Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#if defined(AUDIO_ALSA)
|
|
|
|
#include <ruby/audio/alsa.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_AO)
|
|
|
|
#include <ruby/audio/ao.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_ASIO)
|
|
|
|
#include <ruby/audio/asio.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_DIRECTSOUND)
|
|
|
|
#include <ruby/audio/directsound.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OPENAL)
|
|
|
|
#include <ruby/audio/openal.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OSS)
|
|
|
|
#include <ruby/audio/oss.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_PULSEAUDIO)
|
|
|
|
#include <ruby/audio/pulseaudio.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_PULSEAUDIOSIMPLE)
|
2018-08-09 04:15:56 +00:00
|
|
|
#include <ruby/audio/pulseaudio-simple.cpp>
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_WASAPI)
|
|
|
|
#include <ruby/audio/wasapi.cpp>
|
|
|
|
#endif
|
|
|
|
|
Update to bsnes v107.1 release.
byuu says:
Don't let the point release fool you, there are many significant changes in this
release. I will be keeping bsnes releases using a point system until the new
higan release is ready.
Changelog:
- GUI: added high DPI support
- GUI: fixed the state manager image preview
- Windows: added a new waveOut driver with support for dynamic rate control
- Windows: corrected the XAudio 2.1 dynamic rate control support [BearOso]
- Windows: corrected the Direct3D 9.0 fullscreen exclusive window centering
- Windows: fixed XInput controller support on Windows 10
- SFC: added high-level emulation for the DSP1, DSP2, DSP4, ST010, and Cx4
coprocessors
- SFC: fixed a slight rendering glitch in the intro to Megalomania
If the coprocessor firmware is missing, bsnes will fallback on HLE where it is
supported, which is everything other than SD Gundam GX and the two Hayazashi
Nidan Morita Shougi games.
The Windows dynamic rate control works best with Direct3D in fullscreen
exclusive mode. I recommend the waveOut driver over the XAudio 2.1 driver, as it
is not possible to target a single XAudio2 version on all Windows OS releases.
The waveOut driver should work everywhere out of the box.
Note that with DRC, the synchronization source is your monitor, so you will
want to be running at 60hz (NTSC) or 50hz (PAL). If you have an adaptive sync
monitor, you should instead use the WASAPI (exclusive) or ASIO audio driver.
2019-04-09 01:16:30 +00:00
|
|
|
#if defined(AUDIO_WAVEOUT)
|
|
|
|
#include <ruby/audio/waveout.cpp>
|
|
|
|
#endif
|
|
|
|
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#if defined(AUDIO_XAUDIO2)
|
|
|
|
#include <ruby/audio/xaudio2.cpp>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
namespace ruby {
|
|
|
|
|
|
|
|
auto Audio::setExclusive(bool exclusive) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->exclusive == exclusive) return true;
|
|
|
|
if(!instance->hasExclusive()) return false;
|
|
|
|
if(!instance->setExclusive(instance->exclusive = exclusive)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setContext(uintptr context) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->context == context) return true;
|
|
|
|
if(!instance->hasContext()) return false;
|
|
|
|
if(!instance->setContext(instance->context = context)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setDevice(string device) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->device == device) return true;
|
|
|
|
if(!instance->hasDevice(device)) return false;
|
|
|
|
if(!instance->setDevice(instance->device = device)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setBlocking(bool blocking) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->blocking == blocking) return true;
|
|
|
|
if(!instance->hasBlocking()) return false;
|
|
|
|
if(!instance->setBlocking(instance->blocking = blocking)) return false;
|
|
|
|
for(auto& resampler : resamplers) resampler.reset(instance->frequency);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setDynamic(bool dynamic) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->dynamic == dynamic) return true;
|
|
|
|
if(!instance->hasDynamic()) return false;
|
|
|
|
if(!instance->setDynamic(instance->dynamic = dynamic)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setChannels(uint channels) -> bool {
|
Update to v106r57 release.
byuu says:
I've added tool tips to hiro for Windows, GTK, and Qt. I'm unsure how to
add them for Cocoa. I wasted am embarrassing ~14 hours implementing tool
tips from scratch on Windows, because the `TOOLTIPS_CLASS` widget just
absolutely refused to show up, no matter what I tried. As such, they're
not quite 100% native, but I would really appreciate any patch
submissions to help improve my implementation.
I added tool tips to all of the confusing settings in bsnes. And of
course, for those of you who don't like them, there's a configuration
file setting to turn them off globally.
I also improved Mega Drive handling of the Game Genie a bit, and
restructured the way the Settings class works in bsnes.
Starting now, I'm feature-freezing bsnes and higan. From this point
forward:
- polishing up and fixing bugs caused by the ruby/hiro changes
- adding DRC to XAudio2, and maybe exclusive mode to WGL
- correcting FEoEZ (English) to load and work again out of the box
Once that's done, a final beta of bsnes will go out, I'll fix any
reported bugs that I'm able to, and then v107 should be ready. This time
with higan being functional, but marked as v107 beta. v108 will restore
higan to production status again, alongside bsnes.
2018-08-08 08:46:58 +00:00
|
|
|
if(resamplers.size() != channels) {
|
|
|
|
resamplers.reset();
|
|
|
|
resamplers.resize(channels);
|
|
|
|
for(auto& resampler : resamplers) resampler.reset(instance->frequency);
|
|
|
|
}
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->channels == channels) return true;
|
|
|
|
if(!instance->hasChannels(channels)) return false;
|
|
|
|
if(!instance->setChannels(instance->channels = channels)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto Audio::setFrequency(uint frequency) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->frequency == frequency) return true;
|
|
|
|
if(!instance->hasFrequency(frequency)) return false;
|
|
|
|
if(!instance->setFrequency(instance->frequency = frequency)) return false;
|
|
|
|
for(auto& resampler : resamplers) resampler.reset(instance->frequency);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::setLatency(uint latency) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(instance->latency == latency) return true;
|
|
|
|
if(!instance->hasLatency(latency)) return false;
|
|
|
|
if(!instance->setLatency(instance->latency = latency)) return false;
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
//
|
|
|
|
|
|
|
|
auto Audio::clear() -> void {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
for(auto& resampler : resamplers) resampler.reset(instance->frequency);
|
|
|
|
return instance->clear();
|
2018-07-31 02:23:12 +00:00
|
|
|
}
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto Audio::level() -> double {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
return instance->level();
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
}
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto Audio::output(const double samples[]) -> void {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(!instance->dynamic) return instance->output(samples);
|
2018-07-31 02:23:12 +00:00
|
|
|
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
auto maxDelta = 0.005;
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
double fillLevel = instance->level();
|
|
|
|
double dynamicFrequency = ((1.0 - maxDelta) + 2.0 * fillLevel * maxDelta) * instance->frequency;
|
2018-07-31 02:23:12 +00:00
|
|
|
for(auto& resampler : resamplers) {
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
resampler.setInputFrequency(dynamicFrequency);
|
|
|
|
resampler.write(*samples++);
|
|
|
|
}
|
2018-07-31 02:23:12 +00:00
|
|
|
|
|
|
|
while(resamplers.first().pending()) {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
double samples[instance->channels];
|
|
|
|
for(uint n : range(instance->channels)) samples[n] = resamplers[n].read();
|
|
|
|
instance->output(samples);
|
2018-07-31 02:23:12 +00:00
|
|
|
}
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
}
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
//
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
auto Audio::create(string driver) -> bool {
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
self.instance.reset();
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
if(!driver) driver = optimalDriver();
|
|
|
|
|
|
|
|
#if defined(AUDIO_ALSA)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "ALSA") self.instance = new AudioALSA(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_AO)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "libao") self.instance = new AudioAO(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_ASIO)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "ASIO") self.instance = new AudioASIO(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_DIRECTSOUND)
|
2018-08-09 04:15:56 +00:00
|
|
|
if(driver == "DirectSound 7.0") self.instance = new AudioDirectSound(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OPENAL)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "OpenAL") self.instance = new AudioOpenAL(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OSS)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "OSS") self.instance = new AudioOSS(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_PULSEAUDIO)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "PulseAudio") self.instance = new AudioPulseAudio(*this);
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_PULSEAUDIOSIMPLE)
|
2018-08-09 04:15:56 +00:00
|
|
|
if(driver == "PulseAudio Simple") self.instance = new AudioPulseAudioSimple(*this);
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_WASAPI)
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(driver == "WASAPI") self.instance = new AudioWASAPI(*this);
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
|
|
|
|
Update to bsnes v107.1 release.
byuu says:
Don't let the point release fool you, there are many significant changes in this
release. I will be keeping bsnes releases using a point system until the new
higan release is ready.
Changelog:
- GUI: added high DPI support
- GUI: fixed the state manager image preview
- Windows: added a new waveOut driver with support for dynamic rate control
- Windows: corrected the XAudio 2.1 dynamic rate control support [BearOso]
- Windows: corrected the Direct3D 9.0 fullscreen exclusive window centering
- Windows: fixed XInput controller support on Windows 10
- SFC: added high-level emulation for the DSP1, DSP2, DSP4, ST010, and Cx4
coprocessors
- SFC: fixed a slight rendering glitch in the intro to Megalomania
If the coprocessor firmware is missing, bsnes will fallback on HLE where it is
supported, which is everything other than SD Gundam GX and the two Hayazashi
Nidan Morita Shougi games.
The Windows dynamic rate control works best with Direct3D in fullscreen
exclusive mode. I recommend the waveOut driver over the XAudio 2.1 driver, as it
is not possible to target a single XAudio2 version on all Windows OS releases.
The waveOut driver should work everywhere out of the box.
Note that with DRC, the synchronization source is your monitor, so you will
want to be running at 60hz (NTSC) or 50hz (PAL). If you have an adaptive sync
monitor, you should instead use the WASAPI (exclusive) or ASIO audio driver.
2019-04-09 01:16:30 +00:00
|
|
|
#if defined(AUDIO_WAVEOUT)
|
|
|
|
if(driver == "waveOut") self.instance = new AudioWaveOut(*this);
|
|
|
|
#endif
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
#if defined(AUDIO_XAUDIO2)
|
2018-08-09 04:15:56 +00:00
|
|
|
if(driver == "XAudio 2.1") self.instance = new AudioXAudio2(*this);
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
if(!self.instance) self.instance = new AudioDriver(*this);
|
2018-07-31 02:23:12 +00:00
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
return self.instance->create();
|
2018-07-31 02:23:12 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::hasDrivers() -> vector<string> {
|
|
|
|
return {
|
|
|
|
|
|
|
|
#if defined(AUDIO_ASIO)
|
|
|
|
"ASIO",
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_WASAPI)
|
2018-07-31 02:23:12 +00:00
|
|
|
"WASAPI",
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_XAUDIO2)
|
2018-08-09 04:15:56 +00:00
|
|
|
"XAudio 2.1",
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_DIRECTSOUND)
|
2018-08-09 04:15:56 +00:00
|
|
|
"DirectSound 7.0",
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
|
|
|
|
Update to bsnes v107.1 release.
byuu says:
Don't let the point release fool you, there are many significant changes in this
release. I will be keeping bsnes releases using a point system until the new
higan release is ready.
Changelog:
- GUI: added high DPI support
- GUI: fixed the state manager image preview
- Windows: added a new waveOut driver with support for dynamic rate control
- Windows: corrected the XAudio 2.1 dynamic rate control support [BearOso]
- Windows: corrected the Direct3D 9.0 fullscreen exclusive window centering
- Windows: fixed XInput controller support on Windows 10
- SFC: added high-level emulation for the DSP1, DSP2, DSP4, ST010, and Cx4
coprocessors
- SFC: fixed a slight rendering glitch in the intro to Megalomania
If the coprocessor firmware is missing, bsnes will fallback on HLE where it is
supported, which is everything other than SD Gundam GX and the two Hayazashi
Nidan Morita Shougi games.
The Windows dynamic rate control works best with Direct3D in fullscreen
exclusive mode. I recommend the waveOut driver over the XAudio 2.1 driver, as it
is not possible to target a single XAudio2 version on all Windows OS releases.
The waveOut driver should work everywhere out of the box.
Note that with DRC, the synchronization source is your monitor, so you will
want to be running at 60hz (NTSC) or 50hz (PAL). If you have an adaptive sync
monitor, you should instead use the WASAPI (exclusive) or ASIO audio driver.
2019-04-09 01:16:30 +00:00
|
|
|
#if defined(AUDIO_WAVEOUT)
|
|
|
|
"waveOut",
|
|
|
|
#endif
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
#if defined(AUDIO_ALSA)
|
|
|
|
"ALSA",
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OSS)
|
|
|
|
"OSS",
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(AUDIO_OPENAL)
|
|
|
|
"OpenAL",
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#endif
|
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
#if defined(AUDIO_PULSEAUDIO)
|
|
|
|
"PulseAudio",
|
|
|
|
#endif
|
Update to 20180729 release.
byuu wrote:
Sigh ...
asio.hpp needs #include <nall/windows/registry.hpp>
[Since the last WIP, byuu also posted the following message. -Ed.]
ruby drivers have all been updated (but not tested outside of BSD), and
I redesigned the settings window. The driver functionality all exists on
a new "Drivers" panel, the emulator/hack settings go to a
"Configuration" panel, and the video/audio panels lose driver settings.
As does the settings menu and its synchronize options.
I want to start pushing toward a v107 release. Critically, I will need
DirectSound and ALSA to support dynamic rate control. I'd also like to
eliminate the other system manifest.bml files. I need to update the
cheat code database format, and bundle at least a few quark shaders --
although I still need to default to Direct3D on Windows.
Turbo keys would be nice, if it's not too much effort. Aside from
netplay, it's the last significant feature I'm missing.
I think for v107, higan is going to be a bit rough around the edges
compared to bsnes. And I don't think it's practical to finish the bsnes
localization support.
I'm thinking we probably want another WIP to iron out any critical
issues, but this time there should be a feature freeze with the next
WIP.
2018-07-29 13:24:38 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
#if defined(AUDIO_PULSEAUDIOSIMPLE)
|
2018-08-09 04:15:56 +00:00
|
|
|
"PulseAudio Simple",
|
2018-07-31 02:23:12 +00:00
|
|
|
#endif
|
Update to 20180729 release.
byuu wrote:
Sigh ...
asio.hpp needs #include <nall/windows/registry.hpp>
[Since the last WIP, byuu also posted the following message. -Ed.]
ruby drivers have all been updated (but not tested outside of BSD), and
I redesigned the settings window. The driver functionality all exists on
a new "Drivers" panel, the emulator/hack settings go to a
"Configuration" panel, and the video/audio panels lose driver settings.
As does the settings menu and its synchronize options.
I want to start pushing toward a v107 release. Critically, I will need
DirectSound and ALSA to support dynamic rate control. I'd also like to
eliminate the other system manifest.bml files. I need to update the
cheat code database format, and bundle at least a few quark shaders --
although I still need to default to Direct3D on Windows.
Turbo keys would be nice, if it's not too much effort. Aside from
netplay, it's the last significant feature I'm missing.
I think for v107, higan is going to be a bit rough around the edges
compared to bsnes. And I don't think it's practical to finish the bsnes
localization support.
I'm thinking we probably want another WIP to iron out any critical
issues, but this time there should be a feature freeze with the next
WIP.
2018-07-29 13:24:38 +00:00
|
|
|
|
2018-07-31 02:23:12 +00:00
|
|
|
#if defined(AUDIO_AO)
|
|
|
|
"libao",
|
|
|
|
#endif
|
|
|
|
|
|
|
|
"None"};
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::optimalDriver() -> string {
|
2020-02-23 11:23:25 +00:00
|
|
|
#if defined(AUDIO_WASAPI)
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
return "WASAPI";
|
2020-02-23 11:23:25 +00:00
|
|
|
#elif defined(AUDIO_ASIO)
|
|
|
|
return "ASIO";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_XAUDIO2)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "XAudio 2.1";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_DIRECTSOUND)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "DirectSound 7.0";
|
Update to bsnes v107.1 release.
byuu says:
Don't let the point release fool you, there are many significant changes in this
release. I will be keeping bsnes releases using a point system until the new
higan release is ready.
Changelog:
- GUI: added high DPI support
- GUI: fixed the state manager image preview
- Windows: added a new waveOut driver with support for dynamic rate control
- Windows: corrected the XAudio 2.1 dynamic rate control support [BearOso]
- Windows: corrected the Direct3D 9.0 fullscreen exclusive window centering
- Windows: fixed XInput controller support on Windows 10
- SFC: added high-level emulation for the DSP1, DSP2, DSP4, ST010, and Cx4
coprocessors
- SFC: fixed a slight rendering glitch in the intro to Megalomania
If the coprocessor firmware is missing, bsnes will fallback on HLE where it is
supported, which is everything other than SD Gundam GX and the two Hayazashi
Nidan Morita Shougi games.
The Windows dynamic rate control works best with Direct3D in fullscreen
exclusive mode. I recommend the waveOut driver over the XAudio 2.1 driver, as it
is not possible to target a single XAudio2 version on all Windows OS releases.
The waveOut driver should work everywhere out of the box.
Note that with DRC, the synchronization source is your monitor, so you will
want to be running at 60hz (NTSC) or 50hz (PAL). If you have an adaptive sync
monitor, you should instead use the WASAPI (exclusive) or ASIO audio driver.
2019-04-09 01:16:30 +00:00
|
|
|
#elif defined(AUDIO_WAVEOUT)
|
|
|
|
return "waveOut";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_ALSA)
|
|
|
|
return "ALSA";
|
|
|
|
#elif defined(AUDIO_OSS)
|
|
|
|
return "OSS";
|
|
|
|
#elif defined(AUDIO_OPENAL)
|
|
|
|
return "OpenAL";
|
|
|
|
#elif defined(AUDIO_PULSEAUDIO)
|
|
|
|
return "PulseAudio";
|
|
|
|
#elif defined(AUDIO_PULSEAUDIOSIMPLE)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "PulseAudio Simple";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_AO)
|
|
|
|
return "libao";
|
|
|
|
#else
|
|
|
|
return "None";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Audio::safestDriver() -> string {
|
Update to bsnes v107.1 release.
byuu says:
Don't let the point release fool you, there are many significant changes in this
release. I will be keeping bsnes releases using a point system until the new
higan release is ready.
Changelog:
- GUI: added high DPI support
- GUI: fixed the state manager image preview
- Windows: added a new waveOut driver with support for dynamic rate control
- Windows: corrected the XAudio 2.1 dynamic rate control support [BearOso]
- Windows: corrected the Direct3D 9.0 fullscreen exclusive window centering
- Windows: fixed XInput controller support on Windows 10
- SFC: added high-level emulation for the DSP1, DSP2, DSP4, ST010, and Cx4
coprocessors
- SFC: fixed a slight rendering glitch in the intro to Megalomania
If the coprocessor firmware is missing, bsnes will fallback on HLE where it is
supported, which is everything other than SD Gundam GX and the two Hayazashi
Nidan Morita Shougi games.
The Windows dynamic rate control works best with Direct3D in fullscreen
exclusive mode. I recommend the waveOut driver over the XAudio 2.1 driver, as it
is not possible to target a single XAudio2 version on all Windows OS releases.
The waveOut driver should work everywhere out of the box.
Note that with DRC, the synchronization source is your monitor, so you will
want to be running at 60hz (NTSC) or 50hz (PAL). If you have an adaptive sync
monitor, you should instead use the WASAPI (exclusive) or ASIO audio driver.
2019-04-09 01:16:30 +00:00
|
|
|
#if defined(AUDIO_WAVEOUT)
|
|
|
|
return "waveOut";
|
|
|
|
#elif defined(AUDIO_DIRECTSOUND)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "DirectSound 7.0";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_WASAPI)
|
|
|
|
return "WASAPI";
|
|
|
|
#elif defined(AUDIO_XAUDIO2)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "XAudio 2.1";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_ALSA)
|
|
|
|
return "ALSA";
|
|
|
|
#elif defined(AUDIO_OSS)
|
|
|
|
return "OSS";
|
|
|
|
#elif defined(AUDIO_OPENAL)
|
|
|
|
return "OpenAL";
|
|
|
|
#elif defined(AUDIO_PULSEAUDIO)
|
|
|
|
return "PulseAudio";
|
|
|
|
#elif defined(AUDIO_PULSEAUDIOSIMPLE)
|
2018-08-09 04:15:56 +00:00
|
|
|
return "PulseAudio Simple";
|
Update to 20180728 release.
byuu says:
Sigh, I seem to be spiraling a bit here ... but the work is very
important. Hopefully I can get a solid WIP together soon. But for now...
I've integrated dynamic rate control into ruby::Audio via
setDynamic(bool) for now. It's very demanding, as you would expect. When
it's not in use, I realized the OSS driver's performance was pretty bad
due to calling write() for every sample for every channel. I implemented
a tiny 256-sample buffer and bsnes went from 290fps to 330fps on my
FreeBSD desktop. It may be possible to do the same buffering with DRC,
but for now, I'm not doing so, and adjusting the audio input frequency
on every sample.
I also added ruby::Video::setFlush(bool), which is available only in the
OpenGL drivers, and this causes glFinish() to be called after swapping
display buffers. I really couldn't think of a good name for this, "hard
GPU sync" sounds kind of silly. In my view, flush is what commits queued
events. Eg fflush(). OpenGL of course treats glFlush differently (I
really don't even know what the point of it is even after reading the
manual ...), and then has glFinish ... meh, whatever. It's
setFlush(bool) until I come up with something better. Also as expected,
this one's a big hit to performance.
To implement the DRC, I started putting helper functions into the ruby
video/audio/input core classes. And then the XVideo driver started
crashing. It took hours and hours and hours to track down the problem:
you have to clear XSetWindowAttributes to zero before calling
XCreateWindow. No amount of `--sync`, `gdb break gdk_x_error`, `-Og`,
etc will make Xlib be even remotely helpful in debugging errors like
this.
The GLX, GLX2, and XVideo drivers basically worked by chance before. If
the stack frame had the right memory cleared, it worked. Otherwise it'd
crash with BadValue, and my changing things broke that condition on the
XVideo driver. So this has been fixed in all three now.
Once XVideo was running again, I realized that non-power of two video
sizes were completely broken for the YUV formats. It took a while, but I
managed to fix all of that as well.
At this point, most of ruby is going to be broken outside of FreeBSD, as
I still need to finish updating all the drivers.
2018-07-28 11:21:39 +00:00
|
|
|
#elif defined(AUDIO_AO)
|
|
|
|
return "libao";
|
|
|
|
#elif defined(AUDIO_ASIO)
|
|
|
|
return "ASIO";
|
|
|
|
#else
|
|
|
|
return "None";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|