bsnes/higan/md/apu/apu.hpp

26 lines
441 B
C++
Raw Normal View History

//Zilog Z80
Update to v100r02 release. byuu says: Sigh ... I'm really not a good person. I'm inherently selfish. My responsibility and obligation right now is to work on loki, and then on the Tengai Makyou Zero translation, and then on improving the Famicom emulation. And yet ... it's not what I really want to do. That shouldn't matter; I should work on my responsibilities first. Instead, I'm going to be a greedy, self-centered asshole, and work on what I really want to instead. I'm really sorry, guys. I'm sure this will make a few people happy, and probably upset even more people. I'm also making zero guarantees that this ever gets finished. As always, I wish I could keep these things secret, so if I fail / give up, I could just drop it with no shame. But I would have to cut everyone out of the WIP process completely to make it happen. So, here goes ... This WIP adds the initial skeleton for Sega Mega Drive / Genesis emulation. God help us. (minor note: apparently the new extension for Mega Drive games is .md, neat. That's what I chose for the folders too. I thought it was .smd, so that'll be fixed in icarus for the next WIP.) (aside: this is why I wanted to get v100 out. I didn't want this code in a skeleton state in v100's source. Nor did I want really broken emulation, which the first release is sure to be, tarring said release.) ... So, basically, I've been ruminating on the legacy I want to leave behind with higan. 3D systems are just plain out. I'm never going to support them. They're too complex for my abilities, and they would run too slowly with my design style. I'm not willing to compromise my design ideals. And I would never want to play a 3D game system at native 240p/480i resolution ... but 1080p+ upscaling is not accurate, so that's a conflict I want to avoid entirely. It's also never going to emulate computer systems (X68K, PC-98, FM-Towns, etc) because holy shit that would completely destroy me. It's also never going emulate arcade machines. So I think of higan as a collection of 2D emulators for consoles and handhelds. I've gone over every major 2D gaming system there is, looking for ones with games I actually care about and enjoy. And I basically have five of those systems supported already. Looking at the remaining list, I see only three systems left that I have any interest in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in any way committing to emulating any of these, but ... if I had all of those in higan, I think I'd be content to really, truly, finally stop writing more emulators for the rest of my life. And so I decided to tackle the most difficult system first. If I'm successful, the Z80 core should cover a lot of the work on the SMS. And the HuC6280 should land somewhere between the NES and SNES in terms of difficulty ... closer to the NES. The systems that just don't appeal to me at all, which I will never touch, include, but are not limited to: * Atari 2600/5200/7800 * Lynx * Jaguar * Vectrex * Colecovision * Commodore 64 * Neo-Geo * Neo-Geo Pocket / Color * Virtual Boy * Super A'can * 32X * CD-i * etc, etc, etc. And really, even if something were mildly interesting in there ... we have to stop. I can't scale infinitely. I'm already way past my limit, but I'm doing this anyway. Too many cores bloats everything and kills quality on everything. I don't want higan to become MESS v2. I don't know what I'll do about the Famicom Disk System, PC-Engine CD, and Mega CD. I don't think I'll be able to achieve 60fps emulating the Mega CD, even if I tried to. I don't know what's going to happen here with even the Mega Drive. Maybe I'll get driven crazy with the documentation and quit. Maybe it'll end up being too complicated and I'll quit. Maybe the emulation will end up way too slow and I'll give up. Maybe it'll take me seven years to get any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone will pool money to hire a hitman to come after me. Who knows. But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
struct APU : Processor::Z80, Thread {
static auto Enter() -> void;
auto main() -> void;
auto step(uint clocks) -> void;
Update to v102r08 release. byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point.
2017-02-20 08:13:10 +00:00
auto enable(bool) -> void;
auto power() -> void;
Update to v102r08 release. byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point.
2017-02-20 08:13:10 +00:00
auto setNMI(bool value) -> void;
auto setINT(bool value) -> void;
Update to v102r16 release. byuu says: Changelog: - Emulator::Stream now allows adding low-pass and high-pass filters dynamically - also accepts a pass# count; each pass is a second-order biquad butterworth IIR filter - Emulator::Stream no longer automatically filters out >20KHz frequencies for all streams - FC: added 20Hz high-pass filter; 20KHz low-pass filter - GB: removed simple 'magic constant' high-pass filter of unknown cutoff frequency (missed this one in the last WIP) - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter - MD: added save state support (but it's completely broken for now; sorry) - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound effects in Streets of Rage, etc) - PCE: added 20Hz high-pass filter; 20KHz low-pass filter - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter So, the point of the low-pass filters is to remove frequencies above human hearing. If we don't do this, then resampling will introduce aliasing that results in sounds that are audible to the human ear. Which basically an annoying buzzing sound. You'll definitely hear the improvement from these in games like Mega Man 2 on the NES. Of course, these already existed before, so this WIP won't sound better than previous WIPs. The high-pass filters are a little more complicated. Their main role is to remove DC bias and help to center the audio stream. I don't understand how they do this at all, but ... that's what everyone who knows what they're talking about says, thus ... so be it. I have set all of the high-pass filters to 20Hz, which is below the limit of human hearing. Now this is where it gets really interesting ... technically, some of these systems actually cut off a lot of range. For instance, the GBA should technically use an 800Hz high-pass filter when output is done through the system's speakers. But of course, if you plug in headphones, you can hear the lower frequencies. Now 800Hz ... you definitely can hear. At that level, nearly all of the bass is stripped out and the audio is very tinny. Just like the real system. But for now, I don't want to emulate the audio being crushed that badly. I'm sticking with 20Hz everywhere since it won't negatively affect audio quality. In fact, you should not be able to hear any difference between this WIP and the previous WIP. But theoretically, DC bias should mostly be removed as a result of these new filters. It may be that we need to raise the values on some cores in the future, but I don't want to do that until we know for certain that we have to. What I can say is that compared to even older WIPs than r15 ... the removal of the simple one-pole low-pass and high-pass filters with the newer three-pass, second-order filters should result in much better attenuation (less distortion of audible frequencies.) Probably not enough to be noticeable in a blind test, though.
2017-03-08 20:20:40 +00:00
//serialization.cpp
auto serialize(serializer&) -> void;
Update to v102r08 release. byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point.
2017-02-20 08:13:10 +00:00
private:
struct State {
Update to v102r16 release. byuu says: Changelog: - Emulator::Stream now allows adding low-pass and high-pass filters dynamically - also accepts a pass# count; each pass is a second-order biquad butterworth IIR filter - Emulator::Stream no longer automatically filters out >20KHz frequencies for all streams - FC: added 20Hz high-pass filter; 20KHz low-pass filter - GB: removed simple 'magic constant' high-pass filter of unknown cutoff frequency (missed this one in the last WIP) - GB,SGB,GBC: added 20Hz high-pass filter; 20KHz low-pass filter - MS,GG,MD/PSG: added 20Hz high-pass filter; 20KHz low-pass filter - MD: added save state support (but it's completely broken for now; sorry) - MD/YM2612: fixed Voice#3 per-operator pitch support (fixes sound effects in Streets of Rage, etc) - PCE: added 20Hz high-pass filter; 20KHz low-pass filter - WS,WSC: added 20Hz high-pass filter; 20KHz low-pass filter So, the point of the low-pass filters is to remove frequencies above human hearing. If we don't do this, then resampling will introduce aliasing that results in sounds that are audible to the human ear. Which basically an annoying buzzing sound. You'll definitely hear the improvement from these in games like Mega Man 2 on the NES. Of course, these already existed before, so this WIP won't sound better than previous WIPs. The high-pass filters are a little more complicated. Their main role is to remove DC bias and help to center the audio stream. I don't understand how they do this at all, but ... that's what everyone who knows what they're talking about says, thus ... so be it. I have set all of the high-pass filters to 20Hz, which is below the limit of human hearing. Now this is where it gets really interesting ... technically, some of these systems actually cut off a lot of range. For instance, the GBA should technically use an 800Hz high-pass filter when output is done through the system's speakers. But of course, if you plug in headphones, you can hear the lower frequencies. Now 800Hz ... you definitely can hear. At that level, nearly all of the bass is stripped out and the audio is very tinny. Just like the real system. But for now, I don't want to emulate the audio being crushed that badly. I'm sticking with 20Hz everywhere since it won't negatively affect audio quality. In fact, you should not be able to hear any difference between this WIP and the previous WIP. But theoretically, DC bias should mostly be removed as a result of these new filters. It may be that we need to raise the values on some cores in the future, but I don't want to do that until we know for certain that we have to. What I can say is that compared to even older WIPs than r15 ... the removal of the simple one-pole low-pass and high-pass filters with the newer three-pass, second-order filters should result in much better attenuation (less distortion of audible frequencies.) Probably not enough to be noticeable in a blind test, though.
2017-03-08 20:20:40 +00:00
uint1 enabled;
uint1 nmiLine;
uint1 intLine;
Update to v102r08 release. byuu says: Changelog: - PCE: restructured VCE, VDCs to run one scanline at a time - PCE: bound VDCs to 1365x262 timing (in order to decouple the VDCs from the VCE) - PCE: the two changes above allow save states to function; also grants a minor speed boost - PCE: added cheat code support (uses 21-bit bus addressing; compare byte will be useful here) - 68K: fixed `mov *,ccr` to read two bytes instead of one [Cydrak] - Z80: emulated /BUSREQ, /BUSACK; allows 68K to suspend the Z80 [Cydrak] - MD: emulated the Z80 executing instructions [Cydrak] - MD: emulated Z80 interrupts (triggered during each Vblank period) [Cydrak] - MD: emulated Z80 memory map [Cydrak] - MD: added stubs for PSG, YM2612 accesses [Cydrak] - MD: improved bus emulation [Cydrak] The PCE core is pretty much ready to go. The only major feature missing is FM modulation. The Mega Drive improvements let us start to see the splash screens for Langrisser II, Shining Force, Shining in the Darkness. I was hoping I could get them in-game, but no such luck. My Z80 implementation is probably flawed in some way ... now that I think about it, I believe I missed the BusAPU::reset() check for having been granted access to the Z80 first. But I doubt that's the problem. Next step is to implement Cydrak's PSG core into the Master System emulator. Once that's in, I'm going to add save states and cheat code support to the Master System core. Next, I'll add the PSG core into the Mega Drive. Then I'll add the 'easy' PCM part of the YM2612. Then the rest of the beastly YM2612 core. Then finally, cap things off with save state and cheat code support. Should be nearing a new release at that point.
2017-02-20 08:13:10 +00:00
} state;
Update to v100r02 release. byuu says: Sigh ... I'm really not a good person. I'm inherently selfish. My responsibility and obligation right now is to work on loki, and then on the Tengai Makyou Zero translation, and then on improving the Famicom emulation. And yet ... it's not what I really want to do. That shouldn't matter; I should work on my responsibilities first. Instead, I'm going to be a greedy, self-centered asshole, and work on what I really want to instead. I'm really sorry, guys. I'm sure this will make a few people happy, and probably upset even more people. I'm also making zero guarantees that this ever gets finished. As always, I wish I could keep these things secret, so if I fail / give up, I could just drop it with no shame. But I would have to cut everyone out of the WIP process completely to make it happen. So, here goes ... This WIP adds the initial skeleton for Sega Mega Drive / Genesis emulation. God help us. (minor note: apparently the new extension for Mega Drive games is .md, neat. That's what I chose for the folders too. I thought it was .smd, so that'll be fixed in icarus for the next WIP.) (aside: this is why I wanted to get v100 out. I didn't want this code in a skeleton state in v100's source. Nor did I want really broken emulation, which the first release is sure to be, tarring said release.) ... So, basically, I've been ruminating on the legacy I want to leave behind with higan. 3D systems are just plain out. I'm never going to support them. They're too complex for my abilities, and they would run too slowly with my design style. I'm not willing to compromise my design ideals. And I would never want to play a 3D game system at native 240p/480i resolution ... but 1080p+ upscaling is not accurate, so that's a conflict I want to avoid entirely. It's also never going to emulate computer systems (X68K, PC-98, FM-Towns, etc) because holy shit that would completely destroy me. It's also never going emulate arcade machines. So I think of higan as a collection of 2D emulators for consoles and handhelds. I've gone over every major 2D gaming system there is, looking for ones with games I actually care about and enjoy. And I basically have five of those systems supported already. Looking at the remaining list, I see only three systems left that I have any interest in whatsoever: PC-Engine, Master System, Mega Drive. Again, I'm not in any way committing to emulating any of these, but ... if I had all of those in higan, I think I'd be content to really, truly, finally stop writing more emulators for the rest of my life. And so I decided to tackle the most difficult system first. If I'm successful, the Z80 core should cover a lot of the work on the SMS. And the HuC6280 should land somewhere between the NES and SNES in terms of difficulty ... closer to the NES. The systems that just don't appeal to me at all, which I will never touch, include, but are not limited to: * Atari 2600/5200/7800 * Lynx * Jaguar * Vectrex * Colecovision * Commodore 64 * Neo-Geo * Neo-Geo Pocket / Color * Virtual Boy * Super A'can * 32X * CD-i * etc, etc, etc. And really, even if something were mildly interesting in there ... we have to stop. I can't scale infinitely. I'm already way past my limit, but I'm doing this anyway. Too many cores bloats everything and kills quality on everything. I don't want higan to become MESS v2. I don't know what I'll do about the Famicom Disk System, PC-Engine CD, and Mega CD. I don't think I'll be able to achieve 60fps emulating the Mega CD, even if I tried to. I don't know what's going to happen here with even the Mega Drive. Maybe I'll get driven crazy with the documentation and quit. Maybe it'll end up being too complicated and I'll quit. Maybe the emulation will end up way too slow and I'll give up. Maybe it'll take me seven years to get any games playable at all. Maybe Steve Snake, AamirM and Mike Pavone will pool money to hire a hitman to come after me. Who knows. But this is what I want to do, so ... here goes nothing.
2016-07-09 04:21:37 +00:00
};
extern APU apu;