BizHawk/BizHawk.Emulation.Cores/Computers/Commodore64/Disk/VIC1541.cs

266 lines
8.2 KiB
C#

using System;
using BizHawk.Emulation.Cores.Components.M6502;
#if false
namespace BizHawk.Emulation.Cores.Computers.Commodore64
{
public class VIC1541
{
public Action<SerialPort> Connect;
public Action Execute;
public Action HardReset;
public Func<int, byte> Peek;
public Func<int, byte> PeekRom;
public Func<int, byte> PeekRam;
public Func<int, byte> PeekVia0;
public Func<int, byte> PeekVia1;
public Action<int, byte> Poke;
public Action<int, byte> PokeRam;
public Action<int, byte> PokeRom;
public Action<int, byte> PokeVia0;
public Action<int, byte> PokeVia1;
public Func<ushort, byte> Read;
public Func<ushort, byte> ReadRam;
public Func<ushort, byte> ReadRom;
public Func<ushort, byte> ReadVia0;
public Func<ushort, byte> ReadVia1;
public Action<ushort, byte> Write;
public Action<ushort, byte> WriteRam;
public Action<ushort, byte> WriteRom;
public Action<ushort, byte> WriteVia0;
public Action<ushort, byte> WriteVia1;
public VIC1541Motherboard board;
public VIC1541(Region initRegion, byte[] rom)
{
board = new VIC1541Motherboard(initRegion, rom);
Connect = board.Connect;
Execute = board.Execute;
HardReset = board.HardReset;
Peek = board.pla.Peek;
PeekRam = board.pla.PeekRam;
PeekRom = board.pla.PeekRom;
PeekVia0 = board.pla.PeekVia0;
PeekVia1 = board.pla.PeekVia1;
Poke = board.pla.Poke;
PokeRam = board.pla.PokeRam;
PokeRom = board.pla.PokeRom;
PokeVia0 = board.pla.PokeVia0;
PokeVia1 = board.pla.PokeVia1;
Read = board.pla.Read;
ReadRam = board.pla.ReadRam;
ReadRom = board.pla.ReadRom;
ReadVia0 = board.pla.ReadVia0;
ReadVia1 = board.pla.ReadVia1;
Write = board.pla.Write;
WriteRam = board.pla.WriteRam;
WriteRom = board.pla.WriteRom;
WriteVia0 = board.pla.WriteVia0;
WriteVia1 = board.pla.WriteVia1;
}
public ushort PC
{
get
{
return board.cpu.PC;
}
}
}
// because the VIC1541 doesn't have bank switching like the system does,
// we simplify things by processing the rom bytes directly.
// note: when a byte is read, the drive mechanics will cause
// the V flag on the 6502 to be enabled
// note: 6502 IRQ is wired to both VIA0 and VIA1. the NMI
// pin is not connected to any other source and is always
// held low.
// note: there is a GATE ARRAY that directs the signal
// between different parts of the board. it is not emulated
// directly, we are actually performing all its functions
// within the motherboard class itself.
public class VIC1541Motherboard
{
public MOS6502X cpu;
public VIC1541PLA pla;
public byte[] ram;
public byte[] rom;
public SerialPort serPort;
public MOS6522 via0;
public MOS6522 via1;
public bool via0CA0;
public bool via0CA1;
public bool via0CB0;
public bool via0CB1;
public byte via0DataA;
public byte via0DataB;
public byte via0DirA;
public byte via0DirB;
public bool via1CA0;
public bool via1CA1;
public bool via1CB0;
public bool via1CB1;
public byte via1DataA;
public byte via1DataB;
public byte via1DirA;
public byte via1DirB;
public VIC1541Motherboard(Region initRegion, byte[] initRom)
{
cpu = new MOS6502X();
pla = new VIC1541PLA();
ram = new byte[0x800];
rom = initRom;
serPort = new SerialPort();
via0 = new MOS6522();
via1 = new MOS6522();
cpu.DummyReadMemory = pla.Read;
cpu.ReadMemory = pla.Read;
cpu.WriteMemory = pla.Write;
pla.PeekRam = ((int addr) => { return ram[addr & 0x07FF]; });
pla.PeekRom = ((int addr) => { return rom[addr & 0x3FFF]; });
pla.PeekVia0 = via0.Peek;
pla.PeekVia1 = via1.Peek;
pla.PokeRam = ((int addr, byte val) => { ram[addr & 0x07FF] = val; });
pla.PokeRom = ((int addr, byte val) => { });
pla.PokeVia0 = via0.Poke;
pla.PokeVia1 = via1.Poke;
pla.ReadRam = ((ushort addr) => { return ram[addr & 0x07FF]; });
pla.ReadRom = ((ushort addr) => { return rom[addr & 0x3FFF]; });
pla.ReadVia0 = via0.Read;
pla.ReadVia1 = via1.Read;
pla.WriteRam = ((ushort addr, byte val) => { ram[addr & 0x07FF] = val; });
pla.WriteRom = ((ushort addr, byte val) => { });
pla.WriteVia0 = via0.Write;
pla.WriteVia1 = via1.Write;
via0CA0 = false;
via0CA1 = false;
via0CB0 = false;
via0CB1 = false;
via0DirA = 0x00;
via0DirB = 0x00;
via0DataA = 0xFF;
via0DataB = 0xFF;
via1CA0 = false;
via1CA1 = false;
via1CB0 = false;
via1CB1 = false;
via1DirA = 0x00;
via1DirB = 0x00;
via1DataA = 0xFF;
via1DataB = 0xFF;
via0.ReadCA0 = (() => { return via0CA0; });
via0.ReadCA1 = (() => { return via0CA1; });
via0.ReadCB0 = (() => { return via0CB0; });
via0.ReadCB1 = (() => { return via0CB1; });
via0.ReadDirA = (() => { return via0DirA; });
via0.ReadDirB = (() => { return via0DirB; });
via0.ReadPortA = (() => { return via0DataA; });
via0.ReadPortB = (() => { return via0DataB; });
via0.WriteCA0 = ((bool val) => { via0CA0 = val; });
via0.WriteCA1 = ((bool val) => { via0CA1 = val; });
via0.WriteCB0 = ((bool val) => { via0CB0 = val; });
via0.WriteCB1 = ((bool val) => { via0CB1 = val; });
via0.WriteDirA = ((byte val) => { via0DirA = val; });
via0.WriteDirB = ((byte val) => { via0DirB = val; });
via0.WritePortA = ((byte val) => {
via0DataA = Port.CPUWrite(via0DataA, val, via0DirA);
});
via0.WritePortB = ((byte val) => {
via0DataB = Port.CPUWrite(via0DataB, val, via0DirB);
serPort.DeviceWriteAtn((via0DataB & 0x80) != 0);
serPort.DeviceWriteClock((via0DataB & 0x08) != 0);
serPort.DeviceWriteData((via0DataB & 0x02) != 0);
});
via1.ReadCA0 = (() => { return via1CA0; });
via1.ReadCA1 = (() => { return via1CA1; });
via1.ReadCB0 = (() => { return via1CB0; });
via1.ReadCB1 = (() => { return via1CB1; });
via1.ReadDirA = (() => { return via1DirA; });
via1.ReadDirB = (() => { return via1DirB; });
via1.ReadPortA = (() => { return via1DataA; });
via1.ReadPortB = (() => { return via1DataB; });
via1.WriteCA0 = ((bool val) => { via1CA0 = val; });
via1.WriteCA1 = ((bool val) => { via1CA1 = val; });
via1.WriteCB0 = ((bool val) => { via1CB0 = val; });
via1.WriteCB1 = ((bool val) => { via1CB1 = val; });
via1.WriteDirA = ((byte val) => { via1DirA = val; });
via1.WriteDirB = ((byte val) => { via1DirB = val; });
via1.WritePortA = ((byte val) => {
via1DataA = Port.CPUWrite(via1DataA, val, via1DirA);
});
via1.WritePortB = ((byte val) => {
via1DataB = Port.CPUWrite(via1DataB, val, via1DirB);
});
}
public void Connect(SerialPort newSerPort)
{
// TODO: verify polarity
serPort = newSerPort;
serPort.SystemReadAtn = (() => {
return true;
});
serPort.SystemReadClock = (() => {
return ((via0DataB & 0x08) != 0);
}); // bit 3
serPort.SystemReadData = (() => {
return ((via0DataB & 0x02) != 0);
}); // bit 1
serPort.SystemReadSrq = (() => {
return false;
}); // device sensing
serPort.SystemWriteAtn = ((bool val) => {
via0DataB = Port.ExternalWrite(via0DataB, (byte)((via0DataB & 0x7F) | (val ? 0x80 : 0x00)), via0DataB);
via0CA0 = val;
// repeat to DATA OUT if bit 4 enabled on port B
if ((via0DataB & 0x10) != 0)
serPort.DeviceWriteData(val);
});
serPort.SystemWriteClock = ((bool val) => {
via0DataB = Port.ExternalWrite(via0DataB, (byte)((via0DataB & 0xFB) | (val ? 0x04 : 0x00)), via0DataB);
});
serPort.SystemWriteData = ((bool val) => {
via0DataB = Port.ExternalWrite(via0DataB, (byte)((via0DataB & 0xFE) | (val ? 0x01 : 0x00)), via0DataB);
});
serPort.SystemWriteReset = ((bool val) => { });
serPort.DeviceWriteSrq(false);
}
public void Execute()
{
via0.ExecutePhase1();
via1.ExecutePhase1();
cpu.IRQ = !(via0.IRQ && via1.IRQ);
cpu.ExecuteOne();
via0.ExecutePhase2();
via1.ExecutePhase2();
}
public void HardReset()
{
for (uint i = 0; i < 0x7FF; i++)
ram[i] = 0x00;
cpu.PC = (ushort)(cpu.ReadMemory(0xFFFC) | ((ushort)cpu.ReadMemory(0xFFFD) << 8));
via0.HardReset();
via1.HardReset();
}
}
}
#endif