bsnes/ananke/nall/stream/stream.hpp

93 lines
2.0 KiB
C++
Raw Normal View History

Update to v091r11 release. byuu says: This release refines HSU1 support as a bidirectional protocol, nests SFC manifests as "release/cartridge" and "release/information" (but release/ is not guaranteed to be finalized just yet), removes the database integration, and adds support for ananke. ananke represents inevitability. It's a library that, when installed, higan can use to load files from the command-line, and also from a new File -> Load Game menu option. I need to change the build rules a bit for it to work on Windows (need to make phoenix a DLL, basically), but it works now on Linux. Right now, it only takes *.sfc file names, looks them up in the included database, converts them to game folders, and returns the game folder path for higan to load. The idea is to continue expanding it to support everything we can that I don't want in the higan core: - load *.sfc, *.smc, *.swc, *.fig files - remove SNES copier headers - split apart merged firmware files - pull in external firmware files (eg dsp1b.rom - these are staying merged, just as SPC7110 prg+dat are merged) - load *.zip and *.7z archives - prompt for selection on multi-file archives - generate manifest files based on heuristics - apply BPS patches The "Load" menu option has been renamed to "Library", to represent games in your library. I'm going to add some sort of suffix to indicate unverified games, and use a different folder icon for those (eg manifests built on heuristics rather than from the database.) So basically, to future end users: File -> Load Game will be how they play games. Library -> (specific system) can be thought of as an infinitely-sized recent games list. purify will likely become a simple stub that invokes ananke's functions. No reason to duplicate all that code.
2012-11-05 08:22:50 +00:00
#ifndef NALL_STREAM_STREAM_HPP
#define NALL_STREAM_STREAM_HPP
namespace nall {
struct stream {
virtual bool seekable() const = 0;
virtual bool readable() const = 0;
virtual bool writable() const = 0;
virtual bool randomaccess() const = 0;
virtual uint8_t* data() const { return nullptr; }
virtual unsigned size() const = 0;
virtual unsigned offset() const = 0;
virtual void seek(unsigned offset) const = 0;
virtual uint8_t read() const = 0;
virtual void write(uint8_t data) const = 0;
virtual uint8_t read(unsigned) const { return 0; }
virtual void write(unsigned, uint8_t) const {}
operator bool() const {
return size();
}
bool empty() const {
return size() == 0;
}
bool end() const {
return offset() >= size();
}
uintmax_t readl(unsigned length = 1) const {
uintmax_t data = 0, shift = 0;
while(length--) { data |= read() << shift; shift += 8; }
return data;
}
uintmax_t readm(unsigned length = 1) const {
uintmax_t data = 0;
while(length--) data = (data << 8) | read();
return data;
}
void read(uint8_t *data, unsigned length) const {
while(length--) *data++ = read();
}
void writel(uintmax_t data, unsigned length = 1) const {
while(length--) {
write(data);
data >>= 8;
}
}
void writem(uintmax_t data, unsigned length = 1) const {
uintmax_t shift = 8 * length;
while(length--) {
shift -= 8;
write(data >> shift);
}
}
void write(const uint8_t *data, unsigned length) const {
while(length--) write(*data++);
}
struct byte {
operator uint8_t() const { return s.read(offset); }
byte& operator=(uint8_t data) { s.write(offset, data); return *this; }
byte(const stream &s, unsigned offset) : s(s), offset(offset) {}
private:
const stream &s;
const unsigned offset;
};
byte operator[](unsigned offset) const {
return byte(*this, offset);
}
stream() {}
virtual ~stream() {}
stream(const stream&) = delete;
stream& operator=(const stream&) = delete;
};
}
#endif