bsnes/higan/sfc/slot/bsmemory/bsmemory.cpp

125 lines
2.5 KiB
C++
Raw Normal View History

#include <sfc/sfc.hpp>
namespace SuperFamicom {
BSMemory bsmemory;
auto BSMemory::init() -> void {
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
}
auto BSMemory::load() -> void {
Update to v075 release. byuu says: This release brings improved Super Game Boy emulation, the final SHA256 hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user interface improvements, and major internal code restructuring. Changelog (since v074): - completely rewrote memory sub-system to support 1-byte granularity in XML mapping - removed Memory inheritance and MMIO class completely, any address can be mapped to any function now - SuperFX: removed SuperFXBus : Bus, now implemented manually - SA-1: removed SA1Bus : Bus, now implemented manually - entire bus mapping is now static, happens once on cartridge load - as a result, read/write handlers now handle MMC mapping; slower average case, far faster worst case - namespace memory is no more, RAM arrays are stored inside the chips they are owned by now - GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening scrolling - GameBoy: added serial emulation (cannot connect to another GB yet), fixes Shin Megami Tensei - Devichil - GameBoy: improved LCD STAT emulation, fixes Sagaia - ui: added fullscreen support (F11 key), video settings allows for three scale settings - ui: fixed brightness, contrast, gamma, audio volume, input frequency values on program startup - ui: since Qt is dead, config file becomes bsnes.cfg once again - Super Game Boy: you can now load the BIOS without a game inserted to see a pretty white box - ui-gameboy: can be built without SNES components now - libsnes: now a UI target, compile with 'make ui=ui-libsnes' - libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search, etc) - source: removed launcher/, as the Qt port is now gone - source: Makefile restructuring to better support new ui targets - source: lots of other internal code cleanup work
2011-01-27 08:52:34 +00:00
if(memory.size() == 0) {
Update to v099r07 release. byuu says: Changelog: - (hopefully) fixed BS Memory and Sufami Turbo slot loading - ported GB, GBA, WS cores to use nall/vfs - completely removed loadRequest, saveRequest functionality from Emulator::Interface and ui-tomoko - loadRequest(folder) is now load(folder) - save states now use a shared Emulator::SerializerVersion string - whenever this is bumped, all older states will break; but this makes bumping state versions way easier - also, the version string makes it a lot easier to identify compatibility windows for save states - SNES PPU now uses uint16 vram[32768] for memory accesses [hex_usr] NOTE: Super Game Boy loading is currently broken, and I'm not entirely sure how to fix it :/ The file loading handoff was -really- complicated, and so I'm kind of at a loss ... so for now, don't try it. Everything else should theoretically work, so please report any bugs you find. So, this is pretty much it. I'd be very curious to hear feedback from people who objected to the old nall/stream design, whether they are happy with the new file loading system or think it could use further improvements. The 16-bit VRAM turned out to be a wash on performance (roughly the same as before. 1fps slower on Zelda 3, 1fps faster on Yoshi's Island.) The main reason for this was because Yoshi's Island was breaking horribly until I changed the vramRead, vramWrite functions to take uint15 instead of uint16. I suspect the issue is we're using uint16s in some areas now that need to be uint15, and this game is setting the VRAM address to 0x8000+, causing us to go out of bounds on memory accesses. But ... I want to go ahead and do something cute for fun, and just because we can ... and this new interface is so incredibly perfect for it!! I want to support an SNES unit with 128KiB of VRAM. Not out of the box, but as a fun little tweakable thing. The SNES was clearly designed to support that, they just didn't use big enough VRAM chips, and left one of the lines disconnected. So ... let's connect it anyway! In the end, if we design it right, the only code difference should be one area where we mask by 15-bits instead of by 16-bits.
2016-06-24 12:09:30 +00:00
memory.allocate(1024 * 1024);
Update to v075 release. byuu says: This release brings improved Super Game Boy emulation, the final SHA256 hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user interface improvements, and major internal code restructuring. Changelog (since v074): - completely rewrote memory sub-system to support 1-byte granularity in XML mapping - removed Memory inheritance and MMIO class completely, any address can be mapped to any function now - SuperFX: removed SuperFXBus : Bus, now implemented manually - SA-1: removed SA1Bus : Bus, now implemented manually - entire bus mapping is now static, happens once on cartridge load - as a result, read/write handlers now handle MMC mapping; slower average case, far faster worst case - namespace memory is no more, RAM arrays are stored inside the chips they are owned by now - GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening scrolling - GameBoy: added serial emulation (cannot connect to another GB yet), fixes Shin Megami Tensei - Devichil - GameBoy: improved LCD STAT emulation, fixes Sagaia - ui: added fullscreen support (F11 key), video settings allows for three scale settings - ui: fixed brightness, contrast, gamma, audio volume, input frequency values on program startup - ui: since Qt is dead, config file becomes bsnes.cfg once again - Super Game Boy: you can now load the BIOS without a game inserted to see a pretty white box - ui-gameboy: can be built without SNES components now - libsnes: now a UI target, compile with 'make ui=ui-libsnes' - libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search, etc) - source: removed launcher/, as the Qt port is now gone - source: Makefile restructuring to better support new ui targets - source: lots of other internal code cleanup work
2011-01-27 08:52:34 +00:00
}
}
auto BSMemory::unload() -> void {
Update to v075 release. byuu says: This release brings improved Super Game Boy emulation, the final SHA256 hashes for the DSP-(1,1B,2,3,4) and ST-(0010,0011) coprocessors, user interface improvements, and major internal code restructuring. Changelog (since v074): - completely rewrote memory sub-system to support 1-byte granularity in XML mapping - removed Memory inheritance and MMIO class completely, any address can be mapped to any function now - SuperFX: removed SuperFXBus : Bus, now implemented manually - SA-1: removed SA1Bus : Bus, now implemented manually - entire bus mapping is now static, happens once on cartridge load - as a result, read/write handlers now handle MMC mapping; slower average case, far faster worst case - namespace memory is no more, RAM arrays are stored inside the chips they are owned by now - GameBoy: improved CPU HALT emulation, fixes Zelda: Link's Awakening scrolling - GameBoy: added serial emulation (cannot connect to another GB yet), fixes Shin Megami Tensei - Devichil - GameBoy: improved LCD STAT emulation, fixes Sagaia - ui: added fullscreen support (F11 key), video settings allows for three scale settings - ui: fixed brightness, contrast, gamma, audio volume, input frequency values on program startup - ui: since Qt is dead, config file becomes bsnes.cfg once again - Super Game Boy: you can now load the BIOS without a game inserted to see a pretty white box - ui-gameboy: can be built without SNES components now - libsnes: now a UI target, compile with 'make ui=ui-libsnes' - libsnes: added WRAM, APURAM, VRAM, OAM, CGRAM access (cheat search, etc) - source: removed launcher/, as the Qt port is now gone - source: Makefile restructuring to better support new ui targets - source: lots of other internal code cleanup work
2011-01-27 08:52:34 +00:00
memory.reset();
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
}
auto BSMemory::power() -> void {
regs.command = 0;
regs.writeOld = 0x00;
regs.writeNew = 0x00;
regs.flashEnable = false;
regs.readEnable = false;
regs.writeEnable = false;
memory.writeProtect(!regs.writeEnable);
}
auto BSMemory::size() const -> uint {
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
return memory.size();
}
auto BSMemory::read(uint24 addr, uint8 data) -> uint8 {
if(readonly) {
return memory.read(bus.mirror(addr, memory.size()), data);
}
2013-01-14 12:10:20 +00:00
if(addr == 0x0002) {
if(regs.flashEnable) return 0x80;
}
if(addr == 0x5555) {
if(regs.flashEnable) return 0x80;
}
if(regs.readEnable && addr >= 0xff00 && addr <= 0xff13) {
//read flash cartridge vendor information
switch(addr - 0xff00) {
2013-01-14 12:10:20 +00:00
case 0x00: return 0x4d;
case 0x01: return 0x00;
case 0x02: return 0x50;
case 0x03: return 0x00;
case 0x04: return 0x00;
case 0x05: return 0x00;
case 0x06: return 0x2a; //0x2a = 8mbit, 0x2b = 16mbit (not known to exist, though BIOS recognizes ID)
case 0x07: return 0x00;
default: return 0x00;
}
}
return memory.read(addr, data);
}
auto BSMemory::write(uint24 addr, uint8 data) -> void {
if(readonly) {
return;
}
if((addr & 0xff0000) == 0) {
regs.writeOld = regs.writeNew;
regs.writeNew = data;
if(regs.writeEnable && regs.writeOld == regs.writeNew) {
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
return memory.write(addr, data);
}
} else {
if(regs.writeEnable) {
Update to v074r10 release. byuu says: Major WIP, countless changes. I really went to town on cleaning up the source today with all kinds of new ideas. I'll post the ones I remember, use diff -ru to get the rest. What I like the most is my new within template: template<unsigned lo, unsigned hi> alwaysinline bool within(unsigned addr) { static const unsigned mask = ~(hi ^ lo); return (addr & mask) == lo; } Before, you would see code like this: if((addr & 0xe0e000) == 0x206000) { //$20-3f:6000-7fff The comment is basically necessary, and you have to trust that the mask is right, or do the math yourself. Now, it looks like this: if(within<0x20, 0x3f, 0x6000, 0x7fff>(addr)) { That's the same as within<0x206000, 0x3f7fff>, I just made an SNES-variant to more closely simulate my XML mapping style: 20-3f:6000-7fff. Now obviously this has limitations, it only works in base-2 and it can't manage some tricky edge cases like (addr & 0x408000) == 0x008000 for 00-3f|80-bf:8000-ffff. But for the most part, I'll be using this where I can. The Game Boy is fully ported over to it (via the MBCs), but the SNES only has the BS-X town cartridge moved over so far. SuperFX and SA-1 at the very least could benefit. Next up, since the memory map is now static, there's really no reason to remap the entire thing at power-on and reset. So it is now set up at cartridge load and that's it. I moved the CPU/PPU/WRAM mapping out of memory.cpp and into their respective processors. A bit of duplication only because there are multiple processor cores for the different profiles, but I'm not worried about that. This is also going to be necessary to fix the debugger. Next, Coprocessor::enable() actually does what I initially intended it to now: it is called once to turn a chip on after cartridge load. It's not called on power cycle anymore. This should help fix power-cycle on my serial simulation code, and was needed to map the bus exactly one time. Although most stuff is mapped through XML, some chips still need some manual hooks for monitoring and such (eg S-DD1.) Next, I've started killing off memory::, it was initially an over-reaction to the question of where to put APURAM (in the SMP or DSP?). The idea was to have this namespace that contained all memory for everything. But it was very annoying and tedious, and various chips ignored the convention anyway like ST-0011 RAM, which couldn't work anyway since it is natively uint16 and not uint8. Cx4 will need 24-bit RAM eventually, too. There's 8->24-bit functions in there now, because the HLE code is hideous. So far, all the cartridge.cpp memory:: types have been destroyed. memory::cartrom, memory::cartram become cartridge.rom and cartridge.ram. memory::cartrtc was moved into the SRTC and SPC7110 classes directly. memory::bsxflash was moved into BSXFlash. memory::bsxram and memory::bsxpram were moved into BSXCartridge (the town cartridge). memory::st[AB](rom|ram) were moved into a new area, snes/chip/sufamiturbo. The snes/chip moniker really doesn't work so well, since it also has base units, and the serial communications stuff which is through the controller port, but oh well, now it also has the base structure for the Sufami Turbo cartridge too. So now we have sufamiturbo.slotA.rom, sufamiturbo.slotB.ram, etc. Next, the ST-0010/ST-0011 actually save the data RAM to disk. This wasn't at all compatible with my old system, and I didn't want to keep adding memory types to check inside the main UI cartridge RAM loading and saving routines. So I built a NonVolatileRAM vector inside SNES::Cartridge, and any chip that has memory it wants to save and load from disk can append onto it : data, size, id ("srm", "rtc", "nec", etc) and slot (0 = cartridge, 1 = slot A, 2 = slot B) To load and save memory, we just do a simple: foreach(memory, SNES::cartridge.nvram) load/saveMemory(memory). As a result, you can now keep your save games in F1 Race of Champions II and Hayazashi Nidan Morita Shougi. Technically I think Metal Combat should work this way as well, having the RAM being part of the chip itself, but for now that chip just writes directly into cartridge.ram, so it also technically saves to disk for now. To avoid a potential conflict with a manipulated memory map, BS-X SRAM and PSRAM are now .bss and .bsp, and not .srm and .psr. Honestly I don't like .srm as an extension either, but it doesn't bother me enough to break save RAM compatibility with other emulators, so don't worry about that changing. I finally killed off MappedRAM initializing size to ~0 (-1U). A size of zero means there is no memory there just the same. This was an old holdover for handling MMIO mapping, if I recall correctly. Something about a size of zero on MMIO-Memory objects causing it to wrap the address, so ~0 would let it map direct addresses ... or something. Whatever, that's not needed at all anymore. BSXBase becomes BSXSatellaview, and I've defaulted the device to being attached since it won't affect non-BSX games anyway. Eventually the GUI needs to make that an option. BSXCart becomes BSXCartridge. BSXFlash remains unchanged. I probably need to make Coprocessor::disable() functions now to free up memory on unload, but it shouldn't hurt anything the way it is. libsnes is most definitely broken to all hell and back now, and the debugger is still shot. I suppose we'll need some tricky code to work with the old ID system, and we'll need to add some more IDs for the new memory types.
2011-01-24 08:59:45 +00:00
return memory.write(addr, data);
}
}
if(addr == 0x0000) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffff) == 0x38d0) {
regs.flashEnable = true;
regs.readEnable = true;
}
}
if(addr == 0x2aaa) {
regs.command <<= 8;
regs.command |= data;
}
if(addr == 0x5555) {
regs.command <<= 8;
regs.command |= data;
if((regs.command & 0xffffff) == 0xaa5570) {
regs.writeEnable = false;
}
if((regs.command & 0xffffff) == 0xaa55a0) {
regs.writeOld = 0x00;
regs.writeNew = 0x00;
regs.flashEnable = true;
regs.writeEnable = true;
}
if((regs.command & 0xffffff) == 0xaa55f0) {
regs.flashEnable = false;
regs.readEnable = false;
regs.writeEnable = false;
}
memory.writeProtect(!regs.writeEnable);
}
}
}