2016-01-27 11:31:39 +00:00
|
|
|
namespace WonderSwan {
|
|
|
|
|
|
|
|
struct ID {
|
|
|
|
enum : uint {
|
|
|
|
System,
|
|
|
|
WonderSwan,
|
|
|
|
WonderSwanColor,
|
|
|
|
};
|
|
|
|
|
2016-07-08 12:23:46 +00:00
|
|
|
struct Port { enum : uint {
|
|
|
|
HardwareHorizontal,
|
|
|
|
HardwareVertical,
|
Update to v099r08 release.
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
2016-06-24 12:16:53 +00:00
|
|
|
};};
|
|
|
|
|
2016-07-08 12:23:46 +00:00
|
|
|
struct Device { enum : uint {
|
|
|
|
Controls,
|
Update to v099r08 release.
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
2016-06-24 12:16:53 +00:00
|
|
|
};};
|
2016-01-27 11:31:39 +00:00
|
|
|
};
|
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
struct Interface : Emulator::Interface {
|
|
|
|
Interface();
|
Update to v102r02 release.
byuu says:
Changelog:
- I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
- if it's really invalid C++, then GCC needs to stop accepting it
in strict `-std=c++14` mode
- Emulator::Interface::Information::resettable is gone
- Emulator::Interface::reset() is gone
- FC, SFC, MD cores updated to remove soft reset behavior
- split GameBoy::Interface into GameBoyInterface,
GameBoyColorInterface
- split WonderSwan::Interface into WonderSwanInterface,
WonderSwanColorInterface
- PCE: fixed off-by-one scanline error [hex_usr]
- PCE: temporary hack to prevent crashing when VDS is set to < 2
- hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
types to (u)int_(#)t types
- icarus: replaced usage of unique with strip instead (so we don't
mess up frameworks on macOS)
- libco: added macOS-specific section marker [Ryphecha]
So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.
We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.
In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.
Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.
Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-22 21:04:26 +00:00
|
|
|
|
|
|
|
auto manifest() -> string override;
|
|
|
|
auto title() -> string override;
|
|
|
|
|
|
|
|
auto videoSize() -> VideoSize override;
|
|
|
|
auto videoSize(uint width, uint height, bool arc) -> VideoSize override;
|
|
|
|
auto videoFrequency() -> double override;
|
|
|
|
|
|
|
|
auto audioFrequency() -> double override;
|
|
|
|
|
|
|
|
auto loaded() -> bool override;
|
|
|
|
auto sha256() -> string override;
|
|
|
|
auto save() -> void override;
|
|
|
|
auto unload() -> void override;
|
|
|
|
|
|
|
|
auto power() -> void override;
|
|
|
|
auto run() -> void override;
|
|
|
|
|
|
|
|
auto serialize() -> serializer override;
|
|
|
|
auto unserialize(serializer&) -> bool override;
|
|
|
|
|
|
|
|
auto cheatSet(const string_vector&) -> void override;
|
|
|
|
|
|
|
|
auto cap(const string& name) -> bool override;
|
|
|
|
auto get(const string& name) -> any override;
|
|
|
|
auto set(const string& name, const any& value) -> bool override;
|
|
|
|
};
|
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
struct WonderSwanInterface : Interface {
|
Update to v102r02 release.
byuu says:
Changelog:
- I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
- if it's really invalid C++, then GCC needs to stop accepting it
in strict `-std=c++14` mode
- Emulator::Interface::Information::resettable is gone
- Emulator::Interface::reset() is gone
- FC, SFC, MD cores updated to remove soft reset behavior
- split GameBoy::Interface into GameBoyInterface,
GameBoyColorInterface
- split WonderSwan::Interface into WonderSwanInterface,
WonderSwanColorInterface
- PCE: fixed off-by-one scanline error [hex_usr]
- PCE: temporary hack to prevent crashing when VDS is set to < 2
- hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
types to (u)int_(#)t types
- icarus: replaced usage of unique with strip instead (so we don't
mess up frameworks on macOS)
- libco: added macOS-specific section marker [Ryphecha]
So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.
We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.
In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.
Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.
Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-22 21:04:26 +00:00
|
|
|
using Emulator::Interface::load;
|
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
WonderSwanInterface();
|
Update to v101r06 release.
byuu says:
I reworked the video sizing code. Ended up wasting five fucking hours
fighting GTK. When you call `gtk_widget_set_size_request`, it doesn't
actually happen then. This is kind of a big deal because when I then go
to draw onto the viewport, the actual viewport child window is still the
old size, so the image gets distorted. It recovers in a frame or so with
emulation, but if we were to put a still image on there, it would stay
distorted.
The first thought is, `while(gtk_events_pending())
gtk_main_iteration_do(false);` right after the `set_size_request`. But
nope, it tells you there's no events pending. So then you think, go
deeper, use `XPending()` instead. Same thing, GTK hasn't actually issued
the command to Xlib yet. So then you think, if the widget is realized,
just call a blocking `gtk_main_iteration`. One call does nothing, two
calls results in a deadlock on the second one ... do it before program
startup, and the main window will never appear. Great.
Oh, and it's not just the viewport. It's also the widget container area
of the windows, as well as the window itself, as well as the fullscreen
mode toggle effect. They all do this.
For the latter three, I couldn't find anything that worked, so I just
added 20ms loops of constantly calling `gtk_main_iteration_do(false)`
after each one of those things. The downside here is toggling the status
bar takes 40ms, so you'll see it and it'll feel a tiny bit sluggish.
But I can't have a 20ms wait on each widget resize, that would be
catastrophic to performance on windows with lots of widgets.
I tried hooking configure-event and size-allocate, but they were very
unreliable. So instead I ended up with a loop that waits up to a maximm
of 20ms that inspects the `widget->allocation.(width,height)` values
directly and waits for them to be what we asked for with
`set_size_request`.
There was some extreme ugliness in GTK with calling
`gtk_main_iteration_do` recursively (`hiro::Widget::setGeometry` is
called recursively), so I had to lock it to only happen on the top level
widgets (the child ones should get resized while waiting on the
top-level ones, so it should be fine in practice), and also only run it
on realized widgets.
Even still, I'm getting ~3 timeouts when opening the settings dialog in
higan, but no other windows. But, this is the best I can do for now.
And the reason for all of this pain? Yeah, updated the video code.
So the Emulator::Interface now has this:
struct VideoSize { uint width, height; }; //or requiem for a tuple
auto videoSize() -> VideoSize;
auto videoSize(uint width, uint height, bool arc) -> VideoSize;
The first function, for now, is just returning the literal surface size.
I may remove this ... one thing I want to allow for is cores that send
different texture sizes based on interlace/hires/overscan/etc settings.
The second function is more interesting. Instead of having the UI trying
to figure out sizing, I figure the emulation cores can do a better job
and we can customize it per-core now. So it gets the window's width and
height, and whether the user asked for aspect correction, and then
computes the best width/height ratio possible. For now they're all just
doing multiples of a 1x scale to the UI 2x,3x,4x modes.
We still need a third function, which will probably be what I repurpose
videoSize() for: to return the 'effective' size for pixel shaders, to
then feed into ruby, to then feed into quark, to then feed into our
shaders. Since shaders use normalized coordinates for pixel fetching,
this should work out just fine. The real texture size will be exposed to
quark shaders as well, of course.
Now for the main window ... it's just hard-coded to be 640x480, 960x720,
1280x960 for now. It works nicely for some cores on some modes, not so
much for others. Work in progress I guess.
I also took the opportunity to draw the about dialog box logo on the
main window. Got a bit fancy and used the old spherical gradient and
impose functionality of nall/image on it. Very minor highlight, nothing
garish. Just something nicer than a solid black window.
If you guys want to mess around with sizes, placements, and gradient
styles/colors/shapes ... feel free. If you come up with something nicer,
do share.
That's what led to all the GTK hell ... the logo wasn't drawing right as
you resized the window. But now it is, though I am not at all happy with
the hacking I had to do.
I also had to improve the video update code as a result of this:
- when you unload a game, it blacks out the screen
- if you are not quitting the emulator, it'll draw the logo; if
you are, it won't
- when you load a game, it black out the logo
These options prevent any unsightliness from resizing the viewport with
image data on it already
I need to redraw the logo when toggling fullscreen with no game loaded
as well for Windows, it seems.
2016-08-13 13:57:48 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
auto videoColors() -> uint32 override;
|
|
|
|
auto videoColor(uint32 color) -> uint64 override;
|
2016-01-27 11:31:39 +00:00
|
|
|
|
Update to v099r08 release.
byuu says:
Changelog:
- nall/vfs work 100% completed; even SGB games load now
- emulation cores now call load() for the base cartridges as well
- updated port/device handling; portmask is gone; device ID bug should
be resolved now
- SNES controller port 1 multitap option was removed
- added support for 128KiB SNES PPU VRAM (for now, edit sfc/ppu/ppu.hpp
VRAM::size=0x10000; to enable)
Overall, nall/vfs was a huge success!! We've substantially reduced
the amount of boilerplate code everywhere, while still allowing (even
easier than before) support for RAM-based game loading/saving. All of
nall/stream is dead and buried.
I am considering removing Emulator::Interface::Medium::id and/or
bootable flag. Or at least, doing something different with it. The
values for the non-bootable GB/BS/ST entries duplicate the ID that is
supposed to be unique. They are for GB/GBC and WS/WSC. Maybe I'll use
this as the hardware revision selection ID, and then gut non-bootable
options. There's really no reason for that to be there. I think at one
point I was using it to generate library tabs for non-bootable systems,
but we don't do that anymore anyway.
Emulator::Interface::load() may not need the required flag anymore ... it
doesn't really do anything right now anyway.
I have a few reasons for having the cores load the base cartridge. Most
importantly, it is going to enable a special mode for the WonderSwan /
WonderSwan Color in the future. If we ever get the IPLROMs dumped ... it's
possible to boot these systems with no games inserted to set user profile
information and such. There are also other systems that may accept being
booted without a cartridge. To reach this state, you would load a game and
then cancel the load dialog. Right now, this results in games not loading.
The second reason is this prevents nasty crashes when loading fails. So
if you're missing a required manifest, the emulator won't die a violent
death anymore. It's able to back out at any point.
The third reason is consistency: loading the base cartridge works the
same as the slot cartridges.
The fourth reason is Emulator::Interface::open(uint pathID)
values. Before, the GB, SB, GBC modes were IDs 1,2,3 respectively. This
complicated things because you had to pass the correct ID. But now
instead, Emulator::Interface::load() returns maybe<uint> that is nothing
when no game is selected, and a pathID for a valid game. And now open()
can take this ID to access this game's folder contents.
The downside, which is temporary, is that command-line loading is
currently broken. But I do intend on restoring it. In fact, I want to do
better than before and allow multi-cart booting from the command-line by
specifying the base cartridge and then slot cartridges. The idea should
be pretty simple: keep a queue of pending filenames that we fill from
the command-line and/or drag-and-drop operations on the main window,
and then empty out the queue or prompt for load dialogs from the UI
when booting a system. This also might be a bit more unorthodox compared
to the traditional emulator design of "loadGame(filename)", but ... oh
well. It's easy enough still.
The port/device changes are fun. We simplified things quite a bit. The
portmask stuff is gone entirely. While ports and devices keep IDs,
this is really just sugar-coating so UIs can use for(auto& port :
emulator->ports) and access port.id; rather than having to use for(auto
n : range(emulator->ports)) { auto& port = emulator->ports[n]; ... };
but they should otherwise generally be identical to the order they appear
in their respective ranges. Still, don't rely on that.
Input::id is gone. There was no point since we also got rid of the nasty
Input::order vector. Since I was in here, I went ahead and caved on the
pedantics and renamed Input::guid to Input::userData.
I removed the SNES controller port 1 multitap option. Basically, the only
game that uses this is N-warp Daisakusen and, no offense to d4s, it's
not really a good game anyway. It's just a quick demo to show 8-players
on the SNES. But in the UI, all it does is confuse people into wasting
time mapping a controller they're never going to use, and they're going
to wonder which port to use. If more compelling use cases for 8-players
comes about, we can reconsider this. I left all the code to support this
in place, so all you have to do is uncomment one line to enable it again.
We now have dsnes emulation! :D
If you change PPU::VRAM::size to 0x10000 (words), then you should now
have 128KiB of VRAM. Even better, it serializes the used-VRAM size,
so your save states shouldn't crash on you if you swap between the two
(though if you try this, you're nuts.)
Note that this option does break commercial software. Yoshi's Island in
particular. This game is setting A15 on some PPU register writes, but
not on others. The end result of this is things break horribly in-game.
Also, this option is causing a very tiny speed hit for obvious reasons
with the variable masking value (I'm even using size-1 for now.) Given
how niche this is, I may just leave it a compile-time constant to avoid
the overhead cost. Otherwise, if we keep the option, then it'll go into
Super Famicom.sys/manifest.bml ... I'll flesh that out in the near-future.
----
Finally, some fun for my OCD ... my monitor suddenly cut out on me
in the middle of working on this WIP, about six hours in of non-stop
work. Had to hit a bunch of ctrl+alt+fN commands (among other things)
and trying to log in headless on another TTY to do issue commands,
trying to recover the display. Finally power cycled the monitor and it
came back up. So all my typing ended up going to who knows where.
Usually this sort of thing terrifies me enough that I scrap a WIP and
start over to ensure I didn't screw anything up during the crashed screen
when hitting keys randomly.
Obviously, everything compiles and appears to work fine. And I know
it's extremely paranoid, but OCD isn't logical, so ... I'm going
to go over every line of the 100KiB r07->r08 diff looking for any
corruption/errors/whatever.
----
Review finished.
r08 diff review notes:
- fc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- gb/cartridge/cartridge.hpp:
remove redundant uint _pathID; (in Information::pathID already)
- gb/cartridge/cartridge.hpp:
pull sha256 inside Information
- sfc/cartridge/load/cpp:
add " - Slot (A,B)" to interface->load("Sufami Turbo"); to be more
descriptive
- sfc/controller/gamepad/gamepad.cpp:
use uint device = ID::Device::Gamepad; not id = ...;
- sfc/interface/interface.cpp:
remove n variable from the Multitap device input generation loop
(now unused)
- sfc/interface/interface.hpp:
put struct Port above struct Device like the other classes
- ui-tomoko:
cheats.bml is reading from/writing to mediumPaths(0) [system folder
instead of game folder]
- ui-tomoko:
instead of mediumPaths(1) - call emulator->metadataPathID() or something
like that
2016-06-24 12:16:53 +00:00
|
|
|
auto load(uint id) -> bool override;
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
};
|
2016-01-27 11:31:39 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
struct WonderSwanColorInterface : Interface {
|
|
|
|
using Emulator::Interface::load;
|
2016-01-27 11:31:39 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
WonderSwanColorInterface();
|
2016-01-27 11:31:39 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
auto videoColors() -> uint32 override;
|
|
|
|
auto videoColor(uint32 color) -> uint64 override;
|
Update to v097r28 release.
byuu says:
Changelog: (all WSC unless otherwise noted)
- fixed LINECMP=0 interrupt case (fixes FF4 world map during airship
sequence)
- improved CPU timing (fixes Magical Drop flickering and FF1 battle
music)
- added per-frame OAM caching (fixes sprite glitchiness in Magical Drop,
Riviera, etc.)
- added RTC emulation (fixes Dicing Knight and Judgement Silversword)
- added save state support
- added cheat code support (untested because I don't know of any cheat
codes that exist for this system)
- icarus: can now detect games with RTC chips
- SFC: bugfix to SharpRTC emulation (Dai Kaijuu Monogatari II)
- ( I was adding the extra leap year day to all 12 months instead of
just February ... >_< )
Note that the RTC emulation is very incomplete. It's not really
documented at all, and the two games I've tried that use it never even
ask you to set the date/time (so they're probably just using it to count
seconds.) I'm not even sure if I've implement the level-sensitive
behavior correctly (actually, now that I think about it, I need to mask
the clear bit in INT_ACK for the level-sensitive interrupts ...)
A bit worried about the RTC alarm, because it seems like it'll fire
continuously for a full minute. Or even if you turn it off after it
fires, then that doesn't seem to be lowering the line until the next
second ticks on the RTC, so that likely needs to happen when changing
the alarm flag.
Also not sure on this RTC's weekday byte. On the SharpRTC, it actually
computes this for you. Because it's not at all an easy thing to
calculate yourself in 65816 or V30MZ assembler. About 40 lines of code
to do it in C. For now, I'm requiring the program to calculate the value
itself.
Also note that there's some gibberish tiles in Judgement Silversword,
sadly. Not sure what's up there, but the game's still fully playable at
least.
Finally, no surprise: Beat-Mania doesn't run :P
2016-03-25 06:19:08 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
auto load(uint id) -> bool override;
|
2016-01-27 11:31:39 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
struct Settings {
|
Update to v097r27 release.
byuu says:
Absolutely major improvements to the WS/C emulation today.
Changelog: (all WS/C related)
- fixed channel 3 sweep pitch adjustment
- fixed channel 3 sweep value sign extension
- removed errant channel 5 speed setting (not what's really going on)
- fixed sign extension on channel 5 samples
- improved DAC mixing of all five audio channels
- fixed r26 regression with PPU timing loop
- fixed sprite windowing behavior (sprite attribute flag is window mode;
not window enable)
- added per-scanline register latching to the PPU
- IRQs should terminate HLT even when the IRQ enable register bits are
clear
- fixed PALMONO reads
- added blur emulation
- added color emulation (based on GBA, so it heavily desaturates colors;
not entirely correct, but it helps a lot)
- no longer decimating audio to 24KHz; running at full 3.072MHz through
the windowed sinc filter [1]
- cleaned up PPU portRead / portWrite functions significantly
- emulated a weird quirk as mentioned by trap15 regarding timer
frequency writes enabling said timers [2]
- emulated LCD_CTRL sleep bit; screen can now be disabled (always draws
black in this case for now)
- improved OAM caching; but it's still disabled because it causes huge
amounts of sprite glitches (unsure why)
- fixed rendering of sprites that wrap around the screen edges back to
the top/left of the display
- emulated keypad interrupts
- icarus: detect orientation bit in game header
- higan: use orientation setting in manifest to set default screen
rotation
[1] the 24KHz -> 3.072MHz sound change is huge. Sound is substantially
improved over the previous WIPs. It does come at a pretty major speed
penalty, though. This is the highest frequency of any system in higan
running through an incredibly (amazing, yet) demanding sinc resampler.
Frame rate dropped from around 240fps to 150fps with the sinc filter on.
If you choose a different audio filter, you'll get most of that speed
back, but audio will sound worse again.
[2] we aren't sure if this is correct hardware behavior or not. It seems
to very slightly help Magical Drop, but not much.
The blur emulation is brutal. It's absolutely required for Riviera's
translucency simulation of selected menu items, but it causes serious
headaches due to the WS's ~75hz refresh rate running on ~60hz monitors
without vsync. It's probably best to leave it off and just deal with the
awful flickering on Riviera's menu options.
Overall, WS/C emulation is starting to get quite usable indeed. Couple
of major bugs that I'd really like to get fixed before releasing it,
though. But they're getting harder and harder to fix ...
Major Bugs:
- Final Fantasy battle background music is absent. Sound effects still
work. Very weird.
- Final Fantasy IV scrolling during airship flight opening sequence is
horribly broken. Scrolls one screen at a time.
- Magical Drop flickers like crazy in-game. Basically unplayable like
this.
- Star Hearts character names don't appear in the smaller dialog box
that pops up.
Minor Bugs:
- Occasional flickering during Riviera opening scenes.
- One-frame flicker of Leda's sprite at the start of the first stage.
2016-03-19 07:35:25 +00:00
|
|
|
bool blurEmulation = true;
|
|
|
|
bool colorEmulation = true;
|
2016-01-27 11:31:39 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
extern Settings settings;
|
|
|
|
|
|
|
|
}
|