bsnes/snesreader/unrar/unpack.cpp

1066 lines
23 KiB
C++
Raw Normal View History

Include all the code from the bsnes v068 tarball. byuu describes the changes since v067: This release officially introduces the accuracy and performance cores, alongside the previously-existing compatibility core. The accuracy core allows the most accurate SNES emulation ever seen, with every last processor running at the lowest possible clock synchronization level. The performance core allows slower computers the chance to finally use bsnes. It is capable of attaining 60fps in standard games even on an entry-level Intel Atom processor, commonly found in netbooks. The accuracy core is absolutely not meant for casual gaming at all. It is meant solely for getting as close to 100% perfection as possible, no matter the cost to speed. It should only be used for testing, development or debugging. The compatibility core is identical to bsnes v067 and earlier, but is now roughly 10% faster. This is the default and recommended core for casual gaming. The performance core contains an entirely new S-CPU core, with range-tested IRQs; and uses blargg's heavily-optimized S-DSP core directly. Although there are very minor accuracy tradeoffs to increase speed, I am confident that the performance core is still more accurate and compatible than any other SNES emulator. The S-CPU, S-SMP, S-DSP, SuperFX and SA-1 processors are all clock-based, just as in the accuracy and compatibility cores; and as always, there are zero game-specific hacks. Its compatibility is still well above 99%, running even the most challenging games flawlessly. If you have held off from using bsnes in the past due to its system requirements, please give the performance core a try. I think you will be impressed. I'm also not finished: I believe performance can be increased even further. I would also strongly suggest Windows Vista and Windows 7 users to take advantage of the new XAudio2 driver by OV2. Not only does it give you a performance boost, it also lowers latency and provides better sound by way of skipping an API emulation layer. Changelog: - Split core into three profiles: accuracy, compatibility and performance - Accuracy core now takes advantage of variable-bitlength integers (eg uint24_t) - Performance core uses a new S-CPU core, written from scratch for speed - Performance core uses blargg's snes_dsp library for S-DSP emulation - Binaries are now compiled using GCC 4.5 - Added a workaround in the SA-1 core for a bug in GCC 4.5+ - The clock-based S-PPU renderer has greatly improved OAM emulation; fixing Winter Gold and Megalomania rendering issues - Corrected pseudo-hires color math in the clock-based S-PPU renderer; fixing Super Buster Bros backgrounds - Fixed a clamping bug in the Cx4 16-bit triangle operation [Jonas Quinn]; fixing Mega Man X2 "gained weapon" star background effect - Updated video renderer to properly handle mixed-resolution screens with interlace enabled; fixing Air Strike Patrol level briefing screen - Added mightymo's 2010-08-19 cheat code pack - Windows port: added XAudio2 output support [OV2] - Source: major code restructuring; virtual base classes for processor - cores removed, build system heavily modified, etc.
2010-08-22 01:02:42 +00:00
#include "rar.hpp"
#include "coder.cpp"
#include "suballoc.cpp"
#include "model.cpp"
#ifndef SFX_MODULE
#include "unpack15.cpp"
#include "unpack20.cpp"
#endif
Unpack::Unpack(ComprDataIO *DataIO)
: VMCode( DataIO ), Filters( DataIO ), PrgStack( DataIO ), OldFilterLengths( DataIO ), ErrHandler( *DataIO )
{
PPM.SubAlloc.ErrHandler = DataIO;
LastStackFilter = NULL;
UnpIO=DataIO;
Window=NULL;
ExternalWindow=false;
UnpAllBuf=false;
UnpSomeRead=false;
}
Unpack::~Unpack()
{
if (Window!=NULL && !ExternalWindow)
rarfree( Window );
InitFilters();
}
void Unpack::Init(byte *Window)
{
if (Window==NULL)
{
Unpack::Window = (byte*) rarmalloc( MAXWINSIZE );
if (Unpack::Window==NULL)
ErrHandler.MemoryError();
}
else
{
Unpack::Window=Window;
ExternalWindow=true;
}
UnpInitData(false);
BitInput::handle_mem_error( ErrHandler );
Inp.handle_mem_error( ErrHandler );
// Only check BitInput, as VM's memory isn't allocated yet
VM.BitInput::handle_mem_error( ErrHandler );
#ifndef SFX_MODULE
// RAR 1.5 decompression initialization
OldUnpInitData(false);
InitHuff();
#endif
}
void Unpack::DoUnpack(int Method,bool Solid)
{
switch(Method)
{
#ifndef SFX_MODULE
case 15: // rar 1.5 compression
Unpack15(Solid);
break;
case 20: // rar 2.x compression
case 26: // files larger than 2GB
Unpack20(Solid);
break;
#endif
case 29: // rar 3.x compression
case 36: // alternative hash
Unpack29(Solid);
break;
}
}
inline void Unpack::InsertOldDist(unsigned int Distance)
{
OldDist[3]=OldDist[2];
OldDist[2]=OldDist[1];
OldDist[1]=OldDist[0];
OldDist[0]=Distance;
}
inline void Unpack::InsertLastMatch(unsigned int Length,unsigned int Distance)
{
LastDist=Distance;
LastLength=Length;
}
// These optimizations give 22% speedup on x86, 44% speedup on PowerPC
void Unpack::CopyString(unsigned int Length,unsigned int Distance)
{
unsigned UnpPtr = this->UnpPtr; // cache in register
byte* const Window = this->Window; // cache in register
unsigned int DestPtr=UnpPtr-Distance;
if (UnpPtr<MAXWINSIZE-260 && DestPtr<MAXWINSIZE-260)
{
this->UnpPtr += Length;
if ( Distance < Length ) // can't use memcpy when source and dest overlap
{
// Length always >= 1
do
{
Window[UnpPtr++]=Window[DestPtr++];
}
while (--Length>0)
;
}
else
{
memcpy( &Window[UnpPtr], &Window[DestPtr], Length );
}
}
else
{
while (Length--)
{
Window[UnpPtr]=Window[DestPtr++ & MAXWINMASK];
UnpPtr=(UnpPtr+1) & MAXWINMASK;
}
this->UnpPtr = UnpPtr;
}
}
int Unpack::DecodeNumber(struct Decode *Dec)
{
unsigned int Bits;
unsigned int BitField=getbits() & 0xfffe;
if (BitField<Dec->DecodeLen[8])
if (BitField<Dec->DecodeLen[4])
if (BitField<Dec->DecodeLen[2])
if (BitField<Dec->DecodeLen[1])
Bits=1;
else
Bits=2;
else
if (BitField<Dec->DecodeLen[3])
Bits=3;
else
Bits=4;
else
if (BitField<Dec->DecodeLen[6])
if (BitField<Dec->DecodeLen[5])
Bits=5;
else
Bits=6;
else
if (BitField<Dec->DecodeLen[7])
Bits=7;
else
Bits=8;
else
if (BitField<Dec->DecodeLen[12])
if (BitField<Dec->DecodeLen[10])
if (BitField<Dec->DecodeLen[9])
Bits=9;
else
Bits=10;
else
if (BitField<Dec->DecodeLen[11])
Bits=11;
else
Bits=12;
else
if (BitField<Dec->DecodeLen[14])
if (BitField<Dec->DecodeLen[13])
Bits=13;
else
Bits=14;
else
Bits=15;
unsigned int N=Dec->DecodePos[Bits]+((BitField-Dec->DecodeLen[Bits-1])>>(16-Bits));
if (N>=Dec->MaxNum)
N=0;
// do after reading values, to allow better instruction scheduling
addbits(Bits);
return(Dec->DecodeNum[N]);
}
const
static unsigned char LDecode[]={0,1,2,3,4,5,6,7,8,10,12,14,16,20,24,28,32,40,48,56,64,80,96,112,128,160,192,224};
const
static unsigned char LBits[]= {0,0,0,0,0,0,0,0,1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5};
static int DDecode[DC];
static byte DBits[DC];
const
static int DBitLengthCounts[]= {4,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,14,0,12};
const
static unsigned char SDDecode[]={0,4,8,16,32,64,128,192};
const
static unsigned char SDBits[]= {2,2,3, 4, 5, 6, 6, 6};
void Unpack::init_tables()
{
if (DDecode[1]==0)
{
int Dist=0,BitLength=0,Slot=0;
for (int I=0;I<sizeof(DBitLengthCounts)/sizeof(DBitLengthCounts[0]);I++,BitLength++)
for (int J=0;J<DBitLengthCounts[I];J++,Slot++,Dist+=(1<<BitLength))
{
DDecode[Slot]=Dist;
DBits[Slot]=BitLength;
}
}
}
void Unpack::Unpack29(bool Solid)
{
// tables moved outside function
unsigned int Bits;
FileExtracted=true;
if (!Suspended)
{
UnpInitData(Solid);
if (!UnpReadBuf())
return;
if ((!Solid || !TablesRead) && !ReadTables())
return;
}
while (true)
{
UnpPtr&=MAXWINMASK;
if (InAddr>ReadBorder)
{
if (!UnpReadBuf())
break;
}
if (((WrPtr-UnpPtr) & MAXWINMASK)<260 && WrPtr!=UnpPtr)
{
UnpWriteBuf();
if (WrittenFileSize>DestUnpSize)
return;
if (Suspended)
{
FileExtracted=false;
return;
}
}
if (UnpBlockType==BLOCK_PPM)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
{
PPM.CleanUp();
// turn off PPM compression mode in case of error, so UnRAR will
// call PPM.DecodeInit in case it needs to turn it on back later.
UnpBlockType=BLOCK_LZ;
break;
}
if (Ch==PPMEscChar)
{
int NextCh=PPM.DecodeChar();
if (NextCh==0)
{
if (!ReadTables())
break;
continue;
}
if (NextCh==2 || NextCh==-1)
break;
if (NextCh==3)
{
if (!ReadVMCodePPM())
break;
continue;
}
if (NextCh==4)
{
unsigned int Distance=0,Length;
Length = 0; // avoids warning
bool Failed=false;
for (int I=0;I<4 && !Failed;I++)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
Failed=true;
else
if (I==3)
Length=(byte)Ch;
else
Distance=(Distance<<8)+(byte)Ch;
}
if (Failed)
break;
#ifdef _MSC_VER
// avoid a warning about uninitialized 'Length' variable
#pragma warning( disable : 4701 )
#endif
CopyString(Length+32,Distance+2);
continue;
}
if (NextCh==5)
{
int Length=PPM.DecodeChar();
if (Length==-1)
break;
CopyString(Length+4,1);
continue;
}
}
Window[UnpPtr++]=Ch;
continue;
}
int Number=DecodeNumber((struct Decode *)&LD);
if (Number<256)
{
Window[UnpPtr++]=(byte)Number;
continue;
}
if (Number>=271)
{
int Length=LDecode[Number-=271]+3;
if ((Bits=LBits[Number])>0)
{
Length+=getbits()>>(16-Bits);
addbits(Bits);
}
int DistNumber=DecodeNumber((struct Decode *)&DD);
unsigned int Distance=DDecode[DistNumber]+1;
if ((Bits=DBits[DistNumber])>0)
{
if (DistNumber>9)
{
if (Bits>4)
{
Distance+=((getbits()>>(20-Bits))<<4);
addbits(Bits-4);
}
if (LowDistRepCount>0)
{
LowDistRepCount--;
Distance+=PrevLowDist;
}
else
{
int LowDist=DecodeNumber((struct Decode *)&LDD);
if (LowDist==16)
{
LowDistRepCount=LOW_DIST_REP_COUNT-1;
Distance+=PrevLowDist;
}
else
{
Distance+=LowDist;
PrevLowDist=LowDist;
}
}
}
else
{
Distance+=getbits()>>(16-Bits);
addbits(Bits);
}
}
if (Distance>=0x2000)
{
Length++;
if (Distance>=0x40000L)
Length++;
}
InsertOldDist(Distance);
InsertLastMatch(Length,Distance);
CopyString(Length,Distance);
continue;
}
if (Number==256)
{
if (!ReadEndOfBlock())
break;
continue;
}
if (Number==257)
{
if (!ReadVMCode())
break;
continue;
}
if (Number==258)
{
if (LastLength!=0)
CopyString(LastLength,LastDist);
continue;
}
if (Number<263)
{
int DistNum=Number-259;
unsigned int Distance=OldDist[DistNum];
for (int I=DistNum;I>0;I--)
OldDist[I]=OldDist[I-1];
OldDist[0]=Distance;
int LengthNumber=DecodeNumber((struct Decode *)&RD);
int Length=LDecode[LengthNumber]+2;
if ((Bits=LBits[LengthNumber])>0)
{
Length+=getbits()>>(16-Bits);
addbits(Bits);
}
InsertLastMatch(Length,Distance);
CopyString(Length,Distance);
continue;
}
if (Number<272)
{
unsigned int Distance=SDDecode[Number-=263]+1;
if ((Bits=SDBits[Number])>0)
{
Distance+=getbits()>>(16-Bits);
addbits(Bits);
}
InsertOldDist(Distance);
InsertLastMatch(2,Distance);
CopyString(2,Distance);
continue;
}
}
UnpWriteBuf();
}
bool Unpack::ReadEndOfBlock()
{
unsigned int BitField=getbits();
bool NewTable,NewFile=false;
if (BitField & 0x8000)
{
NewTable=true;
addbits(1);
}
else
{
NewFile=true;
NewTable=(BitField & 0x4000);
addbits(2);
}
TablesRead=!NewTable;
return !(NewFile || NewTable && !ReadTables());
}
bool Unpack::ReadVMCode()
{
unsigned int FirstByte=getbits()>>8;
addbits(8);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
Length=(getbits()>>8)+7;
addbits(8);
}
else
if (Length==8)
{
Length=getbits();
addbits(16);
}
VMCode.Alloc( Length );
for (int I=0;I<Length;I++)
{
if (InAddr>=ReadTop-1 && !UnpReadBuf() && I<Length-1)
return(false);
VMCode[I]=getbits()>>8;
addbits(8);
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::ReadVMCodePPM()
{
unsigned int FirstByte=PPM.DecodeChar();
if ((int)FirstByte==-1)
return(false);
int Length=(FirstByte & 7)+1;
if (Length==7)
{
int B1=PPM.DecodeChar();
if (B1==-1)
return(false);
Length=B1+7;
}
else
if (Length==8)
{
int B1=PPM.DecodeChar();
if (B1==-1)
return(false);
int B2=PPM.DecodeChar();
if (B2==-1)
return(false);
Length=B1*256+B2;
}
VMCode.Alloc( Length );
for (int I=0;I<Length;I++)
{
int Ch=PPM.DecodeChar();
if (Ch==-1)
return(false);
VMCode[I]=Ch;
}
return(AddVMCode(FirstByte,&VMCode[0],Length));
}
bool Unpack::AddVMCode(unsigned int FirstByte,byte *Code,int CodeSize)
{
// TODO: auto clear object to free bit input on normal return?
Inp.InitBitInput();
memcpy(Inp.InBuf,Code,Min(BitInput::MAX_SIZE,CodeSize));
VMCode.Reset();
VM.Init();
VM.handle_mem_error( ErrHandler );
uint FiltPos;
if (FirstByte & 0x80)
{
FiltPos=RarVM::ReadData(Inp);
if (FiltPos==0)
InitFilters();
else
FiltPos--;
}
else
FiltPos=LastFilter; // use the same filter as last time
if (FiltPos>Filters.Size() || FiltPos>OldFilterLengths.Size())
return(false);
LastFilter=FiltPos;
bool NewFilter=(FiltPos==Filters.Size());
delete LastStackFilter;
LastStackFilter = NULL;
UnpackFilter *StackFilter=new UnpackFilter(&ErrHandler);
LastStackFilter = StackFilter;
if ( !StackFilter )
ErrHandler.MemoryError();
UnpackFilter *Filter;
if (NewFilter) // new filter code, never used before since VM reset
{
// too many different filters, corrupt archive
if (FiltPos>1024)
return(false);
Filters.Add(1);
Filters[Filters.Size()-1]=Filter=new UnpackFilter(&ErrHandler);
if ( !Filter )
ErrHandler.MemoryError();
StackFilter->ParentFilter=Filters.Size()-1;
OldFilterLengths.Add(1);
Filter->ExecCount=0;
}
else // filter was used in the past
{
Filter=Filters[FiltPos];
StackFilter->ParentFilter=FiltPos;
Filter->ExecCount++;
}
int EmptyCount=0;
{
for (int I=0;I<PrgStack.Size();I++)
{
PrgStack[I-EmptyCount]=PrgStack[I];
if (PrgStack[I]==NULL)
EmptyCount++;
if (EmptyCount>0)
PrgStack[I]=NULL;
}
}
if (EmptyCount==0)
{
PrgStack.Add(1);
EmptyCount=1;
}
int StackPos=PrgStack.Size()-EmptyCount;
PrgStack[StackPos]=StackFilter;
LastStackFilter = NULL;
StackFilter->ExecCount=Filter->ExecCount;
uint BlockStart=RarVM::ReadData(Inp);
if (FirstByte & 0x40)
BlockStart+=258;
StackFilter->BlockStart=(BlockStart+UnpPtr)&MAXWINMASK;
if (FirstByte & 0x20)
StackFilter->BlockLength=RarVM::ReadData(Inp);
else
StackFilter->BlockLength=FiltPos<OldFilterLengths.Size() ? OldFilterLengths[FiltPos]:0;
StackFilter->NextWindow=WrPtr!=UnpPtr && ((WrPtr-UnpPtr)&MAXWINMASK)<=BlockStart;
// DebugLog("\nNextWindow: UnpPtr=%08x WrPtr=%08x BlockStart=%08x",UnpPtr,WrPtr,BlockStart);
OldFilterLengths[FiltPos]=StackFilter->BlockLength;
memset(StackFilter->Prg.InitR,0,sizeof(StackFilter->Prg.InitR));
StackFilter->Prg.InitR[3]=VM_GLOBALMEMADDR;
StackFilter->Prg.InitR[4]=StackFilter->BlockLength;
StackFilter->Prg.InitR[5]=StackFilter->ExecCount;
if (FirstByte & 0x10) // set registers to optional parameters if any
{
unsigned int InitMask=Inp.fgetbits()>>9;
Inp.faddbits(7);
for (int I=0;I<7;I++)
if (InitMask & (1<<I))
StackFilter->Prg.InitR[I]=RarVM::ReadData(Inp);
}
if (NewFilter)
{
uint VMCodeSize=RarVM::ReadData(Inp);
if (VMCodeSize>=0x10000 || VMCodeSize==0)
return(false);
VMCode.Alloc( VMCodeSize );
for (int I=0;I<VMCodeSize;I++)
{
if (Inp.Overflow(3))
return(false);
VMCode[I]=Inp.fgetbits()>>8;
Inp.faddbits(8);
}
VM.Prepare(&VMCode[0],VMCodeSize,&Filter->Prg);
VMCode.Reset();
}
StackFilter->Prg.AltCmd=&Filter->Prg.Cmd[0];
StackFilter->Prg.CmdCount=Filter->Prg.CmdCount;
int StaticDataSize=Filter->Prg.StaticData.Size();
if (StaticDataSize>0 && StaticDataSize<VM_GLOBALMEMSIZE)
{
// read statically defined data contained in DB commands
StackFilter->Prg.StaticData.Add(StaticDataSize);
memcpy(&StackFilter->Prg.StaticData[0],&Filter->Prg.StaticData[0],StaticDataSize);
}
if (StackFilter->Prg.GlobalData.Size()<VM_FIXEDGLOBALSIZE)
{
StackFilter->Prg.GlobalData.Reset();
StackFilter->Prg.GlobalData.Add(VM_FIXEDGLOBALSIZE);
}
byte *GlobalData=&StackFilter->Prg.GlobalData[0];
for (int I=0;I<7;I++)
VM.SetLowEndianValue((uint *)&GlobalData[I*4],StackFilter->Prg.InitR[I]);
VM.SetLowEndianValue((uint *)&GlobalData[0x1c],StackFilter->BlockLength);
VM.SetLowEndianValue((uint *)&GlobalData[0x20],0);
VM.SetLowEndianValue((uint *)&GlobalData[0x2c],StackFilter->ExecCount);
memset(&GlobalData[0x30],0,16);
if (FirstByte & 8) // put data block passed as parameter if any
{
if (Inp.Overflow(3))
return(false);
uint DataSize=RarVM::ReadData(Inp);
if (DataSize>VM_GLOBALMEMSIZE-VM_FIXEDGLOBALSIZE)
return(false);
unsigned int CurSize=StackFilter->Prg.GlobalData.Size();
if (CurSize<DataSize+VM_FIXEDGLOBALSIZE)
StackFilter->Prg.GlobalData.Add(DataSize+VM_FIXEDGLOBALSIZE-CurSize);
byte *GlobalData=&StackFilter->Prg.GlobalData[VM_FIXEDGLOBALSIZE];
for (int I=0;I<DataSize;I++)
{
if (Inp.Overflow(3))
return(false);
GlobalData[I]=Inp.fgetbits()>>8;
Inp.faddbits(8);
}
}
Inp.InitBitInput();
return(true);
}
bool Unpack::UnpReadBuf()
{
int DataSize=ReadTop-InAddr;
if (DataSize<0)
return(false);
if (InAddr>BitInput::MAX_SIZE/2)
{
if (DataSize>0)
memmove(InBuf,InBuf+InAddr,DataSize);
InAddr=0;
ReadTop=DataSize;
}
else
DataSize=ReadTop;
int ReadCode=UnpIO->UnpRead(InBuf+DataSize,(BitInput::MAX_SIZE-DataSize)&~0xf);
if (ReadCode>0)
ReadTop+=ReadCode;
ReadBorder=ReadTop-30;
return(ReadCode!=-1);
}
void Unpack::UnpWriteBuf()
{
unsigned int WrittenBorder=WrPtr;
unsigned int WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
for (int I=0;I<PrgStack.Size();I++)
{
UnpackFilter *flt=PrgStack[I];
if (flt==NULL)
continue;
if (flt->NextWindow)
{
flt->NextWindow=false;
continue;
}
unsigned int BlockStart=flt->BlockStart;
unsigned int BlockLength=flt->BlockLength;
if (((BlockStart-WrittenBorder)&MAXWINMASK)<WriteSize)
{
if (WrittenBorder!=BlockStart)
{
UnpWriteArea(WrittenBorder,BlockStart);
WrittenBorder=BlockStart;
WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
}
if (BlockLength<=WriteSize)
{
unsigned int BlockEnd=(BlockStart+BlockLength)&MAXWINMASK;
if (BlockStart<BlockEnd || BlockEnd==0)
VM.SetMemory(0,Window+BlockStart,BlockLength);
else
{
unsigned int FirstPartLength=MAXWINSIZE-BlockStart;
VM.SetMemory(0,Window+BlockStart,FirstPartLength);
VM.SetMemory(FirstPartLength,Window,BlockEnd);
}
VM_PreparedProgram *ParentPrg=&Filters[flt->ParentFilter]->Prg;
VM_PreparedProgram *Prg=&flt->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// copy global data from previous script execution if any
Prg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&Prg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(Prg);
if (Prg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// save global data for next script execution
if (ParentPrg->GlobalData.Size()<Prg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(Prg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&Prg->GlobalData[VM_FIXEDGLOBALSIZE],Prg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
byte *FilteredData=Prg->FilteredData;
unsigned int FilteredDataSize=Prg->FilteredDataSize;
delete PrgStack[I];
PrgStack[I]=NULL;
while (I+1<PrgStack.Size())
{
UnpackFilter *NextFilter=PrgStack[I+1];
if (NextFilter==NULL || NextFilter->BlockStart!=BlockStart ||
NextFilter->BlockLength!=FilteredDataSize || NextFilter->NextWindow)
break;
// apply several filters to same data block
VM.SetMemory(0,FilteredData,FilteredDataSize);
VM_PreparedProgram *ParentPrg=&Filters[NextFilter->ParentFilter]->Prg;
VM_PreparedProgram *NextPrg=&NextFilter->Prg;
if (ParentPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// copy global data from previous script execution if any
NextPrg->GlobalData.Alloc(ParentPrg->GlobalData.Size());
memcpy(&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],ParentPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
ExecuteCode(NextPrg);
if (NextPrg->GlobalData.Size()>VM_FIXEDGLOBALSIZE)
{
// save global data for next script execution
if (ParentPrg->GlobalData.Size()<NextPrg->GlobalData.Size())
ParentPrg->GlobalData.Alloc(NextPrg->GlobalData.Size());
memcpy(&ParentPrg->GlobalData[VM_FIXEDGLOBALSIZE],&NextPrg->GlobalData[VM_FIXEDGLOBALSIZE],NextPrg->GlobalData.Size()-VM_FIXEDGLOBALSIZE);
}
else
ParentPrg->GlobalData.Reset();
FilteredData=NextPrg->FilteredData;
FilteredDataSize=NextPrg->FilteredDataSize;
I++;
delete PrgStack[I];
PrgStack[I]=NULL;
}
UnpIO->UnpWrite(FilteredData,FilteredDataSize);
UnpSomeRead=true;
WrittenFileSize+=FilteredDataSize;
WrittenBorder=BlockEnd;
WriteSize=(UnpPtr-WrittenBorder)&MAXWINMASK;
}
else
{
for (int J=I;J<PrgStack.Size();J++)
{
UnpackFilter *flt=PrgStack[J];
if (flt!=NULL && flt->NextWindow)
flt->NextWindow=false;
}
WrPtr=WrittenBorder;
return;
}
}
}
UnpWriteArea(WrittenBorder,UnpPtr);
WrPtr=UnpPtr;
}
void Unpack::ExecuteCode(VM_PreparedProgram *Prg)
{
if (Prg->GlobalData.Size()>0)
{
Prg->InitR[6]=int64to32(WrittenFileSize);
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x24],int64to32(WrittenFileSize));
VM.SetLowEndianValue((uint *)&Prg->GlobalData[0x28],int64to32(WrittenFileSize>>31>>1));
VM.Execute(Prg);
}
}
void Unpack::UnpWriteArea(unsigned int StartPtr,unsigned int EndPtr)
{
if (EndPtr!=StartPtr)
UnpSomeRead=true;
if (EndPtr<StartPtr)
{
UnpWriteData(&Window[StartPtr],-StartPtr & MAXWINMASK);
UnpWriteData(Window,EndPtr);
UnpAllBuf=true;
}
else
UnpWriteData(&Window[StartPtr],EndPtr-StartPtr);
}
void Unpack::UnpWriteData(byte *Data,int Size)
{
if (WrittenFileSize>=DestUnpSize)
return;
int WriteSize=Size;
Int64 LeftToWrite=DestUnpSize-WrittenFileSize;
if (WriteSize>LeftToWrite)
WriteSize=int64to32(LeftToWrite);
UnpIO->UnpWrite(Data,WriteSize);
WrittenFileSize+=Size;
}
bool Unpack::ReadTables()
{
byte BitLength[BC];
unsigned char Table[HUFF_TABLE_SIZE];
if (InAddr>ReadTop-25)
if (!UnpReadBuf())
return(false);
faddbits((8-InBit)&7);
unsigned int BitField=fgetbits();
if (BitField & 0x8000)
{
UnpBlockType=BLOCK_PPM;
return(PPM.DecodeInit(this,PPMEscChar));
}
UnpBlockType=BLOCK_LZ;
PrevLowDist=0;
LowDistRepCount=0;
if (!(BitField & 0x4000))
memset(UnpOldTable,0,sizeof(UnpOldTable));
faddbits(2);
{
for (int I=0;I<BC;I++)
{
int Length=(byte)(fgetbits() >> 12);
faddbits(4);
if (Length==15)
{
int ZeroCount=(byte)(fgetbits() >> 12);
faddbits(4);
if (ZeroCount==0)
BitLength[I]=15;
else
{
ZeroCount+=2;
while (ZeroCount-- > 0 && I<sizeof(BitLength)/sizeof(BitLength[0]))
BitLength[I++]=0;
I--;
}
}
else
BitLength[I]=Length;
}
}
MakeDecodeTables(BitLength,(struct Decode *)&BD,BC);
const int TableSize=HUFF_TABLE_SIZE;
for (int I=0;I<TableSize;)
{
if (InAddr>ReadTop-5)
if (!UnpReadBuf())
return(false);
int Number=DecodeNumber((struct Decode *)&BD);
if (Number<16)
{
Table[I]=(Number+UnpOldTable[I]) & 0xf;
I++;
}
else
if (Number<18)
{
int N;
if (Number==16)
{
N=(fgetbits() >> 13)+3;
faddbits(3);
}
else
{
N=(fgetbits() >> 9)+11;
faddbits(7);
}
while (N-- > 0 && I<TableSize)
{
Table[I]=Table[I-1];
I++;
}
}
else
{
int N;
if (Number==18)
{
N=(fgetbits() >> 13)+3;
faddbits(3);
}
else
{
N=(fgetbits() >> 9)+11;
faddbits(7);
}
while (N-- > 0 && I<TableSize)
Table[I++]=0;
}
}
TablesRead=true;
if (InAddr>ReadTop)
return(false);
MakeDecodeTables(&Table[0],(struct Decode *)&LD,NC);
MakeDecodeTables(&Table[NC],(struct Decode *)&DD,DC);
MakeDecodeTables(&Table[NC+DC],(struct Decode *)&LDD,LDC);
MakeDecodeTables(&Table[NC+DC+LDC],(struct Decode *)&RD,RC);
memcpy(UnpOldTable,Table,sizeof(UnpOldTable));
return(true);
}
void Unpack::UnpInitData(int Solid)
{
if (!Solid)
{
TablesRead=false;
memset(OldDist,0,sizeof(OldDist));
OldDistPtr=0;
LastDist=LastLength=0;
// memset(Window,0,MAXWINSIZE);
memset(UnpOldTable,0,sizeof(UnpOldTable));
memset(&LD,0,sizeof(LD));
memset(&DD,0,sizeof(DD));
memset(&LDD,0,sizeof(LDD));
memset(&RD,0,sizeof(RD));
memset(&BD,0,sizeof(BD));
UnpPtr=WrPtr=0;
PPMEscChar=2;
UnpBlockType=BLOCK_LZ;
InitFilters();
}
InitBitInput();
WrittenFileSize=0;
ReadTop=0;
ReadBorder=0;
#ifndef SFX_MODULE
UnpInitData20(Solid);
#endif
}
void Unpack::InitFilters()
{
delete LastStackFilter;
LastStackFilter = NULL;
OldFilterLengths.Reset();
LastFilter=0;
{
for (int I=0;I<Filters.Size();I++)
delete Filters[I];
}
Filters.Reset();
for (int I=0;I<PrgStack.Size();I++)
delete PrgStack[I];
PrgStack.Reset();
}
void Unpack::MakeDecodeTables(unsigned char *LenTab,struct Decode *Dec,int Size)
{
int LenCount[16],TmpPos[16],I;
long M,N;
memset(LenCount,0,sizeof(LenCount));
memset(Dec->DecodeNum,0,Size*sizeof(*Dec->DecodeNum));
for (I=0;I<Size;I++)
LenCount[LenTab[I] & 0xF]++;
LenCount[0]=0;
for (TmpPos[0]=Dec->DecodePos[0]=Dec->DecodeLen[0]=0,N=0,I=1;I<16;I++)
{
N=2*(N+LenCount[I]);
M=N<<(15-I);
if (M>0xFFFF)
M=0xFFFF;
Dec->DecodeLen[I]=(unsigned int)M;
TmpPos[I]=Dec->DecodePos[I]=Dec->DecodePos[I-1]+LenCount[I-1];
}
for (I=0;I<Size;I++)
if (LenTab[I]!=0)
Dec->DecodeNum[TmpPos[LenTab[I] & 0xF]++]=I;
Dec->MaxNum=Size;
}