2018-07-31 02:23:12 +00:00
|
|
|
struct Input;
|
|
|
|
|
|
|
|
struct InputDriver {
|
|
|
|
InputDriver(Input& super) : super(super) {}
|
|
|
|
virtual ~InputDriver() = default;
|
|
|
|
|
|
|
|
virtual auto create() -> bool { return true; }
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
virtual auto driver() -> string { return "None"; }
|
2018-07-31 02:23:12 +00:00
|
|
|
virtual auto ready() -> bool { return true; }
|
|
|
|
|
|
|
|
virtual auto hasContext() -> bool { return false; }
|
|
|
|
|
|
|
|
virtual auto setContext(uintptr context) -> bool { return true; }
|
|
|
|
|
|
|
|
virtual auto acquired() -> bool { return false; }
|
|
|
|
virtual auto acquire() -> bool { return false; }
|
|
|
|
virtual auto release() -> bool { return false; }
|
|
|
|
virtual auto poll() -> vector<shared_pointer<nall::HID::Device>> { return {}; }
|
|
|
|
virtual auto rumble(uint64_t id, bool enable) -> bool { return false; }
|
|
|
|
|
|
|
|
protected:
|
|
|
|
Input& super;
|
|
|
|
friend class Input;
|
|
|
|
|
|
|
|
uintptr context = 0;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct Input {
|
|
|
|
static auto hasDrivers() -> vector<string>;
|
|
|
|
static auto hasDriver(string driver) -> bool { return (bool)hasDrivers().find(driver); }
|
|
|
|
static auto optimalDriver() -> string;
|
|
|
|
static auto safestDriver() -> string;
|
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
Input() : self(*this) { reset(); }
|
|
|
|
explicit operator bool() { return instance->driver() != "None"; }
|
|
|
|
auto reset() -> void { instance = new InputDriver(*this); }
|
2018-07-31 02:23:12 +00:00
|
|
|
auto create(string driver = "") -> bool;
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
auto driver() -> string { return instance->driver(); }
|
|
|
|
auto ready() -> bool { return instance->ready(); }
|
2018-07-31 02:23:12 +00:00
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
auto hasContext() -> bool { return instance->hasContext(); }
|
2018-07-31 02:23:12 +00:00
|
|
|
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
auto context() -> uintptr { return instance->context; }
|
2018-07-31 02:23:12 +00:00
|
|
|
|
|
|
|
auto setContext(uintptr context) -> bool;
|
|
|
|
|
|
|
|
auto acquired() -> bool;
|
|
|
|
auto acquire() -> bool;
|
|
|
|
auto release() -> bool;
|
|
|
|
auto poll() -> vector<shared_pointer<nall::HID::Device>>;
|
|
|
|
auto rumble(uint64_t id, bool enable) -> bool;
|
|
|
|
|
|
|
|
auto onChange(const function<void (shared_pointer<nall::HID::Device>, uint, uint, int16_t, int16_t)>&) -> void;
|
|
|
|
auto doChange(shared_pointer<nall::HID::Device> device, uint group, uint input, int16_t oldValue, int16_t newValue) -> void;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
Input& self;
|
Update to 20180731 release.
byuu says:
I've completed moving all the class objects from `unique_pointer<T>` to
just T. The one exception is the Emulator::Interface instance. I can
absolutely make that a global object, but only in bsnes where there's
just the one emulation core.
I also moved all the SettingsWindow and ToolsWindow panels out to their
own global objects, and fixed a very difficult bug with GTK TabFrame
controls.
The configuration settings panel is now the emulator settings panel. And
I added some spacing between bold label sections on both the emulator
and driver settings panels.
I gave fixing ComboButtonItem my best shot, given I can't reproduce the
crash. Probably won't work, though.
Also made a very slight consistency improvement to ruby and renamed
driverName() to driver().
...
An important change ... as a result of moving bsnes to global objects,
this means that the constructors for all windows run before the
presentation window is displayed. Before this change, only the
presentation window was constructed first berore displaying it, followed
by the construction of the rest of the GUI windows.
The upside to this is that as soon as you see the main window, the GUI
is ready to go without a period where it's unresponsive.
The downside to this is it takes about 1.5 seconds to show the main
window, compared to around 0.75 seconds before.
I've no intention of changing that back. So if the startup time becomes
a problem, then we'll just have to work on optimizing hiro, so that it
can construct all the global Window objects quicker. The main way to do
that would be to not do calls to the Layout::setGeometry functions for
every widget added, and instead wait until the window is displayed. But
I don't have an easy way to do that, because you want the widget
geometry values to be sane even before the window is visible to help
size certain things.
2018-07-31 10:56:45 +00:00
|
|
|
unique_pointer<InputDriver> instance;
|
2018-07-31 02:23:12 +00:00
|
|
|
function<void (shared_pointer<nall::HID::Device> device, uint group, uint input, int16_t oldValue, int16_t newValue)> change;
|
|
|
|
};
|