Update to v100r02 release.
byuu says:
Sigh ... I'm really not a good person. I'm inherently selfish.
My responsibility and obligation right now is to work on loki, and
then on the Tengai Makyou Zero translation, and then on improving the
Famicom emulation.
And yet ... it's not what I really want to do. That shouldn't matter;
I should work on my responsibilities first.
Instead, I'm going to be a greedy, self-centered asshole, and work on
what I really want to instead.
I'm really sorry, guys. I'm sure this will make a few people happy,
and probably upset even more people.
I'm also making zero guarantees that this ever gets finished. As always,
I wish I could keep these things secret, so if I fail / give up, I could
just drop it with no shame. But I would have to cut everyone out of the
WIP process completely to make it happen. So, here goes ...
This WIP adds the initial skeleton for Sega Mega Drive / Genesis
emulation. God help us.
(minor note: apparently the new extension for Mega Drive games is .md,
neat. That's what I chose for the folders too. I thought it was .smd,
so that'll be fixed in icarus for the next WIP.)
(aside: this is why I wanted to get v100 out. I didn't want this code in
a skeleton state in v100's source. Nor did I want really broken emulation,
which the first release is sure to be, tarring said release.)
...
So, basically, I've been ruminating on the legacy I want to leave behind
with higan. 3D systems are just plain out. I'm never going to support
them. They're too complex for my abilities, and they would run too slowly
with my design style. I'm not willing to compromise my design ideals. And
I would never want to play a 3D game system at native 240p/480i resolution
... but 1080p+ upscaling is not accurate, so that's a conflict I want
to avoid entirely. It's also never going to emulate computer systems
(X68K, PC-98, FM-Towns, etc) because holy shit that would completely
destroy me. It's also never going emulate arcade machines.
So I think of higan as a collection of 2D emulators for consoles
and handhelds. I've gone over every major 2D gaming system there is,
looking for ones with games I actually care about and enjoy. And I
basically have five of those systems supported already. Looking at the
remaining list, I see only three systems left that I have any interest
in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in
any way committing to emulating any of these, but ... if I had all of
those in higan, I think I'd be content to really, truly, finally stop
writing more emulators for the rest of my life.
And so I decided to tackle the most difficult system first. If I'm
successful, the Z80 core should cover a lot of the work on the SMS. And
the HuC6280 should land somewhere between the NES and SNES in terms of
difficulty ... closer to the NES.
The systems that just don't appeal to me at all, which I will never touch,
include, but are not limited to:
* Atari 2600/5200/7800
* Lynx
* Jaguar
* Vectrex
* Colecovision
* Commodore 64
* Neo-Geo
* Neo-Geo Pocket / Color
* Virtual Boy
* Super A'can
* 32X
* CD-i
* etc, etc, etc.
And really, even if something were mildly interesting in there ... we
have to stop. I can't scale infinitely. I'm already way past my limit,
but I'm doing this anyway. Too many cores bloats everything and kills
quality on everything. I don't want higan to become MESS v2.
I don't know what I'll do about the Famicom Disk System, PC-Engine CD,
and Mega CD. I don't think I'll be able to achieve 60fps emulating the
Mega CD, even if I tried to.
I don't know what's going to happen here with even the Mega Drive. Maybe
I'll get driven crazy with the documentation and quit. Maybe it'll end
up being too complicated and I'll quit. Maybe the emulation will end up
way too slow and I'll give up. Maybe it'll take me seven years to get
any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone
will pool money to hire a hitman to come after me. Who knows.
But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
|
|
|
#include <md/md.hpp>
|
|
|
|
|
|
|
|
namespace MegaDrive {
|
|
|
|
|
|
|
|
CPU cpu;
|
2017-08-11 16:02:09 +00:00
|
|
|
#include "bus.cpp"
|
Update to v102r16 release.
byuu says:
Changelog:
- Emulator::Stream now allows adding low-pass and high-pass filters
dynamically
- also accepts a pass# count; each pass is a second-order biquad
butterworth IIR filter
- Emulator::Stream no longer automatically filters out >20KHz
frequencies for all streams
- FC: added 20Hz high-pass filter; 20KHz low-pass filter
- GB: removed simple 'magic constant' high-pass filter of unknown
cutoff frequency (missed this one in the last WIP)
- GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter
- MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter
- MD: added save state support (but it's completely broken for now;
sorry)
- MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound
effects in Streets of Rage, etc)
- PCE: added 20Hz high-pass filter; 20KHz low-pass filter
- WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter
So, the point of the low-pass filters is to remove frequencies above
human hearing. If we don't do this, then resampling will introduce
aliasing that results in sounds that are audible to the human ear. Which
basically an annoying buzzing sound. You'll definitely hear the
improvement from these in games like Mega Man 2 on the NES. Of course,
these already existed before, so this WIP won't sound better than
previous WIPs.
The high-pass filters are a little more complicated. Their main role is
to remove DC bias and help to center the audio stream. I don't
understand how they do this at all, but ... that's what everyone who
knows what they're talking about says, thus ... so be it.
I have set all of the high-pass filters to 20Hz, which is below the
limit of human hearing. Now this is where it gets really interesting ...
technically, some of these systems actually cut off a lot of range. For
instance, the GBA should technically use an 800Hz high-pass filter when
output is done through the system's speakers. But of course, if you plug
in headphones, you can hear the lower frequencies.
Now 800Hz ... you definitely can hear. At that level, nearly all of the
bass is stripped out and the audio is very tinny. Just like the real
system. But for now, I don't want to emulate the audio being crushed
that badly.
I'm sticking with 20Hz everywhere since it won't negatively affect audio
quality. In fact, you should not be able to hear any difference between
this WIP and the previous WIP. But theoretically, DC bias should mostly
be removed as a result of these new filters. It may be that we need to
raise the values on some cores in the future, but I don't want to do
that until we know for certain that we have to.
What I can say is that compared to even older WIPs than r15 ... the
removal of the simple one-pole low-pass and high-pass filters with the
newer three-pass, second-order filters should result in much better
attenuation (less distortion of audible frequencies.) Probably not
enough to be noticeable in a blind test, though.
2017-03-08 20:20:40 +00:00
|
|
|
#include "serialization.cpp"
|
Update to v100r02 release.
byuu says:
Sigh ... I'm really not a good person. I'm inherently selfish.
My responsibility and obligation right now is to work on loki, and
then on the Tengai Makyou Zero translation, and then on improving the
Famicom emulation.
And yet ... it's not what I really want to do. That shouldn't matter;
I should work on my responsibilities first.
Instead, I'm going to be a greedy, self-centered asshole, and work on
what I really want to instead.
I'm really sorry, guys. I'm sure this will make a few people happy,
and probably upset even more people.
I'm also making zero guarantees that this ever gets finished. As always,
I wish I could keep these things secret, so if I fail / give up, I could
just drop it with no shame. But I would have to cut everyone out of the
WIP process completely to make it happen. So, here goes ...
This WIP adds the initial skeleton for Sega Mega Drive / Genesis
emulation. God help us.
(minor note: apparently the new extension for Mega Drive games is .md,
neat. That's what I chose for the folders too. I thought it was .smd,
so that'll be fixed in icarus for the next WIP.)
(aside: this is why I wanted to get v100 out. I didn't want this code in
a skeleton state in v100's source. Nor did I want really broken emulation,
which the first release is sure to be, tarring said release.)
...
So, basically, I've been ruminating on the legacy I want to leave behind
with higan. 3D systems are just plain out. I'm never going to support
them. They're too complex for my abilities, and they would run too slowly
with my design style. I'm not willing to compromise my design ideals. And
I would never want to play a 3D game system at native 240p/480i resolution
... but 1080p+ upscaling is not accurate, so that's a conflict I want
to avoid entirely. It's also never going to emulate computer systems
(X68K, PC-98, FM-Towns, etc) because holy shit that would completely
destroy me. It's also never going emulate arcade machines.
So I think of higan as a collection of 2D emulators for consoles
and handhelds. I've gone over every major 2D gaming system there is,
looking for ones with games I actually care about and enjoy. And I
basically have five of those systems supported already. Looking at the
remaining list, I see only three systems left that I have any interest
in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in
any way committing to emulating any of these, but ... if I had all of
those in higan, I think I'd be content to really, truly, finally stop
writing more emulators for the rest of my life.
And so I decided to tackle the most difficult system first. If I'm
successful, the Z80 core should cover a lot of the work on the SMS. And
the HuC6280 should land somewhere between the NES and SNES in terms of
difficulty ... closer to the NES.
The systems that just don't appeal to me at all, which I will never touch,
include, but are not limited to:
* Atari 2600/5200/7800
* Lynx
* Jaguar
* Vectrex
* Colecovision
* Commodore 64
* Neo-Geo
* Neo-Geo Pocket / Color
* Virtual Boy
* Super A'can
* 32X
* CD-i
* etc, etc, etc.
And really, even if something were mildly interesting in there ... we
have to stop. I can't scale infinitely. I'm already way past my limit,
but I'm doing this anyway. Too many cores bloats everything and kills
quality on everything. I don't want higan to become MESS v2.
I don't know what I'll do about the Famicom Disk System, PC-Engine CD,
and Mega CD. I don't think I'll be able to achieve 60fps emulating the
Mega CD, even if I tried to.
I don't know what's going to happen here with even the Mega Drive. Maybe
I'll get driven crazy with the documentation and quit. Maybe it'll end
up being too complicated and I'll quit. Maybe the emulation will end up
way too slow and I'll give up. Maybe it'll take me seven years to get
any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone
will pool money to hire a hitman to come after me. Who knows.
But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
|
|
|
|
2016-07-10 05:28:26 +00:00
|
|
|
auto CPU::Enter() -> void {
|
|
|
|
while(true) scheduler.synchronize(), cpu.main();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto CPU::main() -> void {
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
if(state.interruptPending) {
|
Update to v102r17 release.
byuu says:
Changelog:
- GBA: process audio at 2MHz instead of 32KHz¹
- MD: do not allow the 68K to stop the Z80, unless it has been granted
bus access first
- MD: do not reset bus requested/granted signals when the 68K resets
the Z80
- the above two fix The Lost Vikings
- MD: clean up the bus address decoding to be more readable
- MD: add support for a13000-a130ff (#TIME) region; pass to cartridge
I/O²
- MD: emulate SRAM mapping used by >16mbit games; bank mapping used
by >32mbit games³
- MD: add 'reset pending' flag so that loading save states won't
reload 68K PC, SP registers
- this fixes save state support ... mostly⁴
- MD: if DMA is not enabled, do not allow CD5 to be set [Cydrak]
- this fixes in-game graphics for Ristar. Title screen still
corrupted on first run
- MD: detect and break sprite lists that form an infinite loop
[Cydrak]
- this fixes the emulator from dead-locking on certain games
- MD: add DC offset to sign DAC PCM samples [Cydrak]
- this improves audio in Sonic 3
- MD: 68K TAS has a hardware bug that prevents writing the result back
to RAM
- this fixes Gargoyles
- MD: 68K TRAP should not change CPU interrupt level
- this fixes Shining Force II, Shining in the Darkness, etc
- icarus: better SRAM heuristics for Mega Drive games
Todo:
- need to serialize the new cartridge ramEnable, ramWritable, bank
variables
¹: so technically, the GBA has its FIFO queue (raw PCM), plus a GB
chipset. The GB audio runs at 2MHz. However, I was being lazy and
running the sequencer 64 times in a row, thus decimating the audio to
32KHz. But simply discarding 63 out of every 64 samples resorts in
muddier sound with more static in it.
However ... increasing the audio thread processing intensity 64-fold,
and requiring heavy-duty three-chain lowpass and highpass filters is not
cheap. For this bump in sound quality, we're eating a loss of about 30%
of previous performance.
Also note that the GB audio emulation in the GBA core still lacks many
of the improvements made to the GB core. I was hoping to complete the GB
enhancements, but it seems like I'm never going to pass blargg's
psychotic edge case tests. So, first I want to clean up the GB audio to
my current coding standards, and then I'll port that over to the GBA,
which should further increase sound quality. At that point, it sound
exceed mGBA's audio quality (due to the ridiculously high sampling rate
and strong-attenuation audio filtering.)
²: word writes are probably not handled correctly ... but games are
only supposed to do byte writes here.
³: the SRAM mapping is used by games like "Story of Thor" and
"Phantasy Star IV." Unfortunately, the former wasn't released in the US
and is region protected. So you'll need to change the NTSU to NTSCJ in
md/system/system.cpp in order to boot it. But it does work nicely now.
The write protection bit is cleared in the game, and then it fails to
write to SRAM (soooooooo many games with SRAM write protection do this),
so for now I've had to disable checking that bit. Phantasy Star IV has a
US release, but sadly the game doesn't boot yet. Hitting some other bug.
The bank mapping is pretty much just for the 40mbit Super Street Fighter
game. It shows the Sega and Capcom logos now, but is hitting yet another
bug and deadlocking.
For now, I emulate the SRAM/bank mapping registers on all cartridges,
and set sane defaults. So long as games don't write to $a130XX, they
should all continue to work. But obviously, we need to get to a point
where higan/icarus can selectively enable these registers on a per-game
basis.
⁴: so, the Mega Drive has various ways to lock a chip until another
chip releases it. The VDP can lock the 68K, the 68K can lock the Z80,
etc. If this happens when you save a state, it'll dead-lock the
emulator. So that's obviously a problem that needs to be fixed. The fix
will be nasty ... basically, bypassing the dead-lock, creating a
miniature, one-instruction-long race condition. Extremely unlikely to
cause any issues in practice (it's only a little worse than the SNES
CPU/SMP desync), but ... there's nothing I can do about it. So you'll
have to take it or leave it. But yeah, for now, save states may lock up
the emulator. I need to add code to break the loops when in the process
of creating a save state still.
2017-03-10 10:23:29 +00:00
|
|
|
if(state.interruptPending.bit((uint)Interrupt::Reset)) {
|
|
|
|
state.interruptPending.bit((uint)Interrupt::Reset) = 0;
|
|
|
|
r.a[7] = bus->readWord(0) << 16 | bus->readWord(2) << 0;
|
|
|
|
r.pc = bus->readWord(4) << 16 | bus->readWord(6) << 0;
|
|
|
|
}
|
|
|
|
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
if(state.interruptPending.bit((uint)Interrupt::HorizontalBlank)) {
|
2016-08-17 12:31:22 +00:00
|
|
|
if(4 > r.i) {
|
|
|
|
state.interruptPending.bit((uint)Interrupt::HorizontalBlank) = 0;
|
|
|
|
return exception(Exception::Interrupt, Vector::HorizontalBlank, 4);
|
|
|
|
}
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
if(state.interruptPending.bit((uint)Interrupt::VerticalBlank)) {
|
2016-08-17 12:31:22 +00:00
|
|
|
if(6 > r.i) {
|
|
|
|
state.interruptPending.bit((uint)Interrupt::VerticalBlank) = 0;
|
|
|
|
return exception(Exception::Interrupt, Vector::VerticalBlank, 6);
|
|
|
|
}
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2016-07-10 05:28:26 +00:00
|
|
|
instruction();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto CPU::step(uint clocks) -> void {
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
while(wait) {
|
|
|
|
Thread::step(1);
|
|
|
|
synchronize();
|
|
|
|
}
|
|
|
|
|
Update to v100r14 release.
byuu says:
(Windows: compile with -fpermissive to silence an annoying error. I'll
fix it in the next WIP.)
I completely replaced the time management system in higan and overhauled
the scheduler.
Before, processor threads would have "int64 clock"; and there would
be a 1:1 relationship between two threads. When thread A ran for X
cycles, it'd subtract X * B.Frequency from clock; and when thread B ran
for Y cycles, it'd add Y * A.Frequency from clock. This worked well
and allowed perfect precision; but it doesn't work when you have more
complicated relationships: eg the 68K can sync to the Z80 and PSG; the
Z80 to the 68K and PSG; so the PSG needs two counters.
The new system instead uses a "uint64 clock" variable that represents
time in attoseconds. Every time the scheduler exits, it subtracts
the smallest clock count from all threads, to prevent an overflow
scenario. The only real downside is that rounding errors mean that
roughly every 20 minutes, we have a rounding error of one clock cycle
(one 20,000,000th of a second.) However, this only applies to systems
with multiple oscillators, like the SNES. And when you're in that
situation ... there's no such thing as a perfect oscillator anyway. A
real SNES will be thousands of times less out of spec than 1hz per 20
minutes.
The advantages are pretty immense. First, we obviously can now support
more complex relationships between threads. Second, we can build a
much more abstracted scheduler. All of libco is now abstracted away
completely, which may permit a state-machine / coroutine version of
Thread in the future. We've basically gone from this:
auto SMP::step(uint clocks) -> void {
clock += clocks * (uint64)cpu.frequency;
dsp.clock -= clocks;
if(dsp.clock < 0 && !scheduler.synchronizing()) co_switch(dsp.thread);
if(clock >= 0 && !scheduler.synchronizing()) co_switch(cpu.thread);
}
To this:
auto SMP::step(uint clocks) -> void {
Thread::step(clocks);
synchronize(dsp);
synchronize(cpu);
}
As you can see, we don't have to do multiple clock adjustments anymore.
This is a huge win for the SNES CPU that had to update the SMP, DSP, all
peripherals and all coprocessors. Likewise, we don't have to synchronize
all coprocessors when one runs, now we can just synchronize the active
one to the CPU.
Third, when changing the frequencies of threads (think SGB speed setting
modes, GBC double-speed mode, etc), it no longer causes the "int64
clock" value to be erroneous.
Fourth, this results in a fairly decent speedup, mostly across the
board. Aside from the GBA being mostly a wash (for unknown reasons),
it's about an 8% - 12% speedup in every other emulation core.
Now, all of this said ... this was an unbelievably massive change, so
... you know what that means >_> If anyone can help test all types of
SNES coprocessors, and some other system games, it'd be appreciated.
----
Lastly, we have a bitchin' new about screen. It unfortunately adds
~200KiB onto the binary size, because the PNG->C++ header file
transformation doesn't compress very well, and I want to keep the
original resource files in with the higan archive. I might try some
things to work around this file size increase in the future, but for now
... yeah, slightly larger archive sizes, sorry.
The logo's a bit busted on Windows (the Label control's background
transparency and alignment settings aren't working), but works well on
GTK. I'll have to fix Windows before the next official release. For now,
look on my Twitter feed if you want to see what it's supposed to look
like.
----
EDIT: forgot about ICD2::Enter. It's doing some weird inverse
run-to-save thing that I need to implement support for somehow. So, save
states on the SGB core probably won't work with this WIP.
2016-07-30 03:56:12 +00:00
|
|
|
Thread::step(clocks);
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
synchronize();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto CPU::synchronize() -> void {
|
Update to v101r04 release.
byuu says:
Changelog:
- pulled the (u)intN type aliases into higan instead of leaving them
in nall
- added 68K LINEA, LINEF hooks for illegal instructions
- filled the rest of the 68K lambda table with generic instance of
ILLEGAL
- completed the 68K disassembler effective addressing modes
- still unsure whether I should use An to decode absolute
addresses or not
- pro: way easier to read where accesses are taking place
- con: requires An to be valid; so as a disassembler it does a
poor job
- making it optional: too much work; ick
- added I/O decoding for the VDP command-port registers
- added skeleton timing to all five processor cores
- output at 1280x480 (needed for mixed 256/320 widths; and to handle
interlace modes)
The VDP, PSG, Z80, YM2612 are all stepping one clock at a time and
syncing; which is the pathological worst case for libco. But they also
have no logic inside of them. With all the above, I'm averaging around
250fps with just the 68K core actually functional, and the VDP doing a
dumb "draw white pixels" loop. Still way too early to tell how this
emulator is going to perform.
Also, the 320x240 mode of the Genesis means that we don't need an aspect
correction ratio. But we do need to ensure the output window is a
multiple 320x240 so that the scale values work correctly. I was
hard-coding aspect correction to stretch the window an additional \*8/7.
But that won't work anymore so ... the main higan window is now 640x480,
960x720, or 1280x960. Toggling aspect correction only changes the video
width inside the window.
It's a bit jarring ... the window is a lot wider, more black space now
for most modes. But for now, it is what it is.
2016-08-12 01:07:04 +00:00
|
|
|
synchronize(apu);
|
|
|
|
synchronize(vdp);
|
|
|
|
synchronize(psg);
|
|
|
|
synchronize(ym2612);
|
2016-08-21 22:11:24 +00:00
|
|
|
for(auto peripheral : peripherals) synchronize(*peripheral);
|
2016-07-10 05:28:26 +00:00
|
|
|
}
|
|
|
|
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
auto CPU::raise(Interrupt interrupt) -> void {
|
|
|
|
if(!state.interruptLine.bit((uint)interrupt)) {
|
|
|
|
state.interruptLine.bit((uint)interrupt) = 1;
|
|
|
|
state.interruptPending.bit((uint)interrupt) = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto CPU::lower(Interrupt interrupt) -> void {
|
|
|
|
state.interruptLine.bit((uint)interrupt) = 0;
|
2016-08-17 12:31:22 +00:00
|
|
|
state.interruptPending.bit((uint)interrupt) = 0;
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
}
|
|
|
|
|
2017-08-11 16:02:09 +00:00
|
|
|
auto CPU::load(Markup::Node node) -> bool {
|
|
|
|
tmssEnable = false;
|
|
|
|
if(node["cpu/version"].natural() == 1) {
|
|
|
|
if(auto name = node["cpu/rom/name"].text()) {
|
|
|
|
if(auto fp = platform->open(ID::System, name, File::Read, File::Required)) {
|
|
|
|
fp->read(tmss, 2 * 1024);
|
|
|
|
tmssEnable = true;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
2016-07-10 05:28:26 +00:00
|
|
|
auto CPU::power() -> void {
|
2017-08-11 16:02:09 +00:00
|
|
|
M68K::bus = this;
|
2016-07-10 05:28:26 +00:00
|
|
|
M68K::power();
|
2017-06-27 01:18:28 +00:00
|
|
|
create(CPU::Enter, system.frequency() / 7.0);
|
Update to v101r07 release.
byuu says:
Added VDP sprite rendering. Can't get any games far enough in to see if
it actually works. So in other words, it doesn't work at all and is 100%
completely broken.
Also added 68K exceptions and interrupts. So far only the VDP interrupt
is present. It definitely seems to be firing in commercial games, so
that's promising. But the implementation is almost certainly completely
wrong. There is fuck all of nothing for documentation on how interrupts
actually work. I had to find out the interrupt vector numbers from
reading the comments from the Sonic the Hedgehog disassembly. I have
literally no fucking clue what I0-I2 (3-bit integer priority value in
the status register) is supposed to do. I know that Vblank=6, Hblank=4,
Ext(gamepad)=2. I know that at reset, SR.I=7. I don't know if I'm
supposed to block interrupts when I is >, >=, <, <= to the interrupt
level. I don't know what level CPU exceptions are supposed to be.
Also implemented VDP regular DMA. No idea if it works correctly since
none of the commercial games run far enough to use it. So again, it's
horribly broken for usre.
Also improved VDP fill mode. But I don't understand how it takes
byte-lengths when the bus is 16-bit. The transfer times indicate it's
actually transferring at the same speed as the 68K->VDP copy, strongly
suggesting it's actually doing 16-bit transfers at a time. In which case,
what happens when you set an odd transfer length?
Also, both DMA modes can now target VRAM, VSRAM, CRAM. Supposedly there's
all kinds of weird shit going on when you target VSRAM, CRAM with VDP
fill/copy modes, but whatever. Get to that later.
Also implemented a very lazy preliminary wait mechanism to to stall out
a processor while another processor exerts control over the bus. This
one's going to be a major work in progress. For one, it totally breaks
the model I use to do save states with libco. For another, I don't
know if a 68K->VDP DMA instantly locks the CPU, or if it the CPU could
actually keep running if it was executing out of RAM when it started
the DMA transfer from ROM (eg it's a bus busy stall, not a hard chip
stall.) That'll greatly change how I handle the waiting.
Also, the OSS driver now supports Audio::Latency. Sound should be
even lower latency now. On FreeBSD when set to 0ms, it's absolutely
incredible. Cannot detect latency whatsoever. The Mario jump sound seems
to happen at the very instant I hear my cherry blue keyswitch activate.
2016-08-15 04:56:38 +00:00
|
|
|
|
2017-08-11 16:02:09 +00:00
|
|
|
io = {};
|
|
|
|
io.version = tmssEnable;
|
|
|
|
io.romEnable = !tmssEnable;
|
|
|
|
io.vdpEnable[0] = !tmssEnable;
|
|
|
|
io.vdpEnable[1] = !tmssEnable;
|
|
|
|
|
2017-06-27 01:18:28 +00:00
|
|
|
state = {};
|
Update to v102r17 release.
byuu says:
Changelog:
- GBA: process audio at 2MHz instead of 32KHz¹
- MD: do not allow the 68K to stop the Z80, unless it has been granted
bus access first
- MD: do not reset bus requested/granted signals when the 68K resets
the Z80
- the above two fix The Lost Vikings
- MD: clean up the bus address decoding to be more readable
- MD: add support for a13000-a130ff (#TIME) region; pass to cartridge
I/O²
- MD: emulate SRAM mapping used by >16mbit games; bank mapping used
by >32mbit games³
- MD: add 'reset pending' flag so that loading save states won't
reload 68K PC, SP registers
- this fixes save state support ... mostly⁴
- MD: if DMA is not enabled, do not allow CD5 to be set [Cydrak]
- this fixes in-game graphics for Ristar. Title screen still
corrupted on first run
- MD: detect and break sprite lists that form an infinite loop
[Cydrak]
- this fixes the emulator from dead-locking on certain games
- MD: add DC offset to sign DAC PCM samples [Cydrak]
- this improves audio in Sonic 3
- MD: 68K TAS has a hardware bug that prevents writing the result back
to RAM
- this fixes Gargoyles
- MD: 68K TRAP should not change CPU interrupt level
- this fixes Shining Force II, Shining in the Darkness, etc
- icarus: better SRAM heuristics for Mega Drive games
Todo:
- need to serialize the new cartridge ramEnable, ramWritable, bank
variables
¹: so technically, the GBA has its FIFO queue (raw PCM), plus a GB
chipset. The GB audio runs at 2MHz. However, I was being lazy and
running the sequencer 64 times in a row, thus decimating the audio to
32KHz. But simply discarding 63 out of every 64 samples resorts in
muddier sound with more static in it.
However ... increasing the audio thread processing intensity 64-fold,
and requiring heavy-duty three-chain lowpass and highpass filters is not
cheap. For this bump in sound quality, we're eating a loss of about 30%
of previous performance.
Also note that the GB audio emulation in the GBA core still lacks many
of the improvements made to the GB core. I was hoping to complete the GB
enhancements, but it seems like I'm never going to pass blargg's
psychotic edge case tests. So, first I want to clean up the GB audio to
my current coding standards, and then I'll port that over to the GBA,
which should further increase sound quality. At that point, it sound
exceed mGBA's audio quality (due to the ridiculously high sampling rate
and strong-attenuation audio filtering.)
²: word writes are probably not handled correctly ... but games are
only supposed to do byte writes here.
³: the SRAM mapping is used by games like "Story of Thor" and
"Phantasy Star IV." Unfortunately, the former wasn't released in the US
and is region protected. So you'll need to change the NTSU to NTSCJ in
md/system/system.cpp in order to boot it. But it does work nicely now.
The write protection bit is cleared in the game, and then it fails to
write to SRAM (soooooooo many games with SRAM write protection do this),
so for now I've had to disable checking that bit. Phantasy Star IV has a
US release, but sadly the game doesn't boot yet. Hitting some other bug.
The bank mapping is pretty much just for the 40mbit Super Street Fighter
game. It shows the Sega and Capcom logos now, but is hitting yet another
bug and deadlocking.
For now, I emulate the SRAM/bank mapping registers on all cartridges,
and set sane defaults. So long as games don't write to $a130XX, they
should all continue to work. But obviously, we need to get to a point
where higan/icarus can selectively enable these registers on a per-game
basis.
⁴: so, the Mega Drive has various ways to lock a chip until another
chip releases it. The VDP can lock the 68K, the 68K can lock the Z80,
etc. If this happens when you save a state, it'll dead-lock the
emulator. So that's obviously a problem that needs to be fixed. The fix
will be nasty ... basically, bypassing the dead-lock, creating a
miniature, one-instruction-long race condition. Extremely unlikely to
cause any issues in practice (it's only a little worse than the SNES
CPU/SMP desync), but ... there's nothing I can do about it. So you'll
have to take it or leave it. But yeah, for now, save states may lock up
the emulator. I need to add code to break the loops when in the process
of creating a save state still.
2017-03-10 10:23:29 +00:00
|
|
|
state.interruptPending.bit((uint)Interrupt::Reset) = 1;
|
2016-07-10 05:28:26 +00:00
|
|
|
}
|
|
|
|
|
Update to v100r02 release.
byuu says:
Sigh ... I'm really not a good person. I'm inherently selfish.
My responsibility and obligation right now is to work on loki, and
then on the Tengai Makyou Zero translation, and then on improving the
Famicom emulation.
And yet ... it's not what I really want to do. That shouldn't matter;
I should work on my responsibilities first.
Instead, I'm going to be a greedy, self-centered asshole, and work on
what I really want to instead.
I'm really sorry, guys. I'm sure this will make a few people happy,
and probably upset even more people.
I'm also making zero guarantees that this ever gets finished. As always,
I wish I could keep these things secret, so if I fail / give up, I could
just drop it with no shame. But I would have to cut everyone out of the
WIP process completely to make it happen. So, here goes ...
This WIP adds the initial skeleton for Sega Mega Drive / Genesis
emulation. God help us.
(minor note: apparently the new extension for Mega Drive games is .md,
neat. That's what I chose for the folders too. I thought it was .smd,
so that'll be fixed in icarus for the next WIP.)
(aside: this is why I wanted to get v100 out. I didn't want this code in
a skeleton state in v100's source. Nor did I want really broken emulation,
which the first release is sure to be, tarring said release.)
...
So, basically, I've been ruminating on the legacy I want to leave behind
with higan. 3D systems are just plain out. I'm never going to support
them. They're too complex for my abilities, and they would run too slowly
with my design style. I'm not willing to compromise my design ideals. And
I would never want to play a 3D game system at native 240p/480i resolution
... but 1080p+ upscaling is not accurate, so that's a conflict I want
to avoid entirely. It's also never going to emulate computer systems
(X68K, PC-98, FM-Towns, etc) because holy shit that would completely
destroy me. It's also never going emulate arcade machines.
So I think of higan as a collection of 2D emulators for consoles
and handhelds. I've gone over every major 2D gaming system there is,
looking for ones with games I actually care about and enjoy. And I
basically have five of those systems supported already. Looking at the
remaining list, I see only three systems left that I have any interest
in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in
any way committing to emulating any of these, but ... if I had all of
those in higan, I think I'd be content to really, truly, finally stop
writing more emulators for the rest of my life.
And so I decided to tackle the most difficult system first. If I'm
successful, the Z80 core should cover a lot of the work on the SMS. And
the HuC6280 should land somewhere between the NES and SNES in terms of
difficulty ... closer to the NES.
The systems that just don't appeal to me at all, which I will never touch,
include, but are not limited to:
* Atari 2600/5200/7800
* Lynx
* Jaguar
* Vectrex
* Colecovision
* Commodore 64
* Neo-Geo
* Neo-Geo Pocket / Color
* Virtual Boy
* Super A'can
* 32X
* CD-i
* etc, etc, etc.
And really, even if something were mildly interesting in there ... we
have to stop. I can't scale infinitely. I'm already way past my limit,
but I'm doing this anyway. Too many cores bloats everything and kills
quality on everything. I don't want higan to become MESS v2.
I don't know what I'll do about the Famicom Disk System, PC-Engine CD,
and Mega CD. I don't think I'll be able to achieve 60fps emulating the
Mega CD, even if I tried to.
I don't know what's going to happen here with even the Mega Drive. Maybe
I'll get driven crazy with the documentation and quit. Maybe it'll end
up being too complicated and I'll quit. Maybe the emulation will end up
way too slow and I'll give up. Maybe it'll take me seven years to get
any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone
will pool money to hire a hitman to come after me. Who knows.
But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
|
|
|
}
|