bsnes/higan/fc/system/system.hpp

50 lines
1.1 KiB
C++
Raw Normal View History

Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
struct System {
auto loaded() const -> bool { return information.loaded; }
auto colorburst() const -> double { return information.colorburst; }
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto run() -> void;
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto runToSave() -> void;
auto load() -> bool;
auto save() -> void;
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto unload() -> void;
auto power() -> void;
auto reset() -> void;
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
auto init() -> void;
auto term() -> void;
Update to v098r04 release. byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
//video.cpp
auto configureVideoPalette() -> void;
Update to v098r06 release. byuu says: Changelog: - emulation cores now refresh video from host thread instead of cothreads (fix AMD crash) - SFC: fixed another bug with leap year months in SharpRTC emulation - SFC: cleaned up camelCase on function names for armdsp,epsonrtc,hitachidsp,mcc,nss,sharprtc classes - GB: added MBC1M emulation (requires manually setting mapper=MBC1M in manifest.bml for now, sorry) - audio: implemented Emulator::Audio mixer and effects processor - audio: implemented Emulator::Stream interface - it is now possible to have more than two audio streams: eg SNES + SGB + MSU1 + Voicer-Kun (eventually) - audio: added reverb delay + reverb level settings; exposed balance configuration in UI - video: reworked palette generation to re-enable saturation, gamma, luminance adjustments - higan/emulator.cpp is gone since there was nothing left in it I know you guys are going to say the color adjust/balance/reverb stuff is pointless. And indeed it mostly is. But I like the idea of allowing some fun special effects and configurability that isn't system-wide. Note: there seems to be some kind of added audio lag in the SGB emulation now, and I don't really understand why. The code should be effectively identical to what I had before. The only main thing is that I'm sampling things to 48000hz instead of 32040hz before mixing. There's no point where I'm intentionally introducing added latency though. I'm kind of stumped, so if anyone wouldn't mind taking a look at it, it'd be much appreciated :/ I don't have an MSU1 test ROM, but the latency issue may affect MSU1 as well, and that would be very bad.
2016-04-22 13:35:51 +00:00
auto configureVideoEffects() -> void;
Update to v098r04 release. byuu says: Changelog: - SFC: fixed behavior of 21fx $21fe register when no device is connected (must return zero) - SFC: reduced 21fx buffer size to 1024 bytes in both directions to mirror the FT232H we are using - SFC: eliminated dsp/modulo-array.hpp [1] - higan: implemented higan/video interface and migrated all cores to it [2] [1] the echo history buffer was 8-bytes, so there was no need for it at all here. Not sure what I was thinking. The BRR buffer was 12-bytes, and has very weird behavior ... but there's only a single location in the code where it actually writes to this buffer. It's much easier to just write to the buffer three times there instead of implementing an entire class just to abstract away two lines of code. This change actually boosted the speed from ~124.5fps to around ~127.5fps, but that's within the margin of error for GCC. I doubt it's actually faster this way. The DSP core could really use a ton of work. It comes from a port of blargg's spc_dsp to my coding style, but he was extremely fond of using 32-bit signed integers everywhere. There's a lot of opportunity to remove red tape masking by resizing the variables to their actual state sizes. I really need to find where I put spc_dsp6.sfc from blargg. It's a great test to verify if I've made any mistakes in my implementation that would cause regressions. Don't suppose anyone has it? [2] so again, the idea is that higan/audio and higan/video are going to sit between the emulation cores and the user interfaces. The hope is to output raw encoding data from the emulation cores without having to worry about the video display format (generally 24-bit RGB) of the host display. And also to avoid having to repeat myself with eg three separate implementations of interframe blending, and so on. Furthermore, the idea is that the user interface can configure its side of the settings, and the emulation cores can configure their sides. Thus, neither has to worry about the other end. And now we can spin off new user interfaces much easier without having to mess with all of these things. Right now, I've implemented color emulation, interframe blending and SNES horizontal color bleed. I did not implement scanlines (and interlace effects for them) yet, but I probably will at some point. Further, for right now, the WonderSwan/Color screen rotation is busted and will only show games in the horizontal orientation. Obviously this must be fixed before the next official release, but I'll want to think about how to implement it. Also, the SNES light gun pointers are missing for now. Things are a bit messy right now as I've gone through several revisions of how to handle these things, so a good house cleaning is in order once everything is feature-complete again. I need to sit down and think through how and where I want to handle things like light gun cursors, LCD icons, and maybe even rasterized text messages. And obviously ... higan/audio is still just nall::DSP's headers. I need to revamp that whole interface. I want to make it quite powerful with a true audio mixer so I can handle things like SNES+SGB+MSU1+Voicer-Kun+SNES-CD (five separate audio streams at once.) The video system has the concept of "effects" for things like color bleed and interframe blending. I want to extend on this with useful other effects, such as NTSC simulation, maybe bringing back my mini-HQ2x filter, etc. I'd also like to restore the saturation/gamma/luma adjustment sliders ... I always liked allowing people to compensate for their displays without having to change settings system-wide. Lastly, I've always wanted to see some audio effects. Although I doubt we'll ever get my dream of CoreAudio-style profiles, I'd like to get some basic equalizer settings and echo/reverb effects in there.
2016-04-11 21:29:56 +00:00
//serialization.cpp
auto serialize() -> serializer;
auto unserialize(serializer&) -> bool;
auto serialize(serializer&) -> void;
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
auto serializeAll(serializer&) -> void;
auto serializeInit() -> void;
Update to v094r39 release. byuu says: Changelog: - SNES mid-scanline BGMODE fixes finally merged (can run atx2.zip{mode7.smc}+mtest(2).sfc properly now) - Makefile now discards all built-in rules and variables - switch on bool warning disabled for GCC now as well (was already disabled for Clang) - when loading a game, if any required files are missing, display a warning message box (manifest.bml, program.rom, bios.rom, etc) - when loading a game (or a game slot), if manifest.bml is missing, it will invoke icarus to try and generate it - if that fails (icarus is missing or the folder is bad), you will get a warning telling you that the manifest can't be loaded The warning prompt on missing files work for both games and the .sys folders and their files. For some reason, failing to load the DMG/CGB BIOS is causing a crash before I can display the modal dialog. I have no idea why, and the stack frame backtrace is junk. I also can't seem to abort the failed loading process. If I call Program::unloadMedia(), I get a nasty segfault. Again with a really nasty stack trace. So for now, it'll just end up sitting there emulating an empty ROM (solid black screen.) In time, I'd like to fix that too. Lastly, I need a better method than popen for Windows. popen is kind of ugly and flashes a console window for a brief second even if the application launched is linked with -mwindows. Not sure if there even is one (I need to read the stdout result, so CreateProcess may not work unless I do something nasty like "> %tmp%/temp") I'm also using the regular popen instead of _wpopen, so for this WIP, it won't work if your game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
struct Information {
bool loaded = false;
double colorburst = 0.0;
Update to v094r39 release. byuu says: Changelog: - SNES mid-scanline BGMODE fixes finally merged (can run atx2.zip{mode7.smc}+mtest(2).sfc properly now) - Makefile now discards all built-in rules and variables - switch on bool warning disabled for GCC now as well (was already disabled for Clang) - when loading a game, if any required files are missing, display a warning message box (manifest.bml, program.rom, bios.rom, etc) - when loading a game (or a game slot), if manifest.bml is missing, it will invoke icarus to try and generate it - if that fails (icarus is missing or the folder is bad), you will get a warning telling you that the manifest can't be loaded The warning prompt on missing files work for both games and the .sys folders and their files. For some reason, failing to load the DMG/CGB BIOS is causing a crash before I can display the modal dialog. I have no idea why, and the stack frame backtrace is junk. I also can't seem to abort the failed loading process. If I call Program::unloadMedia(), I get a nasty segfault. Again with a really nasty stack trace. So for now, it'll just end up sitting there emulating an empty ROM (solid black screen.) In time, I'd like to fix that too. Lastly, I need a better method than popen for Windows. popen is kind of ugly and flashes a console window for a brief second even if the application launched is linked with -mwindows. Not sure if there even is one (I need to read the stdout result, so CreateProcess may not work unless I do something nasty like "> %tmp%/temp") I'm also using the regular popen instead of _wpopen, so for this WIP, it won't work if your game folder has non-English letters in the path.
2015-08-04 09:00:55 +00:00
string manifest;
} information;
Update to v097r12 release. byuu says: Nothing WS-related this time. First, I fixed expansion port device mapping. On first load, it was mapping the expansion port device too late, so it ended up not taking effect. I had to spin out the logic for that into Program::connectDevices(). This was proving to be quite annoying while testing eBoot (SNES-Hook simulation.) Second, I fixed the audio->set(Frequency, Latency) functions to take (uint) parameters from the configuration file, so the weird behavior around changing settings in the audio panel should hopefully be gone now. Third, I rewrote the interface->load,unload functions to call into the (Emulator)::System::load,unload functions. And I have those call out to Cartridge::load,unload. Before, this was inverted, and Cartridge::load() was invoking System::load(), which I felt was kind of backward. The Super Game Boy really didn't like this change, however. And it took me a few hours to power through it. Before, I had the Game Boy core dummying out all the interface->(load,save)Request calls, and having the SNES core make them for it. This is because the folder paths and IDs will be different between the two cores. I've redesigned things so that ICD2's Emulator::Interface overloads loadRequest and saveRequest, and translates the requests into new requests for the SuperFamicom core. This allows the Game Boy code to do its own loading for everything without a bunch of Super Game Boy special casing, and without any awkwardness around powering on with no cartridge inserted. This also lets the SNES side of things simply call into higher-level GameBoy::interface->load,save(id, stream) functions instead of stabbing at the raw underlying state inside of various Game Boy core emulation classes. So things are a lot better abstracted now.
2016-02-08 03:17:59 +00:00
private:
uint _serializeSize = 0;
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
};
struct Peripherals {
auto unload() -> void;
auto reset() -> void;
auto connect(uint port, uint device) -> void;
Controller* controllerPort1 = nullptr;
Controller* controllerPort2 = nullptr;
};
Update to v082r04 release. byuu says: So, here's the deal. I now have three emulators. I don't think the NES/GB ones are at all useful, but I do want them to be eventually. And having them have those pathetic little GUIs like ui-gameboy, and keeping everything in separate project folders, just doesn't work well for me. I kind of "got around" the issue with the Game Boy, by only allowing SGB mode emulation. But there is no "Super Nintendo" ... er ... wait ... uhmm ... well, you know what I mean anyway. So, my idea is to write a multi-emulator GUI, and keep the projects together. The GUI is not going to change much. The way I envision this working: At startup, you have a menubar with: "Cartridge, Settings, Tools, Help". Cartridge has "Load NES Cartridge", "Load SNES Cartridge", etc. When you load something, Cartridge is replaced with the appropriate system menu, eg "SNES". Here you have all your regular items: "power, reset, controller port selection, etc." There is also a new "Unload Cartridge" option, which is how you restore the "Cartridge" menu again. I have no plans to emulate any other systems, but if I ever do emulate something that doesn't take cartridges, I'll change the name to just "Load" or something. The cheat editor / state manager will look and act exactly the same. The settings panel will look exactly the same. I'll simply show/hide system-specific options as needed, like NES/SNES aspect ratio correction, etc. The input mapping window will just have settings for the currently loaded system. Video and audio tweaking will apply cross-system, as will hotkey mapping. The GUI stuff is mostly copy-paste, so it should only take me a week to get it 95% back to where it was, so don't worry, this isn't total GUI rewrite #80. I am, however, making all the objects pointers, so that I can destruct them all prior to main() returning, which is certainly one way of fixing that annoying Windows/Qt crash. Please only test on Linux. The Windows port is broken to hell, and will give you a bad impression of the idea: - menu groups are not hiding for some reason (all groups are showing, it looks hideous) - Timer interval(0) is taking 16ms per call, capping the FPS to ~64 tops [FWIW, bsnes/accuracy gets 130fps, bgameboy gets 450fps, bnes gets 800fps; all run at lowest possible granularity] - the OS keeps beeping when you press keys (AGAIN) Of course, Qt and GTK+ don't let you shrink a window from the requested geometry size, because they suck. So the video scaling stuff doesn't work all that great yet. Man, a metric fuckton of things need to be fixed in phoenix, and I really don't know how to fix any of them :/
2011-09-09 04:08:38 +00:00
extern System system;
extern Peripherals peripherals;