BizHawk/BizHawk.Emulation.Cores/Consoles/Coleco/TMS9918A.cs

491 lines
17 KiB
C#

using System;
using System.Globalization;
using System.IO;
using BizHawk.Common;
using BizHawk.Emulation.Common;
using BizHawk.Emulation.Cores.Components.Z80;
namespace BizHawk.Emulation.Cores.ColecoVision
{
public sealed class TMS9918A : IVideoProvider
{
public byte[] VRAM = new byte[0x4000];
byte[] Registers = new byte[8];
byte StatusByte;
bool VdpWaitingForLatchByte = true;
byte VdpLatch;
ushort VdpAddress;
byte VdpBuffer;
int TmsMode;
bool Mode1Bit { get { return (Registers[1] & 16) > 0; } }
bool Mode2Bit { get { return (Registers[0] & 2) > 0; } }
bool Mode3Bit { get { return (Registers[1] & 8) > 0; } }
bool EnableDoubledSprites { get { return (Registers[1] & 1) > 0; } }
bool EnableLargeSprites { get { return (Registers[1] & 2) > 0; } }
bool EnableInterrupts { get { return (Registers[1] & 32) > 0; } }
bool DisplayOn { get { return (Registers[1] & 64) > 0; } }
bool Mode16k { get { return (Registers[1] & 128) > 0; } }
bool InterruptPending
{
get { return (StatusByte & 0x80) != 0; }
set { StatusByte = (byte)((StatusByte & ~0x02) | (value ? 0x80 : 0x00)); }
}
int ColorTableBase;
int PatternGeneratorBase;
int SpritePatternGeneratorBase;
int TmsPatternNameTableBase;
int TmsSpriteAttributeBase;
public void ExecuteFrame()
{
for (int scanLine = 0; scanLine < 262; scanLine++)
{
RenderScanline(scanLine);
if (scanLine == 192)
{
InterruptPending = true;
if (EnableInterrupts)
Cpu.NonMaskableInterrupt = true;
}
Cpu.ExecuteCycles(228);
}
}
public void WriteVdpControl(byte value)
{
if (VdpWaitingForLatchByte)
{
VdpLatch = value;
VdpWaitingForLatchByte = false;
VdpAddress = (ushort)((VdpAddress & 0x3F00) | value);
return;
}
VdpWaitingForLatchByte = true;
VdpAddress = (ushort)(((value & 63) << 8) | VdpLatch);
VdpAddress &= 0x3FFF;
switch (value & 0xC0)
{
case 0x00: // read VRAM
VdpBuffer = VRAM[VdpAddress];
VdpAddress++;
VdpAddress &= 0x3FFF;
break;
case 0x40: // write VRAM
break;
case 0x80: // VDP register write
int reg = value & 0x0F;
WriteRegister(reg, VdpLatch);
break;
}
}
public void WriteVdpData(byte value)
{
VdpWaitingForLatchByte = true;
VdpBuffer = value;
VRAM[VdpAddress] = value;
//if (!Mode16k)
// Console.WriteLine("VRAM written while not in 16k addressing mode!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!");
VdpAddress++;
VdpAddress &= 0x3FFF;
}
void WriteRegister(int reg, byte data)
{
if (reg >= 8) return;
Registers[reg] = data;
switch (reg)
{
case 0: // Mode Control Register 1
CheckVideoMode();
break;
case 1: // Mode Control Register 2
CheckVideoMode();
Cpu.NonMaskableInterrupt = (EnableInterrupts && InterruptPending);
break;
case 2: // Name Table Base Address
TmsPatternNameTableBase = (Registers[2] << 10) & 0x3C00;
break;
case 3: // Color Table Base Address
ColorTableBase = (Registers[3] << 6) & 0x3FC0;
break;
case 4: // Pattern Generator Base Address
PatternGeneratorBase = (Registers[4] << 11) & 0x3800;
break;
case 5: // Sprite Attribute Table Base Address
TmsSpriteAttributeBase = (Registers[5] << 7) & 0x3F80;
break;
case 6: // Sprite Pattern Generator Base Adderss
SpritePatternGeneratorBase = (Registers[6] << 11) & 0x3800;
break;
}
}
public byte ReadVdpStatus()
{
VdpWaitingForLatchByte = true;
byte returnValue = StatusByte;
StatusByte &= 0x1F;
Cpu.NonMaskableInterrupt = false;
return returnValue;
}
public byte ReadData()
{
VdpWaitingForLatchByte = true;
byte value = VdpBuffer;
VdpBuffer = VRAM[VdpAddress];
VdpAddress++;
VdpAddress &= 0x3FFF;
return value;
}
void CheckVideoMode()
{
if (Mode1Bit) TmsMode = 1;
else if (Mode2Bit) TmsMode = 2;
else if (Mode3Bit) TmsMode = 3;
else TmsMode = 0;
if (TmsMode == 1)
throw new Exception("TMS video mode 1! please tell vecna which game uses this!");
}
void RenderScanline(int scanLine)
{
if (scanLine >= 192)
return;
if (TmsMode == 2)
{
RenderBackgroundM2(scanLine);
RenderTmsSprites(scanLine);
}
else if (TmsMode == 0)
{
RenderBackgroundM0(scanLine);
RenderTmsSprites(scanLine);
}
else if (TmsMode == 3)
{
RenderBackgroundM3(scanLine);
RenderTmsSprites(scanLine);
}
// This may seem silly but if I ever implement mode 1, sprites are not rendered in that.
}
void RenderBackgroundM0(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
int yc = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yc * 32);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++];
int pv = VRAM[PatternGeneratorBase + (pn * 8) + yofs];
int colorEntry = VRAM[ColorTableBase + (pn / 8)];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
void RenderBackgroundM2(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
int yrow = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yrow * 32);
int PatternGeneratorOffset = (((Registers[4] & 4) << 11) & 0x2000);
int ColorOffset = (ColorTableBase & 0x2000);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++] + ((yrow / 8) * 0x100);
int pv = VRAM[PatternGeneratorOffset + (pn * 8) + yofs];
int colorEntry = VRAM[ColorOffset + (pn * 8) + yofs];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
void RenderBackgroundM3(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
int yc = scanLine / 8;
bool top = (scanLine & 4) == 0; // am I in the top 4 pixels of an 8-pixel character?
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yc * 32);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++];
int pv = VRAM[PatternGeneratorBase + (pn * 8) + ((yc & 3) * 2) + (top ? 0 : 1)];
int lColorIndex = pv & 0xF;
int rColorIndex = pv >> 4;
int lColor = lColorIndex == 0 ? ScreenBGColor : PaletteTMS9918[lColorIndex];
int rColor = rColorIndex == 0 ? ScreenBGColor : PaletteTMS9918[rColorIndex];
FrameBuffer[FrameBufferOffset++] = lColor;
FrameBuffer[FrameBufferOffset++] = lColor;
FrameBuffer[FrameBufferOffset++] = lColor;
FrameBuffer[FrameBufferOffset++] = lColor;
FrameBuffer[FrameBufferOffset++] = rColor;
FrameBuffer[FrameBufferOffset++] = rColor;
FrameBuffer[FrameBufferOffset++] = rColor;
FrameBuffer[FrameBufferOffset ] = rColor;
}
}
byte[] ScanlinePriorityBuffer = new byte[256];
byte[] SpriteCollisionBuffer = new byte[256];
void RenderTmsSprites(int scanLine)
{
if (EnableDoubledSprites == false)
RenderTmsSpritesStandard(scanLine);
else
RenderTmsSpritesDouble(scanLine);
}
void RenderTmsSpritesStandard(int scanLine)
{
if (DisplayOn == false) return;
Array.Clear(ScanlinePriorityBuffer, 0, 256);
Array.Clear(SpriteCollisionBuffer, 0, 256);
bool LargeSprites = EnableLargeSprites;
int SpriteSize = 8;
if (LargeSprites) SpriteSize *= 2;
const int OneCellSize = 8;
int NumSpritesOnScanline = 0;
for (int i = 0; i < 32; i++)
{
int SpriteBase = TmsSpriteAttributeBase + (i * 4);
int y = VRAM[SpriteBase++];
int x = VRAM[SpriteBase++];
int Pattern = VRAM[SpriteBase++];
int Color = VRAM[SpriteBase];
if (y == 208) break; // terminator sprite
if (y > 224) y -= 256; // sprite Y wrap
y++; // inexplicably, sprites start on Y+1
if (y > scanLine || y + SpriteSize <= scanLine) continue; // sprite is not on this scanline
if ((Color & 0x80) > 0) x -= 32; // Early Clock adjustment
if (++NumSpritesOnScanline == 5)
{
StatusByte &= 0xE0; // Clear FS0-FS4 bits
StatusByte |= (byte)i; // set 5th sprite index
StatusByte |= 0x40; // set overflow bit
break;
}
if (LargeSprites) Pattern &= 0xFC; // 16x16 sprites forced to 4-byte alignment
int SpriteLine = scanLine - y;
// pv contains the VRAM byte holding the pattern data for this character at this scanline.
// each byte contains the pattern data for each the 8 pixels on this line.
// the bit-shift further down on PV pulls out the relevant horizontal pixel.
byte pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine];
for (int xp = 0; xp < SpriteSize && x + xp < 256; xp++)
{
if (x + xp < 0) continue;
if (LargeSprites && xp == OneCellSize)
pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine + 16];
if (Color != 0 && (pv & (1 << (7 - (xp & 7)))) > 0)
{
if (SpriteCollisionBuffer[x + xp] != 0)
StatusByte |= 0x20; // Set sprite collision flag
if (ScanlinePriorityBuffer[x + xp] == 0)
{
ScanlinePriorityBuffer[x + xp] = 1;
SpriteCollisionBuffer[x + xp] = 1;
FrameBuffer[(scanLine * 256) + x + xp] = PaletteTMS9918[Color & 0x0F];
}
}
}
}
}
void RenderTmsSpritesDouble(int scanLine)
{
if (DisplayOn == false) return;
Array.Clear(ScanlinePriorityBuffer, 0, 256);
Array.Clear(SpriteCollisionBuffer, 0, 256);
bool LargeSprites = EnableLargeSprites;
int SpriteSize = 8;
if (LargeSprites) SpriteSize *= 2;
SpriteSize *= 2; // because sprite magnification
const int OneCellSize = 16; // once 8-pixel cell, doubled, will take 16 pixels
int NumSpritesOnScanline = 0;
for (int i = 0; i < 32; i++)
{
int SpriteBase = TmsSpriteAttributeBase + (i * 4);
int y = VRAM[SpriteBase++];
int x = VRAM[SpriteBase++];
int Pattern = VRAM[SpriteBase++];
int Color = VRAM[SpriteBase];
if (y == 208) break; // terminator sprite
if (y > 224) y -= 256; // sprite Y wrap
y++; // inexplicably, sprites start on Y+1
if (y > scanLine || y + SpriteSize <= scanLine) continue; // sprite is not on this scanline
if ((Color & 0x80) > 0) x -= 32; // Early Clock adjustment
if (++NumSpritesOnScanline == 5)
{
StatusByte &= 0xE0; // Clear FS0-FS4 bits
StatusByte |= (byte)i; // set 5th sprite index
StatusByte |= 0x40; // set overflow bit
break;
}
if (LargeSprites) Pattern &= 0xFC; // 16x16 sprites forced to 4-byte alignment
int SpriteLine = scanLine - y;
SpriteLine /= 2; // because of sprite magnification
byte pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine];
for (int xp = 0; xp < SpriteSize && x + xp < 256; xp++)
{
if (x + xp < 0) continue;
if (LargeSprites && xp == OneCellSize)
pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine + 16];
if (Color != 0 && (pv & (1 << (7 - ((xp / 2) & 7)))) > 0) // xp/2 is due to sprite magnification
{
if (SpriteCollisionBuffer[x + xp] != 0)
StatusByte |= 0x20; // Set sprite collision flag
if (ScanlinePriorityBuffer[x + xp] == 0)
{
ScanlinePriorityBuffer[x + xp] = 1;
SpriteCollisionBuffer[x + xp] = 1;
FrameBuffer[(scanLine * 256) + x + xp] = PaletteTMS9918[Color & 0x0F];
}
}
}
}
}
Z80A Cpu;
public TMS9918A(Z80A cpu)
{
this.Cpu = cpu;
}
public int[] FrameBuffer = new int[256 * 192];
public int[] GetVideoBuffer() { return FrameBuffer; }
public int VirtualWidth { get { return 293; } }
public int VirtualHeight { get { return 192; } }
public int BufferWidth { get { return 256; } }
public int BufferHeight { get { return 192; } }
public int BackgroundColor { get { return 0; } }
int[] PaletteTMS9918 = new int[]
{
unchecked((int)0xFF000000),
unchecked((int)0xFF000000),
unchecked((int)0xFF47B73B),
unchecked((int)0xFF7CCF6F),
unchecked((int)0xFF5D4EFF),
unchecked((int)0xFF8072FF),
unchecked((int)0xFFB66247),
unchecked((int)0xFF5DC8ED),
unchecked((int)0xFFD76B48),
unchecked((int)0xFFFB8F6C),
unchecked((int)0xFFC3CD41),
unchecked((int)0xFFD3DA76),
unchecked((int)0xFF3E9F2F),
unchecked((int)0xFFB664C7),
unchecked((int)0xFFCCCCCC),
unchecked((int)0xFFFFFFFF)
};
public void SyncState(Serializer ser)
{
ser.BeginSection("VDP");
ser.Sync("StatusByte", ref StatusByte);
ser.Sync("WaitingForLatchByte", ref VdpWaitingForLatchByte);
ser.Sync("Latch", ref VdpLatch);
ser.Sync("ReadBuffer", ref VdpBuffer);
ser.Sync("VdpAddress", ref VdpAddress);
ser.Sync("Registers", ref Registers, false);
ser.Sync("VRAM", ref VRAM, false);
ser.EndSection();
if (ser.IsReader)
for (int i = 0; i < Registers.Length; i++)
WriteRegister(i, Registers[i]);
}
}
}