/* RetroArch - A frontend for libretro. * Copyright (C) 2024-2025 - Viachaslau Khalikin * * RetroArch is free software: you can redistribute it and/or modify it under the terms * of the GNU General Public License as published by the Free Software Found- * ation, either version 3 of the License, or (at your option) any later version. * * RetroArch is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; * without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR * PURPOSE. See the GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with RetroArch. * If not, see . */ #include #include #include #include #include #include #include #include #include #include "../common/pipewire.h" #include "../audio_driver.h" #include "../../verbosity.h" #define RINGBUFFER_SIZE (1u << 22) #define RINGBUFFER_MASK (RINGBUFFER_SIZE - 1) #ifdef HAVE_MICROPHONE #include "../microphone_driver.h" #define MIC_DEFAULT_CHANNELS 1 #endif typedef struct pipewire_audio { pipewire_core_t *pw; struct pw_stream *stream; struct spa_hook stream_listener; struct spa_audio_info_raw info; uint32_t highwater_mark; uint32_t frame_size; struct spa_ringbuffer ring; uint8_t buffer[RINGBUFFER_SIZE]; } pipewire_audio_t; static size_t pipewire_calc_frame_size(enum spa_audio_format fmt, uint32_t nchannels) { uint32_t sample_size = 1; switch (fmt) { case SPA_AUDIO_FORMAT_S8: case SPA_AUDIO_FORMAT_U8: sample_size = 1; break; case SPA_AUDIO_FORMAT_S16_BE: case SPA_AUDIO_FORMAT_S16_LE: case SPA_AUDIO_FORMAT_U16_BE: case SPA_AUDIO_FORMAT_U16_LE: sample_size = 2; break; case SPA_AUDIO_FORMAT_S32_BE: case SPA_AUDIO_FORMAT_S32_LE: case SPA_AUDIO_FORMAT_U32_BE: case SPA_AUDIO_FORMAT_U32_LE: case SPA_AUDIO_FORMAT_F32_BE: case SPA_AUDIO_FORMAT_F32_LE: sample_size = 4; break; default: RARCH_ERR("[PipeWire] Bad spa_audio_format %d.\n", fmt); break; } return sample_size * nchannels; } static void pipewire_set_position(uint32_t channels, uint32_t position[SPA_AUDIO_MAX_CHANNELS]) { memcpy(position, (uint32_t[SPA_AUDIO_MAX_CHANNELS]) { SPA_AUDIO_CHANNEL_UNKNOWN, }, sizeof(uint32_t) * SPA_AUDIO_MAX_CHANNELS); switch (channels) { case 8: position[6] = SPA_AUDIO_CHANNEL_SL; position[7] = SPA_AUDIO_CHANNEL_SR; /* fallthrough */ case 6: position[2] = SPA_AUDIO_CHANNEL_FC; position[3] = SPA_AUDIO_CHANNEL_LFE; position[4] = SPA_AUDIO_CHANNEL_RL; position[5] = SPA_AUDIO_CHANNEL_RR; /* fallthrough */ case 2: position[0] = SPA_AUDIO_CHANNEL_FL; position[1] = SPA_AUDIO_CHANNEL_FR; break; case 1: position[0] = SPA_AUDIO_CHANNEL_MONO; break; default: RARCH_ERR("[PipeWire] Internal error: unsupported channel count %d.\n", channels); } } #ifdef HAVE_MICROPHONE typedef struct pipewire_audio pipewire_microphone_t; static void stream_destroy_cb(void *data); static void mic_stream_state_changed_cb(void *data, enum pw_stream_state old, enum pw_stream_state state, const char *error) { pipewire_microphone_t *mic = (pipewire_microphone_t*)data; RARCH_DBG("[Microphone] [PipeWire] Stream state changed %s -> %s.\n", pw_stream_state_as_string(old), pw_stream_state_as_string(state)); pw_thread_loop_signal(mic->pw->thread_loop, false); } static void capture_process_cb(void *data) { void *p; int32_t filled; struct pw_buffer *b; struct spa_buffer *buf; uint32_t idx, offs, n_bytes; pipewire_microphone_t *mic = (pipewire_microphone_t*)data; retro_assert(mic); retro_assert(mic->stream); if (!(b = pw_stream_dequeue_buffer(mic->stream))) { RARCH_ERR("[Microphone] [PipeWire] Out of buffers: %s.\n", strerror(errno)); return pw_thread_loop_signal(mic->pw->thread_loop, false); } buf = b->buffer; if ((p = buf->datas[0].data) == NULL) return pw_thread_loop_signal(mic->pw->thread_loop, false); offs = MIN(buf->datas[0].chunk->offset, buf->datas[0].maxsize); n_bytes = MIN(buf->datas[0].chunk->size, buf->datas[0].maxsize - offs); if ((filled = spa_ringbuffer_get_write_index(&mic->ring, &idx)) < 0) RARCH_ERR("[Microphone] [PipeWire] %p: underrun write:%u filled:%d.\n", p, idx, filled); else { if ((uint32_t)filled + n_bytes > RINGBUFFER_SIZE) RARCH_ERR("[Microphone] [PipeWire] %p: overrun write:%u filled:%d + size:%u > max:%u.\n", p, idx, filled, n_bytes, RINGBUFFER_SIZE); } spa_ringbuffer_write_data(&mic->ring, mic->buffer, RINGBUFFER_SIZE, idx & RINGBUFFER_MASK, SPA_PTROFF(p, offs, void), n_bytes); idx += n_bytes; spa_ringbuffer_write_update(&mic->ring, idx); pw_stream_queue_buffer(mic->stream, b); pw_thread_loop_signal(mic->pw->thread_loop, false); } static const struct pw_stream_events capture_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = stream_destroy_cb, .state_changed = mic_stream_state_changed_cb, .process = capture_process_cb }; static void mic_registry_event_global(void *data, uint32_t id, uint32_t permissions, const char *type, uint32_t version, const struct spa_dict *props) { union string_list_elem_attr attr; const struct spa_dict_item *item; pipewire_core_t *pw = (pipewire_core_t*)data; const char *sink = NULL; if (!pw) return; if ( spa_streq(type, PW_TYPE_INTERFACE_Node) && spa_streq("Audio/Source", spa_dict_lookup(props, PW_KEY_MEDIA_CLASS))) { sink = spa_dict_lookup(props, PW_KEY_NODE_NAME); if (sink && pw->devicelist) { attr.i = id; string_list_append(pw->devicelist, sink, attr); RARCH_LOG("[Microphone] [PipeWire] Found Source Node: %s.\n", sink); } RARCH_DBG("[Microphone] [PipeWire] Object: id:%u Type:%s/%d\n", id, type, version); spa_dict_for_each(item, props) RARCH_DBG("[Microphone] [PipeWire] \t\t%s: \"%s\"\n", item->key, item->value); } } static const struct pw_registry_events mic_registry_events = { PW_VERSION_REGISTRY_EVENTS, .global = mic_registry_event_global, }; static void pipewire_microphone_free(void *driver_context) { pipewire_core_deinit((pipewire_core_t*)driver_context); } static void *pipewire_microphone_init(void) { int res; uint8_t buffer[1024]; uint64_t buf_samples; const struct spa_pod *params[1]; struct pw_properties *props = NULL; const char *error = NULL; pipewire_core_t *pw = NULL; struct spa_pod_builder b = SPA_POD_BUILDER_INIT(buffer, sizeof(buffer)); if (!pipewire_core_init(&pw, "microphone_driver", &mic_registry_events)) goto error; pipewire_core_wait_resync(pw); pw_thread_loop_unlock(pw->thread_loop); return pw; error: RARCH_ERR("[Microphone] [PipeWire] Failed to initialize microphone.\n"); pipewire_microphone_free(pw); return NULL; } static void pipewire_microphone_close_mic(void *driver_context, void *mic_context) { pipewire_core_t *pw = (pipewire_core_t*)driver_context; pipewire_microphone_t *mic = (pipewire_microphone_t*)mic_context; if (pw && mic) { pw_thread_loop_lock(pw->thread_loop); pw_stream_destroy(mic->stream); mic->stream = NULL; pw_thread_loop_unlock(pw->thread_loop); free(mic); } } static int pipewire_microphone_read(void *driver_context, void *mic_context, void *s, size_t len) { uint32_t idx; int32_t readable; const char *error = NULL; pipewire_core_t *pw = (pipewire_core_t*)driver_context; pipewire_microphone_t *mic = (pipewire_microphone_t*)mic_context; if (pw_stream_get_state(mic->stream, &error) != PW_STREAM_STATE_STREAMING) return -1; pw_thread_loop_lock(pw->thread_loop); for (;;) { /* get no of available bytes to read data from buffer */ readable = spa_ringbuffer_get_read_index(&mic->ring, &idx); if (readable < (int32_t)len) { if (pw->nonblock) { len = readable; break; } pw_thread_loop_wait(pw->thread_loop); if (pw_stream_get_state(mic->stream, &error) != PW_STREAM_STATE_STREAMING) { pw_thread_loop_unlock(mic->pw->thread_loop); return -1; } } else break; } spa_ringbuffer_read_data(&mic->ring, mic->buffer, RINGBUFFER_SIZE, idx & RINGBUFFER_MASK, s, len); idx += len; spa_ringbuffer_read_update(&mic->ring, idx); pw_thread_loop_unlock(pw->thread_loop); return len; } static bool pipewire_microphone_mic_alive(const void *driver_context, const void *mic_context) { const char *error = NULL; pipewire_microphone_t *mic = (pipewire_microphone_t*)mic_context; if (!mic) return false; return pw_stream_get_state(mic->stream, &error) == PW_STREAM_STATE_STREAMING; } static void pipewire_microphone_set_nonblock_state(void *driver_context, bool nonblock) { pipewire_core_t *pw = (pipewire_core_t*)driver_context; if (pw) pw->nonblock = nonblock; } static struct string_list *pipewire_microphone_device_list_new(const void *driver_context) { pipewire_core_t *pw = (pipewire_core_t*)driver_context; if (pw && pw->devicelist) return string_list_clone(pw->devicelist); return NULL; } static void pipewire_microphone_device_list_free(const void *driver_context, struct string_list *devices) { if (devices) string_list_free(devices); } static void *pipewire_microphone_open_mic(void *driver_context, const char *device, unsigned rate, unsigned latency, unsigned *new_rate) { int res; uint64_t buf_samples; uint8_t buffer[1024]; const struct spa_pod *params[1]; struct pw_properties *props = NULL; const char *error = NULL; struct spa_pod_builder b = SPA_POD_BUILDER_INIT(buffer, sizeof(buffer)); pipewire_microphone_t *mic = NULL; if (!driver_context || (mic = calloc(1, sizeof(pipewire_microphone_t))) == NULL) goto error; mic->pw = (pipewire_core_t*)driver_context; mic->highwater_mark = 0; pw_thread_loop_lock(mic->pw->thread_loop); mic->info.format = is_little_endian() ? SPA_AUDIO_FORMAT_F32_LE : SPA_AUDIO_FORMAT_F32_BE; mic->info.channels = MIC_DEFAULT_CHANNELS; pipewire_set_position(MIC_DEFAULT_CHANNELS, mic->info.position); mic->info.rate = rate; mic->frame_size = pipewire_calc_frame_size(mic->info.format, MIC_DEFAULT_CHANNELS); props = pw_properties_new(PW_KEY_MEDIA_TYPE, PW_RARCH_MEDIA_TYPE_AUDIO, PW_KEY_MEDIA_CATEGORY, PW_RARCH_MEDIA_CATEGORY_RECORD, PW_KEY_MEDIA_ROLE, PW_RARCH_MEDIA_ROLE, PW_KEY_NODE_NAME, PW_RARCH_APPNAME, PW_KEY_NODE_DESCRIPTION, PW_RARCH_APPNAME, PW_KEY_APP_NAME, PW_RARCH_APPNAME, PW_KEY_APP_ID, PW_RARCH_APPNAME, PW_KEY_APP_ICON_NAME, PW_RARCH_APPNAME, NULL); if (!props) goto unlock_error; if (device) pw_properties_set(props, PW_KEY_TARGET_OBJECT, device); buf_samples = latency * rate / 1000; pw_properties_setf(props, PW_KEY_NODE_LATENCY, "%" PRIu64 "/%u", buf_samples, rate); pw_properties_setf(props, PW_KEY_NODE_RATE, "1/%d", rate); if (!(mic->stream = pw_stream_new(mic->pw->core, PW_RARCH_APPNAME, props))) goto unlock_error; pw_stream_add_listener(mic->stream, &mic->stream_listener, &capture_stream_events, mic); params[0] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &mic->info); /* Now connect this stream. We ask that our process function is * called in a realtime thread. */ res = pw_stream_connect(mic->stream, PW_DIRECTION_INPUT, PW_ID_ANY, PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_INACTIVE | PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_RT_PROCESS, params, 1); if (res < 0) goto unlock_error; pw_thread_loop_wait(mic->pw->thread_loop); pw_thread_loop_unlock(mic->pw->thread_loop); *new_rate = mic->info.rate; return mic; unlock_error: pw_thread_loop_unlock(mic->pw->thread_loop); error: RARCH_ERR("[Microphone] [PipeWire] Failed to initialize microphone.\n"); pipewire_microphone_close_mic(mic->pw, mic); return NULL; } static bool pipewire_microphone_start_mic(void *driver_context, void *mic_context) { enum pw_stream_state st; pipewire_core_t *pw = (pipewire_core_t*)driver_context; pipewire_microphone_t *mic = (pipewire_microphone_t*)mic_context; const char *error = NULL; bool res = false; if (!pw || !mic) return false; st = pw_stream_get_state(mic->stream, &error); switch (st) { case PW_STREAM_STATE_STREAMING: res = true; break; case PW_STREAM_STATE_PAUSED: res = pipewire_stream_set_active(pw->thread_loop, mic->stream, true); break; default: break; } return res; } static bool pipewire_microphone_stop_mic(void *driver_context, void *mic_context) { pipewire_core_t *pw = (pipewire_core_t*)driver_context; pipewire_microphone_t *mic = (pipewire_microphone_t*)mic_context; const char *error = NULL; bool res = false; if (!pw || !mic) return false; if (pw_stream_get_state(mic->stream, &error) == PW_STREAM_STATE_STREAMING) res = pipewire_stream_set_active(pw->thread_loop, mic->stream, false); else /* For other states we assume that the stream is inactive */ res = true; spa_ringbuffer_read_update(&mic->ring, 0); spa_ringbuffer_write_update(&mic->ring, 0); return res; } static bool pipewire_microphone_mic_use_float(const void *a, const void *b) { return true; } microphone_driver_t microphone_pipewire = { pipewire_microphone_init, pipewire_microphone_free, pipewire_microphone_read, pipewire_microphone_set_nonblock_state, "pipewire", pipewire_microphone_device_list_new, pipewire_microphone_device_list_free, pipewire_microphone_open_mic, pipewire_microphone_close_mic, pipewire_microphone_mic_alive, pipewire_microphone_start_mic, pipewire_microphone_stop_mic, pipewire_microphone_mic_use_float }; #endif #define DEFAULT_CHANNELS 2 static void stream_destroy_cb(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; spa_hook_remove(&audio->stream_listener); audio->stream = NULL; } static void playback_process_cb(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; void *p; struct pw_buffer *b; struct spa_buffer *buf; uint32_t req, idx, n_bytes; int32_t avail; retro_assert(audio); retro_assert(audio->stream); if ((b = pw_stream_dequeue_buffer(audio->stream)) == NULL) { RARCH_WARN("[PipeWire] Out of buffers: %s.\n", strerror(errno)); return pw_thread_loop_signal(audio->pw->thread_loop, false); } buf = b->buffer; if ((p = buf->datas[0].data) == NULL) return pw_thread_loop_signal(audio->pw->thread_loop, false); /* calculate the total no of bytes to read data from buffer */ n_bytes = buf->datas[0].maxsize; if (b->requested) n_bytes = MIN(b->requested * audio->frame_size, n_bytes); avail = spa_ringbuffer_get_read_index(&audio->ring, &idx); if (avail <= 0) /* fill rest buffer with silence */ memset(p, 0x00, n_bytes); else { if (avail < (int32_t)n_bytes) n_bytes = avail; spa_ringbuffer_read_data(&audio->ring, audio->buffer, RINGBUFFER_SIZE, idx & RINGBUFFER_MASK, p, n_bytes); idx += n_bytes; spa_ringbuffer_read_update(&audio->ring, idx); } buf->datas[0].chunk->offset = 0; buf->datas[0].chunk->stride = audio->frame_size; buf->datas[0].chunk->size = n_bytes; pw_stream_queue_buffer(audio->stream, b); pw_thread_loop_signal(audio->pw->thread_loop, false); } static void pipewire_free(void *data); static void stream_state_changed_cb(void *data, enum pw_stream_state old, enum pw_stream_state state, const char *error) { pipewire_audio_t *audio = (pipewire_audio_t*)data; RARCH_DBG("[PipeWire] Stream state changed %s -> %s.\n", pw_stream_state_as_string(old), pw_stream_state_as_string(state)); pw_thread_loop_signal(audio->pw->thread_loop, false); } static const struct pw_stream_events playback_stream_events = { PW_VERSION_STREAM_EVENTS, .destroy = stream_destroy_cb, .process = playback_process_cb, .state_changed = stream_state_changed_cb, }; static void registry_event_global(void *data, uint32_t id, uint32_t permissions, const char *type, uint32_t version, const struct spa_dict *props) { union string_list_elem_attr attr; const struct spa_dict_item *item; pipewire_core_t *pw = (pipewire_core_t*)data; const char *sink = NULL; if (spa_streq(type, PW_TYPE_INTERFACE_Node) && spa_streq("Audio/Sink", spa_dict_lookup(props, PW_KEY_MEDIA_CLASS))) { sink = spa_dict_lookup(props, PW_KEY_NODE_NAME); if (sink && pw->devicelist) { attr.i = id; string_list_append(pw->devicelist, sink, attr); RARCH_LOG("[PipeWire] Found Sink Node: %s.\n", sink); } RARCH_DBG("[PipeWire] Object: id:%u Type:%s/%d.\n", id, type, version); spa_dict_for_each(item, props) RARCH_DBG("[PipeWire] \t\t%s: \"%s\".\n", item->key, item->value); } } static const struct pw_registry_events registry_events = { PW_VERSION_REGISTRY_EVENTS, .global = registry_event_global, }; static void *pipewire_init(const char *device, unsigned rate, unsigned latency, unsigned block_frames, unsigned *new_rate) { int res; uint64_t buf_samples; const struct spa_pod *params[1]; uint8_t buffer[1024]; struct pw_properties *props = NULL; const char *error = NULL; pipewire_audio_t *audio = (pipewire_audio_t*)calloc(1, sizeof(*audio)); struct spa_pod_builder b = SPA_POD_BUILDER_INIT(buffer, sizeof(buffer)); if (!audio) goto error; if (!pipewire_core_init(&audio->pw, "audio_driver", ®istry_events)) goto error; /* unlock, run the loop and wait, this will trigger the callbacks */ pipewire_core_wait_resync(audio->pw); audio->info.format = is_little_endian() ? SPA_AUDIO_FORMAT_F32_LE : SPA_AUDIO_FORMAT_F32_BE; audio->info.channels = DEFAULT_CHANNELS; pipewire_set_position(DEFAULT_CHANNELS, audio->info.position); audio->info.rate = rate; audio->frame_size = pipewire_calc_frame_size(audio->info.format, DEFAULT_CHANNELS); props = pw_properties_new(PW_KEY_MEDIA_TYPE, PW_RARCH_MEDIA_TYPE_AUDIO, PW_KEY_MEDIA_CATEGORY, PW_RARCH_MEDIA_CATEGORY_PLAYBACK, PW_KEY_MEDIA_ROLE, PW_RARCH_MEDIA_ROLE, PW_KEY_NODE_NAME, PW_RARCH_APPNAME, PW_KEY_NODE_DESCRIPTION, PW_RARCH_APPNAME, PW_KEY_APP_NAME, PW_RARCH_APPNAME, PW_KEY_APP_ID, PW_RARCH_APPNAME, PW_KEY_APP_ICON_NAME, PW_RARCH_APPNAME, NULL); if (!props) goto unlock_error; if (device) pw_properties_set(props, PW_KEY_TARGET_OBJECT, device); buf_samples = latency * rate / 1000; pw_properties_setf(props, PW_KEY_NODE_LATENCY, "%" PRIu64 "/%u", buf_samples, rate); pw_properties_setf(props, PW_KEY_NODE_RATE, "1/%d", rate); audio->stream = pw_stream_new(audio->pw->core, PW_RARCH_APPNAME, props); if (!audio->stream) goto unlock_error; pw_stream_add_listener(audio->stream, &audio->stream_listener, &playback_stream_events, audio); params[0] = spa_format_audio_raw_build(&b, SPA_PARAM_EnumFormat, &audio->info); /* Now connect this stream. We ask that our process function is * called in a realtime thread. */ res = pw_stream_connect(audio->stream, PW_DIRECTION_OUTPUT, PW_ID_ANY, PW_STREAM_FLAG_AUTOCONNECT | PW_STREAM_FLAG_MAP_BUFFERS | PW_STREAM_FLAG_RT_PROCESS, params, 1); if (res < 0) goto unlock_error; audio->highwater_mark = MIN(RINGBUFFER_SIZE, latency * (uint64_t)rate / 1000 * audio->frame_size); pw_thread_loop_wait(audio->pw->thread_loop); pw_thread_loop_unlock(audio->pw->thread_loop); *new_rate = audio->info.rate; return audio; unlock_error: pw_thread_loop_unlock(audio->pw->thread_loop); error: RARCH_ERR("[PipeWire] Failed to initialize audio.\n"); pipewire_free(audio); return NULL; } static ssize_t pipewire_write(void *data, const void *buf_, size_t len) { int32_t filled, avail; uint32_t idx; pipewire_audio_t *audio = (pipewire_audio_t*)data; const char *error = NULL; if (pw_stream_get_state(audio->stream, &error) != PW_STREAM_STATE_STREAMING) return 0; /* wait for stream to become ready */ if (len > audio->highwater_mark) { RARCH_ERR("[PipeWire] Buffer too small. Please try increasing the latency.\n"); return 0; } pw_thread_loop_lock(audio->pw->thread_loop); for (;;) { filled = spa_ringbuffer_get_write_index(&audio->ring, &idx); avail = audio->highwater_mark - filled; #if 0 /* Useful for tracing */ RARCH_DBG("[PipeWire] Ringbuffer utilization: filled %d, avail %d, index %d, size %d.\n", filled, avail, idx, len); #endif /* in non-blocking mode we play as much as we can * in blocking mode we expect a freed buffer of at least the given size */ if (len > (size_t)avail) { if (audio->pw->nonblock) { len = avail; break; } pw_thread_loop_wait(audio->pw->thread_loop); if (pw_stream_get_state(audio->stream, &error) != PW_STREAM_STATE_STREAMING) { pw_thread_loop_unlock(audio->pw->thread_loop); return -1; } } else break; } if (filled < 0) RARCH_ERR("[Pipewire] %p: underrun write:%u filled:%d\n", audio, idx, filled); else { if ((uint32_t) filled + len > RINGBUFFER_SIZE) { RARCH_ERR("[PipeWire] %p: overrun write:%u filled:%d + size:%zu > max:%u\n", audio, idx, filled, len, RINGBUFFER_SIZE); } } spa_ringbuffer_write_data(&audio->ring, audio->buffer, RINGBUFFER_SIZE, idx & RINGBUFFER_MASK, buf_, len); idx += len; spa_ringbuffer_write_update(&audio->ring, idx); pw_thread_loop_unlock(audio->pw->thread_loop); return len; } static bool pipewire_stop(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; const char *error = NULL; bool res = false; if (!audio || !audio->pw) return false; if (pw_stream_get_state(audio->stream, &error) == PW_STREAM_STATE_STREAMING) res = pipewire_stream_set_active(audio->pw->thread_loop, audio->stream, false); else /* For other states we assume that the stream is inactive */ res = true; spa_ringbuffer_read_update(&audio->ring, 0); spa_ringbuffer_write_update(&audio->ring, 0); return res; } static bool pipewire_start(void *data, bool is_shutdown) { enum pw_stream_state st; pipewire_audio_t *audio = (pipewire_audio_t*)data; const char *error = NULL; bool res = false; if (!audio || !audio->pw) return false; st = pw_stream_get_state(audio->stream, &error); switch (st) { case PW_STREAM_STATE_STREAMING: res = true; break; case PW_STREAM_STATE_PAUSED: res = pipewire_stream_set_active(audio->pw->thread_loop, audio->stream, true); break; default: break; } return res; } static bool pipewire_alive(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; const char *error = NULL; if (!audio) return false; return pw_stream_get_state(audio->stream, &error) == PW_STREAM_STATE_STREAMING; } static void pipewire_set_nonblock_state(void *data, bool state) { pipewire_audio_t *audio = (pipewire_audio_t*)data; if (audio && audio->pw) audio->pw->nonblock = state; } static void pipewire_free(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; if (!audio) return; if (audio->stream) { pw_thread_loop_lock(audio->pw->thread_loop); pw_stream_destroy(audio->stream); audio->stream = NULL; pw_thread_loop_unlock(audio->pw->thread_loop); } pipewire_core_deinit(audio->pw); free(audio); } static bool pipewire_use_float(void *data) { return true; } static void *pipewire_device_list_new(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; if (audio && audio->pw && audio->pw->devicelist) return string_list_clone(audio->pw->devicelist); return NULL; } static void pipewire_device_list_free(void *data, void *array_list_data) { struct string_list *s = (struct string_list*)array_list_data; if (s) string_list_free(s); } static size_t pipewire_write_avail(void *data) { uint32_t idx, written, length; pipewire_audio_t *audio = (pipewire_audio_t*)data; const char *error = NULL; retro_assert(audio->pw); retro_assert(audio->stream); if (pw_stream_get_state(audio->stream, &error) != PW_STREAM_STATE_STREAMING) return 0; /* wait for stream to become ready */ pw_thread_loop_lock(audio->pw->thread_loop); written = spa_ringbuffer_get_write_index(&audio->ring, &idx); length = audio->highwater_mark - written; pw_thread_loop_unlock(audio->pw->thread_loop); return length; } static size_t pipewire_buffer_size(void *data) { pipewire_audio_t *audio = (pipewire_audio_t*)data; return audio->highwater_mark; } audio_driver_t audio_pipewire = { pipewire_init, pipewire_write, pipewire_stop, pipewire_start, pipewire_alive, pipewire_set_nonblock_state, pipewire_free, pipewire_use_float, "pipewire", pipewire_device_list_new, pipewire_device_list_free, pipewire_write_avail, pipewire_buffer_size, };