bsnes/higan/sfc/cpu/serialization.cpp

110 lines
2.5 KiB
C++
Raw Normal View History

auto CPU::serialize(serializer& s) -> void {
Update to v102r24 release. byuu says Changelog: - FC: fixed three MOS6502 regressions [hex\_usr] - GBA: return fetched instruction instead of 0 for unmapped MMIO (passes all of endrift's I/O tests) - MD: fix VDP control port read Vblank bit to test screen height instead of hard-code 240 (fixes Phantasy Star IV) - MD: swap USP,SSP when executing an exception (allows Super Street Fighter II to run; but no sprites visible yet) - MD: grant 68K access to Z80 bus on reset (fixes vdpdoc demo ROM from freezing immediately) - SFC: reads from $00-3f,80-bf:4000-43ff no longer update MDR [p4plus2] - SFC: massive, eight-hour cleanup of WDC65816 CPU core ... still not complete The big change this time around is the SFC CPU core. I've renamed everything from R65816 to WDC65816, and then went through and tried to clean up the code as much as possible. This core is so much larger than the 6502 core that I chose cleaning up the code to rewriting it. First off, I really don't care for the BitRange style functionality. It was an interesting experiment, but its fatal flaw are that the types are just bizarre, which makes them hard to pass around generically to other functions as arguments. So I went back to the list of bools for flags, and union/struct blocks for the registers. Next, I renamed all of the functions to be more descriptive: eg `op_read_idpx_w` becomes `instructionIndexedIndirectRead16`. `op_adc_b` becomes `algorithmADC8`. And so forth. I eliminated about ten instructions because they were functionally identical sans the index, so I just added a uint index=0 parameter to said functions. I added a few new ones (adjust→INC,DEC; pflag→REP,SEP) where it seemed appropriate. I cleaned up the disaster of the instruction switch table into something a whole lot more elegant without all the weird argument decoding nonsense (still need M vs X variants to avoid having to have 4-5 separate switch tables, but all the F/I flags are gone now); and made some things saner, like the flag clear/set and branch conditions, now that I have normal types for flags and registers once again. I renamed all of the memory access functions to be more descriptive to what they're doing: eg writeSP→push, readPC→fetch, writeDP→writeDirect, etc. Eliminated some of the special read/write modes that were only used in one single instruction. I started to clean up some of the actual instructions themselves, but haven't really accomplished much here. The big thing I want to do is get rid of the global state (aa, rd, iaddr, etc) and instead use local variables like I am doing with my other 65xx CPU cores now. But this will take some time ... the algorithm functions depend on rd to be set to work on them, rather than taking arguments. So I'll need to rework that. And then lastly, the disassembler is still a mess. I want to finish the CPU cleanups, and then post a new WIP, and then rewrite the disassembler after that. The reason being ... I want a WIP that can generate identical trace logs to older versions, in case the CPU cleanup causes any regressions. That way I can more easily spot the errors. Oh ... and a bit of good news. v102 was running at ~140fps on the SNES core. With the new support to suspend/resume WAI/STP, plus the internal CPU registers not updating the MDR, the framerate dropped to ~132fps. But with the CPU cleanups, performance went back to ~140fps. So, hooray. Of course, without those two other improvements, we'd have ended up at possibly ~146-148fps, but oh well.
2017-06-13 01:42:31 +00:00
WDC65816::serialize(s);
Thread::serialize(s);
PPUcounter::serialize(s);
s.array(wram);
s.integer(version);
s.integer(clockCounter);
s.integer(status.clockCount);
s.integer(status.lineClocks);
s.integer(status.irqLock);
s.integer(status.dramRefreshPosition);
s.integer(status.dramRefreshed);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.integer(status.hdmaSetupPosition);
s.integer(status.hdmaSetupTriggered);
s.integer(status.hdmaPosition);
s.integer(status.hdmaTriggered);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.boolean(status.nmiValid);
s.boolean(status.nmiLine);
s.boolean(status.nmiTransition);
s.boolean(status.nmiPending);
s.boolean(status.nmiHold);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.boolean(status.irqValid);
s.boolean(status.irqLine);
s.boolean(status.irqTransition);
s.boolean(status.irqPending);
s.boolean(status.irqHold);
s.integer(status.powerPending);
s.integer(status.resetPending);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.integer(status.interruptPending);
s.integer(status.dmaActive);
s.integer(status.dmaClocks);
s.integer(status.dmaPending);
s.integer(status.hdmaPending);
s.integer(status.hdmaMode);
s.integer(status.autoJoypadActive);
s.integer(status.autoJoypadLatch);
s.integer(status.autoJoypadCounter);
Update to v073r01 release. byuu says: While perhaps not perfect, pretty good is better than nothing ... I've added emulation of auto-joypad poll timing. Going off ikari_01's confirmation of what we suspected, that the strobe happens every 256 clocks, I've set up emulation as follows: Upon reset, our clock counter is reset to zero. At the start of each frame, our poll counter is reset to zero. Every 256 clocks, we call the step_auto_joypad_poll() function. If we are at V=225/240+ (based on overscan setting), we check the poll counter. At zero, we poll the actual controller and set the joypad polling flag in $4212.d0 to 1. From zero through fifteen, we read in one bit for each controller and shift it into the register. At sixteen, we turn off the joypad polling flag. The 256-clock divider allows the start point of polling for each frame to fluctuate wildly like real hardware. I count regardless of auto joypad enable, as per $4212.d0's behavior; but only poll when it's actually enabled. I do not consume any actual time from this polling. I honestly don't know if I even should, or if it manages to do it in the background. If it should consume time, then this most likely happens between opcode edges and we'll have to adjust the code a good bit. All commercial games should continue to work fine, but this will likely break some hacks/translations not tested on hardware. Without the timing emulation, reading $4218-421f before V=~228 would basically give you the valid input controller values of the previous frame. Now, like hardware, it should give you a state that is part previous frame, part current frame shifted into it. Button positions won't be reliable and will shift every 256 clocks. I've also removed the Qt GUI, and renamed ui-phoenix to just ui. This removes 400kb of source code (phoenix is a lean 130kb), and drops the archive size from 564KB to 475KB. Combined with the DSP HLE, and we've knocked off ~570KB of source cruft from the entire project. I am looking forward to not having to specify which GUI is included anymore.
2010-12-27 07:29:57 +00:00
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.wramAddress);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.boolean(io.hirqEnable);
s.boolean(io.virqEnable);
s.boolean(io.irqEnable);
s.boolean(io.nmiEnable);
s.boolean(io.autoJoypadPoll);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.pio);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.wrmpya);
s.integer(io.wrmpyb);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.wrdiva);
s.integer(io.wrdivb);
Update to v106r50 release. byuu says: Changelog: - emulator/video,audio: various cleanups - emulator/audio: removed reverb effect (it breaks very badly on high-frequency systems) - emulator/audio: the Nyquist anti-aliasing lowpass filter is now generated automatically instead of set per-core - at 44.1KHz output, it's set to 22KHz; at 48KHz, it's set to 22KHz; at 96KHz, it's set to 25KHz - this filter now takes the bsnes emulation speed setting into account - all system/video.cpp files removed; inlined in System::power() and Interface::set() instead - sfc/cpu: pre-compute `HTIME` as `HTIME+1<<2` for faster comparisons of HIRQs - sfc/cpu: re-add check to block IRQs on the last dot of each frame (minor speed hit) - hiro/gtk3: fixed headers for Linux compilation finally - hiro/gtk,qt: fixed settings.cpp logic so initial values are used when no settings.bml file exists - hiro/gtk: started a minor experiment to specify theming information in settings.bml files - nall/dsp: allow the precision type (double) to be overridden (to float) - nall: add some helpers for generating pre-compiled headers - it was a failure to try using them for higan, however ... - nall: add some helpers for reading fallback values from empty `Markup::Node[search]` statements Todo: - CRITICAL: a lot of my IRQ/NMI/HDMA timing tests are failing with the fast PPU ... need to figure out why - space between Emulator::video functions and Emulator::audio functions in gb/system/system.cpp - remove Audio/Reverb/Enable from settings.bml in target-bsnes
2018-07-21 11:06:40 +00:00
s.integer(io.htime);
s.integer(io.vtime);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.romSpeed);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.rddiv);
s.integer(io.rdmpy);
Update to v099r14 release. byuu says: Changelog: - (u)int(max,ptr) abbreviations removed; use _t suffix now [didn't feel like they were contributing enough to be worth it] - cleaned up nall::integer,natural,real functionality - toInteger, toNatural, toReal for parsing strings to numbers - fromInteger, fromNatural, fromReal for creating strings from numbers - (string,Markup::Node,SQL-based-classes)::(integer,natural,real) left unchanged - template<typename T> numeral(T value, long padding, char padchar) -> string for print() formatting - deduces integer,natural,real based on T ... cast the value if you want to override - there still exists binary,octal,hex,pointer for explicit print() formatting - lstring -> string_vector [but using lstring = string_vector; is declared] - would be nice to remove the using lstring eventually ... but that'd probably require 10,000 lines of changes >_> - format -> string_format [no using here; format was too ambiguous] - using integer = Integer<sizeof(int)*8>; and using natural = Natural<sizeof(uint)*8>; declared - for consistency with boolean. These three are meant for creating zero-initialized values implicitly (various uses) - R65816::io() -> idle() and SPC700::io() -> idle() [more clear; frees up struct IO {} io; naming] - SFC CPU, PPU, SMP use struct IO {} io; over struct (Status,Registers) {} (status,registers); now - still some CPU::Status status values ... they didn't really fit into IO functionality ... will have to think about this more - SFC CPU, PPU, SMP now use step() exclusively instead of addClocks() calling into step() - SFC CPU joypad1_bits, joypad2_bits were unused; killed them - SFC PPU CGRAM moved into PPU::Screen; since nothing else uses it - SFC PPU OAM moved into PPU::Object; since nothing else uses it - the raw uint8[544] array is gone. OAM::read() constructs values from the OAM::Object[512] table now - this avoids having to determine how we want to sub-divide the two OAM memory sections - this also eliminates the OAM::synchronize() functionality - probably more I'm forgetting The FPS fluctuations are driving me insane. This WIP went from 128fps to 137fps. Settled on 133.5fps for the final build. But nothing I changed should have affected performance at all. This level of fluctuation makes it damn near impossible to know whether I'm speeding things up or slowing things down with changes.
2016-07-01 11:50:32 +00:00
s.integer(io.joy1);
s.integer(io.joy2);
s.integer(io.joy3);
s.integer(io.joy4);
s.integer(alu.mpyctr);
s.integer(alu.divctr);
s.integer(alu.shift);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
for(auto& channel : channels) {
s.integer(channel.dmaEnable);
s.integer(channel.hdmaEnable);
s.integer(channel.direction);
s.integer(channel.indirect);
s.integer(channel.unused);
s.integer(channel.reverseTransfer);
s.integer(channel.fixedTransfer);
s.integer(channel.transferMode);
s.integer(channel.targetAddress);
s.integer(channel.sourceAddress);
s.integer(channel.sourceBank);
s.integer(channel.transferSize);
s.integer(channel.indirectBank);
s.integer(channel.hdmaAddress);
s.integer(channel.lineCounter);
s.integer(channel.unknown);
s.integer(channel.hdmaCompleted);
s.integer(channel.hdmaDoTransfer);
}
s.integer(pipe.valid);
Update to v106r49 release. byuu says: This is a fairly radical WIP with extreme changes to lots of very important parts. The result is a ~7% emulation speedup (with bsnes, unsure how much it helps higan), but it's quite possible there are regressions. As such, I would really appreciate testing as many games as possible ... especially the old finnicky games that had issues with DMA and/or interrupts. One thing to note is that I removed an edge case test that suppresses IRQs from firing on the very last dot of every field, which is a behavior I've verified on real hardware in the past. I feel that the main interrupt polling function (the hottest portion of the entire emulator) is not the appropriate place for it, and I should instead factor it into assignment of NMITIMEN/VTIME/HTIME using the new io.irqEnable (==virqEnable||hirqEnable) flag. But since I haven't done that yet ... there's an old IRQ test ROM of mine that'll fail for this WIP. No commercial games will ever rely on this, so it's fine for testing. Changelog: - sfc/cpu.smp: inlined the global status functions - sfc/cpu: added readRAM, writeRAM to use a function pointer instead of a lambda for WRAM access - sfc/cpu,smp,ppu/counter: updated reset functionality to new style using class inline initializers - sfc/cpu: fixed power(false) to invoke the reset vector properly - sfc/cpu: completely rewrote DMA handling to have per-channel functions - sfc/cpu: removed unused joylatch(), io.joypadStrobeLatch - sfc/cpu: cleaned up io.cpp handlers - sfc/cpu: simplified interrupt polling code using nall::boolean::flip(),raise(),lower() functions - sfc/ppu/counter: cleaned up the class significantly and also optimized things for efficiency - sfc/ppu/counter: emulated PAL 1368-clock long scanline when interlace=1, field=1, vcounter=311 - sfc/smp: factored out the I/O and port handlers to io.cpp
2018-07-19 09:01:44 +00:00
s.integer(pipe.address);
s.integer(pipe.data);
}