Update to v087r04 release.
byuu says:
Changelog:
- gameboy/ -> gb/
- GameBoy -> GB
- basic memory map for GBA
- enough code to execute the first BIOS instruction (b 0x68)
I have the code resetting r(15) to 0 on an exception just as a test.
Since that flushes the pipeline, that means we're basically executing "b
0x68" at 8MHz, and nothing else.
... and I am getting __6 motherfucking FPS__ at 4.4GHz on an i7.
Something is seriously, horribly, unfuckingbelievably wrong here, and
I can't figure out what it is.
My *fully complete* ARM core on the ST018 is even less efficient and
runs at 21.47MHz, and yet I get 60fps even after emulating the SNES
CPU+PPU @ 10+MHz each as well.
... I'm stuck. I can't proceed until we figure out what in the holy fuck
is going on here. So ... if anyone can help, please do. If we can't fix
this, the GBA emulation is dead.
I was able to profile on Windows, and I've included that in this WIP
under out/log.txt.
But it looks normal to me. But yeah, there's NO. FUCKING. WAY. This code
should be running this slowly.
2012-03-18 12:35:53 +00:00
|
|
|
#include <gb/gb.hpp>
|
2011-09-15 12:41:49 +00:00
|
|
|
|
2012-04-26 10:51:13 +00:00
|
|
|
namespace GameBoy {
|
2011-09-15 12:41:49 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
SuperGameBoyInterface* superGameBoy = nullptr;
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
Settings settings;
|
Update to v102r02 release.
byuu says:
Changelog:
- I caved on the `samples[] = {0.0}` thing, but I'm very unhappy about it
- if it's really invalid C++, then GCC needs to stop accepting it
in strict `-std=c++14` mode
- Emulator::Interface::Information::resettable is gone
- Emulator::Interface::reset() is gone
- FC, SFC, MD cores updated to remove soft reset behavior
- split GameBoy::Interface into GameBoyInterface,
GameBoyColorInterface
- split WonderSwan::Interface into WonderSwanInterface,
WonderSwanColorInterface
- PCE: fixed off-by-one scanline error [hex_usr]
- PCE: temporary hack to prevent crashing when VDS is set to < 2
- hiro: Cocoa: removed (u)int(#) constants; converted (u)int(#)
types to (u)int_(#)t types
- icarus: replaced usage of unique with strip instead (so we don't
mess up frameworks on macOS)
- libco: added macOS-specific section marker [Ryphecha]
So ... the major news this time is the removal of the soft reset
behavior. This is a major!! change that results in a 100KiB diff file,
and it's very prone to accidental mistakes!! If anyone is up for
testing, or even better -- looking over the code changes between v102r01
and v102r02 and looking for any issues, please do so. Ideally we'll want
to test every NES mapper type and every SNES coprocessor type by loading
said games and power cycling to make sure the games are all cleanly
resetting. It's too big of a change for me to cover there not being any
issues on my own, but this is truly critical code, so yeah ... please
help if you can.
We technically lose a bit of hardware documentation here. The soft reset
events do all kinds of interesting things in all kinds of different
chips -- or at least they do on the SNES. This is obviously not ideal.
But in the process of removing these portions of code, I found a few
mistakes I had made previously. It simplifies resetting the system state
a lot when not trying to have all the power() functions call the reset()
functions to share partial functionality.
In the future, the goal will be to come up with a way to add back in the
soft reset behavior via keyboard binding as with the Master System core.
What's going to have to happen is that the key binding will have to send
a "reset pulse" to every emulated chip, and those chips are going to
have to act independently to power() instead of reusing functionality.
We'll get there eventually, but there's many things of vastly greater
importance to work on right now, so it'll be a while. The information
isn't lost ... we'll just have to pull it out of v102 when we are ready.
Note that I left the SNES reset vector simulation code in, even though
it's not possible to trigger, for the time being.
Also ... the Super Game Boy core is still disconnected. To be honest, it
totally slipped my mind when I released v102 that it wasn't connected
again yet. This one's going to be pretty tricky to be honest. I'm
thinking about making a third GameBoy::Interface class just for SGB, and
coming up with some way of bypassing platform-> calls when in this
mode.
2017-01-22 21:04:26 +00:00
|
|
|
#include "game-boy.cpp"
|
|
|
|
#include "game-boy-color.cpp"
|
Update to v096r07 release.
byuu says:
Changelog:
- configuration files are now stored in localpath() instead of configpath()
- Video gamma/saturation/luminance sliders are gone now, sorry
- added Video Filter->Blur Emulation [1]
- added Video Filter->Scanline Emulation [2]
- improvements to GBA audio emulation (fixes Minish Cap) [Jonas Quinn]
[1] For the Famicom, this does nothing. For the Super Famicom, this
performs horizontal blending for proper pseudo-hires translucency. For
the Game Boy, Game Boy Color, and Game Boy Advance, this performs
interframe blending (each frame is the average of the current and
previous frame), which is important for things like the GBVideoPlayer.
[2] Right now, this only applies to the Super Famicom, but it'll come to
the Famicom in the future. For the Super Famicom, this option doesn't
just add scanlines, it simulates the phosphor decay that's visible in
interlace mode. If you observe an interlaced game like RPM Racing on
a real SNES, you'll notice that even on perfectly still screens, the
image appears to shake. This option emulates that effect.
Note 1: the buffering right now is a little sub-optimal, so there will
be a slight speed hit with this new support. Since the core is now
generating native ARGB8888 colors, it might as well call out to the
interface to lock/unlock/refresh the video, that way it can render
directly to the screen. Although ... that might not be such a hot idea,
since the GBx interframe blending reads from the target buffer, and that
tends to be a catastrophic option for performance.
Note 2: the balanced and performance profiles for the SNES are
completely busted again. This WIP took 6 1/2 hours, and I'm exhausted.
Very much not looking forward to working on those, since those two have
all kinds of fucked up speedup tricks for non-interlaced and/or
non-hires video modes.
Note 3: if you're on Windows and you saved your system folders somewhere
else, now'd be a good time to move them to %localappdata%/higan
2016-01-15 10:06:51 +00:00
|
|
|
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
Interface::Interface() {
|
|
|
|
Port hardwarePort{ID::Port::Hardware, "Hardware"};
|
|
|
|
|
|
|
|
{ Device device{ID::Device::Controls, "Controls"};
|
|
|
|
device.inputs.append({0, "Up" });
|
|
|
|
device.inputs.append({0, "Down" });
|
|
|
|
device.inputs.append({0, "Left" });
|
|
|
|
device.inputs.append({0, "Right" });
|
|
|
|
device.inputs.append({0, "B" });
|
|
|
|
device.inputs.append({0, "A" });
|
|
|
|
device.inputs.append({0, "Select"});
|
|
|
|
device.inputs.append({0, "Start" });
|
|
|
|
hardwarePort.devices.append(device);
|
|
|
|
}
|
|
|
|
|
|
|
|
ports.append(move(hardwarePort));
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::manifest() -> string {
|
|
|
|
return cartridge.manifest();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::title() -> string {
|
|
|
|
return cartridge.title();
|
|
|
|
}
|
|
|
|
|
2017-06-08 14:05:48 +00:00
|
|
|
auto Interface::videoResolution() -> VideoSize {
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
return {160, 144};
|
|
|
|
}
|
|
|
|
|
Update to v103r08 release.
byuu says:
Changelog:
- emulator: improved aspect correction accuracy by using
floating-point calculations
- emulator: added videoCrop() function, extended videoSize() to take
cropping parameters¹
- tomoko: the overscan masking function will now actually resize the
viewport²
- gba/cpu: fixed two-cycle delay on triggering DMAs; not running DMAs
when the CPU is stopped
- md/vdp: center video when overscan is disabled
- pce/vce: resize video output from 1140x240 to 1120x240
- tomoko: resize window scaling from 326x240 to 320x240
- tomoko: changed save slot naming and status bar messages to indicate
quick states vs managed states
- tomoko: added increment/decrement quick state hotkeys
- tomoko: save/load quick state hotkeys now save to slots 1-5 instead
of always to 0
- tomoko: increased overscan range from 0-16 to 0-24 (in case you want
to mask the Master System to 240x192)
¹: the idea here was to decouple raw pixels from overscan masking.
Overscan was actually horrifically broken before. The Famicom outputs at
256x240, the Super Famicom at 512x480, and the Mega Drive at 1280x480.
Before, a horizontal overscan mask of 8 would not reduce the Super
Famicom or Mega Drive by nearly as much as the Famicom. WIth the new
videoCrop() function, the internals of pixel size distortions can be
handled by each individual core.
²: furthermore, by taking optional cropping information in
videoSize(), games can scale even larger into the viewport window. So
for example, before the Super Famicom could only scale to 1536x1440. But
by cropping the vertical resolution by 6 (228p effectively, still more
than NTSC can even show), I can now scale to 1792x1596. And wiht aspect
correction, that becomes a perfect 8:7 ratio of 2048x1596, giving me
perfectly crisp pixels without linear interpolation being required.
Errata: for some reason, when I save a new managed state with the SFC
core, the default description is being set to a string of what looks to
be hex numbers. I found the cause ... I'll fix this in the next release.
Note: I'd also like to hide the "find codes..." button if cheats.bml
isn't present, as well as update the SMP TEST register comment from
smp/timing.cpp
2017-07-05 05:44:15 +00:00
|
|
|
auto Interface::videoSize(uint width, uint height, bool, uint, uint) -> VideoSize {
|
|
|
|
double widthDivider = 160;
|
|
|
|
double heightDivider = 144;
|
|
|
|
uint multiplier = min(width / widthDivider, height / heightDivider);
|
|
|
|
return {uint(widthDivider * multiplier), uint(heightDivider * multiplier)};
|
Update to v102r04 release.
byuu says:
Changelog:
- Super Game Boy support is functional once again
- new GameBoy::SuperGameBoyInterface class
- system.(dmg,cgb,sgb) is now Model::(Super)GameBoy(Color) ala the PC
Engine
- merged WonderSwanInterface, WonderSwanColorInterface shared
functions to WonderSwan::Interface
- merged GameBoyInterface, GameBoyColorInterface shared functions to
GameBoy::Interface
- Interface::unload() now calls Interface::save() for Master System,
Game Gear, Mega Drive, PC Engine, SuperGrafx
- PCE: emulated PCE-CD backup RAM; stored per-game as save.ram (2KiB
file)
- this means you can now save your progress in games like Neutopia
- the PCE-CD I/O registers like BRAM write protect are not
emulated yet
- PCE: IRQ sources now hold the IRQ line state, instead of the CPU
holding it
- this fixes most SuperGrafx games, which were fighting over the
VDC IRQ line previously
- PCE: CPU I/O $14xx should return the pending IRQ bits even if IRQs
are disabled
- PCE: VCE and the VDCs now synchronize to each other; fixes pixel
widths in all games
- PCE: greatly increased the accuracy of the VPC priority selection
code (windows may be buggy still)
- HuC6280: PLA, PLX, PLY should set Z, N flags; fixes many game bugs
[Jonas Quinn]
The big thing I wanted to do was enslave the VDC(s) to the VCE. But
unfortunately, I forgot about the asynchronous DMA channels that each
VDC supports, so this isn't going to be possible I'm afraid.
In the most demanding case, Daimakaimura in-game, we're looking at 85fps
on my Xeon E3 1276v3. So ... not great, and we don't even have sound
connected yet.
We are going to have to profile and optimize this code once sound
emulation and save states are in.
Basically, think of it like this: the VCE, VDC0, and VDC1 all have the
same overhead, scheduling wise (which is the bulk of the performance
loss) as the dot-renderer for the SNES core. So it's like there's three
bsnes-accuracy PPU threads running just for video.
-----
Oh, just a fair warning ... the hooks for the SGB are a work in
progress.
If anyone is working on higan or a fork and want to do something similar
to it, don't use it as a template, at least not yet.
Right now, higan looks like this:
- Emulator::Video handles the platform→videoRefresh calls
- Emulator::Audio handles the platform→audioSample calls
- each core hard-codes the platform→inputPoll, inputRumble calls
- each core hard-codes calls to path, open, load to process files
- dipSettings and notify are specialty hacks, neither are even hooked
up right now to anything
With the SGB, it's an emulation core inside an emulation core, so
ideally you want to hook all of those functions. Emulator::Video and
Emulator::Audio aren't really abstractions over that, as the GB core
calls them and we have to special case not calling them in SGB mode.
The path, open, load can be implemented without hooks, thanks to the UI
only using one instance of Emulator::Platform for all cores. All we have
to do is override the folder path ID for the "Game Boy.sys" folder, so
that it picks "Super Game Boy.sfc/" and loads its boot ROM instead.
That's just a simple argument to GameBoy::System::load() and we're done.
dipSettings, notify and inputRumble don't matter. But we do also have to
hook inputPoll as well.
The nice idea would be for SuperFamicom::ICD2 to inherit from
Emulator::Platform and provide the desired functions that we need to
overload. After that, we'd just need the GB core to keep an abstraction
over the global Emulator::platform\* handle, to select between the UI
version and the SFC::ICD2 version.
However ... that doesn't work because of Emulator::Video and
Emulator::Audio. They would also have to gain an abstraction over
Emulator::platform\*, and even worse ... you'd have to constantly swap
between the two so that the SFC core uses the UI, and the GB core uses
the ICD2.
And so, for right now, I'm checking Model::SuperGameBoy() -> bool
everywhere, and choosing between the UI and ICD2 targets that way. And
as such, the ICD2 doesn't really need Emulator::Platform inheritance,
although it certainly could do that and just use the functions it needs.
But the SGB is even weirder, because we need additional new signals
beyond just Emulator::Platform, like joypWrite(), etc.
I'd also like to work on the Emulator::Stream for the SGB core. I don't
see why we can't have the GB core create its own stream, and let the
ICD2 just use that instead. We just have to be careful about the ICD2's
CPU soft reset function, to make sure the GB core's Stream object
remains valid. What I think that needs is a way to release an
Emulator::Stream individually, rather than calling
Emulator::Audio::reset() to do it. They are shared\_pointer objects, so
I think if I added a destructor function to remove it from
Emulator::Audio::streams, then that should work.
2017-01-26 01:06:06 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::loaded() -> bool {
|
|
|
|
return system.loaded();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::sha256() -> string {
|
|
|
|
return cartridge.sha256();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::save() -> void {
|
|
|
|
system.save();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::unload() -> void {
|
|
|
|
save();
|
|
|
|
system.unload();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::power() -> void {
|
|
|
|
system.power();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::run() -> void {
|
|
|
|
system.run();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::serialize() -> serializer {
|
|
|
|
system.runToSave();
|
|
|
|
return system.serialize();
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::unserialize(serializer& s) -> bool {
|
|
|
|
return system.unserialize(s);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::cheatSet(const string_vector& list) -> void {
|
|
|
|
cheat.assign(list);
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::cap(const string& name) -> bool {
|
|
|
|
if(name == "Blur Emulation") return true;
|
|
|
|
if(name == "Color Emulation") return true;
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::get(const string& name) -> any {
|
|
|
|
if(name == "Blur Emulation") return settings.blurEmulation;
|
|
|
|
if(name == "Color Emulation") return settings.colorEmulation;
|
|
|
|
return {};
|
|
|
|
}
|
|
|
|
|
|
|
|
auto Interface::set(const string& name, const any& value) -> bool {
|
|
|
|
if(name == "Blur Emulation" && value.is<bool>()) {
|
|
|
|
settings.blurEmulation = value.get<bool>();
|
|
|
|
system.configureVideoEffects();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
if(name == "Color Emulation" && value.is<bool>()) {
|
|
|
|
settings.colorEmulation = value.get<bool>();
|
|
|
|
system.configureVideoPalette();
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
|
2011-09-15 12:41:49 +00:00
|
|
|
}
|