BizHawk/psx/mednadisc/cdrom/CDAccess_Physical.cpp

457 lines
10 KiB
C++

/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#define EXTERNAL_LIBCDIO_CONFIG_H 1
#include "../mednafen.h"
#include "../general.h"
#include "CDAccess.h"
#include "CDAccess_Physical.h"
#include <time.h>
#include <stdlib.h>
#include <string>
#include <vector>
#include <cdio/cdio.h>
#include <cdio/mmc.h>
#include <cdio/logging.h>
#if LIBCDIO_VERSION_NUM >= 83
#include <cdio/mmc_cmds.h>
#endif
using namespace CDUtility;
static bool Logging = false;
static std::string LogMessage;
static void LogHandler(cdio_log_level_t level, const char message[])
{
if(!Logging)
return;
try
{
if(LogMessage.size() > 0)
LogMessage.append(" - ");
LogMessage.append(message);
}
catch(...) // Don't throw exceptions through libcdio's code.
{
LogMessage.clear();
}
}
static INLINE void StartLogging(void)
{
Logging = true;
LogMessage.clear();
}
static INLINE void ClearLogging(void)
{
LogMessage.clear();
}
static INLINE std::string StopLogging(void)
{
std::string ret = LogMessage;
Logging = false;
LogMessage.clear();
return(ret);
}
void CDAccess_Physical::DetermineFeatures(void)
{
uint8 buf[256];
mmc_cdb_t cdb = {{0, }};
CDIO_MMC_SET_COMMAND(cdb.field, CDIO_MMC_GPCMD_MODE_SENSE_10);
memset(buf, 0, sizeof(buf));
cdb.field[2] = 0x2A;
cdb.field[7] = sizeof(buf) >> 8;
cdb.field[8] = sizeof(buf) & 0xFF;
StartLogging();
if(mmc_run_cmd ((CdIo *)p_cdio, MMC_TIMEOUT_DEFAULT,
&cdb,
SCSI_MMC_DATA_READ,
sizeof(buf),
buf))
{
throw(MDFN_Error(0, _("MMC [MODE SENSE 10] command failed: %s"), StopLogging().c_str()));
}
else
{
const uint8 *pd = &buf[8];
StopLogging();
if(pd[0] != 0x2A || pd[1] < 0x14)
{
throw(MDFN_Error(0, _("MMC [MODE SENSE 10] command returned bogus data for mode page 0x2A.")));
}
if(!(pd[4] & 0x10))
{
throw(MDFN_Error(0, _("Drive does not support reading Mode 2 Form 1 sectors.")));
}
if(!(pd[4] & 0x20))
{
throw(MDFN_Error(0, _("Drive does not support reading Mode 2 Form 2 sectors.")));
}
if(!(pd[5] & 0x01))
{
throw(MDFN_Error(0, _("Reading CD-DA sectors via \"READ CD\" is not supported.")));
}
if(!(pd[5] & 0x02))
{
throw(MDFN_Error(0, _("Read CD-DA sectors via \"READ CD\" are not positionally-accurate.")));
}
if(!(pd[5] & 0x04))
{
throw(MDFN_Error(0, _("Reading raw subchannel data via \"READ CD\" is not supported.")));
}
}
}
void CDAccess_Physical::PreventAllowMediumRemoval(bool prevent)
{
#if 0
mmc_cdb_t cdb = {{0, }};
uint8 buf[8];
cdb.field[0] = 0x1E;
cdb.field[1] = 0x00;
cdb.field[2] = 0x00;
cdb.field[3] = 0x00;
cdb.field[4] = 0x00; //prevent;
cdb.field[5] = 0x00;
printf("%d\n", mmc_run_cmd_len (p_cdio, MMC_TIMEOUT_DEFAULT,
&cdb, 6,
SCSI_MMC_DATA_READ, 0, buf));
assert(0);
#endif
}
// To be used in the future for constructing semi-raw TOC data.
#if 0
static uint8 cond_hex_to_bcd(uint8 val)
{
if( ((val & 0xF) > 0x9) || ((val & 0xF0) > 0x90) )
return val;
return U8_to_BCD(val);
}
#endif
void CDAccess_Physical::ReadPhysDiscInfo(unsigned retry)
{
mmc_cdb_t cdb = {{0, }};
std::vector<uint8> toc_buffer;
int64 start_time = time(NULL);
int cdio_rc;
toc_buffer.resize(0x3FFF); // (2**(8 * 2 - 1 - 1)) - 1, in case the drive has buggy firmware which chops upper bits off or overflows with values near
// the max of a 16-bit signed value
cdb.field[0] = 0x43; // Read TOC
cdb.field[1] = 0x00;
cdb.field[2] = 0x02; // Format 0010b
cdb.field[3] = 0x00;
cdb.field[4] = 0x00;
cdb.field[5] = 0x00;
cdb.field[6] = 0x01; // First session number
cdb.field[7] = toc_buffer.size() >> 8;
cdb.field[8] = toc_buffer.size() & 0xFF;
cdb.field[9] = 0x00;
StartLogging();
while((cdio_rc = mmc_run_cmd ((CdIo *)p_cdio, MMC_TIMEOUT_DEFAULT,
&cdb,
SCSI_MMC_DATA_READ,
toc_buffer.size(),
&toc_buffer[0])))
{
if(!retry || time(NULL) >= (start_time + retry))
{
throw(MDFN_Error(0, _("Error reading disc TOC: %s"), StopLogging().c_str()));
}
else
ClearLogging();
}
StopLogging();
PhysTOC.Clear();
{
int32 len_counter = MDFN_de16msb(&toc_buffer[0]) - 2;
uint8 *tbi = &toc_buffer[4];
if(len_counter < 0 || (len_counter % 11) != 0)
throw MDFN_Error(0, _("READ TOC command response data is of an invalid length."));
while(len_counter)
{
// Ref: MMC-3 draft revision 10g, page 221
uint8 sess MDFN_NOWARN_UNUSED = tbi[0];
uint8 adr_ctrl = tbi[1];
uint8 tno MDFN_NOWARN_UNUSED = tbi[2];
uint8 point = tbi[3];
uint8 min MDFN_NOWARN_UNUSED = tbi[4];
uint8 sec MDFN_NOWARN_UNUSED = tbi[5];
uint8 frame MDFN_NOWARN_UNUSED = tbi[6];
uint8 hour_phour MDFN_NOWARN_UNUSED = tbi[7];
uint8 pmin = tbi[8];
uint8 psec = tbi[9];
uint8 pframe = tbi[10];
if((adr_ctrl >> 4) == 1)
{
switch(((adr_ctrl >> 4) << 8) | point)
{
case 0x101 ... 0x163:
PhysTOC.tracks[point].adr = adr_ctrl >> 4;
PhysTOC.tracks[point].control = adr_ctrl & 0xF;
PhysTOC.tracks[point].lba = AMSF_to_LBA(pmin, psec, pframe);
break;
case 0x1A0:
PhysTOC.first_track = pmin;
PhysTOC.disc_type = psec;
break;
case 0x1A1:
PhysTOC.last_track = pmin;
break;
case 0x1A2:
PhysTOC.tracks[100].adr = adr_ctrl >> 4;
PhysTOC.tracks[100].control = adr_ctrl & 0xF;
PhysTOC.tracks[100].lba = AMSF_to_LBA(pmin, psec, pframe);
break;
default:
//MDFN_printf("%02x %02x\n", adr_ctrl >> 4, point);
break;
}
}
tbi += 11;
len_counter -= 11;
}
}
if(PhysTOC.first_track < 1 || PhysTOC.first_track > 99)
{
throw(MDFN_Error(0, _("Invalid first track: %d\n"), PhysTOC.first_track));
}
if(PhysTOC.last_track > 99 || PhysTOC.last_track < PhysTOC.first_track)
{
throw(MDFN_Error(0, _("Invalid last track: %d\n"), PhysTOC.last_track));
}
// Convenience leadout track duplication.
if(PhysTOC.last_track < 99)
PhysTOC.tracks[PhysTOC.last_track + 1] = PhysTOC.tracks[100];
}
void CDAccess_Physical::Read_TOC(TOC *toc)
{
*toc = PhysTOC;
}
void CDAccess_Physical::Read_Raw_Sector(uint8 *buf, int32 lba)
{
mmc_cdb_t cdb = {{0, }};
int cdio_rc;
CDIO_MMC_SET_COMMAND(cdb.field, CDIO_MMC_GPCMD_READ_CD);
CDIO_MMC_SET_READ_TYPE (cdb.field, CDIO_MMC_READ_TYPE_ANY);
CDIO_MMC_SET_READ_LBA (cdb.field, lba);
CDIO_MMC_SET_READ_LENGTH24(cdb.field, 1);
StartLogging();
if(SkipSectorRead[(lba >> 3) & 0xFFFF] & (1 << (lba & 7)))
{
printf("Read(skipped): %d\n", lba);
memset(buf, 0, 2352);
cdb.field[9] = 0x00;
cdb.field[10] = 0x01;
if((cdio_rc = mmc_run_cmd ((CdIo *)p_cdio, MMC_TIMEOUT_DEFAULT,
&cdb,
SCSI_MMC_DATA_READ,
96,
buf + 2352)))
{
throw(MDFN_Error(0, _("MMC Read Error: %s"), StopLogging().c_str()));
}
}
else
{
cdb.field[9] = 0xF8;
cdb.field[10] = 0x01;
if((cdio_rc = mmc_run_cmd ((CdIo *)p_cdio, MMC_TIMEOUT_DEFAULT,
&cdb,
SCSI_MMC_DATA_READ,
2352 + 96,
buf)))
{
throw(MDFN_Error(0, _("MMC Read Error: %s"), StopLogging().c_str()));
}
}
StopLogging();
}
CDAccess_Physical::CDAccess_Physical(const std::string& path)
{
char **devices = NULL;
char **parseit = NULL;
p_cdio = NULL;
cdio_init();
cdio_log_set_handler(LogHandler);
//
//
//
try
{
devices = cdio_get_devices(DRIVER_DEVICE);
parseit = devices;
if(parseit)
{
MDFN_printf(_("Connected physical devices:\n"));
MDFN_indent(1);
while(*parseit)
{
MDFN_printf("%s\n", *parseit);
parseit++;
}
MDFN_indent(-1);
}
if(!parseit || parseit == devices)
{
throw(MDFN_Error(0, _("No CDROM drives detected(or no disc present).")));
}
if(devices)
{
cdio_free_device_list(devices);
devices = NULL;
}
StartLogging();
p_cdio = cdio_open_cd(path.c_str());
if(!p_cdio)
{
throw(MDFN_Error(0, _("Error opening physical CD: %s"), StopLogging().c_str()));
}
StopLogging();
//PreventAllowMediumRemoval(true);
ReadPhysDiscInfo(0);
//
// Determine how we can read this CD.
//
DetermineFeatures();
memset(SkipSectorRead, 0, sizeof(SkipSectorRead));
}
catch(std::exception &e)
{
if(devices)
cdio_free_device_list(devices);
if(p_cdio)
cdio_destroy((CdIo *)p_cdio);
throw;
}
}
CDAccess_Physical::~CDAccess_Physical()
{
cdio_destroy((CdIo *)p_cdio);
}
bool CDAccess_Physical::Is_Physical(void) throw()
{
return(true);
}
void CDAccess_Physical::Eject(bool eject_status)
{
int cdio_rc;
StartLogging();
#if LIBCDIO_VERSION_NUM >= 83
if((cdio_rc = mmc_start_stop_unit((CdIo *)p_cdio, eject_status, false, 0, 0)) != 0)
{
if(cdio_rc != DRIVER_OP_UNSUPPORTED) // Don't error out if it's just an unsupported operation.
throw(MDFN_Error(0, _("Error ejecting medium: %s"), StopLogging().c_str()));
}
#else
if((cdio_rc = mmc_start_stop_media((CdIo *)p_cdio, eject_status, false, 0)) != 0)
{
if(cdio_rc != DRIVER_OP_UNSUPPORTED) // Don't error out if it's just an unsupported operation.
throw(MDFN_Error(0, _("Error ejecting medium: %s"), StopLogging().c_str()));
}
#endif
StopLogging();
if(!eject_status)
{
try
{
ReadPhysDiscInfo(10);
}
catch(std::exception &e)
{
#if LIBCDIO_VERSION_NUM >= 83
mmc_start_stop_unit((CdIo *)p_cdio, true, false, 0, 0); // Eject disc, if possible.
#else
mmc_start_stop_media((CdIo *)p_cdio, true, false, 0); // Eject disc, if possible.
#endif
throw;
}
}
}