bsnes/higan/ws/cpu/cpu.cpp

64 lines
1.1 KiB
C++
Raw Normal View History

#include <ws/ws.hpp>
namespace WonderSwan {
CPU cpu;
#include "io.cpp"
#include "interrupt.cpp"
#include "dma.cpp"
Update to v097r28 release. byuu says: Changelog: (all WSC unless otherwise noted) - fixed LINECMP=0 interrupt case (fixes FF4 world map during airship sequence) - improved CPU timing (fixes Magical Drop flickering and FF1 battle music) - added per-frame OAM caching (fixes sprite glitchiness in Magical Drop, Riviera, etc.) - added RTC emulation (fixes Dicing Knight and Judgement Silversword) - added save state support - added cheat code support (untested because I don't know of any cheat codes that exist for this system) - icarus: can now detect games with RTC chips - SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II) - ( I was adding the extra leap year day to all 12 months instead of just February ... >_< ) Note that the RTC emulation is very incomplete. It's not really documented at all, and the two games I've tried that use it never even ask you to set the date/time (so they're probably just using it to count seconds.) I'm not even sure if I've implement the level-sensitive behavior correctly (actually, now that I think about it, I need to mask the clear bit in INT_ACK for the level-sensitive interrupts ...) A bit worried about the RTC alarm, because it seems like it'll fire continuously for a full minute. Or even if you turn it off after it fires, then that doesn't seem to be lowering the line until the next second ticks on the RTC, so that likely needs to happen when changing the alarm flag. Also not sure on this RTC's weekday byte. On the SharpRTC, it actually computes this for you. Because it's not at all an easy thing to calculate yourself in 65816 or V30MZ assembler. About 40 lines of code to do it in C. For now, I'm requiring the program to calculate the value itself. Also note that there's some gibberish tiles in Judgement Silversword, sadly. Not sure what's up there, but the game's still fully playable at least. Finally, no surprise: Beat-Mania doesn't run :P
2016-03-25 06:19:08 +00:00
#include "serialization.cpp"
auto CPU::Enter() -> void {
while(true) scheduler.synchronize(), cpu.main();
}
auto CPU::main() -> void {
poll();
//static uint c=0;if(auto d = disassemble()) if(++c<60) print(d, "\n");
exec();
}
auto CPU::step(uint clocks) -> void {
Update to v100r14 release. byuu says: (Windows: compile with -fpermissive to silence an annoying error. I'll fix it in the next WIP.) I completely replaced the time management system in higan and overhauled the scheduler. Before, processor threads would have "int64 clock"; and there would be a 1:1 relationship between two threads. When thread A ran for X cycles, it'd subtract X * B.Frequency from clock; and when thread B ran for Y cycles, it'd add Y * A.Frequency from clock. This worked well and allowed perfect precision; but it doesn't work when you have more complicated relationships: eg the 68K can sync to the Z80 and PSG; the Z80 to the 68K and PSG; so the PSG needs two counters. The new system instead uses a "uint64 clock" variable that represents time in attoseconds. Every time the scheduler exits, it subtracts the smallest clock count from all threads, to prevent an overflow scenario. The only real downside is that rounding errors mean that roughly every 20 minutes, we have a rounding error of one clock cycle (one 20,000,000th of a second.) However, this only applies to systems with multiple oscillators, like the SNES. And when you're in that situation ... there's no such thing as a perfect oscillator anyway. A real SNES will be thousands of times less out of spec than 1hz per 20 minutes. The advantages are pretty immense. First, we obviously can now support more complex relationships between threads. Second, we can build a much more abstracted scheduler. All of libco is now abstracted away completely, which may permit a state-machine / coroutine version of Thread in the future. We've basically gone from this: auto SMP::step(uint clocks) -> void { clock += clocks * (uint64)cpu.frequency; dsp.clock -= clocks; if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread); if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread); } To this: auto SMP::step(uint clocks) -> void { Thread::step(clocks); synchronize(dsp); synchronize(cpu); } As you can see, we don't have to do multiple clock adjustments anymore. This is a huge win for the SNES CPU that had to update the SMP, DSP, all peripherals and all coprocessors. Likewise, we don't have to synchronize all coprocessors when one runs, now we can just synchronize the active one to the CPU. Third, when changing the frequencies of threads (think SGB speed setting modes, GBC double-speed mode, etc), it no longer causes the "int64 clock" value to be erroneous. Fourth, this results in a fairly decent speedup, mostly across the board. Aside from the GBA being mostly a wash (for unknown reasons), it's about an 8% - 12% speedup in every other emulation core. Now, all of this said ... this was an unbelievably massive change, so ... you know what that means >_> If anyone can help test all types of SNES coprocessors, and some other system games, it'd be appreciated. ---- Lastly, we have a bitchin' new about screen. It unfortunately adds ~200KiB onto the binary size, because the PNG->C++ header file transformation doesn't compress very well, and I want to keep the original resource files in with the higan archive. I might try some things to work around this file size increase in the future, but for now ... yeah, slightly larger archive sizes, sorry. The logo's a bit busted on Windows (the Label control's background transparency and alignment settings aren't working), but works well on GTK. I'll have to fix Windows before the next official release. For now, look on my Twitter feed if you want to see what it's supposed to look like. ---- EDIT: forgot about ICD2::Enter. It's doing some weird inverse run-to-save thing that I need to implement support for somehow. So, save states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
Thread::step(clocks);
synchronize(ppu);
synchronize(apu);
synchronize(cartridge);
}
auto CPU::wait(uint clocks) -> void {
step(clocks);
}
auto CPU::read(uint20 addr) -> uint8 {
return bus.read(addr);
}
auto CPU::write(uint20 addr, uint8 data) -> void {
return bus.write(addr, data);
}
auto CPU::in(uint16 port) -> uint8 {
return bus.portRead(port);
}
auto CPU::out(uint16 port, uint8 data) -> void {
return bus.portWrite(port, data);
}
auto CPU::power() -> void {
V30MZ::power();
create(CPU::Enter, 3'072'000);
bus.map(this, 0x00a0);
bus.map(this, 0x00b0, 0x00b6);
if(Model::WonderSwanColor() || Model::SwanCrystal()) {
bus.map(this, 0x0040, 0x0049);
bus.map(this, 0x0062);
}
r = {};
}
}