bsnes/higan/nall/image.hpp

540 lines
16 KiB
C++
Raw Normal View History

#ifndef NALL_IMAGE_HPP
#define NALL_IMAGE_HPP
#include <nall/bmp.hpp>
#include <nall/filemap.hpp>
#include <nall/interpolation.hpp>
#include <nall/png.hpp>
#include <nall/stdint.hpp>
#include <algorithm>
namespace nall {
struct image {
uint8_t *data;
unsigned width;
unsigned height;
unsigned pitch;
bool endian; //0 = little, 1 = big
unsigned depth;
unsigned stride;
struct Channel {
uint64_t mask;
unsigned depth;
unsigned shift;
inline bool operator==(const Channel &source) {
return mask == source.mask && depth == source.depth && shift == source.shift;
}
inline bool operator!=(const Channel &source) {
return !operator==(source);
}
} alpha, red, green, blue;
typedef double (*interpolation)(double, double, double, double, double);
static inline unsigned bitDepth(uint64_t color);
static inline unsigned bitShift(uint64_t color);
static inline uint64_t normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth);
inline bool operator==(const image &source);
inline bool operator!=(const image &source);
inline image& operator=(const image &source);
inline image& operator=(image &&source);
inline image(const image &source);
inline image(image &&source);
inline image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline image(const string &filename);
inline image(const uint8_t *data, unsigned size);
inline image();
inline ~image();
inline uint64_t read(const uint8_t *data) const;
inline void write(uint8_t *data, uint64_t value) const;
inline void free();
inline bool empty() const;
inline void allocate(unsigned width, unsigned height);
inline void clear(uint64_t color);
inline bool load(const string &filename);
//inline bool loadBMP(const uint8_t *data, unsigned size);
inline bool loadPNG(const uint8_t *data, unsigned size);
inline void scale(unsigned width, unsigned height, interpolation op);
inline void transform(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask);
inline void alphaBlend(uint64_t alphaColor);
protected:
inline uint64_t interpolate(double mu, const uint64_t *s, interpolation op);
inline void scaleX(unsigned width, interpolation op);
inline void scaleY(unsigned height, interpolation op);
inline bool loadBMP(const string &filename);
inline bool loadPNG(const string &filename);
};
//static
unsigned image::bitDepth(uint64_t color) {
unsigned depth = 0;
if(color) while((color & 1) == 0) color >>= 1;
while((color & 1) == 1) { color >>= 1; depth++; }
return depth;
}
unsigned image::bitShift(uint64_t color) {
unsigned shift = 0;
if(color) while((color & 1) == 0) { color >>= 1; shift++; }
return shift;
}
uint64_t image::normalize(uint64_t color, unsigned sourceDepth, unsigned targetDepth) {
while(sourceDepth < targetDepth) {
color = (color << sourceDepth) | color;
sourceDepth += sourceDepth;
}
if(targetDepth < sourceDepth) color >>= (sourceDepth - targetDepth);
return color;
}
//public
bool image::operator==(const image &source) {
if(width != source.width) return false;
if(height != source.height) return false;
if(pitch != source.pitch) return false;
if(endian != source.endian) return false;
if(stride != source.stride) return false;
if(alpha != source.alpha) return false;
if(red != source.red) return false;
if(green != source.green) return false;
if(blue != source.blue) return false;
return memcmp(data, source.data, width * height * stride) == 0;
}
bool image::operator!=(const image &source) {
return !operator==(source);
}
image& image::operator=(const image &source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = new uint8_t[width * height * stride];
memcpy(data, source.data, width * height * stride);
return *this;
}
image& image::operator=(image &&source) {
free();
width = source.width;
height = source.height;
pitch = source.pitch;
endian = source.endian;
stride = source.stride;
alpha = source.alpha;
red = source.red;
green = source.green;
blue = source.blue;
data = source.data;
source.data = nullptr;
return *this;
}
image::image(const image &source) : data(nullptr) {
operator=(source);
}
image::image(image &&source) : data(nullptr) {
operator=(std::forward<image>(source));
}
image::image(bool endian, unsigned depth, uint64_t alphaMask, uint64_t redMask, uint64_t greenMask, uint64_t blueMask) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = endian;
this->depth = depth;
this->stride = (depth / 8) + ((depth & 7) > 0);
alpha.mask = alphaMask, red.mask = redMask, green.mask = greenMask, blue.mask = blueMask;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
}
image::image(const string &filename) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
load(filename);
}
image::image(const uint8_t *data, unsigned size) : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
loadPNG(data, size);
}
image::image() : data(nullptr) {
width = 0, height = 0, pitch = 0;
this->endian = 0;
this->depth = 32;
this->stride = 4;
alpha.mask = 255u << 24, red.mask = 255u << 16, green.mask = 255u << 8, blue.mask = 255u << 0;
alpha.depth = bitDepth(alpha.mask), alpha.shift = bitShift(alpha.mask);
red.depth = bitDepth(red.mask), red.shift = bitShift(red.mask);
green.depth = bitDepth(green.mask), green.shift = bitShift(green.mask);
blue.depth = bitDepth(blue.mask), blue.shift = bitShift(blue.mask);
}
image::~image() {
free();
}
uint64_t image::read(const uint8_t *data) const {
uint64_t result = 0;
if(endian == 0) {
for(signed n = stride - 1; n >= 0; n--) result = (result << 8) | data[n];
} else {
for(signed n = 0; n < stride; n++) result = (result << 8) | data[n];
}
return result;
}
void image::write(uint8_t *data, uint64_t value) const {
if(endian == 0) {
for(signed n = 0; n < stride; n++) { data[n] = value; value >>= 8; }
} else {
for(signed n = stride - 1; n >= 0; n--) { data[n] = value; value >>= 8; }
}
}
void image::free() {
if(data) delete[] data;
data = nullptr;
}
bool image::empty() const {
if(data == nullptr) return true;
if(width == 0 || height == 0) return true;
return false;
}
void image::allocate(unsigned width, unsigned height) {
if(data != nullptr && this->width == width && this->height == height) return;
free();
data = new uint8_t[width * height * stride]();
pitch = width * stride;
this->width = width;
this->height = height;
}
void image::clear(uint64_t color) {
uint8_t *dp = data;
for(unsigned n = 0; n < width * height; n++) {
write(dp, color);
dp += stride;
}
}
bool image::load(const string &filename) {
if(loadBMP(filename) == true) return true;
if(loadPNG(filename) == true) return true;
return false;
}
void image::scale(unsigned outputWidth, unsigned outputHeight, interpolation op) {
if(width != outputWidth) scaleX(outputWidth, op);
if(height != outputHeight) scaleY(outputHeight, op);
}
void image::transform(bool outputEndian, unsigned outputDepth, uint64_t outputAlphaMask, uint64_t outputRedMask, uint64_t outputGreenMask, uint64_t outputBlueMask) {
image output(outputEndian, outputDepth, outputAlphaMask, outputRedMask, outputGreenMask, outputBlueMask);
output.allocate(width, height);
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = output.data + output.pitch * y;
uint8_t *sp = data + pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(sp);
sp += stride;
uint64_t a = (color & alpha.mask) >> alpha.shift;
uint64_t r = (color & red.mask) >> red.shift;
uint64_t g = (color & green.mask) >> green.shift;
uint64_t b = (color & blue.mask) >> blue.shift;
a = normalize(a, alpha.depth, output.alpha.depth);
r = normalize(r, red.depth, output.red.depth);
g = normalize(g, green.depth, output.green.depth);
b = normalize(b, blue.depth, output.blue.depth);
output.write(dp, (a << output.alpha.shift) | (r << output.red.shift) | (g << output.green.shift) | (b << output.blue.shift));
dp += output.stride;
}
}
operator=(std::move(output));
}
void image::alphaBlend(uint64_t alphaColor) {
uint64_t alphaR = (alphaColor & red.mask) >> red.shift;
uint64_t alphaG = (alphaColor & green.mask) >> green.shift;
uint64_t alphaB = (alphaColor & blue.mask) >> blue.shift;
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = data + pitch * y;
for(unsigned x = 0; x < width; x++) {
uint64_t color = read(dp);
uint64_t colorA = (color & alpha.mask) >> alpha.shift;
uint64_t colorR = (color & red.mask) >> red.shift;
uint64_t colorG = (color & green.mask) >> green.shift;
uint64_t colorB = (color & blue.mask) >> blue.shift;
double alphaScale = (double)colorA / (double)((1 << alpha.depth) - 1);
colorA = (1 << alpha.depth) - 1;
colorR = (colorR * alphaScale) + (alphaR * (1.0 - alphaScale));
colorG = (colorG * alphaScale) + (alphaG * (1.0 - alphaScale));
colorB = (colorB * alphaScale) + (alphaB * (1.0 - alphaScale));
write(dp, (colorA << alpha.shift) | (colorR << red.shift) | (colorG << green.shift) | (colorB << blue.shift));
dp += stride;
}
}
}
//protected
uint64_t image::interpolate(double mu, const uint64_t *s, double (*op)(double, double, double, double, double)) {
uint64_t aa = (s[0] & alpha.mask) >> alpha.shift, ar = (s[0] & red.mask) >> red.shift,
ag = (s[0] & green.mask) >> green.shift, ab = (s[0] & blue.mask) >> blue.shift;
uint64_t ba = (s[1] & alpha.mask) >> alpha.shift, br = (s[1] & red.mask) >> red.shift,
bg = (s[1] & green.mask) >> green.shift, bb = (s[1] & blue.mask) >> blue.shift;
uint64_t ca = (s[2] & alpha.mask) >> alpha.shift, cr = (s[2] & red.mask) >> red.shift,
cg = (s[2] & green.mask) >> green.shift, cb = (s[2] & blue.mask) >> blue.shift;
uint64_t da = (s[3] & alpha.mask) >> alpha.shift, dr = (s[3] & red.mask) >> red.shift,
dg = (s[3] & green.mask) >> green.shift, db = (s[3] & blue.mask) >> blue.shift;
int64_t A = op(mu, aa, ba, ca, da);
int64_t R = op(mu, ar, br, cr, dr);
int64_t G = op(mu, ag, bg, cg, dg);
int64_t B = op(mu, ab, bb, cb, db);
A = max(0, min(A, (1 << alpha.depth) - 1));
R = max(0, min(R, (1 << red.depth) - 1));
G = max(0, min(G, (1 << green.depth) - 1));
B = max(0, min(B, (1 << blue.depth) - 1));
return (A << alpha.shift) | (R << red.shift) | (G << green.shift) | (B << blue.shift);
}
void image::scaleX(unsigned outputWidth, interpolation op) {
uint8_t *outputData = new uint8_t[outputWidth * height * stride];
unsigned outputPitch = outputWidth * stride;
double step = (double)width / (double)outputWidth;
const uint8_t *terminal = data + pitch * height;
#pragma omp parallel for
for(unsigned y = 0; y < height; y++) {
uint8_t *dp = outputData + outputPitch * y;
uint8_t *sp = data + pitch * y;
double fraction = 0.0;
uint64_t s[4] = { sp < terminal ? read(sp) : 0 }; //B,C (0,1) = center of kernel { 0, 0, 1, 2 }
s[1] = s[0];
s[2] = sp + stride < terminal ? read(sp += stride) : s[1];
s[3] = sp + stride < terminal ? read(sp += stride) : s[2];
for(unsigned x = 0; x < width; x++) {
while(fraction <= 1.0) {
if(dp >= outputData + outputPitch * height) break;
write(dp, interpolate(fraction, (const uint64_t*)&s, op));
dp += stride;
fraction += step;
}
s[0] = s[1]; s[1] = s[2]; s[2] = s[3];
if(sp + stride < terminal) s[3] = read(sp += stride);
fraction -= 1.0;
}
}
free();
data = outputData;
width = outputWidth;
pitch = width * stride;
}
void image::scaleY(unsigned outputHeight, interpolation op) {
uint8_t *outputData = new uint8_t[width * outputHeight * stride];
double step = (double)height / (double)outputHeight;
const uint8_t *terminal = data + pitch * height;
#pragma omp parallel for
for(unsigned x = 0; x < width; x++) {
uint8_t *dp = outputData + stride * x;
uint8_t *sp = data + stride * x;
double fraction = 0.0;
uint64_t s[4] = { sp < terminal ? read(sp) : 0 };
s[1] = s[0];
s[2] = sp + pitch < terminal ? read(sp += pitch) : s[1];
s[3] = sp + pitch < terminal ? read(sp += pitch) : s[2];
for(unsigned y = 0; y < height; y++) {
while(fraction <= 1.0) {
if(dp >= outputData + pitch * outputHeight) break;
write(dp, interpolate(fraction, (const uint64_t*)&s, op));
dp += pitch;
fraction += step;
}
s[0] = s[1]; s[1] = s[2]; s[2] = s[3];
if(sp + pitch < terminal) s[3] = read(sp += pitch);
fraction -= 1.0;
}
}
free();
data = outputData;
height = outputHeight;
}
bool image::loadBMP(const string &filename) {
uint32_t *outputData;
unsigned outputWidth, outputHeight;
if(bmp::read(filename, outputData, outputWidth, outputHeight) == false) return false;
allocate(outputWidth, outputHeight);
const uint32_t *sp = outputData;
uint8_t *dp = data;
for(unsigned y = 0; y < outputHeight; y++) {
for(unsigned x = 0; x < outputWidth; x++) {
uint32_t color = *sp++;
uint64_t a = normalize((uint8_t)(color >> 24), 8, alpha.depth);
uint64_t r = normalize((uint8_t)(color >> 16), 8, red.depth);
uint64_t g = normalize((uint8_t)(color >> 8), 8, green.depth);
uint64_t b = normalize((uint8_t)(color >> 0), 8, blue.depth);
write(dp, (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift));
dp += stride;
}
}
delete[] outputData;
return true;
}
bool image::loadPNG(const uint8_t *pngData, unsigned pngSize) {
png source;
if(source.decode(pngData, pngSize) == false) return false;
allocate(source.info.width, source.info.height);
const uint8_t *sp = source.data;
uint8_t *dp = data;
auto decode = [&]() -> uint64_t {
uint64_t p, r, g, b, a;
switch(source.info.colorType) {
case 0: //L
r = g = b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 2: //R,G,B
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = (1 << source.info.bitDepth) - 1;
break;
case 3: //P
p = source.readbits(sp);
r = source.info.palette[p][0];
g = source.info.palette[p][1];
b = source.info.palette[p][2];
a = (1 << source.info.bitDepth) - 1;
break;
case 4: //L,A
r = g = b = source.readbits(sp);
a = source.readbits(sp);
break;
case 6: //R,G,B,A
r = source.readbits(sp);
g = source.readbits(sp);
b = source.readbits(sp);
a = source.readbits(sp);
break;
}
a = normalize(a, source.info.bitDepth, alpha.depth);
r = normalize(r, source.info.bitDepth, red.depth);
g = normalize(g, source.info.bitDepth, green.depth);
b = normalize(b, source.info.bitDepth, blue.depth);
return (a << alpha.shift) | (r << red.shift) | (g << green.shift) | (b << blue.shift);
};
for(unsigned y = 0; y < height; y++) {
for(unsigned x = 0; x < width; x++) {
write(dp, decode());
dp += stride;
}
}
return true;
}
bool image::loadPNG(const string &filename) {
filemap map;
if(map.open(filename, filemap::mode::read) == false) return false;
return loadPNG(map.data(), map.size());
}
}
#endif