BizHawk/psx/mednadisc/cdrom/cdromif.cpp

899 lines
17 KiB
C++

/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <string.h>
#include <sys/types.h>
#include <trio/trio.h>
#include "emuware/emuware.h"
#include "cdromif.h"
#include "CDAccess.h"
#include "general.h"
#include "error.h"
//undo gettext stuff
#define _(X) X
#include <algorithm>
using namespace CDUtility;
enum
{
// Status/Error messages
CDIF_MSG_DONE = 0, // Read -> emu. args: No args.
CDIF_MSG_INFO, // Read -> emu. args: str_message
CDIF_MSG_FATAL_ERROR, // Read -> emu. args: *TODO ARGS*
//
// Command messages.
//
CDIF_MSG_DIEDIEDIE, // Emu -> read
CDIF_MSG_READ_SECTOR, /* Emu -> read
args[0] = lba
*/
};
class CDIF_Message
{
public:
CDIF_Message();
CDIF_Message(unsigned int message_, uint32 arg0 = 0, uint32 arg1 = 0, uint32 arg2 = 0, uint32 arg3 = 0);
CDIF_Message(unsigned int message_, const std::string &str);
~CDIF_Message();
unsigned int message;
uint32 args[4];
void *parg;
std::string str_message;
};
#ifdef WANT_QUEUE
class CDIF_Queue
{
public:
CDIF_Queue();
~CDIF_Queue();
bool Read(CDIF_Message *message, bool blocking = TRUE);
void Write(const CDIF_Message &message);
private:
std::queue<CDIF_Message> ze_queue;
MDFN_Mutex *ze_mutex;
MDFN_Cond *ze_cond;
};
#endif
typedef struct
{
bool valid;
bool error;
int32 lba;
uint8 data[2352 + 96];
} CDIF_Sector_Buffer;
#ifdef WANT_QUEUE
// TODO: prohibit copy constructor
class CDIF_MT : public CDIF
{
public:
CDIF_MT(CDAccess *cda);
virtual ~CDIF_MT();
virtual void HintReadSector(int32 lba);
virtual bool ReadRawSector(uint8 *buf, int32 lba);
virtual bool ReadRawSectorPWOnly(uint8* pwbuf, int32 lba, bool hint_fullread);
// FIXME: Semi-private:
int ReadThreadStart(void);
private:
CDAccess *disc_cdaccess;
MDFN_Thread *CDReadThread;
// Queue for messages to the read thread.
CDIF_Queue ReadThreadQueue;
// Queue for messages to the emu thread.
CDIF_Queue EmuThreadQueue;
enum { SBSize = 256 };
CDIF_Sector_Buffer SectorBuffers[SBSize];
uint32 SBWritePos;
MDFN_Mutex *SBMutex;
MDFN_Cond *SBCond;
//
// Read-thread-only:
//
int32 ra_lba;
int32 ra_count;
int32 last_read_lba;
};
#endif //WANT_QUEUE
// TODO: prohibit copy constructor
class CDIF_ST : public CDIF
{
public:
CDIF_ST(CDAccess *cda);
virtual ~CDIF_ST();
virtual void HintReadSector(int32 lba);
virtual bool ReadRawSector(uint8 *buf, int32 lba);
virtual bool ReadRawSectorPWOnly(uint8* pwbuf, int32 lba, bool hint_fullread);
private:
CDAccess *disc_cdaccess;
};
CDIF::CDIF() : UnrecoverableError(false)
{
}
CDIF::~CDIF()
{
}
CDIF_Message::CDIF_Message()
{
message = 0;
memset(args, 0, sizeof(args));
}
CDIF_Message::CDIF_Message(unsigned int message_, uint32 arg0, uint32 arg1, uint32 arg2, uint32 arg3)
{
message = message_;
args[0] = arg0;
args[1] = arg1;
args[2] = arg2;
args[3] = arg3;
}
CDIF_Message::CDIF_Message(unsigned int message_, const std::string &str)
{
message = message_;
str_message = str;
}
CDIF_Message::~CDIF_Message()
{
}
#ifdef WANT_QUEUE
CDIF_Queue::CDIF_Queue()
{
ze_mutex = MDFND_CreateMutex();
ze_cond = MDFND_CreateCond();
}
CDIF_Queue::~CDIF_Queue()
{
MDFND_DestroyMutex(ze_mutex);
MDFND_DestroyCond(ze_cond);
}
// Returns FALSE if message not read, TRUE if it was read. Will always return TRUE if "blocking" is set.
// Will throw MDFN_Error if the read message code is CDIF_MSG_FATAL_ERROR
bool CDIF_Queue::Read(CDIF_Message *message, bool blocking)
{
bool ret = true;
//
//
//
MDFND_LockMutex(ze_mutex);
if(blocking)
{
while(ze_queue.size() == 0) // while, not just if.
{
MDFND_WaitCond(ze_cond, ze_mutex);
}
}
if(ze_queue.size() == 0)
ret = false;
else
{
*message = ze_queue.front();
ze_queue.pop();
}
MDFND_UnlockMutex(ze_mutex);
//
//
//
if(ret && message->message == CDIF_MSG_FATAL_ERROR)
throw MDFN_Error(0, "%s", message->str_message.c_str());
return(ret);
}
void CDIF_Queue::Write(const CDIF_Message &message)
{
MDFND_LockMutex(ze_mutex);
try
{
ze_queue.push(message);
}
catch(...)
{
fprintf(stderr, "\n\nCDIF_Message queue push failed!!! (We now return you to your regularly unscheduled lockup)\n\n");
}
MDFND_SignalCond(ze_cond); // Signal while the mutex is held to prevent icky race conditions.
MDFND_UnlockMutex(ze_mutex);
}
struct RTS_Args
{
CDIF_MT *cdif_ptr;
};
static int ReadThreadStart_C(void *v_arg)
{
RTS_Args *args = (RTS_Args *)v_arg;
return args->cdif_ptr->ReadThreadStart();
}
int CDIF_MT::ReadThreadStart()
{
bool Running = TRUE;
SBWritePos = 0;
ra_lba = 0;
ra_count = 0;
last_read_lba = LBA_Read_Maximum + 1;
try
{
disc_cdaccess->Read_TOC(&disc_toc);
if(disc_toc.first_track < 1 || disc_toc.last_track > 99 || disc_toc.first_track > disc_toc.last_track)
{
throw(MDFN_Error(0, _("TOC first(%d)/last(%d) track numbers bad."), disc_toc.first_track, disc_toc.last_track));
}
SBWritePos = 0;
ra_lba = 0;
ra_count = 0;
last_read_lba = LBA_Read_Maximum + 1;
memset(SectorBuffers, 0, SBSize * sizeof(CDIF_Sector_Buffer));
}
catch(std::exception &e)
{
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_FATAL_ERROR, std::string(e.what())));
return(0);
}
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_DONE));
while(Running)
{
CDIF_Message msg;
// Only do a blocking-wait for a message if we don't have any sectors to read-ahead.
// MDFN_DispMessage("%d %d %d\n", last_read_lba, ra_lba, ra_count);
if(ReadThreadQueue.Read(&msg, ra_count ? FALSE : TRUE))
{
switch(msg.message)
{
case CDIF_MSG_DIEDIEDIE:
Running = FALSE;
break;
case CDIF_MSG_READ_SECTOR:
{
static const int max_ra = 16;
static const int initial_ra = 1;
static const int speedmult_ra = 2;
int32 new_lba = msg.args[0];
assert((unsigned int)max_ra < (SBSize / 4));
if(new_lba == (last_read_lba + 1))
{
int how_far_ahead = ra_lba - new_lba;
if(how_far_ahead <= max_ra)
ra_count = std::min(speedmult_ra, 1 + max_ra - how_far_ahead);
else
ra_count++;
}
else if(new_lba != last_read_lba)
{
ra_lba = new_lba;
ra_count = initial_ra;
}
last_read_lba = new_lba;
}
break;
}
}
//
// Don't read beyond what the disc (image) readers can handle sanely.
//
if(ra_count && ra_lba == LBA_Read_Maximum)
{
ra_count = 0;
//printf("Ephemeral scarabs: %d!\n", ra_lba);
}
if(ra_count)
{
uint8 tmpbuf[2352 + 96];
bool error_condition = false;
try
{
disc_cdaccess->Read_Raw_Sector(tmpbuf, ra_lba);
}
catch(std::exception &e)
{
MDFN_PrintError(_("Sector %u read error: %s"), ra_lba, e.what());
memset(tmpbuf, 0, sizeof(tmpbuf));
error_condition = true;
}
//
//
MDFND_LockMutex(SBMutex);
SectorBuffers[SBWritePos].lba = ra_lba;
memcpy(SectorBuffers[SBWritePos].data, tmpbuf, 2352 + 96);
SectorBuffers[SBWritePos].valid = TRUE;
SectorBuffers[SBWritePos].error = error_condition;
SBWritePos = (SBWritePos + 1) % SBSize;
MDFND_SignalCond(SBCond);
MDFND_UnlockMutex(SBMutex);
//
//
ra_lba++;
ra_count--;
}
}
return(1);
}
CDIF_MT::CDIF_MT(CDAccess *cda) : disc_cdaccess(cda), CDReadThread(NULL), SBMutex(NULL), SBCond(NULL)
{
try
{
CDIF_Message msg;
RTS_Args s;
if(!(SBMutex = MDFND_CreateMutex()))
throw MDFN_Error(0, _("Error creating CD read thread mutex."));
if(!(SBCond = MDFND_CreateCond()))
throw MDFN_Error(0, _("Error creating CD read thread condition variable."));
UnrecoverableError = false;
s.cdif_ptr = this;
if(!(CDReadThread = MDFND_CreateThread(ReadThreadStart_C, &s)))
throw MDFN_Error(0, _("Error creating CD read thread."));
EmuThreadQueue.Read(&msg);
}
catch(...)
{
if(CDReadThread)
{
MDFND_WaitThread(CDReadThread, NULL);
CDReadThread = NULL;
}
if(SBMutex)
{
MDFND_DestroyMutex(SBMutex);
SBMutex = NULL;
}
if(SBCond)
{
MDFND_DestroyCond(SBCond);
SBCond = NULL;
}
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
throw;
}
}
CDIF_MT::~CDIF_MT()
{
bool thread_deaded_failed = false;
try
{
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_DIEDIEDIE));
}
catch(std::exception &e)
{
MDFND_PrintError(e.what());
thread_deaded_failed = true;
}
if(!thread_deaded_failed)
MDFND_WaitThread(CDReadThread, NULL);
if(SBMutex)
{
MDFND_DestroyMutex(SBMutex);
SBMutex = NULL;
}
if(SBCond)
{
MDFND_DestroyCond(SBCond);
SBCond = NULL;
}
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
}
#endif //WANT_QUEUE
bool CDIF::ValidateRawSector(uint8 *buf)
{
int mode = buf[12 + 3];
if(mode != 0x1 && mode != 0x2)
return(false);
if(!edc_lec_check_and_correct(buf, mode == 2))
return(false);
return(true);
}
#ifdef WANT_QUEUE
bool CDIF_MT::ReadRawSector(uint8 *buf, int32 lba)
{
bool found = FALSE;
bool error_condition = false;
if(UnrecoverableError)
{
memset(buf, 0, 2352 + 96);
return(false);
}
if(lba < LBA_Read_Minimum || lba > LBA_Read_Maximum)
{
printf("Attempt to read sector out of bounds; LBA=%d\n", lba);
memset(buf, 0, 2352 + 96);
return(false);
}
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_READ_SECTOR, lba));
//
//
//
MDFND_LockMutex(SBMutex);
do
{
for(int i = 0; i < SBSize; i++)
{
if(SectorBuffers[i].valid && SectorBuffers[i].lba == lba)
{
error_condition = SectorBuffers[i].error;
memcpy(buf, SectorBuffers[i].data, 2352 + 96);
found = TRUE;
}
}
if(!found)
{
//int32 swt = MDFND_GetTime();
MDFND_WaitCond(SBCond, SBMutex);
//printf("SB Waited: %d\n", MDFND_GetTime() - swt);
}
} while(!found);
MDFND_UnlockMutex(SBMutex);
//
//
//
return(!error_condition);
}
bool CDIF_MT::ReadRawSectorPWOnly(uint8* pwbuf, int32 lba, bool hint_fullread)
{
if(UnrecoverableError)
{
memset(pwbuf, 0, 96);
return(false);
}
if(lba < LBA_Read_Minimum || lba > LBA_Read_Maximum)
{
printf("Attempt to read sector out of bounds; LBA=%d\n", lba);
memset(pwbuf, 0, 96);
return(false);
}
if(disc_cdaccess->Fast_Read_Raw_PW_TSRE(pwbuf, lba))
{
if(hint_fullread)
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_READ_SECTOR, lba));
return(true);
}
else
{
uint8 tmpbuf[2352 + 96];
bool ret;
ret = ReadRawSector(tmpbuf, lba);
memcpy(pwbuf, tmpbuf + 2352, 96);
return ret;
}
}
void CDIF_MT::HintReadSector(int32 lba)
{
if(UnrecoverableError)
return;
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_READ_SECTOR, lba));
}
#endif //WANT_QUEUE
int CDIF::ReadSector(uint8* buf, int32 lba, uint32 sector_count, bool suppress_uncorrectable_message)
{
int ret = 0;
if(UnrecoverableError)
return(false);
while(sector_count--)
{
uint8 tmpbuf[2352 + 96];
if(!ReadRawSector(tmpbuf, lba))
{
puts("CDIF Raw Read error");
return(FALSE_0);
}
if(!ValidateRawSector(tmpbuf))
{
if(!suppress_uncorrectable_message)
{
printf(_("Uncorrectable data at sector %d"), lba);
}
return(false);
}
const int mode = tmpbuf[12 + 3];
if(!ret)
ret = mode;
if(mode == 1)
{
memcpy(buf, &tmpbuf[12 + 4], 2048);
}
else if(mode == 2)
{
memcpy(buf, &tmpbuf[12 + 4 + 8], 2048);
}
else
{
printf("CDIF_ReadSector() invalid sector type at LBA=%u\n", (unsigned int)lba);
return(false);
}
buf += 2048;
lba++;
}
return(ret);
}
//
//
// Single-threaded implementation follows.
//
//
CDIF_ST::CDIF_ST(CDAccess *cda) : disc_cdaccess(cda)
{
//puts("***WARNING USING SINGLE-THREADED CD READER***");
UnrecoverableError = false;
disc_cdaccess->Read_TOC(&disc_toc);
if(disc_toc.first_track < 1 || disc_toc.last_track > 99 || disc_toc.first_track > disc_toc.last_track)
{
throw(MDFN_Error(0, _("TOC first(%d)/last(%d) track numbers bad."), disc_toc.first_track, disc_toc.last_track));
}
}
CDIF_ST::~CDIF_ST()
{
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
}
void CDIF_ST::HintReadSector(int32 lba)
{
// TODO: disc_cdaccess seek hint? (probably not, would require asynchronousitycamel)
}
bool CDIF_ST::ReadRawSector(uint8 *buf, int32 lba)
{
if(UnrecoverableError)
{
memset(buf, 0, 2352 + 96);
return(false);
}
if(lba < LBA_Read_Minimum || lba > LBA_Read_Maximum)
{
printf("Attempt to read sector out of bounds; LBA=%d\n", lba);
memset(buf, 0, 2352 + 96);
return(false);
}
try
{
disc_cdaccess->Read_Raw_Sector(buf, lba);
}
catch(std::exception &e)
{
printf(_("Sector %u read error: %s"), lba, e.what());
memset(buf, 0, 2352 + 96);
return(false);
}
return(true);
}
bool CDIF_ST::ReadRawSectorPWOnly(uint8* pwbuf, int32 lba, bool hint_fullread)
{
if(UnrecoverableError)
{
memset(pwbuf, 0, 96);
return(false);
}
if(lba < LBA_Read_Minimum || lba > LBA_Read_Maximum)
{
printf("Attempt to read sector out of bounds; LBA=%d\n", lba);
memset(pwbuf, 0, 96);
return(false);
}
if(disc_cdaccess->Fast_Read_Raw_PW_TSRE(pwbuf, lba))
return(true);
else
{
uint8 tmpbuf[2352 + 96];
bool ret;
ret = ReadRawSector(tmpbuf, lba);
memcpy(pwbuf, tmpbuf + 2352, 96);
return ret;
}
}
class CDIF_Stream_Thing : public Stream
{
public:
CDIF_Stream_Thing(CDIF *cdintf_arg, uint32 lba_arg, uint32 sector_count_arg);
~CDIF_Stream_Thing();
virtual uint64 attributes(void) override;
virtual uint64 read(void *data, uint64 count, bool error_on_eos = true) override;
virtual void write(const void *data, uint64 count) override;
virtual void truncate(uint64 length) override;
virtual void seek(int64 offset, int whence) override;
virtual uint64 tell(void) override;
virtual uint64 size(void) override;
virtual void flush(void) override;
virtual void close(void) override;
private:
CDIF *cdintf;
const uint32 start_lba;
const uint32 sector_count;
int64 position;
};
CDIF_Stream_Thing::CDIF_Stream_Thing(CDIF *cdintf_arg, uint32 start_lba_arg, uint32 sector_count_arg) : cdintf(cdintf_arg), start_lba(start_lba_arg), sector_count(sector_count_arg)
{
}
CDIF_Stream_Thing::~CDIF_Stream_Thing()
{
}
uint64 CDIF_Stream_Thing::attributes(void)
{
return(ATTRIBUTE_READABLE | ATTRIBUTE_SEEKABLE);
}
uint64 CDIF_Stream_Thing::read(void *data, uint64 count, bool error_on_eos)
{
if(count > (((uint64)sector_count * 2048) - position))
{
if(error_on_eos)
{
throw MDFN_Error(0, "EOF");
}
count = ((uint64)sector_count * 2048) - position;
}
if(!count)
return(0);
for(uint64 rp = position; rp < (position + count); rp = (rp &~ 2047) + 2048)
{
uint8 buf[2048];
if(!cdintf->ReadSector(buf, start_lba + (rp / 2048), 1))
{
throw MDFN_Error(ErrnoHolder(EIO));
}
//::printf("Meow: %08llx -- %08llx\n", count, (rp - position) + std::min<uint64>(2048 - (rp & 2047), count - (rp - position)));
memcpy((uint8*)data + (rp - position), buf + (rp & 2047), std::min<uint64>(2048 - (rp & 2047), count - (rp - position)));
}
position += count;
return count;
}
void CDIF_Stream_Thing::write(const void *data, uint64 count)
{
throw MDFN_Error(ErrnoHolder(EBADF));
}
void CDIF_Stream_Thing::truncate(uint64 length)
{
throw MDFN_Error(ErrnoHolder(EBADF));
}
void CDIF_Stream_Thing::seek(int64 offset, int whence)
{
int64 new_position;
switch(whence)
{
default:
throw MDFN_Error(ErrnoHolder(EINVAL));
break;
case SEEK_SET:
new_position = offset;
break;
case SEEK_CUR:
new_position = position + offset;
break;
case SEEK_END:
new_position = ((int64)sector_count * 2048) + offset;
break;
}
if(new_position < 0 || new_position > ((int64)sector_count * 2048))
throw MDFN_Error(ErrnoHolder(EINVAL));
position = new_position;
}
uint64 CDIF_Stream_Thing::tell(void)
{
return position;
}
uint64 CDIF_Stream_Thing::size(void)
{
return(sector_count * 2048);
}
void CDIF_Stream_Thing::flush(void)
{
}
void CDIF_Stream_Thing::close(void)
{
}
Stream *CDIF::MakeStream(int32 lba, uint32 sector_count)
{
return new CDIF_Stream_Thing(this, lba, sector_count);
}
CDIF *CDIF_Open(const std::string& path, bool image_memcache)
{
CDAccess *cda = CDAccess_Open(path, image_memcache);
#ifdef WANT_QUEUE
if(!image_memcache)
return new CDIF_MT(cda);
else
#endif
return new CDIF_ST(cda);
}