bsnes/ananke/nall/atoi.hpp

104 lines
2.3 KiB
C++
Raw Normal View History

Update to v091r11 release. byuu says: This release refines HSU1 support as a bidirectional protocol, nests SFC manifests as "release/cartridge" and "release/information" (but release/ is not guaranteed to be finalized just yet), removes the database integration, and adds support for ananke. ananke represents inevitability. It's a library that, when installed, higan can use to load files from the command-line, and also from a new File -> Load Game menu option. I need to change the build rules a bit for it to work on Windows (need to make phoenix a DLL, basically), but it works now on Linux. Right now, it only takes *.sfc file names, looks them up in the included database, converts them to game folders, and returns the game folder path for higan to load. The idea is to continue expanding it to support everything we can that I don't want in the higan core: - load *.sfc, *.smc, *.swc, *.fig files - remove SNES copier headers - split apart merged firmware files - pull in external firmware files (eg dsp1b.rom - these are staying merged, just as SPC7110 prg+dat are merged) - load *.zip and *.7z archives - prompt for selection on multi-file archives - generate manifest files based on heuristics - apply BPS patches The "Load" menu option has been renamed to "Library", to represent games in your library. I'm going to add some sort of suffix to indicate unverified games, and use a different folder icon for those (eg manifests built on heuristics rather than from the database.) So basically, to future end users: File -> Load Game will be how they play games. Library -> (specific system) can be thought of as an infinitely-sized recent games list. purify will likely become a simple stub that invokes ananke's functions. No reason to duplicate all that code.
2012-11-05 08:22:50 +00:00
#ifndef NALL_ATOI_HPP
#define NALL_ATOI_HPP
#include <nall/stdint.hpp>
namespace nall {
//note: this header is intended to form the base for user-defined literals;
//once they are supported by GCC. eg:
//unsigned operator "" b(const char *s) { return binary(s); }
//-> signed data = 1001b;
//(0b1001 is nicer, but is not part of the C++ standard)
constexpr inline uintmax_t binary_(const char *s, uintmax_t sum = 0) {
return (
*s == '0' || *s == '1' ? binary_(s + 1, (sum << 1) | *s - '0') :
sum
);
}
constexpr inline uintmax_t octal_(const char *s, uintmax_t sum = 0) {
return (
*s >= '0' && *s <= '7' ? octal_(s + 1, (sum << 3) | *s - '0') :
sum
);
}
constexpr inline uintmax_t decimal_(const char *s, uintmax_t sum = 0) {
return (
*s >= '0' && *s <= '9' ? decimal_(s + 1, (sum * 10) + *s - '0') :
sum
);
}
constexpr inline uintmax_t hex_(const char *s, uintmax_t sum = 0) {
return (
*s >= 'A' && *s <= 'F' ? hex_(s + 1, (sum << 4) | *s - 'A' + 10) :
*s >= 'a' && *s <= 'f' ? hex_(s + 1, (sum << 4) | *s - 'a' + 10) :
*s >= '0' && *s <= '9' ? hex_(s + 1, (sum << 4) | *s - '0') :
sum
);
}
//
constexpr inline uintmax_t binary(const char *s) {
return (
*s == '0' && *(s + 1) == 'B' ? binary_(s + 2) :
*s == '0' && *(s + 1) == 'b' ? binary_(s + 2) :
*s == '%' ? binary_(s + 1) :
binary_(s)
);
}
constexpr inline uintmax_t octal(const char *s) {
return (
octal_(s)
);
}
constexpr inline intmax_t integer(const char *s) {
return (
*s == '+' ? +decimal_(s + 1) :
*s == '-' ? -decimal_(s + 1) :
decimal_(s)
);
}
constexpr inline uintmax_t decimal(const char *s) {
return (
decimal_(s)
);
}
constexpr inline uintmax_t hex(const char *s) {
return (
*s == '0' && *(s + 1) == 'X' ? hex_(s + 2) :
*s == '0' && *(s + 1) == 'x' ? hex_(s + 2) :
*s == '$' ? hex_(s + 1) :
hex_(s)
);
}
constexpr inline intmax_t numeral(const char *s) {
return (
*s == '0' && *(s + 1) == 'X' ? hex_(s + 2) :
*s == '0' && *(s + 1) == 'x' ? hex_(s + 2) :
*s == '0' && *(s + 1) == 'B' ? binary_(s + 2) :
*s == '0' && *(s + 1) == 'b' ? binary_(s + 2) :
*s == '0' ? octal_(s + 1) :
*s == '+' ? +decimal_(s + 1) :
*s == '-' ? -decimal_(s + 1) :
decimal_(s)
);
}
inline double fp(const char *s) {
return atof(s);
}
}
#endif