BizHawk/BizHawk.Emulation.Cores/Consoles/PC Engine/VDC.cs

343 lines
11 KiB
C#

using BizHawk.Common;
using BizHawk.Emulation.Common;
using BizHawk.Emulation.Cores.Components.H6280;
using System;
namespace BizHawk.Emulation.Cores.PCEngine
{
// HuC6270 Video Display Controller
public sealed partial class VDC : IVideoProvider
{
public ushort[] VRAM = new ushort[0x8000];
public ushort[] SpriteAttributeTable = new ushort[256];
public readonly byte[] PatternBuffer = new byte[0x20000];
public readonly byte[] SpriteBuffer = new byte[0x20000];
public byte RegisterLatch;
public ushort[] Registers = new ushort[0x20];
public ushort ReadBuffer;
public byte StatusByte;
internal bool DmaRequested;
internal bool SatDmaRequested;
internal bool SatDmaPerformed;
public ushort IncrementWidth
{
get
{
switch ((Registers[5] >> 11) & 3)
{
case 0: return 1;
case 1: return 32;
case 2: return 64;
case 3: return 128;
}
return 1;
}
}
public bool BackgroundEnabled => (Registers[CR] & 0x80) != 0;
public bool SpritesEnabled => (Registers[CR] & 0x40) != 0;
public bool VBlankInterruptEnabled => (Registers[CR] & 0x08) != 0;
public bool RasterCompareInterruptEnabled => (Registers[CR] & 0x04) != 0;
public bool SpriteOverflowInterruptEnabled => (Registers[CR] & 0x02) != 0;
public bool SpriteCollisionInterruptEnabled => (Registers[CR] & 0x01) != 0;
public bool Sprite4ColorModeEnabled => (Registers[MWR] & 0x0C) == 4;
public int BatWidth { get { switch ((Registers[MWR] >> 4) & 3) { case 0: return 32; case 1: return 64; default: return 128; } } }
public int BatHeight => (Registers[MWR] & 0x40) == 0 ? 32 : 64;
public int RequestedFrameWidth => ((Registers[HDR] & 0x3F) + 1) * 8;
public int RequestedFrameHeight => (Registers[VDW] & 0x1FF) + 1;
public int DisplayStartLine => (Registers[VPR] >> 8) + (Registers[VPR] & 0x1F);
public int ViewStartLine => (Registers[VPR] >> 8) + 2;
private const int MAWR = 0; // Memory Address Write Register
private const int MARR = 1; // Memory Address Read Register
private const int VRR = 2; // VRAM Read Register
private const int VWR = 2; // VRAM Write Register
private const int CR = 5; // Control Register
private const int RCR = 6; // Raster Compare Register
private const int BXR = 7; // Background X-scroll Register
private const int BYR = 8; // Background Y-scroll Register
private const int MWR = 9; // Memory-access Width Register
private const int HSR = 10; // Horizontal Sync Register
private const int HDR = 11; // Horizontal Display Register
private const int VPR = 12; // Vertical synchronous register
private const int VDW = 13; // Vertical display register
private const int VCR = 14; // Vertical display END position register;
private const int DCR = 15; // DMA Control Register
private const int SOUR = 16; // Source address for DMA
private const int DESR = 17; // Destination address for DMA
private const int LENR = 18; // Length of DMA transfer. Writing this will initiate DMA.
private const int SATB = 19; // Sprite Attribute Table base location in VRAM
private const int RegisterSelect = 0;
private const int LSB = 2;
private const int MSB = 3;
public const byte StatusVerticalBlanking = 0x20;
public const byte StatusVramVramDmaComplete = 0x10;
public const byte StatusVramSatDmaComplete = 0x08;
public const byte StatusRasterCompare = 0x04;
public const byte StatusSpriteOverflow = 0x02;
public const byte StatusSprite0Collision = 0x01;
const int VramSize = 0x8000;
private readonly PCEngine pce;
private readonly HuC6280 cpu;
private readonly VCE vce;
public int MultiResHack = 0;
public VDC(PCEngine pce, HuC6280 cpu, VCE vce)
{
this.pce = pce;
this.cpu = cpu;
this.vce = vce;
RenderBackgroundScanline = RenderBackgroundScanlineUnsafe;
Registers[HSR] = 0x00FF;
Registers[HDR] = 0x001F;
Registers[VDW] = 0x01FF;
Registers[VPR] = 0xFFFF;
Registers[VCR] = 0xFFFF;
ReadBuffer = 0xFFFF;
}
public void WriteVDC(int port, byte value)
{
cpu.PendingCycles--;
port &= 3;
if (port == RegisterSelect)
{
RegisterLatch = (byte)(value & 0x1F);
}
else if (port == LSB)
{
Registers[RegisterLatch] &= 0xFF00;
Registers[RegisterLatch] |= value;
if (RegisterLatch == BYR)
BackgroundY = Registers[BYR] & 0x1FF;
RegisterCommit(RegisterLatch, msbComplete: false);
}
else if (port == MSB)
{
Registers[RegisterLatch] &= 0x00FF;
Registers[RegisterLatch] |= (ushort)(value << 8);
RegisterCommit(RegisterLatch, msbComplete: true);
}
}
private void RegisterCommit(int register, bool msbComplete)
{
switch (register)
{
case MARR: // Memory Address Read Register
if (!msbComplete) break;
ReadBuffer = VRAM[Registers[MARR] & 0x7FFF];
break;
case VWR: // VRAM Write Register
if (!msbComplete) break;
if (Registers[MAWR] < VramSize) // Several games attempt to write past the end of VRAM
{
VRAM[Registers[MAWR]] = Registers[VWR];
UpdatePatternData((ushort)(Registers[MAWR] & 0x7FFF));
UpdateSpriteData((ushort)(Registers[MAWR] & 0x7FFF));
}
Registers[MAWR] += IncrementWidth;
break;
case BXR:
Registers[BXR] &= 0x3FF;
break;
case BYR:
Registers[BYR] &= 0x1FF;
BackgroundY = Registers[BYR];
break;
case HDR: // Horizontal Display Register - update framebuffer size
FrameWidth = RequestedFrameWidth;
FramePitch = MultiResHack == 0 ? FrameWidth : MultiResHack;
//if (FrameBuffer.Length != FramePitch * FrameHeight)
//FrameBuffer = new int[FramePitch * FrameHeight];
break;
case VDW: // Vertical Display Word? - update framebuffer size
//FrameHeight = RequestedFrameHeight;
FrameWidth = RequestedFrameWidth;
//if (FrameHeight > 242)
//FrameHeight = 242;
if (MultiResHack != 0)
FramePitch = MultiResHack;
//if (FrameBuffer.Length != FramePitch * FrameHeight)
//FrameBuffer = new int[FramePitch * FrameHeight];
break;
case LENR: // Initiate DMA transfer
if (!msbComplete) break;
DmaRequested = true;
break;
case SATB:
if (!msbComplete) break;
SatDmaRequested = true;
break;
}
}
public byte ReadVDC(int port)
{
cpu.PendingCycles--;
byte retval = 0;
port &= 3;
switch (port)
{
case 0: // return status byte;
retval = StatusByte;
StatusByte = 0; // maybe bit 6 should be preserved. but we dont currently emulate it.
cpu.IRQ1Assert = false;
return retval;
case 1: // unused
return 0;
case 2: // LSB
return (byte)ReadBuffer;
case 3: // MSB
retval = (byte)(ReadBuffer >> 8);
if (RegisterLatch == VRR)
{
Registers[MARR] += IncrementWidth;
ReadBuffer = VRAM[Registers[MARR] & 0x7FFF];
}
return retval;
}
return 0;
}
internal void RunDmaForScanline()
{
// TODO: dont do this all in one scanline. I guess it can do about 227 words per scanline.
// TODO: to be honest, dont do it in a block per scanline. put it in the CPU think function.
//Console.WriteLine("******************************* Doing some dma ******************************");
int advanceSource = (Registers[DCR] & 4) == 0 ? +1 : -1;
int advanceDest = (Registers[DCR] & 8) == 0 ? +1 : -1;
int wordsDone = 0;
for (; Registers[LENR] < 0xFFFF; Registers[LENR]--, wordsDone++)
{
VRAM[Registers[DESR] & 0x7FFF] = VRAM[Registers[SOUR] & 0x7FFF];
UpdatePatternData(Registers[DESR]);
UpdateSpriteData(Registers[DESR]);
Registers[DESR] = (ushort)(Registers[DESR] + advanceDest);
Registers[SOUR] = (ushort)(Registers[SOUR] + advanceSource);
/*if (wordsDone == 227) {
Console.WriteLine("ended dma for this scanline");
return;
}*/
}
DmaRequested = false;
//Console.WriteLine("DMA finished");
if ((Registers[DCR] & 2) > 0)
{
//Log.Note("Vdc","FIRE VRAM-VRAM DMA COMPLETE IRQ");
StatusByte |= StatusVramVramDmaComplete;
cpu.IRQ1Assert = true;
}
}
public void UpdateSpriteAttributeTable()
{
if ((SatDmaRequested || (Registers[DCR] & 0x10) != 0) && Registers[SATB] <= 0x7F00)
{
SatDmaRequested = false;
SatDmaPerformed = true;
for (int i = 0; i < 256; i++)
{
SpriteAttributeTable[i] = VRAM[Registers[SATB] + i];
}
}
}
public void UpdatePatternData(ushort addr)
{
int tileNo = addr >> 4;
int tileLineOffset = addr & 0x7;
int bitplane01 = VRAM[((tileNo * 16) + tileLineOffset) & 0x7FFF];
int bitplane23 = VRAM[((tileNo * 16) + tileLineOffset + 8) & 0x7FFF];
int patternBufferBase = (tileNo * 64) + (tileLineOffset * 8);
for (int x = 0; x < 8; x++)
{
byte pixel = (byte)((bitplane01 >> x) & 1);
pixel |= (byte)(((bitplane01 >> (x + 8)) & 1) << 1);
pixel |= (byte)(((bitplane23 >> x) & 1) << 2);
pixel |= (byte)(((bitplane23 >> (x + 8)) & 1) << 3);
PatternBuffer[patternBufferBase + (7 - x)] = pixel;
}
}
public void UpdateSpriteData(ushort addr)
{
int tileNo = addr >> 6;
int tileOfs = addr & 0x3F;
int bitplane = tileOfs / 16;
int line = addr & 0x0F;
int ofs = (tileNo * 256) + (line * 16) + 15;
ushort value = VRAM[addr & 0x7FFF];
byte bitAnd = (byte)(~(1 << bitplane));
byte bitOr = (byte)(1 << bitplane);
for (int i = 0; i < 16; i++)
{
if ((value & 1) == 1)
SpriteBuffer[ofs] |= bitOr;
else
SpriteBuffer[ofs] &= bitAnd;
ofs--;
value >>= 1;
}
}
public void SyncState(Serializer ser, int vdcNo)
{
ser.BeginSection("VDC"+vdcNo);
ser.Sync("VRAM", ref VRAM, false);
ser.Sync("SAT", ref SpriteAttributeTable, false);
ser.Sync("Registers", ref Registers, false);
ser.Sync("RegisterLatch", ref RegisterLatch);
ser.Sync("ReadBuffer", ref ReadBuffer);
ser.Sync("StatusByte", ref StatusByte);
ser.Sync("DmaRequested", ref DmaRequested);
ser.Sync("SatDmaRequested", ref SatDmaRequested);
ser.Sync("SatDmaPerformed", ref SatDmaPerformed);
ser.Sync("ScanLine", ref ScanLine);
ser.Sync("BackgroundY", ref BackgroundY);
ser.Sync("RCRCounter", ref RCRCounter);
ser.Sync("ActiveLine", ref ActiveLine);
ser.EndSection();
if (ser.IsReader)
{
for (ushort i = 0; i < VRAM.Length; i++)
{
UpdatePatternData(i);
UpdateSpriteData(i);
}
RegisterCommit(HDR, true);
RegisterCommit(VDW, true);
}
}
}
}