bsnes/higan/fc/cartridge/board/board.cpp

175 lines
5.4 KiB
C++
Raw Normal View History

#include "bandai-fcg.cpp"
#include "konami-vrc1.cpp"
#include "konami-vrc2.cpp"
#include "konami-vrc3.cpp"
#include "konami-vrc4.cpp"
#include "konami-vrc6.cpp"
#include "konami-vrc7.cpp"
#include "nes-axrom.cpp"
#include "nes-bnrom.cpp"
#include "nes-cnrom.cpp"
Update to v082r31 release. byuu says: Enable Overscan->Mask Overscan [best I'm doing] Video settings -> Overscan mask: (horizontal, vertical: 0-16 on each side) [only works on NES+SNES] BPS patching works for NES+SNES+GB; note that long-term I want BPS to only patch headerless PRG+CHR files, but we'll need a database / completed board mapping system first. MMC1 splits the board/chip markups a bit better. My attempts to emulate the extra CHR bits per hardware fail repeatedly. Docs do not explain how it works at all. Emulated enough of the MMC5 to play Castlevania 3. The MMC5 is easily the most complicated mapper the NES has to offer, and of course, has the most pitifully vague and difficult documentation of any mapper around. It seems the only way anyone is able to emulate this chip is empirically. Everyone else apparently hooks the MMC5 right into the PPU core, which I of course cannot do. So I had to come up with my own (probably wrong) way to synchronize the PPU simply by observing CHR bus accesses. I must say, I over-estimated how well fleshed out the NES hardware documentation was. Shit hits the fan right after MMC3. It's miles beyond the GB scene, but I find myself wanting for someone with the technical writing ability of anomie. I can't find anything at all on how we're supposed to support the $2007 port reads/writes without it extra-clocking the PPU's bus, which could throw off mapper timing. Absolutely nothing at all on the subject anywhere, something everybody is required to do for all cycle-based emulators and ... nada. Anyway, I'd like to refine the MMC5 a bit, getting Just Breed playable even without sound would be really nice (it's a fun game.) Then we need to get libsnes building again (ugh, getting worn out in backporting changes to it.) Once v083 is public, we can start discussing a new API for multiple emulators.
2011-10-06 09:53:16 +00:00
#include "nes-exrom.cpp"
#include "nes-fxrom.cpp"
#include "nes-gxrom.cpp"
#include "nes-hkrom.cpp"
#include "nes-nrom.cpp"
#include "nes-pxrom.cpp"
#include "nes-sxrom.cpp"
#include "nes-txrom.cpp"
#include "nes-uxrom.cpp"
#include "sunsoft-5b.cpp"
Update to v082r31 release. byuu says: Enable Overscan->Mask Overscan [best I'm doing] Video settings -> Overscan mask: (horizontal, vertical: 0-16 on each side) [only works on NES+SNES] BPS patching works for NES+SNES+GB; note that long-term I want BPS to only patch headerless PRG+CHR files, but we'll need a database / completed board mapping system first. MMC1 splits the board/chip markups a bit better. My attempts to emulate the extra CHR bits per hardware fail repeatedly. Docs do not explain how it works at all. Emulated enough of the MMC5 to play Castlevania 3. The MMC5 is easily the most complicated mapper the NES has to offer, and of course, has the most pitifully vague and difficult documentation of any mapper around. It seems the only way anyone is able to emulate this chip is empirically. Everyone else apparently hooks the MMC5 right into the PPU core, which I of course cannot do. So I had to come up with my own (probably wrong) way to synchronize the PPU simply by observing CHR bus accesses. I must say, I over-estimated how well fleshed out the NES hardware documentation was. Shit hits the fan right after MMC3. It's miles beyond the GB scene, but I find myself wanting for someone with the technical writing ability of anomie. I can't find anything at all on how we're supposed to support the $2007 port reads/writes without it extra-clocking the PPU's bus, which could throw off mapper timing. Absolutely nothing at all on the subject anywhere, something everybody is required to do for all cycle-based emulators and ... nada. Anyway, I'd like to refine the MMC5 a bit, getting Just Breed playable even without sound would be really nice (it's a fun game.) Then we need to get libsnes building again (ugh, getting worn out in backporting changes to it.) Once v083 is public, we can start discussing a new API for multiple emulators.
2011-10-06 09:53:16 +00:00
uint8 Board::Memory::read(unsigned addr) const {
return data[mirror(addr, size)];
}
void Board::Memory::write(unsigned addr, uint8 byte) {
if(writable) data[mirror(addr, size)] = byte;
Update to v082r31 release. byuu says: Enable Overscan->Mask Overscan [best I'm doing] Video settings -> Overscan mask: (horizontal, vertical: 0-16 on each side) [only works on NES+SNES] BPS patching works for NES+SNES+GB; note that long-term I want BPS to only patch headerless PRG+CHR files, but we'll need a database / completed board mapping system first. MMC1 splits the board/chip markups a bit better. My attempts to emulate the extra CHR bits per hardware fail repeatedly. Docs do not explain how it works at all. Emulated enough of the MMC5 to play Castlevania 3. The MMC5 is easily the most complicated mapper the NES has to offer, and of course, has the most pitifully vague and difficult documentation of any mapper around. It seems the only way anyone is able to emulate this chip is empirically. Everyone else apparently hooks the MMC5 right into the PPU core, which I of course cannot do. So I had to come up with my own (probably wrong) way to synchronize the PPU simply by observing CHR bus accesses. I must say, I over-estimated how well fleshed out the NES hardware documentation was. Shit hits the fan right after MMC3. It's miles beyond the GB scene, but I find myself wanting for someone with the technical writing ability of anomie. I can't find anything at all on how we're supposed to support the $2007 port reads/writes without it extra-clocking the PPU's bus, which could throw off mapper timing. Absolutely nothing at all on the subject anywhere, something everybody is required to do for all cycle-based emulators and ... nada. Anyway, I'd like to refine the MMC5 a bit, getting Just Breed playable even without sound would be really nice (it's a fun game.) Then we need to get libsnes building again (ugh, getting worn out in backporting changes to it.) Once v083 is public, we can start discussing a new API for multiple emulators.
2011-10-06 09:53:16 +00:00
}
unsigned Board::mirror(unsigned addr, unsigned size) {
unsigned base = 0;
if(size) {
unsigned mask = 1 << 23;
while(addr >= size) {
while(!(addr & mask)) mask >>= 1;
addr -= mask;
if(size > mask) {
size -= mask;
base += mask;
}
mask >>= 1;
}
base += addr;
}
return base;
}
void Board::main() {
while(true) {
if(scheduler.sync == Scheduler::SynchronizeMode::All) {
scheduler.exit(Scheduler::ExitReason::SynchronizeEvent);
}
cartridge.clock += 12 * 4095;
tick();
}
}
void Board::tick() {
cartridge.clock += 12;
if(cartridge.clock >= 0 && scheduler.sync != Scheduler::SynchronizeMode::All) co_switch(cpu.thread);
}
uint8 Board::chr_read(unsigned addr) {
if(chrram.size) return chrram.data[mirror(addr, chrram.size)];
if(chrrom.size) return chrrom.data[mirror(addr, chrrom.size)];
return 0u;
}
void Board::chr_write(unsigned addr, uint8 data) {
if(chrram.size) chrram.data[mirror(addr, chrram.size)] = data;
}
void Board::power() {
}
void Board::reset() {
}
void Board::serialize(serializer &s) {
if(prgram.size) s.array(prgram.data, prgram.size);
if(chrram.size) s.array(chrram.data, chrram.size);
}
Board::Board(XML::Document &document) {
cartridge.board = this;
auto &cartridge = document["cartridge"];
information.type = cartridge["board"]["type"].data;
information.battery = cartridge["prg"]["ram"]["nonvolatile"].data == "true";
auto &prom = cartridge["prg"]["rom"];
auto &pram = cartridge["prg"]["ram"];
auto &crom = cartridge["chr"]["rom"];
auto &cram = cartridge["chr"]["ram"];
prgrom.size = numeral(prom["size"].data);
prgram.size = numeral(pram["size"].data);
chrrom.size = numeral(crom["size"].data);
chrram.size = numeral(cram["size"].data);
if(prgrom.size) prgrom.data = new uint8[prgrom.size]();
if(prgram.size) prgram.data = new uint8[prgram.size]();
if(chrrom.size) chrrom.data = new uint8[chrrom.size]();
if(chrram.size) chrram.data = new uint8[chrram.size]();
if(prom["name"].data) interface->loadRequest(ID::ProgramROM, prom["name"].data);
if(pram["name"].data) interface->loadRequest(ID::ProgramRAM, pram["name"].data);
if(crom["name"].data) interface->loadRequest(ID::CharacterROM, crom["name"].data);
if(cram["name"].data) interface->loadRequest(ID::CharacterRAM, cram["name"].data);
if(pram["name"].data) Famicom::cartridge.memory.append({ID::ProgramRAM, pram["name"].data});
if(cram["name"].data) Famicom::cartridge.memory.append({ID::CharacterRAM, cram["name"].data});
prgram.writable = true;
chrram.writable = true;
}
Board::~Board() {
}
Board* Board::load(const string &manifest) {
XML::Document document(manifest);
string type = document["cartridge"]["board"]["type"].data;
if(type == "BANDAI-FCG" ) return new BandaiFCG(document);
if(type == "KONAMI-VRC-1") return new KonamiVRC1(document);
if(type == "KONAMI-VRC-2") return new KonamiVRC2(document);
if(type == "KONAMI-VRC-3") return new KonamiVRC3(document);
if(type == "KONAMI-VRC-4") return new KonamiVRC4(document);
if(type == "KONAMI-VRC-6") return new KonamiVRC6(document);
if(type == "KONAMI-VRC-7") return new KonamiVRC7(document);
if(type == "NES-AMROM" ) return new NES_AxROM(document);
if(type == "NES-ANROM" ) return new NES_AxROM(document);
if(type == "NES-AN1ROM" ) return new NES_AxROM(document);
if(type == "NES-AOROM" ) return new NES_AxROM(document);
if(type == "NES-BNROM" ) return new NES_BNROM(document);
if(type == "NES-CNROM" ) return new NES_CNROM(document);
if(type == "NES-EKROM" ) return new NES_ExROM(document);
if(type == "NES-ELROM" ) return new NES_ExROM(document);
if(type == "NES-ETROM" ) return new NES_ExROM(document);
if(type == "NES-EWROM" ) return new NES_ExROM(document);
Update to v082r31 release. byuu says: Enable Overscan->Mask Overscan [best I'm doing] Video settings -> Overscan mask: (horizontal, vertical: 0-16 on each side) [only works on NES+SNES] BPS patching works for NES+SNES+GB; note that long-term I want BPS to only patch headerless PRG+CHR files, but we'll need a database / completed board mapping system first. MMC1 splits the board/chip markups a bit better. My attempts to emulate the extra CHR bits per hardware fail repeatedly. Docs do not explain how it works at all. Emulated enough of the MMC5 to play Castlevania 3. The MMC5 is easily the most complicated mapper the NES has to offer, and of course, has the most pitifully vague and difficult documentation of any mapper around. It seems the only way anyone is able to emulate this chip is empirically. Everyone else apparently hooks the MMC5 right into the PPU core, which I of course cannot do. So I had to come up with my own (probably wrong) way to synchronize the PPU simply by observing CHR bus accesses. I must say, I over-estimated how well fleshed out the NES hardware documentation was. Shit hits the fan right after MMC3. It's miles beyond the GB scene, but I find myself wanting for someone with the technical writing ability of anomie. I can't find anything at all on how we're supposed to support the $2007 port reads/writes without it extra-clocking the PPU's bus, which could throw off mapper timing. Absolutely nothing at all on the subject anywhere, something everybody is required to do for all cycle-based emulators and ... nada. Anyway, I'd like to refine the MMC5 a bit, getting Just Breed playable even without sound would be really nice (it's a fun game.) Then we need to get libsnes building again (ugh, getting worn out in backporting changes to it.) Once v083 is public, we can start discussing a new API for multiple emulators.
2011-10-06 09:53:16 +00:00
if(type == "NES-FJROM" ) return new NES_FxROM(document);
if(type == "NES-FKROM" ) return new NES_FxROM(document);
if(type == "NES-GNROM" ) return new NES_GxROM(document);
if(type == "NES-MHROM" ) return new NES_GxROM(document);
if(type == "NES-HKROM" ) return new NES_HKROM(document);
if(type == "NES-NROM-128") return new NES_NROM(document);
if(type == "NES-NROM-256") return new NES_NROM(document);
if(type == "NES-PEEOROM" ) return new NES_PxROM(document);
if(type == "NES-PNROM" ) return new NES_PxROM(document);
if(type == "NES-SNROM" ) return new NES_SxROM(document);
if(type == "NES-SXROM" ) return new NES_SxROM(document);
if(type == "NES-TLROM" ) return new NES_TxROM(document);
if(type == "NES-UNROM" ) return new NES_UxROM(document);
if(type == "NES-UOROM" ) return new NES_UxROM(document);
if(type == "SUNSOFT-5B" ) return new Sunsoft5B(document);
return nullptr;
}