Xbox fixed function vertex shader (not yet enabled)
The shader should behave similarly to D3D9's fixed function pipeline But supports Xbox extensions and helps to move off D3D9 Co-authored with PatrickVL
This commit is contained in:
parent
99a96e675d
commit
3bfad0327f
|
@ -117,7 +117,10 @@ file (GLOB CXBXR_HEADER_EMU
|
|||
"${CXBXR_ROOT_DIR}/src/common/util/gloffscreen/gloffscreen.h"
|
||||
"${CXBXR_ROOT_DIR}/src/common/XADPCM.h"
|
||||
"${CXBXR_ROOT_DIR}/src/common/xbox/Logging.hpp"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/CxbxVertexShaderTemplate.hlsl"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/Direct3D9.h"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/FixedFunctionVertexShader.hlsl"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/FixedFunctionVertexShaderState.hlsli"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/VertexShader.h"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/VertexShaderSource.h"
|
||||
"${CXBXR_ROOT_DIR}/src/core/hle/D3D8/Direct3D9/WalkIndexBuffer.h"
|
||||
|
|
|
@ -194,3 +194,14 @@ if(${CMAKE_GENERATOR} MATCHES "Visual Studio ([^9]|[9][0-9])")
|
|||
endif()
|
||||
|
||||
add_dependencies(cxbx cxbxr-ldr cxbxr-emu misc-batch)
|
||||
|
||||
# Try to stop cmake from building hlsl files
|
||||
# Which are all currently loaded at runtime only
|
||||
set(HlslHeaders ${CXBXR_HEADER_EMU})
|
||||
list(FILTER HlslHeaders INCLUDE REGEX ".*\\.hlsl$")
|
||||
set_source_files_properties(
|
||||
${HlslHeaders}
|
||||
PROPERTIES
|
||||
HEADER_FILE_ONLY TRUE
|
||||
VS_TOOL_OVERRIDE "None"
|
||||
)
|
|
@ -166,3 +166,14 @@ install(TARGETS ${PROJECT_NAME}
|
|||
)
|
||||
|
||||
add_dependencies(cxbxr-emu cxbxr-ldr misc-batch)
|
||||
|
||||
# Try to stop cmake from building hlsl files
|
||||
# Which are all currently loaded at runtime only
|
||||
set(HlslHeaders ${CXBXR_HEADER_EMU})
|
||||
list(FILTER HlslHeaders INCLUDE REGEX ".*\\.hlsl$")
|
||||
set_source_files_properties(
|
||||
${HlslHeaders}
|
||||
PROPERTIES
|
||||
HEADER_FILE_ONLY TRUE
|
||||
VS_TOOL_OVERRIDE "None"
|
||||
)
|
|
@ -27,3 +27,12 @@ message("Runtime Build Directory: ${TargetRunTimeDir}")
|
|||
# Copy glew32.dll to build type's folder.
|
||||
set(CXBXR_GLEW_DLL "${CMAKE_SOURCE_DIR}/import/glew-2.0.0/bin/Release/Win32/glew32.dll")
|
||||
file(COPY ${CXBXR_GLEW_DLL} DESTINATION ${TargetRunTimeDir})
|
||||
|
||||
# Copy certain HLSL files to the output directory, which we will load at runtime
|
||||
set(CXBXR_HLSL_FILES
|
||||
"${CMAKE_SOURCE_DIR}/src/core/hle/D3D8/Direct3D9/FixedFunctionVertexShaderState.hlsli"
|
||||
"${CMAKE_SOURCE_DIR}/src/core/hle/D3D8/Direct3D9/FixedFunctionVertexShader.hlsl"
|
||||
)
|
||||
set(HlslOutputDir ${TargetRunTimeDir}/hlsl)
|
||||
file(MAKE_DIRECTORY ${HlslOutputDir})
|
||||
file(COPY ${CXBXR_HLSL_FILES} DESTINATION ${HlslOutputDir})
|
||||
|
|
|
@ -37,6 +37,7 @@
|
|||
#include "core\kernel\init\CxbxKrnl.h"
|
||||
#include "core\kernel\support\Emu.h"
|
||||
#include "EmuShared.h"
|
||||
#include "..\FixedFunctionState.h"
|
||||
#include "core\hle\D3D8\ResourceTracker.h"
|
||||
#include "core\hle\D3D8\Direct3D9\Direct3D9.h" // For LPDIRECTDRAWSURFACE7
|
||||
#include "core\hle\D3D8\XbVertexBuffer.h"
|
||||
|
@ -70,6 +71,9 @@
|
|||
XboxRenderStateConverter XboxRenderStates;
|
||||
XboxTextureStateConverter XboxTextureStates;
|
||||
|
||||
D3D8LightState d3d8LightState = D3D8LightState();
|
||||
FixedFunctionVertexShaderState ffShaderState = {0}; // TODO find a home for this and associated code
|
||||
|
||||
// Allow use of time duration literals (making 16ms, etc possible)
|
||||
using namespace std::literals::chrono_literals;
|
||||
|
||||
|
@ -6263,6 +6267,179 @@ void CreateHostResource(xbox::X_D3DResource *pResource, DWORD D3DUsage, int iTex
|
|||
} // switch XboxResourceType
|
||||
}
|
||||
|
||||
D3DXVECTOR4 toVector(D3DCOLOR color) {
|
||||
D3DXVECTOR4 v;
|
||||
// ARGB to XYZW
|
||||
v.w = (color >> 24 & 0xFF) / 255.f;
|
||||
v.x = (color >> 16 & 0xFF) / 255.f;
|
||||
v.y = (color >> 8 & 0xFF) / 255.f;
|
||||
v.z = (color >> 0 & 0xFF) / 255.f;
|
||||
return v;
|
||||
}
|
||||
|
||||
D3DXVECTOR4 toVector(D3DCOLORVALUE val) {
|
||||
return D3DXVECTOR4(val.r, val.g, val.b, val.a);
|
||||
}
|
||||
|
||||
void UpdateFixedFunctionShaderLight(int d3dLightIndex, Light* pShaderLight, D3DXVECTOR4* pLightAmbient, D3DXMATRIX viewTransform) {
|
||||
if (d3dLightIndex == -1) {
|
||||
pShaderLight->Type = 0; // Disable the light
|
||||
return;
|
||||
}
|
||||
|
||||
auto d3dLight = &d3d8LightState.Lights[d3dLightIndex];
|
||||
|
||||
// TODO remove D3DX usage
|
||||
// Pre-transform light position to viewspace
|
||||
D3DXVECTOR4 positionV;
|
||||
D3DXVec3Transform(&positionV, (D3DXVECTOR3*)&d3dLight->Position, &viewTransform);
|
||||
pShaderLight->PositionV = (D3DXVECTOR3)positionV;
|
||||
|
||||
// Pre-transform light direction to viewspace and normalize
|
||||
D3DXVECTOR4 directionV;
|
||||
D3DXMATRIX viewTransform3x3;
|
||||
D3DXMatrixIdentity(&viewTransform3x3);
|
||||
for (int y = 0; y < 3; y++) {
|
||||
for (int x = 0; x < 3; x++) {
|
||||
viewTransform3x3.m[x][y] = viewTransform.m[x][y];
|
||||
}
|
||||
}
|
||||
|
||||
D3DXVec3Transform(&directionV, (D3DXVECTOR3*)&d3dLight->Direction, &viewTransform3x3);
|
||||
D3DXVec3Normalize((D3DXVECTOR3*)&pShaderLight->DirectionVN, (D3DXVECTOR3*)&directionV);
|
||||
|
||||
// Map D3D light to state struct
|
||||
pShaderLight->Type = (float)((int)d3dLight->Type);
|
||||
pShaderLight->Diffuse = toVector(d3dLight->Diffuse);
|
||||
pShaderLight->Specular = toVector(d3dLight->Specular);
|
||||
pShaderLight->Range = d3dLight->Range;
|
||||
pShaderLight->Falloff = d3dLight->Falloff;
|
||||
pShaderLight->Attenuation.x = d3dLight->Attenuation0;
|
||||
pShaderLight->Attenuation.y = d3dLight->Attenuation1;
|
||||
pShaderLight->Attenuation.z = d3dLight->Attenuation2;
|
||||
|
||||
pLightAmbient->x += d3dLight->Ambient.r;
|
||||
pLightAmbient->y += d3dLight->Ambient.g;
|
||||
pLightAmbient->z += d3dLight->Ambient.b;
|
||||
|
||||
auto cosHalfPhi = cos(d3dLight->Phi / 2);
|
||||
pShaderLight->CosHalfPhi = cosHalfPhi;
|
||||
pShaderLight->SpotIntensityDivisor = cos(d3dLight->Theta / 2) - cos(d3dLight->Phi / 2);
|
||||
}
|
||||
|
||||
float AsFloat(uint32_t value) {
|
||||
auto v = value;
|
||||
return *(float*)&v;
|
||||
}
|
||||
|
||||
void UpdateFixedFunctionVertexShaderState()
|
||||
{
|
||||
using namespace xbox;
|
||||
|
||||
// Lighting
|
||||
ffShaderState.Modes.Lighting = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_LIGHTING);
|
||||
ffShaderState.Modes.TwoSidedLighting = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_TWOSIDEDLIGHTING);
|
||||
ffShaderState.Modes.SpecularEnable = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_SPECULARENABLE);
|
||||
ffShaderState.Modes.LocalViewer = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_LOCALVIEWER);
|
||||
ffShaderState.Modes.ColorVertex = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_COLORVERTEX);
|
||||
|
||||
D3DXVECTOR4 Ambient = toVector(XboxRenderStates.GetXboxRenderState(X_D3DRS_AMBIENT));
|
||||
D3DXVECTOR4 BackAmbient = toVector(XboxRenderStates.GetXboxRenderState(X_D3DRS_BACKAMBIENT));
|
||||
|
||||
// Material sources
|
||||
ffShaderState.Modes.AmbientMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_AMBIENTMATERIALSOURCE);
|
||||
ffShaderState.Modes.DiffuseMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_DIFFUSEMATERIALSOURCE);
|
||||
ffShaderState.Modes.SpecularMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_SPECULARMATERIALSOURCE);
|
||||
ffShaderState.Modes.EmissiveMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_EMISSIVEMATERIALSOURCE);
|
||||
ffShaderState.Modes.BackAmbientMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_BACKAMBIENTMATERIALSOURCE);
|
||||
ffShaderState.Modes.BackDiffuseMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_BACKDIFFUSEMATERIALSOURCE);
|
||||
ffShaderState.Modes.BackSpecularMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_BACKSPECULARMATERIALSOURCE);
|
||||
ffShaderState.Modes.BackEmissiveMaterialSource = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_BACKEMISSIVEMATERIALSOURCE);
|
||||
|
||||
// Point sprites
|
||||
auto pointSize = XboxRenderStates.GetXboxRenderState(X_D3DRS_POINTSIZE);
|
||||
ffShaderState.PointSprite.PointSize = *reinterpret_cast<float*>(&pointSize);
|
||||
ffShaderState.PointSprite.PointScaleEnable = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_POINTSCALEENABLE);
|
||||
ffShaderState.PointSprite.RenderTargetHeight = GetPixelContainerHeight(g_pXbox_RenderTarget);
|
||||
auto scaleA = XboxRenderStates.GetXboxRenderState(X_D3DRS_POINTSCALE_A);
|
||||
ffShaderState.PointSprite.ScaleA = *reinterpret_cast<float*>(&scaleA);
|
||||
auto scaleB = XboxRenderStates.GetXboxRenderState(X_D3DRS_POINTSCALE_B);
|
||||
ffShaderState.PointSprite.ScaleB = *reinterpret_cast<float*>(&scaleB);
|
||||
auto scaleC = XboxRenderStates.GetXboxRenderState(X_D3DRS_POINTSCALE_C);
|
||||
ffShaderState.PointSprite.ScaleC = *reinterpret_cast<float*>(&scaleC);
|
||||
|
||||
// Fog
|
||||
// Determine how fog depth is calculated
|
||||
if (XboxRenderStates.GetXboxRenderState(X_D3DRS_FOGENABLE) &&
|
||||
XboxRenderStates.GetXboxRenderState(X_D3DRS_FOGTABLEMODE) != D3DFOG_NONE) {
|
||||
auto proj = &ffShaderState.Transforms.Projection;
|
||||
|
||||
if (XboxRenderStates.GetXboxRenderState(X_D3DRS_RANGEFOGENABLE)) {
|
||||
LOG_TEST_CASE("Using RANGE fog");
|
||||
ffShaderState.Fog.DepthMode = FixedFunctionVertexShader::FOG_DEPTH_RANGE;
|
||||
}
|
||||
else if (proj->_14 == 0 &&
|
||||
proj->_24 == 0 &&
|
||||
proj->_34 == 0 &&
|
||||
proj->_44 == 1) {
|
||||
LOG_TEST_CASE("Using Z fog");
|
||||
ffShaderState.Fog.DepthMode = FixedFunctionVertexShader::FOG_DEPTH_Z;
|
||||
}
|
||||
else {
|
||||
// Test case:
|
||||
// Fog sample
|
||||
// JSRF (non-compliant projection matrix)
|
||||
ffShaderState.Fog.DepthMode = FixedFunctionVertexShader::FOG_DEPTH_W;
|
||||
}
|
||||
}
|
||||
else {
|
||||
ffShaderState.Fog.DepthMode = FixedFunctionVertexShader::FOG_DEPTH_NONE;
|
||||
}
|
||||
|
||||
// Texture state
|
||||
for (int i = 0; i < 4; i++) {
|
||||
auto transformFlags = XboxTextureStates.Get(i, X_D3DTSS_TEXTURETRANSFORMFLAGS);
|
||||
ffShaderState.TextureStates[i].TextureTransformFlagsCount = (float)(transformFlags & ~D3DTTFF_PROJECTED);
|
||||
ffShaderState.TextureStates[i].TextureTransformFlagsProjected = (float)(transformFlags & D3DTTFF_PROJECTED);
|
||||
|
||||
auto texCoordIndex = XboxTextureStates.Get(i, X_D3DTSS_TEXCOORDINDEX);
|
||||
ffShaderState.TextureStates[i].TexCoordIndex = (float)(texCoordIndex & 0x7); // 8 coords
|
||||
ffShaderState.TextureStates[i].TexCoordIndexGen = (float)(texCoordIndex >> 16); // D3DTSS_TCI flags
|
||||
}
|
||||
|
||||
// TexCoord component counts
|
||||
extern xbox::X_VERTEXATTRIBUTEFORMAT* GetXboxVertexAttributeFormat(); // TMP glue
|
||||
xbox::X_VERTEXATTRIBUTEFORMAT* pXboxVertexAttributeFormat = GetXboxVertexAttributeFormat();
|
||||
for (int i = 0; i < xbox::X_D3DTS_STAGECOUNT; i++) {
|
||||
auto vertexDataFormat = pXboxVertexAttributeFormat->Slots[xbox::X_D3DVSDE_TEXCOORD0 + i].Format;
|
||||
ffShaderState.TexCoordComponentCount[i] = (float)GetXboxVertexDataComponentCount(vertexDataFormat);
|
||||
}
|
||||
|
||||
// Misc flags
|
||||
ffShaderState.Modes.VertexBlend = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_VERTEXBLEND);
|
||||
ffShaderState.Modes.NormalizeNormals = (float)XboxRenderStates.GetXboxRenderState(X_D3DRS_NORMALIZENORMALS);
|
||||
|
||||
// Update lights
|
||||
auto LightAmbient = D3DXVECTOR4(0.f, 0.f, 0.f, 0.f);
|
||||
D3DXMATRIX rowMajorViewTransform;
|
||||
D3DXMatrixTranspose(&rowMajorViewTransform, (D3DXMATRIX*)&ffShaderState.Transforms.View);
|
||||
for (size_t i = 0; i < ffShaderState.Lights.size(); i++) {
|
||||
UpdateFixedFunctionShaderLight(d3d8LightState.EnabledLights[i], &ffShaderState.Lights[i], &LightAmbient, rowMajorViewTransform);
|
||||
}
|
||||
|
||||
ffShaderState.AmbientPlusLightAmbient = Ambient + LightAmbient;
|
||||
ffShaderState.BackAmbientPlusLightAmbient = BackAmbient + LightAmbient;
|
||||
|
||||
// Write fixed function state to shader constants
|
||||
const int slotSize = 16;
|
||||
const int fixedFunctionStateSize = (sizeof(FixedFunctionVertexShaderState) + slotSize - 1) / slotSize;
|
||||
auto hRet = g_pD3DDevice->SetVertexShaderConstantF(0, (float*)&ffShaderState, fixedFunctionStateSize);
|
||||
|
||||
if (FAILED(hRet)) {
|
||||
CxbxKrnlCleanup("Failed to write fixed-function HLSL state");
|
||||
}
|
||||
}
|
||||
|
||||
// ******************************************************************
|
||||
// * patch: D3DDevice_EnableOverlay
|
||||
// ******************************************************************
|
||||
|
@ -6405,9 +6582,15 @@ void CxbxImpl_SetTransform
|
|||
{
|
||||
LOG_INIT
|
||||
|
||||
State = EmuXB2PC_D3DTS(State);
|
||||
// Transpose row major to column major for HLSL
|
||||
D3DXMATRIX hlslMatrix;
|
||||
D3DXMatrixTranspose(&hlslMatrix, (D3DXMATRIX*)pMatrix);
|
||||
// Save to vertex shader state
|
||||
((D3DXMATRIX*)&ffShaderState.Transforms)[State] = hlslMatrix;
|
||||
|
||||
HRESULT hRet = g_pD3DDevice->SetTransform(State, pMatrix);
|
||||
auto d3d9State = EmuXB2PC_D3DTS(State);
|
||||
|
||||
HRESULT hRet = g_pD3DDevice->SetTransform(d3d9State, pMatrix);
|
||||
DEBUG_D3DRESULT(hRet, "g_pD3DDevice->SetTransform");
|
||||
}
|
||||
|
||||
|
@ -7897,6 +8080,8 @@ xbox::hresult_xt WINAPI xbox::EMUPATCH(D3DDevice_SetLight)
|
|||
|
||||
XB_TRMP(D3DDevice_SetLight)(Index, pLight);
|
||||
|
||||
d3d8LightState.Lights[Index] = *pLight;
|
||||
|
||||
HRESULT hRet = g_pD3DDevice->SetLight(Index, pLight);
|
||||
DEBUG_D3DRESULT(hRet, "g_pD3DDevice->SetLight");
|
||||
|
||||
|
@ -7913,6 +8098,12 @@ xbox::void_xt WINAPI xbox::EMUPATCH(D3DDevice_SetMaterial)
|
|||
{
|
||||
LOG_FUNC_ONE_ARG(pMaterial);
|
||||
|
||||
ffShaderState.Materials[0].Ambient = toVector(pMaterial->Ambient);
|
||||
ffShaderState.Materials[0].Diffuse = toVector(pMaterial->Diffuse);
|
||||
ffShaderState.Materials[0].Specular = toVector(pMaterial->Specular);
|
||||
ffShaderState.Materials[0].Emissive = toVector(pMaterial->Emissive);
|
||||
ffShaderState.Materials[0].Power = pMaterial->Power;
|
||||
|
||||
HRESULT hRet = g_pD3DDevice->SetMaterial(pMaterial);
|
||||
DEBUG_D3DRESULT(hRet, "g_pD3DDevice->SetMaterial");
|
||||
}
|
||||
|
@ -7933,6 +8124,8 @@ xbox::hresult_xt WINAPI xbox::EMUPATCH(D3DDevice_LightEnable)
|
|||
|
||||
XB_TRMP(D3DDevice_LightEnable)(Index, bEnable);
|
||||
|
||||
d3d8LightState.EnableLight(Index, bEnable);
|
||||
|
||||
HRESULT hRet = g_pD3DDevice->LightEnable(Index, bEnable);
|
||||
DEBUG_D3DRESULT(hRet, "g_pD3DDevice->LightEnable");
|
||||
|
||||
|
|
|
@ -0,0 +1,635 @@
|
|||
#include "FixedFunctionVertexShaderState.hlsli"
|
||||
|
||||
// Default values for vertex registers, and whether to use them
|
||||
uniform float4 vRegisterDefaultValues[16] : register(c192);
|
||||
uniform float4 vRegisterDefaultFlagsPacked[4] : register(c208);
|
||||
static bool vRegisterDefaultFlags[16];
|
||||
|
||||
uniform FixedFunctionVertexShaderState state : register(c0);
|
||||
|
||||
uniform float4 xboxTextureScale[4] : register(c214);
|
||||
|
||||
#undef CXBX_ALL_TEXCOORD_INPUTS // Enable this to disable semantics in VS_INPUT (instead, we'll use an array of generic TEXCOORD's)
|
||||
|
||||
// Input registers
|
||||
struct VS_INPUT
|
||||
{
|
||||
#ifdef CXBX_ALL_TEXCOORD_INPUTS
|
||||
float4 v[16] : TEXCOORD;
|
||||
#else
|
||||
float4 pos : POSITION;
|
||||
float4 bw : BLENDWEIGHT;
|
||||
float4 color[2] : COLOR;
|
||||
float4 backColor[2] : TEXCOORD4;
|
||||
float4 normal : NORMAL;
|
||||
float4 texcoord[4] : TEXCOORD;
|
||||
#endif
|
||||
};
|
||||
|
||||
// Input register indices (also known as attributes, as given in VS_INPUT.v array)
|
||||
// TODO : Convert FVF codes on CPU to a vertex declaration with these standardized register indices:
|
||||
// NOTE : Converting FVF vertex indices must also consider NV2A vertex attribute 'slot mapping',
|
||||
// as set in NV2A_VTXFMT/NV097_SET_VERTEX_DATA_ARRAY_FORMAT!
|
||||
// TODO : Rename these into SLOT_POSITION, SLOT_WEIGHT, SLOT_TEXTURE0, SLOT_TEXTURE3, etc :
|
||||
static const uint position = 0; // See X_D3DFVF_XYZ / X_D3DVSDE_POSITION was float4 pos : POSITION;
|
||||
static const uint weight = 1; // See X_D3DFVF_XYZB1-4 / X_D3DVSDE_BLENDWEIGHT was float4 bw : BLENDWEIGHT;
|
||||
static const uint normal = 2; // See X_D3DFVF_NORMAL / X_D3DVSDE_NORMAL was float4 normal : NORMAL; // Note : Only normal.xyz is used.
|
||||
static const uint diffuse = 3; // See X_D3DFVF_DIFFUSE / X_D3DVSDE_DIFFUSE was float4 color[2] : COLOR;
|
||||
static const uint specular = 4; // See X_D3DFVF_SPECULAR / X_D3DVSDE_SPECULAR
|
||||
static const uint fogCoord = 5; // Has no X_D3DFVF_* ! See X_D3DVSDE_FOG Note : Only fog.x is used.
|
||||
static const uint pointSize = 6; // Has no X_D3DFVF_* ! See X_D3DVSDE_POINTSIZE
|
||||
static const uint backDiffuse = 7; // Has no X_D3DFVF_* ! See X_D3DVSDE_BACKDIFFUSE was float4 backColor[2] : TEXCOORD4;
|
||||
static const uint backSpecular = 8; // Has no X_D3DFVF_* ! See X_D3DVSDE_BACKSPECULAR
|
||||
static const uint texcoord0 = 9; // See X_D3DFVF_TEX1 / X_D3DVSDE_TEXCOORD0 was float4 texcoord[4] : TEXCOORD;
|
||||
static const uint texcoord1 = 10; // See X_D3DFVF_TEX2 / X_D3DVSDE_TEXCOORD1
|
||||
static const uint texcoord2 = 11; // See X_D3DFVF_TEX3 / X_D3DVSDE_TEXCOORD2
|
||||
static const uint texcoord3 = 12; // See X_D3DFVF_TEX4 / X_D3DVSDE_TEXCOORD3
|
||||
static const uint reserved0 = 13; // Has no X_D3DFVF_* / X_D3DVSDE_*
|
||||
static const uint reserved1 = 14; // Has no X_D3DFVF_* / X_D3DVSDE_*
|
||||
static const uint reserved2 = 15; // Has no X_D3DFVF_* / X_D3DVSDE_*
|
||||
|
||||
float4 Get(const VS_INPUT xIn, const uint index)
|
||||
{
|
||||
#ifdef CXBX_ALL_TEXCOORD_INPUTS
|
||||
return xIn.v[index];
|
||||
#else
|
||||
// switch statements inexplicably don't work here
|
||||
if(index == position) return xIn.pos;
|
||||
if(index == weight) return xIn.bw;
|
||||
if(index == normal) return xIn.normal;
|
||||
if(index == diffuse) return xIn.color[0];
|
||||
if(index == specular) return xIn.color[1];
|
||||
if(index == backDiffuse) return xIn.backColor[0];
|
||||
if(index == backSpecular) return xIn.backColor[1];
|
||||
if(index == texcoord0) return xIn.texcoord[0];
|
||||
if(index == texcoord1) return xIn.texcoord[1];
|
||||
if(index == texcoord2) return xIn.texcoord[2];
|
||||
if(index == texcoord3) return xIn.texcoord[3];
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Output registers
|
||||
struct VS_OUTPUT
|
||||
{
|
||||
float4 oPos : POSITION; // Homogeneous clip space position
|
||||
float4 oD0 : COLOR0; // Primary color (front-facing)
|
||||
float4 oD1 : COLOR1; // Secondary color (front-facing)
|
||||
float oFog : FOG; // Fog coordinate
|
||||
float oPts : PSIZE; // Point size
|
||||
float4 oB0 : TEXCOORD4; // Back-facing primary color
|
||||
float4 oB1 : TEXCOORD5; // Back-facing secondary color
|
||||
float4 oT0 : TEXCOORD0; // Texture coordinate set 0
|
||||
float4 oT1 : TEXCOORD1; // Texture coordinate set 1
|
||||
float4 oT2 : TEXCOORD2; // Texture coordinate set 2
|
||||
float4 oT3 : TEXCOORD3; // Texture coordinate set 3
|
||||
};
|
||||
|
||||
struct TransformInfo
|
||||
{
|
||||
float4 Position;
|
||||
float3 Normal;
|
||||
};
|
||||
|
||||
static TransformInfo World; // Vertex worldspace transform
|
||||
static TransformInfo View; // Vertex viewspace/cameraspace transform
|
||||
static TransformInfo Projection; // Vertex projection transform
|
||||
|
||||
// Vertex lighting
|
||||
// Both frontface and backface lighting can be calculated
|
||||
struct LightingInfo
|
||||
{
|
||||
float3 Front;
|
||||
float3 Back;
|
||||
};
|
||||
|
||||
// Final lighting output
|
||||
struct LightingOutput
|
||||
{
|
||||
LightingInfo Diffuse;
|
||||
LightingInfo Specular;
|
||||
};
|
||||
|
||||
LightingInfo DoSpecular(const float3 toLightVN, const float3 toViewerVN, const float2 powers, const float4 lightSpecular)
|
||||
{
|
||||
LightingInfo o;
|
||||
o.Front = o.Back = float3(0, 0, 0);
|
||||
|
||||
// Specular
|
||||
if (state.Modes.SpecularEnable)
|
||||
{
|
||||
// Blinn-Phong
|
||||
// https://learnopengl.com/Advanced-Lighting/Advanced-Lighting
|
||||
float3 halfway = normalize(toViewerVN + toLightVN);
|
||||
float NdotH = dot(View.Normal, halfway);
|
||||
|
||||
float3 frontSpecular = pow(abs(NdotH), powers[0]) * lightSpecular.rgb;
|
||||
float3 backSpecular = pow(abs(NdotH), powers[1]) * lightSpecular.rgb;
|
||||
|
||||
if (NdotH >= 0)
|
||||
o.Front = frontSpecular;
|
||||
else
|
||||
o.Back = backSpecular;
|
||||
}
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
// useful reference https://drivers.amd.com/misc/samples/dx9/FixedFuncShader.pdf
|
||||
|
||||
LightingOutput DoPointLight(const Light l, const float3 toViewerVN, const float2 powers)
|
||||
{
|
||||
LightingOutput o;
|
||||
o.Diffuse.Front = o.Diffuse.Back = float3(0, 0, 0);
|
||||
o.Specular.Front = o.Specular.Back = float3(0, 0, 0);
|
||||
|
||||
// Diffuse
|
||||
float3 toLightV = l.PositionV - View.Position.xyz;
|
||||
float lightDist = length(toLightV);
|
||||
float3 toLightVN = normalize(toLightV);
|
||||
|
||||
// A(Constant) + A(Linear) * dist + A(Exp) * dist^2
|
||||
float attenuation =
|
||||
1 / (l.Attenuation[0]
|
||||
+ l.Attenuation[1] * lightDist
|
||||
+ l.Attenuation[2] * lightDist * lightDist);
|
||||
|
||||
// Range cutoff
|
||||
if (lightDist > l.Range)
|
||||
attenuation = 0;
|
||||
|
||||
float NdotL = dot(View.Normal, toLightVN);
|
||||
float3 lightDiffuse = abs(NdotL) * attenuation * l.Diffuse.rgb;
|
||||
|
||||
if (NdotL >= 0)
|
||||
o.Diffuse.Front = lightDiffuse;
|
||||
else
|
||||
o.Diffuse.Back = lightDiffuse;
|
||||
|
||||
// Specular
|
||||
o.Specular = DoSpecular(toLightVN, toViewerVN, powers, l.Specular);
|
||||
o.Specular.Front *= attenuation;
|
||||
o.Specular.Back *= attenuation;
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
LightingOutput DoSpotLight(const Light l, const float3 toViewerVN, const float2 powers)
|
||||
{
|
||||
LightingOutput o;
|
||||
o.Diffuse.Front = o.Diffuse.Back = float3(0, 0, 0);
|
||||
o.Specular.Front = o.Specular.Back = float3(0, 0, 0);
|
||||
|
||||
// Diffuse
|
||||
float3 toLightV = l.PositionV - View.Position.xyz;
|
||||
float lightDist = length(toLightV);
|
||||
float3 toLightVN = normalize(toLightV);
|
||||
float3 toVertexVN = -toLightVN;
|
||||
|
||||
// https://docs.microsoft.com/en-us/windows/win32/direct3d9/light-types
|
||||
float cosAlpha = dot(l.DirectionVN, toVertexVN);
|
||||
// I = ( cos(a) - cos(phi/2) ) / ( cos(theta/2) - cos(phi/2) )
|
||||
float spotBase = saturate((cosAlpha - l.CosHalfPhi) / l.SpotIntensityDivisor);
|
||||
float spotIntensity = pow(spotBase, l.Falloff);
|
||||
|
||||
// A(Constant) + A(Linear) * dist + A(Exp) * dist^2
|
||||
float attenuation =
|
||||
1 / (l.Attenuation[0]
|
||||
+ l.Attenuation[1] * lightDist
|
||||
+ l.Attenuation[2] * lightDist * lightDist);
|
||||
|
||||
// Range cutoff
|
||||
if (lightDist > l.Range)
|
||||
attenuation = 0;
|
||||
|
||||
float NdotL = dot(View.Normal, toLightVN);
|
||||
float3 lightDiffuse = abs(NdotL) * attenuation * l.Diffuse.rgb * spotIntensity;
|
||||
|
||||
if (NdotL >= 0)
|
||||
o.Diffuse.Front = lightDiffuse;
|
||||
else
|
||||
o.Diffuse.Back = lightDiffuse;
|
||||
|
||||
// Specular
|
||||
o.Specular = DoSpecular(toLightVN, toViewerVN, powers, l.Specular);
|
||||
o.Specular.Front *= attenuation;
|
||||
o.Specular.Back *= attenuation;
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
LightingOutput DoDirectionalLight(const Light l, const float3 toViewerVN, const float2 powers)
|
||||
{
|
||||
LightingOutput o;
|
||||
o.Diffuse.Front = o.Diffuse.Back = float3(0, 0, 0);
|
||||
o.Specular.Front = o.Specular.Back = float3(0, 0, 0);
|
||||
|
||||
// Diffuse
|
||||
|
||||
// Intensity from N . L
|
||||
float3 toLightVN = -l.DirectionVN;
|
||||
float NdotL = dot(View.Normal, toLightVN);
|
||||
float3 lightDiffuse = abs(NdotL * l.Diffuse.rgb);
|
||||
|
||||
// Apply light contribution to front or back face
|
||||
// as the case may be
|
||||
if (NdotL >= 0)
|
||||
o.Diffuse.Front = lightDiffuse;
|
||||
else
|
||||
o.Diffuse.Back = lightDiffuse;
|
||||
|
||||
// Specular
|
||||
o.Specular = DoSpecular(toLightVN, toViewerVN, powers, l.Specular);
|
||||
|
||||
return o;
|
||||
}
|
||||
|
||||
|
||||
LightingOutput CalcLighting(const float2 powers)
|
||||
{
|
||||
const int LIGHT_TYPE_NONE = 0;
|
||||
const int LIGHT_TYPE_POINT = 1;
|
||||
const int LIGHT_TYPE_SPOT = 2;
|
||||
const int LIGHT_TYPE_DIRECTIONAL = 3;
|
||||
|
||||
LightingOutput totalLightOutput;
|
||||
totalLightOutput.Diffuse.Front = float3(0, 0, 0);
|
||||
totalLightOutput.Diffuse.Back = float3(0, 0, 0);
|
||||
totalLightOutput.Specular.Front = float3(0, 0, 0);
|
||||
totalLightOutput.Specular.Back = float3(0, 0, 0);
|
||||
|
||||
float3 toViewerVN = state.Modes.LocalViewer
|
||||
? float3(0, 0, 1)
|
||||
: normalize(-View.Position.xyz);
|
||||
|
||||
for (uint i = 0; i < 8; i++)
|
||||
{
|
||||
const Light currentLight = state.Lights[i];
|
||||
LightingOutput currentLightOutput;
|
||||
|
||||
if(currentLight.Type == LIGHT_TYPE_POINT)
|
||||
currentLightOutput = DoPointLight(currentLight, toViewerVN, powers);
|
||||
else if(currentLight.Type == LIGHT_TYPE_SPOT)
|
||||
currentLightOutput = DoSpotLight(currentLight, toViewerVN, powers);
|
||||
else if (currentLight.Type == LIGHT_TYPE_DIRECTIONAL)
|
||||
currentLightOutput = DoDirectionalLight(currentLight, toViewerVN, powers);
|
||||
else
|
||||
continue;
|
||||
|
||||
totalLightOutput.Diffuse.Front += currentLightOutput.Diffuse.Front;
|
||||
totalLightOutput.Diffuse.Back += currentLightOutput.Diffuse.Back;
|
||||
totalLightOutput.Specular.Front += currentLightOutput.Specular.Front;
|
||||
totalLightOutput.Specular.Back += currentLightOutput.Specular.Back;
|
||||
}
|
||||
|
||||
return totalLightOutput;
|
||||
}
|
||||
|
||||
TransformInfo DoWorldTransform(const float4 position, const float3 normal, const float4 blendWeights)
|
||||
{
|
||||
TransformInfo output;
|
||||
output.Position = float4(0, 0, 0, 0);
|
||||
output.Normal = float3(0, 0, 0);
|
||||
|
||||
// D3D
|
||||
const int _BLEND_OFF = 0;
|
||||
const int _1WEIGHT_2MAT = 1;
|
||||
const int _2WEIGHT_3MAT = 3;
|
||||
const int _3WEIGHT_4MAT = 5;
|
||||
// Xbox
|
||||
const int _2WEIGHT_2MAT = 2;
|
||||
const int _3WEIGHT_3MAT = 4;
|
||||
const int _4WEIGHT_4MAT = 6;
|
||||
|
||||
if (state.Modes.VertexBlend == _BLEND_OFF) {
|
||||
output.Position = mul(position, state.Transforms.World[0]);
|
||||
output.Normal = mul(normal, (float3x3)state.Transforms.World[0]);
|
||||
return output;
|
||||
}
|
||||
|
||||
// The number of matrices to blend
|
||||
int mats = floor((state.Modes.VertexBlend - 1) / 2 + 2);
|
||||
// If we have to calculate the last blend value
|
||||
bool calcLastBlend = fmod(state.Modes.VertexBlend, 2) == 1;
|
||||
|
||||
float lastBlend = 1;
|
||||
for (int i = 0; i < mats - 1; i++)
|
||||
{
|
||||
output.Position += mul(position, state.Transforms.World[i]) * blendWeights[i];
|
||||
output.Normal += mul(normal, (float3x3) state.Transforms.World[i]) * blendWeights[i];
|
||||
lastBlend -= blendWeights[i];
|
||||
}
|
||||
|
||||
if (calcLastBlend)
|
||||
{
|
||||
output.Position += mul(position, state.Transforms.World[mats-1]) * lastBlend;
|
||||
output.Normal += mul(normal, (float3x3) state.Transforms.World[mats-1]) * lastBlend;
|
||||
}
|
||||
else
|
||||
{
|
||||
output.Position += mul(position, state.Transforms.World[mats-1]) * blendWeights[mats-1];
|
||||
output.Normal += mul(normal, (float3x3) state.Transforms.World[mats-1]) * blendWeights[mats-1];
|
||||
}
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
Material DoMaterial(const uint index, const uint diffuseReg, const uint specularReg, const VS_INPUT xIn)
|
||||
{
|
||||
// Get the material from material state
|
||||
Material material = state.Materials[index];
|
||||
|
||||
if (state.Modes.ColorVertex)
|
||||
{
|
||||
// https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dmaterialcolorsource
|
||||
const int D3DMCS_MATERIAL = 0;
|
||||
const int D3DMCS_COLOR1 = 1;
|
||||
const int D3DMCS_COLOR2 = 2;
|
||||
|
||||
// TODO preprocess on the CPU
|
||||
// If COLORVERTEX mode, AND the desired diffuse or specular colour is defined in the vertex declaration
|
||||
// Then use the vertex colour instead of the material
|
||||
|
||||
if (!vRegisterDefaultFlags[diffuseReg]) {
|
||||
float4 diffuseVertexColour = Get(xIn, diffuseReg);
|
||||
if (state.Modes.AmbientMaterialSource == D3DMCS_COLOR1) material.Ambient = diffuseVertexColour;
|
||||
if (state.Modes.DiffuseMaterialSource == D3DMCS_COLOR1) material.Diffuse = diffuseVertexColour;
|
||||
if (state.Modes.SpecularMaterialSource == D3DMCS_COLOR1) material.Specular = diffuseVertexColour;
|
||||
if (state.Modes.EmissiveMaterialSource == D3DMCS_COLOR1) material.Emissive = diffuseVertexColour;
|
||||
}
|
||||
|
||||
if (!vRegisterDefaultFlags[specularReg]) {
|
||||
float4 specularVertexColour = Get(xIn, specularReg);
|
||||
if (state.Modes.AmbientMaterialSource == D3DMCS_COLOR2) material.Ambient = specularVertexColour;
|
||||
if (state.Modes.DiffuseMaterialSource == D3DMCS_COLOR2) material.Diffuse = specularVertexColour;
|
||||
if (state.Modes.SpecularMaterialSource == D3DMCS_COLOR2) material.Specular = specularVertexColour;
|
||||
if (state.Modes.EmissiveMaterialSource == D3DMCS_COLOR2) material.Emissive = specularVertexColour;
|
||||
}
|
||||
}
|
||||
|
||||
return material;
|
||||
}
|
||||
|
||||
float DoFog(VS_INPUT xIn)
|
||||
{
|
||||
// TODO implement properly
|
||||
// Until we have pixel shader HLSL we are still leaning on D3D renderstates for fogging
|
||||
// So we are not doing any fog density calculations here
|
||||
// http://developer.download.nvidia.com/assets/gamedev/docs/Fog2.pdf
|
||||
|
||||
float fogDepth;
|
||||
|
||||
if (state.Fog.DepthMode == FixedFunctionVertexShader::FOG_DEPTH_NONE)
|
||||
fogDepth = xIn.color[1].a; // In fixed-function mode, fog is passed in the specular alpha
|
||||
if (state.Fog.DepthMode == FixedFunctionVertexShader::FOG_DEPTH_RANGE)
|
||||
fogDepth = length(View.Position.xyz);
|
||||
if (state.Fog.DepthMode == FixedFunctionVertexShader::FOG_DEPTH_Z)
|
||||
fogDepth = abs(Projection.Position.z);
|
||||
if (state.Fog.DepthMode == FixedFunctionVertexShader::FOG_DEPTH_W)
|
||||
fogDepth = Projection.Position.w;
|
||||
|
||||
return fogDepth;
|
||||
}
|
||||
|
||||
float4 DoTexCoord(const uint stage, const VS_INPUT xIn)
|
||||
{
|
||||
// Texture transform flags
|
||||
// https://docs.microsoft.com/en-gb/windows/win32/direct3d9/d3dtexturetransformflags
|
||||
const int D3DTTFF_DISABLE = 0;
|
||||
const int D3DTTFF_COUNT1 = 1;
|
||||
const int D3DTTFF_COUNT2 = 2;
|
||||
const int D3DTTFF_COUNT3 = 3;
|
||||
const int D3DTTFF_COUNT4 = 4;
|
||||
const int D3DTTFF_PROJECTED = 256; // This is the only real flag
|
||||
|
||||
// https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dtss-tci
|
||||
// Pre-shifted
|
||||
const int TCI_PASSTHRU = 0;
|
||||
const int TCI_CAMERASPACENORMAL = 1;
|
||||
const int TCI_CAMERASPACEPOSITION = 2;
|
||||
const int TCI_CAMERASPACEREFLECTIONVECTOR = 3;
|
||||
const int TCI_OBJECT = 4; // Xbox
|
||||
const int TCI_SPHERE = 5; // Xbox
|
||||
|
||||
const TextureState tState = state.TextureStates[stage];
|
||||
|
||||
// Extract transform flags
|
||||
int countFlag = tState.TextureTransformFlagsCount;
|
||||
bool projected = tState.TextureTransformFlagsProjected;
|
||||
|
||||
// Get texture coordinates
|
||||
// Coordinates are either from the vertex texcoord data
|
||||
// Or generated
|
||||
float4 texCoord = float4(0, 0, 0, 0);
|
||||
if (tState.TexCoordIndexGen == TCI_PASSTHRU)
|
||||
{
|
||||
// Get from vertex data
|
||||
uint texCoordIndex = abs(tState.TexCoordIndex); // Note : abs() avoids error X3548 : in vs_3_0 uints can only be used with known - positive values, use int if possible
|
||||
texCoord = Get(xIn, texcoord0+texCoordIndex);
|
||||
|
||||
// Make coordinates homogenous
|
||||
// For example, if a title supplies (u, v)
|
||||
// We need to make transform (u, v, 1) to allow translation with a 3x3 matrix
|
||||
// We'll need to get this from the current FVF or VertexDeclaration
|
||||
// Test case: JSRF scrolling texture effect.
|
||||
// Test case: Madagascar shadows
|
||||
// Test case: Modify pixel shader sample
|
||||
|
||||
// TODO move alongside the texture transformation when it stops angering the HLSL compiler
|
||||
float componentCount = state.TexCoordComponentCount[texCoordIndex];
|
||||
if (componentCount == 1)
|
||||
texCoord.yzw = float3(1, 0, 0);
|
||||
if (componentCount == 2)
|
||||
texCoord.zw = float2(1, 0);
|
||||
if (componentCount == 3)
|
||||
texCoord.w = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
// Generate texture coordinates
|
||||
float3 reflected = reflect(normalize(View.Position.xyz), View.Normal);
|
||||
|
||||
if (tState.TexCoordIndexGen == TCI_CAMERASPACENORMAL)
|
||||
texCoord = float4(View.Normal, 1);
|
||||
else if (tState.TexCoordIndexGen == TCI_CAMERASPACEPOSITION)
|
||||
texCoord = View.Position;
|
||||
else if (tState.TexCoordIndexGen == TCI_CAMERASPACEREFLECTIONVECTOR)
|
||||
texCoord.xyz = reflected;
|
||||
// else if TCI_OBJECT TODO is this just model position?
|
||||
else if (tState.TexCoordIndexGen == TCI_SPHERE)
|
||||
{
|
||||
// TODO verify
|
||||
// http://www.bluevoid.com/opengl/sig99/advanced99/notes/node177.html
|
||||
float3 R = reflected;
|
||||
float p = sqrt(pow(R.x, 2) + pow(R.y, 2) + pow(R.z + 1, 2));
|
||||
texCoord.x = R.x / 2 * p + 0.5f;
|
||||
texCoord.y = R.y / 2 * p + 0.5f;
|
||||
}
|
||||
}
|
||||
|
||||
// Transform the texture coordinates if requested
|
||||
if (countFlag != D3DTTFF_DISABLE)
|
||||
texCoord = mul(texCoord, state.Transforms.Texture[stage]);
|
||||
|
||||
// We always send four coordinates
|
||||
// If we are supposed to send less than four
|
||||
// then copy the last coordinate to the remaining coordinates
|
||||
// For D3DTTFF_PROJECTED, the value of the *last* coordinate is important
|
||||
// Test case: ProjectedTexture sample, which uses 3 coordinates
|
||||
// We'll need to implement the divide when D3D stops handling it for us?
|
||||
// https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dtexturetransformflags
|
||||
if (projected)
|
||||
{
|
||||
if (countFlag == 1)
|
||||
texCoord.yzw = texCoord.x;
|
||||
if (countFlag == 2)
|
||||
texCoord.zw = texCoord.y;
|
||||
if (countFlag == 3)
|
||||
texCoord.w = texCoord.z;
|
||||
}
|
||||
|
||||
return texCoord;
|
||||
}
|
||||
|
||||
// Point size for Point Sprites
|
||||
// https://docs.microsoft.com/en-us/windows/win32/direct3d9/point-sprites
|
||||
// Test case: Point sprite sample
|
||||
float DoPointSpriteSize()
|
||||
{
|
||||
PointSprite ps = state.PointSprite;
|
||||
float pointSize = ps.PointSize;
|
||||
if (ps.PointScaleEnable)
|
||||
{
|
||||
float eyeDistance = length(View.Position);
|
||||
float factor = ps.ScaleA + ps.ScaleB * eyeDistance + ps.ScaleC * (eyeDistance * eyeDistance);
|
||||
pointSize *= ps.RenderTargetHeight * sqrt(1 / factor);
|
||||
}
|
||||
|
||||
return pointSize;
|
||||
}
|
||||
|
||||
VS_INPUT InitializeInputRegisters(const VS_INPUT xInput)
|
||||
{
|
||||
VS_INPUT xIn;
|
||||
|
||||
// Initialize input registers from the vertex buffer data
|
||||
// Or use the register's default value (which can be changed by the title)
|
||||
for (uint i = 0; i < 16; i++) {
|
||||
float4 value = lerp(Get(xInput, i), vRegisterDefaultValues[i], vRegisterDefaultFlags[i]);
|
||||
#ifdef CXBX_ALL_TEXCOORD_INPUTS
|
||||
xIn.v[i] = value;
|
||||
#else
|
||||
// switch statements inexplicably don't work here
|
||||
if(i == position) xIn.pos = value;
|
||||
if(i == weight) xIn.bw = value;
|
||||
if(i == normal) xIn.normal = value;
|
||||
if(i == diffuse) xIn.color[0] = value;
|
||||
if(i == specular) xIn.color[1] = value;
|
||||
if(i == backDiffuse) xIn.backColor[0] = value;
|
||||
if(i == backSpecular) xIn.backColor[1] = value;
|
||||
if(i == texcoord0) xIn.texcoord[0] = value;
|
||||
if(i == texcoord1) xIn.texcoord[1] = value;
|
||||
if(i == texcoord2) xIn.texcoord[2] = value;
|
||||
if(i == texcoord3) xIn.texcoord[3] = value;
|
||||
#endif
|
||||
}
|
||||
|
||||
return xIn;
|
||||
}
|
||||
|
||||
VS_OUTPUT main(const VS_INPUT xInput)
|
||||
{
|
||||
VS_OUTPUT xOut;
|
||||
|
||||
// Unpack 16 bool flags from 4 float4 constant registers
|
||||
vRegisterDefaultFlags = (bool[16]) vRegisterDefaultFlagsPacked;
|
||||
|
||||
// TODO make sure this goes fast
|
||||
|
||||
// Map default values
|
||||
VS_INPUT xIn = InitializeInputRegisters(xInput);
|
||||
|
||||
// World transform with vertex blending
|
||||
World = DoWorldTransform(Get(xIn, position), Get(xIn, normal).xyz, Get(xIn, weight));
|
||||
|
||||
// View transform
|
||||
View.Position = mul(World.Position, state.Transforms.View);
|
||||
View.Normal = mul(World.Normal, (float3x3) state.Transforms.View);
|
||||
|
||||
// Optionally normalize camera-space normals
|
||||
if (state.Modes.NormalizeNormals)
|
||||
View.Normal = normalize(View.Normal);
|
||||
|
||||
// Projection transform
|
||||
Projection.Position = mul(View.Position, state.Transforms.Projection);
|
||||
// Normal unused...
|
||||
|
||||
// Projection transform - final position
|
||||
xOut.oPos = Projection.Position;
|
||||
|
||||
// Vertex lighting
|
||||
if (state.Modes.Lighting || state.Modes.TwoSidedLighting)
|
||||
{
|
||||
// Materials
|
||||
Material material = DoMaterial(0, diffuse, specular, xIn);
|
||||
Material backMaterial = DoMaterial(1, backDiffuse, backSpecular, xIn);
|
||||
|
||||
float2 powers = float2(material.Power, backMaterial.Power);
|
||||
|
||||
LightingOutput lighting = CalcLighting(powers);
|
||||
|
||||
// Compute each lighting component
|
||||
float3 ambient = material.Ambient.rgb * state.AmbientPlusLightAmbient.rgb;
|
||||
float3 backAmbient = backMaterial.Ambient.rgb * state.BackAmbientPlusLightAmbient.rgb;
|
||||
|
||||
float3 diffuse = material.Diffuse.rgb * lighting.Diffuse.Front;
|
||||
float3 backDiffuse = backMaterial.Diffuse.rgb * lighting.Diffuse.Back;
|
||||
|
||||
float3 specular = material.Specular.rgb * lighting.Specular.Front;
|
||||
float3 backSpecular = backMaterial.Specular.rgb * lighting.Specular.Back;
|
||||
|
||||
float3 emissive = material.Emissive.rgb;
|
||||
float3 backEmissive = backMaterial.Emissive.rgb;
|
||||
|
||||
// Frontface
|
||||
xOut.oD0 = float4(ambient + diffuse + emissive, material.Diffuse.a);
|
||||
xOut.oD1 = float4(specular, 0);
|
||||
// Backface
|
||||
xOut.oB0 = float4(backAmbient + backDiffuse + backEmissive, backMaterial.Diffuse.a);
|
||||
xOut.oB1 = float4(backSpecular, 0);
|
||||
}
|
||||
|
||||
// TODO does TwoSidedLighting imply Lighting? Verify if TwoSidedLighting can be enabled independently of Lighting
|
||||
// Diffuse and specular for when lighting is disabled
|
||||
if (!state.Modes.Lighting)
|
||||
{
|
||||
xOut.oD0 = Get(xIn, diffuse);
|
||||
xOut.oD1 = Get(xIn, specular);
|
||||
}
|
||||
|
||||
if(!state.Modes.TwoSidedLighting)
|
||||
{
|
||||
xOut.oB0 = Get(xIn, backDiffuse);
|
||||
xOut.oB1 = Get(xIn, backSpecular);
|
||||
}
|
||||
|
||||
// Colour
|
||||
xOut.oD0 = saturate(xOut.oD0);
|
||||
xOut.oD1 = saturate(xOut.oD1);
|
||||
xOut.oB0 = saturate(xOut.oB0);
|
||||
xOut.oB1 = saturate(xOut.oB1);
|
||||
|
||||
// Fog
|
||||
xOut.oFog = DoFog(xIn);
|
||||
|
||||
// Point Sprite
|
||||
xOut.oPts = DoPointSpriteSize();
|
||||
|
||||
// Texture coordinates
|
||||
xOut.oT0 = DoTexCoord(0, xIn) / xboxTextureScale[0];;
|
||||
xOut.oT1 = DoTexCoord(1, xIn) / xboxTextureScale[1];;
|
||||
xOut.oT2 = DoTexCoord(2, xIn) / xboxTextureScale[2];;
|
||||
xOut.oT3 = DoTexCoord(3, xIn) / xboxTextureScale[3];;
|
||||
|
||||
return xOut;
|
||||
}
|
|
@ -0,0 +1,145 @@
|
|||
// C++ / HLSL shared state block for fixed function support
|
||||
#ifdef __cplusplus
|
||||
#pragma once
|
||||
|
||||
#include <d3d9.h>
|
||||
#include <d3d9types.h> // for D3DFORMAT, D3DLIGHT9, etc
|
||||
#include <d3dx9math.h> // for D3DXVECTOR4, etc
|
||||
#include <array>
|
||||
|
||||
#define float4x4 D3DMATRIX
|
||||
#define float4 D3DXVECTOR4
|
||||
#define float3 D3DVECTOR
|
||||
#define float2 D3DXVECTOR2
|
||||
#define arr(name, type, length) std::array<type, length> name
|
||||
|
||||
#else
|
||||
// HLSL
|
||||
#define arr(name, type, length) type name[length]
|
||||
#define alignas(x)
|
||||
#define const static
|
||||
#endif // __cplusplus
|
||||
|
||||
namespace FixedFunctionVertexShader {
|
||||
// Fog depth is taken from the vertex, rather than generated
|
||||
const float FOG_DEPTH_NONE = 0;
|
||||
// Fog depth is the output Z coordinate
|
||||
const float FOG_DEPTH_Z = 1;
|
||||
// Fog depth is based on the output W coordinate (1 / W)
|
||||
const float FOG_DEPTH_W = 2;
|
||||
// Fog depth is based distance of the vertex from the eye position
|
||||
const float FOG_DEPTH_RANGE = 3;
|
||||
}
|
||||
|
||||
// Shared HLSL structures
|
||||
// Taking care with packing rules
|
||||
// In VS_3_0, packing works in mysterious ways
|
||||
// * Structs inside arrays are not packed
|
||||
// * Floats can't be packed at all (?)
|
||||
// We don't get documented packing until vs_4_0
|
||||
|
||||
struct Transforms {
|
||||
float4x4 View; // 0
|
||||
float4x4 Projection; // 1
|
||||
arr(Texture, float4x4, 4); // 2, 3, 4, 5
|
||||
arr(World, float4x4, 4); // 6, 7, 8, 9
|
||||
};
|
||||
|
||||
// See D3DLIGHT
|
||||
struct Light {
|
||||
// TODO in vs_4_0+ when floats are packable
|
||||
// Change colour values to float3
|
||||
// And put something useful in the alpha slot
|
||||
float4 Diffuse;
|
||||
float4 Specular;
|
||||
|
||||
// Viewspace light position
|
||||
alignas(16) float3 PositionV;
|
||||
alignas(16) float Range;
|
||||
|
||||
// Viewspace light direction (normalized)
|
||||
alignas(16) float3 DirectionVN;
|
||||
alignas(16) float Type; // 1=Point, 2=Spot, 3=Directional
|
||||
|
||||
alignas(16) float3 Attenuation;
|
||||
alignas(16) float Falloff;
|
||||
|
||||
alignas(16) float CosHalfPhi;
|
||||
// cos(theta/2) - cos(phi/2)
|
||||
alignas(16) float SpotIntensityDivisor;
|
||||
};
|
||||
|
||||
struct Material {
|
||||
float4 Diffuse;
|
||||
float4 Ambient;
|
||||
float4 Specular;
|
||||
float4 Emissive;
|
||||
|
||||
alignas(16) float Power;
|
||||
};
|
||||
|
||||
struct Modes {
|
||||
alignas(16) float AmbientMaterialSource;
|
||||
alignas(16) float DiffuseMaterialSource;
|
||||
alignas(16) float SpecularMaterialSource;
|
||||
alignas(16) float EmissiveMaterialSource;
|
||||
|
||||
alignas(16) float BackAmbientMaterialSource;
|
||||
alignas(16) float BackDiffuseMaterialSource;
|
||||
alignas(16) float BackSpecularMaterialSource;
|
||||
alignas(16) float BackEmissiveMaterialSource;
|
||||
|
||||
alignas(16) float Lighting;
|
||||
alignas(16) float TwoSidedLighting;
|
||||
alignas(16) float SpecularEnable;
|
||||
alignas(16) float LocalViewer;
|
||||
|
||||
alignas(16) float ColorVertex;
|
||||
alignas(16) float VertexBlend;
|
||||
alignas(16) float NormalizeNormals;
|
||||
};
|
||||
|
||||
struct PointSprite {
|
||||
alignas(16) float PointSize;
|
||||
alignas(16) float PointScaleEnable;
|
||||
alignas(16) float RenderTargetHeight;
|
||||
alignas(16) float ScaleA;
|
||||
alignas(16) float ScaleB;
|
||||
alignas(16) float ScaleC;
|
||||
};
|
||||
|
||||
struct TextureState {
|
||||
alignas(16) float TextureTransformFlagsCount;
|
||||
alignas(16) float TextureTransformFlagsProjected;
|
||||
alignas(16) float TexCoordIndex;
|
||||
alignas(16) float TexCoordIndexGen;
|
||||
};
|
||||
|
||||
struct Fog {
|
||||
alignas(16) float DepthMode;
|
||||
};
|
||||
|
||||
struct FixedFunctionVertexShaderState {
|
||||
alignas(16) Transforms Transforms;
|
||||
alignas(16) arr(Lights, Light, 8);
|
||||
alignas(16) float4 AmbientPlusLightAmbient;
|
||||
alignas(16) float4 BackAmbientPlusLightAmbient;
|
||||
alignas(16) arr(Materials, Material, 2);
|
||||
alignas(16) Modes Modes;
|
||||
alignas(16) Fog Fog;
|
||||
alignas(16) arr(TextureStates, TextureState, 4);
|
||||
alignas(16) PointSprite PointSprite;
|
||||
alignas(16) float4 TexCoordComponentCount;
|
||||
};
|
||||
|
||||
#ifdef __cplusplus
|
||||
#undef float4x4
|
||||
#undef float4
|
||||
#undef float3
|
||||
#undef float2
|
||||
#undef arr
|
||||
#else // HLSL
|
||||
#undef arr
|
||||
#undef alignas
|
||||
#undef const
|
||||
#endif // __cplusplus
|
|
@ -4,6 +4,7 @@
|
|||
#include "core\kernel\init\CxbxKrnl.h"
|
||||
#include "core\kernel\support\Emu.h"
|
||||
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
|
||||
extern const char* g_vs_model = vs_model_3_0;
|
||||
|
@ -304,6 +305,31 @@ extern HRESULT EmuCompileShader
|
|||
return CompileHlsl(hlsl_str, ppHostShader, "CxbxVertexShaderTemplate.hlsl");
|
||||
}
|
||||
|
||||
extern void EmuCompileFixedFunction(ID3DBlob** ppHostShader)
|
||||
{
|
||||
static ID3DBlob* pShader = nullptr;
|
||||
|
||||
// TODO does this need to be thread safe?
|
||||
if (pShader == nullptr) {
|
||||
// Determine the filename and directory for the fixed function shader
|
||||
auto hlslDir = std::filesystem::path(szFilePath_CxbxReloaded_Exe)
|
||||
.parent_path()
|
||||
.append("hlsl");
|
||||
|
||||
auto sourceFile = hlslDir.append("FixedFunctionVertexShader.hlsl").string();
|
||||
|
||||
// Load the shader into a string
|
||||
std::ifstream hlslStream(sourceFile);
|
||||
std::stringstream hlsl;
|
||||
hlsl << hlslStream.rdbuf();
|
||||
|
||||
// Compile the shader
|
||||
CompileHlsl(hlsl.str(), &pShader, sourceFile.c_str());
|
||||
}
|
||||
|
||||
*ppHostShader = pShader;
|
||||
};
|
||||
|
||||
static ID3DBlob* pPassthroughShader = nullptr;
|
||||
|
||||
extern HRESULT EmuCompileXboxPassthrough(ID3DBlob** ppHostShader)
|
||||
|
|
|
@ -3,6 +3,7 @@
|
|||
#define DIRECT3D9VERTEXSHADER_H
|
||||
|
||||
#include "core\hle\D3D8\XbVertexShader.h"
|
||||
#include "FixedFunctionVertexShaderState.hlsli"
|
||||
|
||||
enum class ShaderType {
|
||||
Empty = 0,
|
||||
|
@ -20,6 +21,8 @@ extern HRESULT EmuCompileShader
|
|||
ID3DBlob** ppHostShader
|
||||
);
|
||||
|
||||
extern void EmuCompileFixedFunction(ID3DBlob** ppHostShader);
|
||||
|
||||
extern HRESULT EmuCompileXboxPassthrough(ID3DBlob** ppHostShader);
|
||||
|
||||
#endif
|
||||
|
|
|
@ -323,6 +323,23 @@ static DWORD* CxbxGetVertexShaderTokens(xbox::X_D3DVertexShader* pXboxVertexShad
|
|||
return &pXboxVertexShader->ProgramAndConstants[0];
|
||||
}
|
||||
|
||||
int GetXboxVertexDataComponentCount(int d3dvsdt) {
|
||||
using namespace xbox;
|
||||
switch (d3dvsdt) {
|
||||
case X_D3DVSDT_NORMPACKED3:
|
||||
return 3;
|
||||
case X_D3DVSDT_FLOAT2H:
|
||||
LOG_TEST_CASE("Attempting to use component count for X_D3DVSDT_FLOAT2H, which uses an odd (value, value, 0, value) layout");
|
||||
// This is a bit of an odd case. Will call it 4 since it writes a value to the 4th component...
|
||||
return 4;
|
||||
default:
|
||||
// Most data types have a representation consistent with the number of components
|
||||
const int countMask = 0x7;
|
||||
const int countShift = 4;
|
||||
return (d3dvsdt >> countShift) & countMask;
|
||||
}
|
||||
}
|
||||
|
||||
extern bool g_InlineVertexBuffer_DeclarationOverride; // TMP glue
|
||||
extern xbox::X_VERTEXATTRIBUTEFORMAT g_InlineVertexBuffer_AttributeFormat; // TMP glue
|
||||
|
||||
|
|
|
@ -200,6 +200,9 @@ extern size_t GetVshFunctionSize(const xbox::dword_xt* pXboxFunction);
|
|||
inline boolean VshHandleIsVertexShader(DWORD Handle) { return (Handle & X_D3DFVF_RESERVED0) ? TRUE : FALSE; }
|
||||
inline xbox::X_D3DVertexShader *VshHandleToXboxVertexShader(DWORD Handle) { return (xbox::X_D3DVertexShader *)(Handle & ~X_D3DFVF_RESERVED0);}
|
||||
|
||||
// Get the number of components represented by the given xbox vertex data type
|
||||
extern int GetXboxVertexDataComponentCount(int d3dvsdt);
|
||||
|
||||
extern bool g_Xbox_VertexShader_IsFixedFunction;
|
||||
|
||||
extern CxbxVertexDeclaration* CxbxGetVertexDeclaration();
|
||||
|
|
Loading…
Reference in New Issue