Merge pull request #1517 from ergo720/kernel_crypto

Implemented kernel des crypto functions + XcCryptService
This commit is contained in:
Luke Usher 2018-12-19 08:19:39 +00:00 committed by GitHub
commit 975f468031
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 781 additions and 25 deletions

View File

@ -198,6 +198,7 @@
</PreBuildEvent>
</ItemDefinitionGroup>
<ItemGroup>
<ClInclude Include="..\..\src\common\crypto\EmuDes.h" />
<ClInclude Include="..\..\src\common\util\CxbxUtil.h" />
<ClInclude Include="..\..\src\common\input\InputConfig.h" />
<ClInclude Include="..\..\src\common\input\SDL2_Device.h" />
@ -342,6 +343,7 @@
</ResourceCompile>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\..\src\common\crypto\EmuDes.cpp" />
<ClCompile Include="..\..\src\common\util\CxbxUtil.cpp" />
<ClCompile Include="..\..\src\common\input\InputConfig.cpp" />
<ClCompile Include="..\..\src\common\input\SDL2_Device.cpp" />

View File

@ -632,6 +632,9 @@
<ClCompile Include="..\..\src\core\hle\Patches.cpp">
<Filter>core\HLE</Filter>
</ClCompile>
<ClCompile Include="..\..\src\common\crypto\EmuDes.cpp">
<Filter>Emulator</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<None Include="..\..\resource\Splash.jpg">
@ -812,5 +815,8 @@
<ClInclude Include="..\..\src\devices\video\nv2a_regs.h">
<Filter>Hardware\Video</Filter>
</ClInclude>
<ClInclude Include="..\..\src\common\crypto\EmuDes.h">
<Filter>Emulator</Filter>
</ClInclude>
</ItemGroup>
</Project>

View File

@ -0,0 +1,667 @@
// This is an open source non-commercial project. Dear PVS-Studio, please check it.
// PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// ******************************************************************
// *
// * .,-::::: .,:: .::::::::. .,:: .:
// * ,;;;'````' `;;;, .,;; ;;;'';;' `;;;, .,;;
// * [[[ '[[,,[[' [[[__[[\. '[[,,[['
// * $$$ Y$$$P $$""""Y$$ Y$$$P
// * `88bo,__,o, oP"``"Yo, _88o,,od8P oP"``"Yo,
// * "YUMMMMMP",m" "Mm,""YUMMMP" ,m" "Mm,
// *
// * common->crypto->EmuDes.cpp
// *
// * This file is part of the Cxbx project.
// *
// * Cxbx and Cxbe are free software; you can redistribute them
// * and/or modify them under the terms of the GNU General Public
// * License as published by the Free Software Foundation; either
// * version 2 of the license, or (at your option) any later version.
// *
// * This program is distributed in the hope that it will be useful,
// * but WITHOUT ANY WARRANTY; without even the implied warranty of
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// * GNU General Public License for more details.
// *
// * You should have recieved a copy of the GNU General Public License
// * along with this program; see the file COPYING.
// * If not, write to the Free Software Foundation, Inc.,
// * 59 Temple Place - Suite 330, Bostom, MA 02111-1307, USA.
// *
// * (c) 2018 ergo720
// *
// * All rights reserved
// *
// ******************************************************************
// Acknowledgment: ReactOS (GPLv2)
// https://github.com/reactos/reactos
// Changed from ReactOS: we never swap the subkeys in order to generate a decryption key schedule. Instead, we opt to simply read the subkeys
// in reverse order during a decryption operation. This is necessary because XcKeyTable doesn't provide an "operation" argument, that is, it
// always generates an encryption key schedule.
// NOTE: this des implementation doesn't produce exactly the same ciphertext produced by the Xbox. I found that the implementation of Eric Young
// used in OpenSSL does instead, but we can't use it since it's under the Apache 2.0 license, which is incompatible with GPLv2. For reference,
// the DES-YOUN.zip package at https://www.schneier.com/books/applied_cryptography/source.html contains a previous version of the same code under
// the GPLv2 but again it doesn't produce the same ciphertext, and modifying it to make it so would make it identical to the OpenSSL code, which
// is probably a violation of the license, so I won't do it. In practice, as long as the code correctly decrypts the ciphertext (which it does),
// I don't think that the Xbox games will care if the ciphertext is not exactly the same as on the Xbox and should work fine offline. The only
// problem with this is that cxbxr will be unable to communicate with a real Xbox on the network (des is used in console-to-console communications)
// because the des key schedule generated on the console will be different and so it will fail to decrypt packets encrypted by cxbxr.
#include <stdint.h>
#include <cstring>
#include "EmuDes.h"
/*
* 32-bit integer manipulation macros (big endian)
*/
#ifndef GET_UINT32_BE
#define GET_UINT32_BE(n,b,i) \
{ \
(n) = ( (uint32_t) (b)[(i) ] << 24 ) \
| ( (uint32_t) (b)[(i) + 1] << 16 ) \
| ( (uint32_t) (b)[(i) + 2] << 8 ) \
| ( (uint32_t) (b)[(i) + 3] ); \
}
#endif
#ifndef PUT_UINT32_BE
#define PUT_UINT32_BE(n,b,i) \
{ \
(b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
(b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
(b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
(b)[(i) + 3] = (unsigned char) ( (n) ); \
}
#endif
/*
* Expanded DES S-boxes
*/
static const uint32_t SB1[64] =
{
0x01010400, 0x00000000, 0x00010000, 0x01010404,
0x01010004, 0x00010404, 0x00000004, 0x00010000,
0x00000400, 0x01010400, 0x01010404, 0x00000400,
0x01000404, 0x01010004, 0x01000000, 0x00000004,
0x00000404, 0x01000400, 0x01000400, 0x00010400,
0x00010400, 0x01010000, 0x01010000, 0x01000404,
0x00010004, 0x01000004, 0x01000004, 0x00010004,
0x00000000, 0x00000404, 0x00010404, 0x01000000,
0x00010000, 0x01010404, 0x00000004, 0x01010000,
0x01010400, 0x01000000, 0x01000000, 0x00000400,
0x01010004, 0x00010000, 0x00010400, 0x01000004,
0x00000400, 0x00000004, 0x01000404, 0x00010404,
0x01010404, 0x00010004, 0x01010000, 0x01000404,
0x01000004, 0x00000404, 0x00010404, 0x01010400,
0x00000404, 0x01000400, 0x01000400, 0x00000000,
0x00010004, 0x00010400, 0x00000000, 0x01010004
};
static const uint32_t SB2[64] =
{
0x80108020, 0x80008000, 0x00008000, 0x00108020,
0x00100000, 0x00000020, 0x80100020, 0x80008020,
0x80000020, 0x80108020, 0x80108000, 0x80000000,
0x80008000, 0x00100000, 0x00000020, 0x80100020,
0x00108000, 0x00100020, 0x80008020, 0x00000000,
0x80000000, 0x00008000, 0x00108020, 0x80100000,
0x00100020, 0x80000020, 0x00000000, 0x00108000,
0x00008020, 0x80108000, 0x80100000, 0x00008020,
0x00000000, 0x00108020, 0x80100020, 0x00100000,
0x80008020, 0x80100000, 0x80108000, 0x00008000,
0x80100000, 0x80008000, 0x00000020, 0x80108020,
0x00108020, 0x00000020, 0x00008000, 0x80000000,
0x00008020, 0x80108000, 0x00100000, 0x80000020,
0x00100020, 0x80008020, 0x80000020, 0x00100020,
0x00108000, 0x00000000, 0x80008000, 0x00008020,
0x80000000, 0x80100020, 0x80108020, 0x00108000
};
static const uint32_t SB3[64] =
{
0x00000208, 0x08020200, 0x00000000, 0x08020008,
0x08000200, 0x00000000, 0x00020208, 0x08000200,
0x00020008, 0x08000008, 0x08000008, 0x00020000,
0x08020208, 0x00020008, 0x08020000, 0x00000208,
0x08000000, 0x00000008, 0x08020200, 0x00000200,
0x00020200, 0x08020000, 0x08020008, 0x00020208,
0x08000208, 0x00020200, 0x00020000, 0x08000208,
0x00000008, 0x08020208, 0x00000200, 0x08000000,
0x08020200, 0x08000000, 0x00020008, 0x00000208,
0x00020000, 0x08020200, 0x08000200, 0x00000000,
0x00000200, 0x00020008, 0x08020208, 0x08000200,
0x08000008, 0x00000200, 0x00000000, 0x08020008,
0x08000208, 0x00020000, 0x08000000, 0x08020208,
0x00000008, 0x00020208, 0x00020200, 0x08000008,
0x08020000, 0x08000208, 0x00000208, 0x08020000,
0x00020208, 0x00000008, 0x08020008, 0x00020200
};
static const uint32_t SB4[64] =
{
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802080, 0x00800081, 0x00800001, 0x00002001,
0x00000000, 0x00802000, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00800080, 0x00800001,
0x00000001, 0x00002000, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002001, 0x00002080,
0x00800081, 0x00000001, 0x00002080, 0x00800080,
0x00002000, 0x00802080, 0x00802081, 0x00000081,
0x00800080, 0x00800001, 0x00802000, 0x00802081,
0x00000081, 0x00000000, 0x00000000, 0x00802000,
0x00002080, 0x00800080, 0x00800081, 0x00000001,
0x00802001, 0x00002081, 0x00002081, 0x00000080,
0x00802081, 0x00000081, 0x00000001, 0x00002000,
0x00800001, 0x00002001, 0x00802080, 0x00800081,
0x00002001, 0x00002080, 0x00800000, 0x00802001,
0x00000080, 0x00800000, 0x00002000, 0x00802080
};
static const uint32_t SB5[64] =
{
0x00000100, 0x02080100, 0x02080000, 0x42000100,
0x00080000, 0x00000100, 0x40000000, 0x02080000,
0x40080100, 0x00080000, 0x02000100, 0x40080100,
0x42000100, 0x42080000, 0x00080100, 0x40000000,
0x02000000, 0x40080000, 0x40080000, 0x00000000,
0x40000100, 0x42080100, 0x42080100, 0x02000100,
0x42080000, 0x40000100, 0x00000000, 0x42000000,
0x02080100, 0x02000000, 0x42000000, 0x00080100,
0x00080000, 0x42000100, 0x00000100, 0x02000000,
0x40000000, 0x02080000, 0x42000100, 0x40080100,
0x02000100, 0x40000000, 0x42080000, 0x02080100,
0x40080100, 0x00000100, 0x02000000, 0x42080000,
0x42080100, 0x00080100, 0x42000000, 0x42080100,
0x02080000, 0x00000000, 0x40080000, 0x42000000,
0x00080100, 0x02000100, 0x40000100, 0x00080000,
0x00000000, 0x40080000, 0x02080100, 0x40000100
};
static const uint32_t SB6[64] =
{
0x20000010, 0x20400000, 0x00004000, 0x20404010,
0x20400000, 0x00000010, 0x20404010, 0x00400000,
0x20004000, 0x00404010, 0x00400000, 0x20000010,
0x00400010, 0x20004000, 0x20000000, 0x00004010,
0x00000000, 0x00400010, 0x20004010, 0x00004000,
0x00404000, 0x20004010, 0x00000010, 0x20400010,
0x20400010, 0x00000000, 0x00404010, 0x20404000,
0x00004010, 0x00404000, 0x20404000, 0x20000000,
0x20004000, 0x00000010, 0x20400010, 0x00404000,
0x20404010, 0x00400000, 0x00004010, 0x20000010,
0x00400000, 0x20004000, 0x20000000, 0x00004010,
0x20000010, 0x20404010, 0x00404000, 0x20400000,
0x00404010, 0x20404000, 0x00000000, 0x20400010,
0x00000010, 0x00004000, 0x20400000, 0x00404010,
0x00004000, 0x00400010, 0x20004010, 0x00000000,
0x20404000, 0x20000000, 0x00400010, 0x20004010
};
static const uint32_t SB7[64] =
{
0x00200000, 0x04200002, 0x04000802, 0x00000000,
0x00000800, 0x04000802, 0x00200802, 0x04200800,
0x04200802, 0x00200000, 0x00000000, 0x04000002,
0x00000002, 0x04000000, 0x04200002, 0x00000802,
0x04000800, 0x00200802, 0x00200002, 0x04000800,
0x04000002, 0x04200000, 0x04200800, 0x00200002,
0x04200000, 0x00000800, 0x00000802, 0x04200802,
0x00200800, 0x00000002, 0x04000000, 0x00200800,
0x04000000, 0x00200800, 0x00200000, 0x04000802,
0x04000802, 0x04200002, 0x04200002, 0x00000002,
0x00200002, 0x04000000, 0x04000800, 0x00200000,
0x04200800, 0x00000802, 0x00200802, 0x04200800,
0x00000802, 0x04000002, 0x04200802, 0x04200000,
0x00200800, 0x00000000, 0x00000002, 0x04200802,
0x00000000, 0x00200802, 0x04200000, 0x00000800,
0x04000002, 0x04000800, 0x00000800, 0x00200002
};
static const uint32_t SB8[64] =
{
0x10001040, 0x00001000, 0x00040000, 0x10041040,
0x10000000, 0x10001040, 0x00000040, 0x10000000,
0x00040040, 0x10040000, 0x10041040, 0x00041000,
0x10041000, 0x00041040, 0x00001000, 0x00000040,
0x10040000, 0x10000040, 0x10001000, 0x00001040,
0x00041000, 0x00040040, 0x10040040, 0x10041000,
0x00001040, 0x00000000, 0x00000000, 0x10040040,
0x10000040, 0x10001000, 0x00041040, 0x00040000,
0x00041040, 0x00040000, 0x10041000, 0x00001000,
0x00000040, 0x10040040, 0x00001000, 0x00041040,
0x10001000, 0x00000040, 0x10000040, 0x10040000,
0x10040040, 0x10000000, 0x00040000, 0x10001040,
0x00000000, 0x10041040, 0x00040040, 0x10000040,
0x10040000, 0x10001000, 0x10001040, 0x00000000,
0x10041040, 0x00041000, 0x00041000, 0x00001040,
0x00001040, 0x00040040, 0x10000000, 0x10041000
};
/*
* PC1: left and right halves bit-swap
*/
static const uint32_t LHs[16] =
{
0x00000000, 0x00000001, 0x00000100, 0x00000101,
0x00010000, 0x00010001, 0x00010100, 0x00010101,
0x01000000, 0x01000001, 0x01000100, 0x01000101,
0x01010000, 0x01010001, 0x01010100, 0x01010101
};
static const uint32_t RHs[16] =
{
0x00000000, 0x01000000, 0x00010000, 0x01010000,
0x00000100, 0x01000100, 0x00010100, 0x01010100,
0x00000001, 0x01000001, 0x00010001, 0x01010001,
0x00000101, 0x01000101, 0x00010101, 0x01010101,
};
/*
* Initial Permutation macro
*/
#define DES_IP(X,Y) \
{ \
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
Y = ((Y << 1) | (Y >> 31)) & 0xFFFFFFFF; \
T = (X ^ Y) & 0xAAAAAAAA; Y ^= T; X ^= T; \
X = ((X << 1) | (X >> 31)) & 0xFFFFFFFF; \
}
/*
* Final Permutation macro
*/
#define DES_FP(X,Y) \
{ \
X = ((X << 31) | (X >> 1)) & 0xFFFFFFFF; \
T = (X ^ Y) & 0xAAAAAAAA; X ^= T; Y ^= T; \
Y = ((Y << 31) | (Y >> 1)) & 0xFFFFFFFF; \
T = ((Y >> 8) ^ X) & 0x00FF00FF; X ^= T; Y ^= (T << 8); \
T = ((Y >> 2) ^ X) & 0x33333333; X ^= T; Y ^= (T << 2); \
T = ((X >> 16) ^ Y) & 0x0000FFFF; Y ^= T; X ^= (T << 16); \
T = ((X >> 4) ^ Y) & 0x0F0F0F0F; Y ^= T; X ^= (T << 4); \
}
/*
* DES round macro
*/
#define DES_ROUND(X,Y,I) \
{ \
T = (SK[I] ^ X); \
Y ^= SB8[ (T ) & 0x3F ] ^ \
SB6[ (T >> 8) & 0x3F ] ^ \
SB4[ (T >> 16) & 0x3F ] ^ \
SB2[ (T >> 24) & 0x3F ]; \
\
T = (SK[I+1] ^ ((X << 28) | (X >> 4))); \
Y ^= SB7[ (T ) & 0x3F ] ^ \
SB5[ (T >> 8) & 0x3F ] ^ \
SB3[ (T >> 16) & 0x3F ] ^ \
SB1[ (T >> 24) & 0x3F ]; \
}
// For each number between 0x0 and 0xF, this tells how many set bits there are
static const unsigned char DESParityTable[] = { 0x00,0x01,0x01,0x02,0x01,0x02,0x02,0x03,0x01,0x02,0x02,0x03,0x02,0x03,0x03,0x04 };
// This function sets the parity on the DES key to be odd
// Test case: Halo, Tenchu, Dashboard, Splinter Cell 1 and 2, ...
void mbedtls_des_key_set_parity(unsigned char* Key, unsigned long KeyLenght)
{
unsigned long i;
for (i = 0; i < KeyLenght; i++)
{
if (!((DESParityTable[Key[i] >> 4] + DESParityTable[Key[i] & 0x0F]) % 2)) {
Key[i] = Key[i] ^ 0x01;
}
}
}
void mbedtls_des_setkey(uint32_t SK[32], const unsigned char key[MBEDTLS_DES_KEY_SIZE])
{
int i;
uint32_t X, Y, T;
GET_UINT32_BE(X, key, 0);
GET_UINT32_BE(Y, key, 4);
/*
* Permuted Choice 1
*/
T = ((Y >> 4) ^ X) & 0x0F0F0F0F; X ^= T; Y ^= (T << 4);
T = ((Y) ^ X) & 0x10101010; X ^= T; Y ^= (T);
X = (LHs[(X) & 0xF] << 3) | (LHs[(X >> 8) & 0xF] << 2)
| (LHs[(X >> 16) & 0xF] << 1) | (LHs[(X >> 24) & 0xF])
| (LHs[(X >> 5) & 0xF] << 7) | (LHs[(X >> 13) & 0xF] << 6)
| (LHs[(X >> 21) & 0xF] << 5) | (LHs[(X >> 29) & 0xF] << 4);
Y = (RHs[(Y >> 1) & 0xF] << 3) | (RHs[(Y >> 9) & 0xF] << 2)
| (RHs[(Y >> 17) & 0xF] << 1) | (RHs[(Y >> 25) & 0xF])
| (RHs[(Y >> 4) & 0xF] << 7) | (RHs[(Y >> 12) & 0xF] << 6)
| (RHs[(Y >> 20) & 0xF] << 5) | (RHs[(Y >> 28) & 0xF] << 4);
X &= 0x0FFFFFFF;
Y &= 0x0FFFFFFF;
/*
* calculate subkeys
*/
for (i = 0; i < 16; i++)
{
if (i < 2 || i == 8 || i == 15)
{
X = ((X << 1) | (X >> 27)) & 0x0FFFFFFF;
Y = ((Y << 1) | (Y >> 27)) & 0x0FFFFFFF;
}
else
{
X = ((X << 2) | (X >> 26)) & 0x0FFFFFFF;
Y = ((Y << 2) | (Y >> 26)) & 0x0FFFFFFF;
}
*SK++ = ((X << 4) & 0x24000000) | ((X << 28) & 0x10000000)
| ((X << 14) & 0x08000000) | ((X << 18) & 0x02080000)
| ((X << 6) & 0x01000000) | ((X << 9) & 0x00200000)
| ((X >> 1) & 0x00100000) | ((X << 10) & 0x00040000)
| ((X << 2) & 0x00020000) | ((X >> 10) & 0x00010000)
| ((Y >> 13) & 0x00002000) | ((Y >> 4) & 0x00001000)
| ((Y << 6) & 0x00000800) | ((Y >> 1) & 0x00000400)
| ((Y >> 14) & 0x00000200) | ((Y) & 0x00000100)
| ((Y >> 5) & 0x00000020) | ((Y >> 10) & 0x00000010)
| ((Y >> 3) & 0x00000008) | ((Y >> 18) & 0x00000004)
| ((Y >> 26) & 0x00000002) | ((Y >> 24) & 0x00000001);
*SK++ = ((X << 15) & 0x20000000) | ((X << 17) & 0x10000000)
| ((X << 10) & 0x08000000) | ((X << 22) & 0x04000000)
| ((X >> 2) & 0x02000000) | ((X << 1) & 0x01000000)
| ((X << 16) & 0x00200000) | ((X << 11) & 0x00100000)
| ((X << 3) & 0x00080000) | ((X >> 6) & 0x00040000)
| ((X << 15) & 0x00020000) | ((X >> 4) & 0x00010000)
| ((Y >> 2) & 0x00002000) | ((Y << 8) & 0x00001000)
| ((Y >> 14) & 0x00000808) | ((Y >> 9) & 0x00000400)
| ((Y) & 0x00000200) | ((Y << 7) & 0x00000100)
| ((Y >> 7) & 0x00000020) | ((Y >> 3) & 0x00000011)
| ((Y << 2) & 0x00000004) | ((Y >> 21) & 0x00000002);
}
}
/*
* DES key schedule (56-bit, encryption)
*/
void mbedtls_des_setkey_enc(mbedtls_des_context* ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE])
{
mbedtls_des_setkey(ctx->sk, key);
}
/*
* DES-ECB block encryption/decryption
*/
void mbedtls_des_crypt_ecb(mbedtls_des_context* ctx,
const unsigned char input[8],
unsigned char output[8],
unsigned long encrypt)
{
int i;
uint32_t X, Y, T, *SK;
SK = ctx->sk;
GET_UINT32_BE(X, input, 0);
GET_UINT32_BE(Y, input, 4);
DES_IP(X, Y);
if (encrypt == MBEDTLS_DES_ENCRYPT) {
for (i = 0; i < 32; i += 4)
{
DES_ROUND(Y, X, i + 0);
DES_ROUND(X, Y, i + 2);
}
}
else {
for (i = 30; i > 0; i -= 4)
{
DES_ROUND(Y, X, i - 0);
DES_ROUND(X, Y, i - 2);
}
}
DES_FP(Y, X);
PUT_UINT32_BE(Y, output, 0);
PUT_UINT32_BE(X, output, 4);
}
/*
* DES-CBC buffer encryption/decryption
*/
int mbedtls_des_crypt_cbc(mbedtls_des_context* ctx,
unsigned long mode,
unsigned long length,
unsigned char iv[8],
const unsigned char* input,
unsigned char* output)
{
int i, ret, num_des_blocks;
unsigned char temp[8];
ret = 0;
num_des_blocks = (length + 7) / 8;
// The original code of ReactOS correctly checks that the input length is a multiple of a des_block (8 bytes) but the
// kernel doesn't and will encrypt up to block (lenght + 7) / 8. This means that we'll run the risk of reading some
// random bytes after the buffer end and/or touching invalid memory and crash. Because the real kernel does it, we'll
// allow this buggy behaviour for the sake of accuracy.
if (length % 8) {
ret = MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
}
if (mode == MBEDTLS_DES_ENCRYPT)
{
while (num_des_blocks > 0)
{
for (i = 0; i < 8; i++) {
output[i] = (unsigned char)(input[i] ^ iv[i]);
}
mbedtls_des_crypt_ecb(ctx, output, output, MBEDTLS_DES_ENCRYPT);
memcpy(iv, output, 8);
input += 8;
output += 8;
num_des_blocks--;
}
}
else /* MBEDTLS_DES_DECRYPT */
{
while (num_des_blocks > 0)
{
memcpy(temp, input, 8);
mbedtls_des_crypt_ecb(ctx, input, output, MBEDTLS_DES_DECRYPT);
for (i = 0; i < 8; i++) {
output[i] = (unsigned char)(output[i] ^ iv[i]);
}
memcpy(iv, temp, 8);
input += 8;
output += 8;
num_des_blocks--;
}
}
return ret;
}
/*
* Triple-DES key schedule (168-bit, encryption)
*/
void mbedtls_des3_set3key_enc(mbedtls_des3_context* ctx,
const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3])
{
mbedtls_des_setkey(ctx->sk, key);
mbedtls_des_setkey(ctx->sk + 32, key + 8);
mbedtls_des_setkey(ctx->sk + 64, key + 16);
}
/*
* 3DES-ECB buffer encryption
*/
void mbedtls_des3_encrypt_ecb(mbedtls_des3_context* ctx,
const unsigned char input[8],
unsigned char output[8])
{
int i;
uint32_t X, Y, T, *SK;
SK = ctx->sk;
GET_UINT32_BE(X, input, 0);
GET_UINT32_BE(Y, input, 4);
DES_IP(X, Y);
for (i = 0; i < 32; i += 4)
{
DES_ROUND(Y, X, i + 0);
DES_ROUND(X, Y, i + 2);
}
for (i = 62; i > 32; i -= 4)
{
DES_ROUND(X, Y, i - 0);
DES_ROUND(Y, X, i - 2);
}
for (i = 64; i < 96; i += 4)
{
DES_ROUND(Y, X, i + 0);
DES_ROUND(X, Y, i + 2);
}
DES_FP(Y, X);
PUT_UINT32_BE(Y, output, 0);
PUT_UINT32_BE(X, output, 4);
}
/*
* 3DES-ECB buffer decryption
*/
void mbedtls_des3_decrypt_ecb(mbedtls_des3_context* ctx,
const unsigned char input[8],
unsigned char output[8])
{
int i;
uint32_t X, Y, T, *SK;
SK = ctx->sk;
GET_UINT32_BE(X, input, 0);
GET_UINT32_BE(Y, input, 4);
DES_IP(X, Y);
for (i = 94; i > 64; i -= 4)
{
DES_ROUND(Y, X, i - 0);
DES_ROUND(X, Y, i - 2);
}
for (i = 32; i < 64; i += 4)
{
DES_ROUND(X, Y, i + 0);
DES_ROUND(Y, X, i + 2);
}
for (i = 30; i > 0; i -= 4)
{
DES_ROUND(Y, X, i - 0);
DES_ROUND(X, Y, i - 2);
}
DES_FP(Y, X);
PUT_UINT32_BE(Y, output, 0);
PUT_UINT32_BE(X, output, 4);
}
void mbedtls_des3_crypt_ecb(mbedtls_des3_context* ctx,
const unsigned char input[8],
unsigned char output[8],
unsigned long encrypt)
{
if (encrypt == MBEDTLS_DES_ENCRYPT) {
mbedtls_des3_encrypt_ecb(ctx, input, output);
}
else {
mbedtls_des3_decrypt_ecb(ctx, input, output);
}
}
/*
* 3DES-CBC buffer encryption/decryption
*/
int mbedtls_des3_crypt_cbc(mbedtls_des3_context* ctx,
unsigned long mode,
unsigned long length,
unsigned char iv[8],
const unsigned char *input,
unsigned char *output)
{
int i, ret, num_des_blocks;
unsigned char temp[8];
ret = 0;
num_des_blocks = (length + 7) / 8;
if (length % 8) {
ret = MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH;
}
if (mode == MBEDTLS_DES_ENCRYPT)
{
while (num_des_blocks > 0)
{
for (i = 0; i < 8; i++) {
output[i] = (unsigned char)(input[i] ^ iv[i]);
}
mbedtls_des3_encrypt_ecb(ctx, output, output);
memcpy(iv, output, 8);
input += 8;
output += 8;
num_des_blocks--;
}
}
else /* MBEDTLS_DES_DECRYPT */
{
while (num_des_blocks > 0)
{
memcpy(temp, input, 8);
mbedtls_des3_decrypt_ecb(ctx, input, output);
for (i = 0; i < 8; i++) {
output[i] = (unsigned char)(output[i] ^ iv[i]);
}
memcpy(iv, temp, 8);
input += 8;
output += 8;
num_des_blocks--;
}
}
return ret;
}

View File

@ -0,0 +1,73 @@
// This is an open source non-commercial project. Dear PVS-Studio, please check it.
// PVS-Studio Static Code Analyzer for C, C++ and C#: http://www.viva64.com
// ******************************************************************
// *
// * .,-::::: .,:: .::::::::. .,:: .:
// * ,;;;'````' `;;;, .,;; ;;;'';;' `;;;, .,;;
// * [[[ '[[,,[[' [[[__[[\. '[[,,[['
// * $$$ Y$$$P $$""""Y$$ Y$$$P
// * `88bo,__,o, oP"``"Yo, _88o,,od8P oP"``"Yo,
// * "YUMMMMMP",m" "Mm,""YUMMMP" ,m" "Mm,
// *
// * common->crypto->EmuDes.h
// *
// * This file is part of the Cxbx project.
// *
// * Cxbx and Cxbe are free software; you can redistribute them
// * and/or modify them under the terms of the GNU General Public
// * License as published by the Free Software Foundation; either
// * version 2 of the license, or (at your option) any later version.
// *
// * This program is distributed in the hope that it will be useful,
// * but WITHOUT ANY WARRANTY; without even the implied warranty of
// * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// * GNU General Public License for more details.
// *
// * You should have recieved a copy of the GNU General Public License
// * along with this program; see the file COPYING.
// * If not, write to the Free Software Foundation, Inc.,
// * 59 Temple Place - Suite 330, Bostom, MA 02111-1307, USA.
// *
// * (c) 2018 ergo720
// *
// * All rights reserved
// *
// ******************************************************************
#ifndef EMUDES_H
#define EMUDES_H
#define MBEDTLS_DES_KEY_SIZE 8
#define MBEDTLS_DES_ENCRYPT 1
#define MBEDTLS_DES_DECRYPT 0
#define MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH -0x0032 /**< The data input has an invalid length. */
/**
* \brief DES context structure
*/
typedef struct
{
uint32_t sk[32]; /*!< DES subkeys */
}
mbedtls_des_context;
/**
* \brief Triple-DES context structure
*/
typedef struct
{
uint32_t sk[96]; /*!< 3DES subkeys */
}
mbedtls_des3_context;
void mbedtls_des_key_set_parity(unsigned char* Key, unsigned long KeyLenght);
void mbedtls_des_setkey_enc(mbedtls_des_context* ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE]);
void mbedtls_des_crypt_ecb(mbedtls_des_context* ctx, const unsigned char input[8], unsigned char output[8], unsigned long encrypt);
int mbedtls_des_crypt_cbc(mbedtls_des_context* ctx, unsigned long mode, unsigned long length, unsigned char iv[8], const unsigned char* input, unsigned char* output);
void mbedtls_des3_set3key_enc(mbedtls_des3_context* ctx, const unsigned char key[MBEDTLS_DES_KEY_SIZE * 3]);
void mbedtls_des3_crypt_ecb(mbedtls_des3_context* ctx, const unsigned char input[8], unsigned char output[8], unsigned long encrypt);
int mbedtls_des3_crypt_cbc(mbedtls_des3_context* ctx, unsigned long mode, unsigned long length, unsigned char iv[8], const unsigned char *input, unsigned char *output);
#endif EMUDES_H

View File

@ -47,18 +47,15 @@ namespace xboxkrnl
#include "Logging.h" // For LOG_FUNC()
#include "EmuKrnlLogging.h"
#include "common\crypto\EmuSha.h" // For A_SHAInit, etc.
#include "common\crypto\LibRc4.h" // For RC4 Functions
#include "common\crypto\LibRc4.h" // For RC4 Functions
#include "common\crypto\EmuDes.h" // For DES Functions
// prevent name collisions
namespace NtDll
{
#include "core\kernel\support\EmuNtDll.h"
};
// Used by JumpedDESKeyParity
static const xboxkrnl::BYTE DESParityTable[] = { 0x00,0x01,0x01,0x02,0x01,0x02,0x02,0x03,0x01,0x02,0x02,0x03,0x02,0x03,0x03,0x04 };
// The following are the default implementations of the crypto functions
@ -237,15 +234,7 @@ xboxkrnl::VOID NTAPI JumpedDESKeyParity
xboxkrnl::ULONG dwKeyLength
)
{
// This function sets the parity on the DES key to be odd
// Test case: Halo, Tenchu, dashboard, Splinter Cell 1 and 2, ...
for (DWORD i = 0; i < dwKeyLength; i++)
{
if (!((DESParityTable[pbKey[i] >> 4] + DESParityTable[pbKey[i] & 0x0F]) % 2)) {
pbKey[i] = pbKey[i] ^ 0x01;
}
}
mbedtls_des_key_set_parity(pbKey, dwKeyLength);
}
xboxkrnl::VOID NTAPI JumpedKeyTable
@ -254,8 +243,13 @@ xboxkrnl::VOID NTAPI JumpedKeyTable
xboxkrnl::PUCHAR pbKeyTable,
xboxkrnl::PUCHAR pbKey
)
{
LOG_UNIMPLEMENTED();
{
if (dwCipher) {
mbedtls_des3_set3key_enc((mbedtls_des3_context*)pbKeyTable, pbKey);
}
else {
mbedtls_des_setkey_enc((mbedtls_des_context*)pbKeyTable, pbKey);
}
}
xboxkrnl::VOID NTAPI JumpedBlockCrypt
@ -266,8 +260,13 @@ xboxkrnl::VOID NTAPI JumpedBlockCrypt
xboxkrnl::PUCHAR pbKeyTable,
xboxkrnl::ULONG dwOp
)
{
LOG_UNIMPLEMENTED();
{
if (dwCipher) {
mbedtls_des3_crypt_ecb((mbedtls_des3_context*)pbKeyTable, pbInput, pbOutput, dwOp);
}
else {
mbedtls_des_crypt_ecb((mbedtls_des_context*)pbKeyTable, pbInput, pbOutput, dwOp);
}
}
xboxkrnl::VOID NTAPI JumpedBlockCryptCBC
@ -280,8 +279,19 @@ xboxkrnl::VOID NTAPI JumpedBlockCryptCBC
xboxkrnl::ULONG dwOp,
xboxkrnl::PUCHAR pbFeedback
)
{
LOG_UNIMPLEMENTED();
{
int ret;
if (dwCipher) {
ret = mbedtls_des3_crypt_cbc((mbedtls_des3_context*)pbKeyTable, dwOp, dwInputLength, pbFeedback, pbInput, pbOutput);
}
else {
ret = mbedtls_des_crypt_cbc((mbedtls_des_context*)pbKeyTable, dwOp, dwInputLength, pbFeedback, pbInput, pbOutput);
}
if (ret == MBEDTLS_ERR_DES_INVALID_INPUT_LENGTH) {
DBG_PRINTF("%s: dwInputLength was not a multiple of 8 (it was %lu)\n", __func__, dwInputLength);
}
}
xboxkrnl::ULONG NTAPI JumpedCryptService
@ -290,11 +300,9 @@ xboxkrnl::ULONG NTAPI JumpedCryptService
xboxkrnl::PVOID pArgs
)
{
ULONG ret = 0;
// This seems to be a dummy function. It just returns zero regardless of the input arguments, which are left unchanged.
LOG_UNIMPLEMENTED();
return ret;
return 0;
}
/* This struct contains the original crypto functions exposed by the kernel */