample5_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample6_offset = sample6_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample7_offset = sample7_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample8_offset = sample8_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample9_offset = sample9_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample10_offset = sample10_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample11_offset = sample11_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample12_offset = sample12_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample13_offset = sample13_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample14_offset = sample14_uv * tex_uv_to_pixel_scale - dest_pixel;
const float2 sample15_offset = sample15_uv * tex_uv_to_pixel_scale - dest_pixel;
// Compute Gaussian sample weights:
const float w0 = exp(-LENGTH_SQ(sample0_offset) * denom_inv);
const float w1 = exp(-LENGTH_SQ(sample1_offset) * denom_inv);
const float w2 = exp(-LENGTH_SQ(sample2_offset) * denom_inv);
const float w3 = exp(-LENGTH_SQ(sample3_offset) * denom_inv);
const float w4 = exp(-LENGTH_SQ(sample4_offset) * denom_inv);
const float w5 = exp(-LENGTH_SQ(sample5_offset) * denom_inv);
const float w6 = exp(-LENGTH_SQ(sample6_offset) * denom_inv);
const float w7 = exp(-LENGTH_SQ(sample7_offset) * denom_inv);
const float w8 = exp(-LENGTH_SQ(sample8_offset) * denom_inv);
const float w9 = exp(-LENGTH_SQ(sample9_offset) * denom_inv);
const float w10 = exp(-LENGTH_SQ(sample10_offset) * denom_inv);
const float w11 = exp(-LENGTH_SQ(sample11_offset) * denom_inv);
const float w12 = exp(-LENGTH_SQ(sample12_offset) * denom_inv);
const float w13 = exp(-LENGTH_SQ(sample13_offset) * denom_inv);
const float w14 = exp(-LENGTH_SQ(sample14_offset) * denom_inv);
const float w15 = exp(-LENGTH_SQ(sample15_offset) * denom_inv);
const float weight_sum_inv = 1.0/(
w0 + w1 + w2 + w3 + w4 + w5 + w6 + w7 +
w8 +w9 + w10 + w11 + w12 + w13 + w14 + w15);
// Weight and sum the samples:
const float3 sum = w0 * sample0 + w1 * sample1 + w2 * sample2 + w3 * sample3 +
w4 * sample4 + w5 * sample5 + w6 * sample6 + w7 * sample7 +
w8 * sample8 + w9 * sample9 + w10 * sample10 + w11 * sample11 +
w12 * sample12 + w13 * sample13 + w14 * sample14 + w15 * sample15;
return sum * weight_sum_inv;
}
void main() {
// Would a viewport-relative size work better for this pass? (No.)
// PROS:
// 1.) Instead of writing an absolute size to user-cgp-constants.h, we'd
// write a viewport scale. That number could be used to directly scale
// the viewport-resolution bloom sigma and/or triad size to a smaller
// scale. This way, we could calculate an optimal dynamic sigma no
// matter how the dot pitch is specified.
// CONS:
// 1.) Texel smearing would be much worse at small viewport sizes, but
// performance would be much worse at large viewport sizes, so there
// would be no easy way to calculate a decent scale.
// 2.) Worse, we could no longer get away with using a constant-size blur!
// Instead, we'd have to face all the same difficulties as the real
// phosphor bloom, which requires static #ifdefs to decide the blur
// size based on the expected triad size...a dynamic value.
// 3.) Like the phosphor bloom, we'd have less control over making the blur
// size correct for an optical blur. That said, we likely overblur (to
// maintain brightness) more than the eye would do by itself: 20/20
// human vision distinguishes ~1 arc minute, or 1/60 of a degree. The
// highest viewing angle recommendation I know of is THX's 40.04 degree
// recommendation, at which 20/20 vision can distinguish about 2402.4
// lines. Assuming the "TV lines" definition, that means 1201.2
// distinct light lines and 1201.2 distinct dark lines can be told
// apart, i.e. 1201.2 pairs of lines. This would correspond to 1201.2
// pairs of alternating lit/unlit phosphors, so 2402.4 phosphors total
// (if they're alternately lit). That's a max of 800.8 triads. Using
// a more popular 30 degree viewing angle recommendation, 20/20 vision
// can distinguish 1800 lines, or 600 triads of alternately lit
// phosphors. In contrast, we currently blur phosphors all the way
// down to 341.3 triads to ensure full brightness.
// 4.) Realistically speaking, we're usually just going to use bilinear
// filtering in this pass anyway, but it only works well to limit
// bandwidth if it's done at a small constant scale.
// Get the constants we need to sample:
// const sampler2D texture = ORIG_LINEARIZED.texture;
// const float2 tex_uv = tex_uv;
// const float2 blur_dxdy = blur_dxdy;
const float2 texture_size_ = ORIG_LINEARIZEDtexture_size;
// const float2 texture_size_inv = texture_size_inv;
// const float2 tex_uv_to_pixel_scale = tex_uv_to_pixel_scale;
float2 tex_uv_r, tex_uv_g, tex_uv_b;
if(beam_misconvergence)
{
const float2 uv_scanline_step = uv_scanline_step;
const float2 convergence_offsets_r = get_convergence_offsets_r_vector();
const float2 convergence_offsets_g = get_convergence_offsets_g_vector();
const float2 convergence_offsets_b = get_convergence_offsets_b_vector();
tex_uv_r = tex_uv - convergence_offsets_r * uv_scanline_step;
tex_uv_g = tex_uv - convergence_offsets_g * uv_scanline_step;
tex_uv_b = tex_uv - convergence_offsets_b * uv_scanline_step;
}
// Get the blur sigma:
const float bloom_approx_sigma = get_bloom_approx_sigma(output_size.x,
estimated_viewport_size_x);
// Sample the resized and blurred texture, and apply convergence offsets if
// necessary. Applying convergence offsets here triples our samples from
// 16/9/1 to 48/27/3, but faster and easier than sampling BLOOM_APPROX and
// HALATION_BLUR 3 times at full resolution every time they're used.
float3 color_r, color_g, color_b, color;
if(bloom_approx_filter > 1.5)
{
// Use a 4x4 Gaussian resize. This is slower but technically correct.
if(beam_misconvergence)
{
color_r = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_r,
blur_dxdy, texture_size_, texture_size_inv,
tex_uv_to_pixel_scale, bloom_approx_sigma);
color_g = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_g,
blur_dxdy, texture_size_, texture_size_inv,
tex_uv_to_pixel_scale, bloom_approx_sigma);
color_b = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv_b,
blur_dxdy, texture_size_, texture_size_inv,
tex_uv_to_pixel_scale, bloom_approx_sigma);
}
else
{
color = tex2Dresize_gaussian4x4(ORIG_LINEARIZED, tex_uv,
blur_dxdy, texture_size_, texture_size_inv,
tex_uv_to_pixel_scale, bloom_approx_sigma);
}
}
else if(bloom_approx_filter > 0.5)
{
// Use a 3x3 resize blur. This is the softest option, because we're
// blurring already blurry bilinear samples. It doesn't play quite as
// nicely with convergence offsets, but it has its charms.
if(beam_misconvergence)
{
color_r = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_r,
blur_dxdy, bloom_approx_sigma);
color_g = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_g,
blur_dxdy, bloom_approx_sigma);
color_b = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv_b,
blur_dxdy, bloom_approx_sigma);
}
else
{
color = tex2Dblur3x3resize(ORIG_LINEARIZED, tex_uv, blur_dxdy);
}
}
else
{
// Use bilinear sampling. This approximates a 4x4 Gaussian resize MUCH
// better than tex2Dblur3x3_resize for the very small sigmas we're
// likely to use at small output resolutions. (This estimate becomes
// too sharp above ~400x300, but the blurs break down above that
// resolution too, unless min_allowed_viewport_triads is high enough to
// keep bloom_approx_scale_x/min_allowed_viewport_triads < ~1.1658025.)
if(beam_misconvergence)
{
color_r = tex2D_linearize(ORIG_LINEARIZED, tex_uv_r).rgb;
color_g = tex2D_linearize(ORIG_LINEARIZED, tex_uv_g).rgb;
color_b = tex2D_linearize(ORIG_LINEARIZED, tex_uv_b).rgb;
}
else
{
color = tex2D_linearize(ORIG_LINEARIZED, tex_uv).rgb;
}
}
// Pack the colors from the red/green/blue beams into a single vector:
if(beam_misconvergence)
{
color = float3(color_r.r, color_g.g, color_b.b);
}
// Encode and output the blurred image:
FragColor = encode_output(float4(tex2D_linearize(ORIG_LINEARIZED, tex_uv)));
}