BizHawk/waterbox/picodrive/pico/memory.c

1248 lines
35 KiB
C

/*
* memory handling
* (c) Copyright Dave, 2004
* (C) notaz, 2006-2010
*
* This work is licensed under the terms of MAME license.
* See COPYING file in the top-level directory.
*/
#include "pico_int.h"
#include "memory.h"
#include "sound/ym2612.h"
#include "sound/sn76496.h"
extern unsigned int lastSSRamWrite; // used by serial eeprom code
uptr m68k_read8_map [0x1000000 >> M68K_MEM_SHIFT];
uptr m68k_read16_map [0x1000000 >> M68K_MEM_SHIFT];
uptr m68k_write8_map [0x1000000 >> M68K_MEM_SHIFT];
uptr m68k_write16_map[0x1000000 >> M68K_MEM_SHIFT];
static void xmap_set(uptr *map, int shift, int start_addr, int end_addr,
const void *func_or_mh, int is_func)
{
#ifdef __clang__
// workaround bug (segfault) in
// Apple LLVM version 4.2 (clang-425.0.27) (based on LLVM 3.2svn)
volatile
#endif
uptr addr = (uptr)func_or_mh;
int mask = (1 << shift) - 1;
int i;
if ((start_addr & mask) != 0 || (end_addr & mask) != mask) {
elprintf(EL_STATUS|EL_ANOMALY, "xmap_set: tried to map bad range: %06x-%06x",
start_addr, end_addr);
return;
}
if (addr & 1) {
elprintf(EL_STATUS|EL_ANOMALY, "xmap_set: ptr is not aligned: %08lx", addr);
return;
}
if (!is_func)
addr -= start_addr;
for (i = start_addr >> shift; i <= end_addr >> shift; i++) {
map[i] = addr >> 1;
if (is_func)
map[i] |= MAP_FLAG;
}
}
void z80_map_set(uptr *map, int start_addr, int end_addr,
const void *func_or_mh, int is_func)
{
xmap_set(map, Z80_MEM_SHIFT, start_addr, end_addr, func_or_mh, is_func);
}
void cpu68k_map_set(uptr *map, int start_addr, int end_addr,
const void *func_or_mh, int is_func)
{
xmap_set(map, M68K_MEM_SHIFT, start_addr, end_addr, func_or_mh, is_func);
}
// more specialized/optimized function (does same as above)
void cpu68k_map_all_ram(int start_addr, int end_addr, void *ptr, int is_sub)
{
uptr *r8map, *r16map, *w8map, *w16map;
uptr addr = (uptr)ptr;
int shift = M68K_MEM_SHIFT;
int i;
if (!is_sub) {
r8map = m68k_read8_map;
r16map = m68k_read16_map;
w8map = m68k_write8_map;
w16map = m68k_write16_map;
} else {
r8map = s68k_read8_map;
r16map = s68k_read16_map;
w8map = s68k_write8_map;
w16map = s68k_write16_map;
}
addr -= start_addr;
addr >>= 1;
for (i = start_addr >> shift; i <= end_addr >> shift; i++)
r8map[i] = r16map[i] = w8map[i] = w16map[i] = addr;
}
static u32 m68k_unmapped_read8(u32 a)
{
elprintf(EL_UIO, "m68k unmapped r8 [%06x] @%06x", a, SekPc);
return 0; // assume pulldown, as if MegaCD2 was attached
}
static u32 m68k_unmapped_read16(u32 a)
{
elprintf(EL_UIO, "m68k unmapped r16 [%06x] @%06x", a, SekPc);
return 0;
}
static void m68k_unmapped_write8(u32 a, u32 d)
{
elprintf(EL_UIO, "m68k unmapped w8 [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
static void m68k_unmapped_write16(u32 a, u32 d)
{
elprintf(EL_UIO, "m68k unmapped w16 [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
void m68k_map_unmap(int start_addr, int end_addr)
{
#ifdef __clang__
// workaround bug (segfault) in
// Apple LLVM version 4.2 (clang-425.0.27) (based on LLVM 3.2svn)
volatile
#endif
uptr addr;
int shift = M68K_MEM_SHIFT;
int i;
addr = (uptr)m68k_unmapped_read8;
for (i = start_addr >> shift; i <= end_addr >> shift; i++)
m68k_read8_map[i] = (addr >> 1) | MAP_FLAG;
addr = (uptr)m68k_unmapped_read16;
for (i = start_addr >> shift; i <= end_addr >> shift; i++)
m68k_read16_map[i] = (addr >> 1) | MAP_FLAG;
addr = (uptr)m68k_unmapped_write8;
for (i = start_addr >> shift; i <= end_addr >> shift; i++)
m68k_write8_map[i] = (addr >> 1) | MAP_FLAG;
addr = (uptr)m68k_unmapped_write16;
for (i = start_addr >> shift; i <= end_addr >> shift; i++)
m68k_write16_map[i] = (addr >> 1) | MAP_FLAG;
}
MAKE_68K_READ8(m68k_read8, m68k_read8_map)
MAKE_68K_READ16(m68k_read16, m68k_read16_map)
MAKE_68K_READ32(m68k_read32, m68k_read16_map)
MAKE_68K_WRITE8(m68k_write8, m68k_write8_map)
MAKE_68K_WRITE16(m68k_write16, m68k_write16_map)
MAKE_68K_WRITE32(m68k_write32, m68k_write16_map)
// -----------------------------------------------------------------
static u32 ym2612_read_local_68k(void);
static int ym2612_write_local(u32 a, u32 d, int is_from_z80);
static void z80_mem_setup(void);
#ifdef _ASM_MEMORY_C
u32 PicoRead8_sram(u32 a);
u32 PicoRead16_sram(u32 a);
#endif
#ifdef EMU_CORE_DEBUG
u32 lastread_a, lastread_d[16]={0,}, lastwrite_cyc_d[16]={0,}, lastwrite_mus_d[16]={0,};
int lrp_cyc=0, lrp_mus=0, lwp_cyc=0, lwp_mus=0;
extern unsigned int ppop;
#endif
#ifdef IO_STATS
void log_io(unsigned int addr, int bits, int rw);
#elif defined(_MSC_VER)
#define log_io
#else
#define log_io(...)
#endif
#if defined(EMU_C68K)
void cyclone_crashed(u32 pc, struct Cyclone *context)
{
elprintf(EL_STATUS|EL_ANOMALY, "%c68k crash detected @ %06x",
context == &PicoCpuCM68k ? 'm' : 's', pc);
context->membase = (u32)Pico.rom;
context->pc = (u32)Pico.rom + Pico.romsize;
}
#endif
// -----------------------------------------------------------------
// memmap helpers
static u32 read_pad_3btn(int i, u32 out_bits)
{
u32 pad = ~PicoPadInt[i]; // Get inverse of pad MXYZ SACB RLDU
u32 value;
if (out_bits & 0x40) // TH
value = pad & 0x3f; // ?1CB RLDU
else
value = ((pad & 0xc0) >> 2) | (pad & 3); // ?0SA 00DU
value |= out_bits & 0x40;
return value;
}
static u32 read_pad_6btn(int i, u32 out_bits)
{
u32 pad = ~PicoPadInt[i]; // Get inverse of pad MXYZ SACB RLDU
int phase = Pico.m.padTHPhase[i];
u32 value;
if (phase == 2 && !(out_bits & 0x40)) {
value = (pad & 0xc0) >> 2; // ?0SA 0000
goto out;
}
else if(phase == 3) {
if (out_bits & 0x40)
return (pad & 0x30) | ((pad >> 8) & 0xf); // ?1CB MXYZ
else
return ((pad & 0xc0) >> 2) | 0x0f; // ?0SA 1111
goto out;
}
if (out_bits & 0x40) // TH
value = pad & 0x3f; // ?1CB RLDU
else
value = ((pad & 0xc0) >> 2) | (pad & 3); // ?0SA 00DU
out:
value |= out_bits & 0x40;
return value;
}
static u32 read_nothing(int i, u32 out_bits)
{
return 0xff;
}
typedef u32 (port_read_func)(int index, u32 out_bits);
static port_read_func *port_readers[3] = {
read_pad_3btn,
read_pad_3btn,
read_nothing
};
void (*PicoInputCallback)(void);
int PicoInputWasRead;
static NOINLINE u32 port_read(int i)
{
PicoInputWasRead = 1;
if (PicoInputCallback)
PicoInputCallback();
u32 data_reg = Pico.ioports[i + 1];
u32 ctrl_reg = Pico.ioports[i + 4] | 0x80;
u32 in, out;
out = data_reg & ctrl_reg;
out |= 0x7f & ~ctrl_reg; // pull-ups
in = port_readers[i](i, out);
return (in & ~ctrl_reg) | (data_reg & ctrl_reg);
}
void PicoSetInputDevice(int port, enum input_device device)
{
port_read_func *func;
if (port < 0 || port > 2)
return;
switch (device) {
case PICO_INPUT_PAD_3BTN:
func = read_pad_3btn;
break;
case PICO_INPUT_PAD_6BTN:
func = read_pad_6btn;
break;
default:
func = read_nothing;
break;
}
port_readers[port] = func;
}
NOINLINE u32 io_ports_read(u32 a)
{
u32 d;
a = (a>>1) & 0xf;
switch (a) {
case 0: d = Pico.m.hardware; break; // Hardware value (Version register)
case 1: d = port_read(0); break;
case 2: d = port_read(1); break;
case 3: d = port_read(2); break;
default: d = Pico.ioports[a]; break; // IO ports can be used as RAM
}
return d;
}
NOINLINE void io_ports_write(u32 a, u32 d)
{
a = (a>>1) & 0xf;
// 6 button gamepad: if TH went from 0 to 1, gamepad changes state
if (1 <= a && a <= 2)
{
Pico.m.padDelay[a - 1] = 0;
if (!(Pico.ioports[a] & 0x40) && (d & 0x40))
Pico.m.padTHPhase[a - 1]++;
}
// certain IO ports can be used as RAM
Pico.ioports[a] = d;
}
// lame..
static int z80_cycles_from_68k(void)
{
return z80_cycle_aim
+ cycles_68k_to_z80(SekCyclesDone() - last_z80_sync);
}
void NOINLINE ctl_write_z80busreq(u32 d)
{
d&=1; d^=1;
elprintf(EL_BUSREQ, "set_zrun: %i->%i [%i] @%06x", Pico.m.z80Run, d, SekCyclesDone(), SekPc);
if (d ^ Pico.m.z80Run)
{
if (d)
{
z80_cycle_cnt = z80_cycles_from_68k();
}
else
{
if ((PicoOpt&POPT_EN_Z80) && !Pico.m.z80_reset) {
pprof_start(m68k);
PicoSyncZ80(SekCyclesDone());
pprof_end_sub(m68k);
}
}
Pico.m.z80Run = d;
}
}
void NOINLINE ctl_write_z80reset(u32 d)
{
d&=1; d^=1;
elprintf(EL_BUSREQ, "set_zreset: %i->%i [%i] @%06x", Pico.m.z80_reset, d, SekCyclesDone(), SekPc);
if (d ^ Pico.m.z80_reset)
{
if (d)
{
if ((PicoOpt&POPT_EN_Z80) && Pico.m.z80Run) {
pprof_start(m68k);
PicoSyncZ80(SekCyclesDone());
pprof_end_sub(m68k);
}
YM2612ResetChip();
timers_reset();
}
else
{
z80_cycle_cnt = z80_cycles_from_68k();
z80_reset();
}
Pico.m.z80_reset = d;
}
}
// -----------------------------------------------------------------
#ifndef _ASM_MEMORY_C
// cart (save) RAM area (usually 0x200000 - ...)
static u32 PicoRead8_sram(u32 a)
{
u32 d;
if (SRam.start <= a && a <= SRam.end && (Pico.m.sram_reg & SRR_MAPPED))
{
if (SRam.flags & SRF_EEPROM) {
d = EEPROM_read();
if (!(a & 1))
d >>= 8;
} else
d = *(u8 *)(SRam.data - SRam.start + a);
elprintf(EL_SRAMIO, "sram r8 [%06x] %02x @ %06x", a, d, SekPc);
return d;
}
// XXX: this is banking unfriendly
if (a < Pico.romsize)
return Pico.rom[a ^ 1];
return m68k_unmapped_read8(a);
}
static u32 PicoRead16_sram(u32 a)
{
u32 d;
if (SRam.start <= a && a <= SRam.end && (Pico.m.sram_reg & SRR_MAPPED))
{
if (SRam.flags & SRF_EEPROM)
d = EEPROM_read();
else {
u8 *pm = (u8 *)(SRam.data - SRam.start + a);
d = pm[0] << 8;
d |= pm[1];
}
elprintf(EL_SRAMIO, "sram r16 [%06x] %04x @ %06x", a, d, SekPc);
return d;
}
if (a < Pico.romsize)
return *(u16 *)(Pico.rom + a);
return m68k_unmapped_read16(a);
}
#endif // _ASM_MEMORY_C
static void PicoWrite8_sram(u32 a, u32 d)
{
if (a > SRam.end || a < SRam.start || !(Pico.m.sram_reg & SRR_MAPPED)) {
m68k_unmapped_write8(a, d);
return;
}
elprintf(EL_SRAMIO, "sram w8 [%06x] %02x @ %06x", a, d & 0xff, SekPc);
if (SRam.flags & SRF_EEPROM)
{
EEPROM_write8(a, d);
}
else {
u8 *pm = (u8 *)(SRam.data - SRam.start + a);
if (*pm != (u8)d) {
SRam.changed = 1;
*pm = (u8)d;
}
}
}
static void PicoWrite16_sram(u32 a, u32 d)
{
if (a > SRam.end || a < SRam.start || !(Pico.m.sram_reg & SRR_MAPPED)) {
m68k_unmapped_write16(a, d);
return;
}
elprintf(EL_SRAMIO, "sram w16 [%06x] %04x @ %06x", a, d & 0xffff, SekPc);
if (SRam.flags & SRF_EEPROM)
{
EEPROM_write16(d);
}
else {
// XXX: hardware could easily use MSB too..
u8 *pm = (u8 *)(SRam.data - SRam.start + a);
if (*pm != (u8)d) {
SRam.changed = 1;
*pm = (u8)d;
}
}
}
// z80 area (0xa00000 - 0xa0ffff)
// TODO: verify mirrors VDP and bank reg (bank area mirroring verified)
static u32 PicoRead8_z80(u32 a)
{
u32 d = 0xff;
if ((Pico.m.z80Run & 1) || Pico.m.z80_reset) {
elprintf(EL_ANOMALY, "68k z80 read with no bus! [%06x] @ %06x", a, SekPc);
// open bus. Pulled down if MegaCD2 is attached.
return 0;
}
if ((a & 0x4000) == 0x0000)
d = Pico.zram[a & 0x1fff];
else if ((a & 0x6000) == 0x4000) // 0x4000-0x5fff
d = ym2612_read_local_68k();
else
elprintf(EL_UIO|EL_ANOMALY, "68k bad read [%06x] @%06x", a, SekPc);
return d;
}
static u32 PicoRead16_z80(u32 a)
{
u32 d = PicoRead8_z80(a);
return d | (d << 8);
}
static void PicoWrite8_z80(u32 a, u32 d)
{
if ((Pico.m.z80Run & 1) || Pico.m.z80_reset) {
// verified on real hw
elprintf(EL_ANOMALY, "68k z80 write with no bus or reset! [%06x] %02x @ %06x", a, d&0xff, SekPc);
return;
}
if ((a & 0x4000) == 0x0000) { // z80 RAM
SekCyclesBurnRun(2); // FIXME hack
Pico.zram[a & 0x1fff] = (u8)d;
return;
}
if ((a & 0x6000) == 0x4000) { // FM Sound
if (PicoOpt & POPT_EN_FM)
emustatus |= ym2612_write_local(a&3, d&0xff, 0)&1;
return;
}
// TODO: probably other VDP access too? Maybe more mirrors?
if ((a & 0x7ff9) == 0x7f11) { // PSG Sound
if (PicoOpt & POPT_EN_PSG)
SN76496Write(d);
return;
}
if ((a & 0x7f00) == 0x6000) // Z80 BANK register
{
Pico.m.z80_bank68k >>= 1;
Pico.m.z80_bank68k |= d << 8;
Pico.m.z80_bank68k &= 0x1ff; // 9 bits and filled in the new top one
elprintf(EL_Z80BNK, "z80 bank=%06x", Pico.m.z80_bank68k << 15);
return;
}
elprintf(EL_UIO|EL_ANOMALY, "68k bad write [%06x] %02x @ %06x", a, d&0xff, SekPc);
}
static void PicoWrite16_z80(u32 a, u32 d)
{
// for RAM, only most significant byte is sent
// TODO: verify remaining accesses
PicoWrite8_z80(a, d >> 8);
}
#ifndef _ASM_MEMORY_C
// IO/control area (0xa10000 - 0xa1ffff)
u32 PicoRead8_io(u32 a)
{
u32 d;
if ((a & 0xffe0) == 0x0000) { // I/O ports
d = io_ports_read(a);
goto end;
}
// faking open bus (MegaCD pulldowns don't work here curiously)
d = Pico.m.rotate++;
d ^= d << 6;
if ((a & 0xfc00) == 0x1000) {
// bit8 seems to be readable in this range
if (!(a & 1))
d &= ~0x01;
if ((a & 0xff01) == 0x1100) { // z80 busreq (verified)
d |= (Pico.m.z80Run | Pico.m.z80_reset) & 1;
elprintf(EL_BUSREQ, "get_zrun: %02x [%i] @%06x", d, SekCyclesDone(), SekPc);
}
goto end;
}
if (PicoOpt & POPT_EN_32X) {
d = PicoRead8_32x(a);
goto end;
}
d = m68k_unmapped_read8(a);
end:
return d;
}
u32 PicoRead16_io(u32 a)
{
u32 d;
if ((a & 0xffe0) == 0x0000) { // I/O ports
d = io_ports_read(a);
d |= d << 8;
goto end;
}
// faking open bus
d = (Pico.m.rotate += 0x41);
d ^= (d << 5) ^ (d << 8);
// bit8 seems to be readable in this range
if ((a & 0xfc00) == 0x1000) {
d &= ~0x0100;
if ((a & 0xff00) == 0x1100) { // z80 busreq
d |= ((Pico.m.z80Run | Pico.m.z80_reset) & 1) << 8;
elprintf(EL_BUSREQ, "get_zrun: %04x [%i] @%06x", d, SekCyclesDone(), SekPc);
}
goto end;
}
if (PicoOpt & POPT_EN_32X) {
d = PicoRead16_32x(a);
goto end;
}
d = m68k_unmapped_read16(a);
end:
return d;
}
void PicoWrite8_io(u32 a, u32 d)
{
if ((a & 0xffe1) == 0x0001) { // I/O ports (verified: only LSB!)
io_ports_write(a, d);
return;
}
if ((a & 0xff01) == 0x1100) { // z80 busreq
ctl_write_z80busreq(d);
return;
}
if ((a & 0xff01) == 0x1200) { // z80 reset
ctl_write_z80reset(d);
return;
}
if (a == 0xa130f1) { // sram access register
elprintf(EL_SRAMIO, "sram reg=%02x", d);
Pico.m.sram_reg &= ~(SRR_MAPPED|SRR_READONLY);
Pico.m.sram_reg |= (u8)(d & 3);
return;
}
if (PicoOpt & POPT_EN_32X) {
PicoWrite8_32x(a, d);
return;
}
m68k_unmapped_write8(a, d);
}
void PicoWrite16_io(u32 a, u32 d)
{
if ((a & 0xffe0) == 0x0000) { // I/O ports (verified: only LSB!)
io_ports_write(a, d);
return;
}
if ((a & 0xff00) == 0x1100) { // z80 busreq
ctl_write_z80busreq(d >> 8);
return;
}
if ((a & 0xff00) == 0x1200) { // z80 reset
ctl_write_z80reset(d >> 8);
return;
}
if (a == 0xa130f0) { // sram access register
elprintf(EL_SRAMIO, "sram reg=%02x", d);
Pico.m.sram_reg &= ~(SRR_MAPPED|SRR_READONLY);
Pico.m.sram_reg |= (u8)(d & 3);
return;
}
if (PicoOpt & POPT_EN_32X) {
PicoWrite16_32x(a, d);
return;
}
m68k_unmapped_write16(a, d);
}
#endif // _ASM_MEMORY_C
// VDP area (0xc00000 - 0xdfffff)
// TODO: verify if lower byte goes to PSG on word writes
static u32 PicoRead8_vdp(u32 a)
{
if ((a & 0x00e0) == 0x0000)
return PicoVideoRead8(a);
elprintf(EL_UIO|EL_ANOMALY, "68k bad read [%06x] @%06x", a, SekPc);
return 0;
}
static u32 PicoRead16_vdp(u32 a)
{
if ((a & 0x00e0) == 0x0000)
return PicoVideoRead(a);
elprintf(EL_UIO|EL_ANOMALY, "68k bad read [%06x] @%06x", a, SekPc);
return 0;
}
static void PicoWrite8_vdp(u32 a, u32 d)
{
if ((a & 0x00f9) == 0x0011) { // PSG Sound
if (PicoOpt & POPT_EN_PSG)
SN76496Write(d);
return;
}
if ((a & 0x00e0) == 0x0000) {
d &= 0xff;
PicoVideoWrite(a, d | (d << 8));
return;
}
elprintf(EL_UIO|EL_ANOMALY, "68k bad write [%06x] %02x @%06x", a, d & 0xff, SekPc);
}
static void PicoWrite16_vdp(u32 a, u32 d)
{
if ((a & 0x00f9) == 0x0010) { // PSG Sound
if (PicoOpt & POPT_EN_PSG)
SN76496Write(d);
return;
}
if ((a & 0x00e0) == 0x0000) {
PicoVideoWrite(a, d);
return;
}
elprintf(EL_UIO|EL_ANOMALY, "68k bad write [%06x] %04x @%06x", a, d & 0xffff, SekPc);
}
// -----------------------------------------------------------------
#ifdef EMU_M68K
static void m68k_mem_setup(void);
#endif
PICO_INTERNAL void PicoMemSetup(void)
{
int mask, rs, a;
// setup the memory map
cpu68k_map_set(m68k_read8_map, 0x000000, 0xffffff, m68k_unmapped_read8, 1);
cpu68k_map_set(m68k_read16_map, 0x000000, 0xffffff, m68k_unmapped_read16, 1);
cpu68k_map_set(m68k_write8_map, 0x000000, 0xffffff, m68k_unmapped_write8, 1);
cpu68k_map_set(m68k_write16_map, 0x000000, 0xffffff, m68k_unmapped_write16, 1);
// ROM
// align to bank size. We know ROM loader allocated enough for this
mask = (1 << M68K_MEM_SHIFT) - 1;
rs = (Pico.romsize + mask) & ~mask;
cpu68k_map_set(m68k_read8_map, 0x000000, rs - 1, Pico.rom, 0);
cpu68k_map_set(m68k_read16_map, 0x000000, rs - 1, Pico.rom, 0);
// Common case of on-cart (save) RAM, usually at 0x200000-...
if ((SRam.flags & SRF_ENABLED) && SRam.data != NULL) {
rs = SRam.end - SRam.start;
rs = (rs + mask) & ~mask;
if (SRam.start + rs >= 0x1000000)
rs = 0x1000000 - SRam.start;
cpu68k_map_set(m68k_read8_map, SRam.start, SRam.start + rs - 1, PicoRead8_sram, 1);
cpu68k_map_set(m68k_read16_map, SRam.start, SRam.start + rs - 1, PicoRead16_sram, 1);
cpu68k_map_set(m68k_write8_map, SRam.start, SRam.start + rs - 1, PicoWrite8_sram, 1);
cpu68k_map_set(m68k_write16_map, SRam.start, SRam.start + rs - 1, PicoWrite16_sram, 1);
}
// Z80 region
cpu68k_map_set(m68k_read8_map, 0xa00000, 0xa0ffff, PicoRead8_z80, 1);
cpu68k_map_set(m68k_read16_map, 0xa00000, 0xa0ffff, PicoRead16_z80, 1);
cpu68k_map_set(m68k_write8_map, 0xa00000, 0xa0ffff, PicoWrite8_z80, 1);
cpu68k_map_set(m68k_write16_map, 0xa00000, 0xa0ffff, PicoWrite16_z80, 1);
// IO/control region
cpu68k_map_set(m68k_read8_map, 0xa10000, 0xa1ffff, PicoRead8_io, 1);
cpu68k_map_set(m68k_read16_map, 0xa10000, 0xa1ffff, PicoRead16_io, 1);
cpu68k_map_set(m68k_write8_map, 0xa10000, 0xa1ffff, PicoWrite8_io, 1);
cpu68k_map_set(m68k_write16_map, 0xa10000, 0xa1ffff, PicoWrite16_io, 1);
// VDP region
for (a = 0xc00000; a < 0xe00000; a += 0x010000) {
if ((a & 0xe700e0) != 0xc00000)
continue;
cpu68k_map_set(m68k_read8_map, a, a + 0xffff, PicoRead8_vdp, 1);
cpu68k_map_set(m68k_read16_map, a, a + 0xffff, PicoRead16_vdp, 1);
cpu68k_map_set(m68k_write8_map, a, a + 0xffff, PicoWrite8_vdp, 1);
cpu68k_map_set(m68k_write16_map, a, a + 0xffff, PicoWrite16_vdp, 1);
}
// RAM and it's mirrors
for (a = 0xe00000; a < 0x1000000; a += 0x010000) {
cpu68k_map_set(m68k_read8_map, a, a + 0xffff, Pico.ram, 0);
cpu68k_map_set(m68k_read16_map, a, a + 0xffff, Pico.ram, 0);
cpu68k_map_set(m68k_write8_map, a, a + 0xffff, Pico.ram, 0);
cpu68k_map_set(m68k_write16_map, a, a + 0xffff, Pico.ram, 0);
}
// Setup memory callbacks:
#ifdef EMU_C68K
PicoCpuCM68k.read8 = (void *)m68k_read8_map;
PicoCpuCM68k.read16 = (void *)m68k_read16_map;
PicoCpuCM68k.read32 = (void *)m68k_read16_map;
PicoCpuCM68k.write8 = (void *)m68k_write8_map;
PicoCpuCM68k.write16 = (void *)m68k_write16_map;
PicoCpuCM68k.write32 = (void *)m68k_write16_map;
PicoCpuCM68k.checkpc = NULL; /* unused */
PicoCpuCM68k.fetch8 = NULL;
PicoCpuCM68k.fetch16 = NULL;
PicoCpuCM68k.fetch32 = NULL;
#endif
#ifdef EMU_F68K
PicoCpuFM68k.read_byte = m68k_read8;
PicoCpuFM68k.read_word = m68k_read16;
PicoCpuFM68k.read_long = m68k_read32;
PicoCpuFM68k.write_byte = m68k_write8;
PicoCpuFM68k.write_word = m68k_write16;
PicoCpuFM68k.write_long = m68k_write32;
// setup FAME fetchmap
{
int i;
// by default, point everything to first 64k of ROM
for (i = 0; i < M68K_FETCHBANK1; i++)
PicoCpuFM68k.Fetch[i] = (unsigned long)Pico.rom - (i<<(24-FAMEC_FETCHBITS));
// now real ROM
for (i = 0; i < M68K_FETCHBANK1 && (i<<(24-FAMEC_FETCHBITS)) < Pico.romsize; i++)
PicoCpuFM68k.Fetch[i] = (unsigned long)Pico.rom;
// .. and RAM
for (i = M68K_FETCHBANK1*14/16; i < M68K_FETCHBANK1; i++)
PicoCpuFM68k.Fetch[i] = (unsigned long)Pico.ram - (i<<(24-FAMEC_FETCHBITS));
}
#endif
#ifdef EMU_M68K
m68k_mem_setup();
#endif
z80_mem_setup();
}
#ifdef EMU_M68K
unsigned int (*pm68k_read_memory_8) (unsigned int address) = NULL;
unsigned int (*pm68k_read_memory_16)(unsigned int address) = NULL;
unsigned int (*pm68k_read_memory_32)(unsigned int address) = NULL;
void (*pm68k_write_memory_8) (unsigned int address, unsigned char value) = NULL;
void (*pm68k_write_memory_16)(unsigned int address, unsigned short value) = NULL;
void (*pm68k_write_memory_32)(unsigned int address, unsigned int value) = NULL;
/* it appears that Musashi doesn't always mask the unused bits */
unsigned int m68k_read_memory_8 (unsigned int address) { return pm68k_read_memory_8 (address) & 0xff; }
unsigned int m68k_read_memory_16(unsigned int address) { return pm68k_read_memory_16(address) & 0xffff; }
unsigned int m68k_read_memory_32(unsigned int address) { return pm68k_read_memory_32(address); }
void m68k_write_memory_8 (unsigned int address, unsigned int value) { pm68k_write_memory_8 (address, (u8)value); }
void m68k_write_memory_16(unsigned int address, unsigned int value) { pm68k_write_memory_16(address,(u16)value); }
void m68k_write_memory_32(unsigned int address, unsigned int value) { pm68k_write_memory_32(address, value); }
static void m68k_mem_setup(void)
{
pm68k_read_memory_8 = m68k_read8;
pm68k_read_memory_16 = m68k_read16;
pm68k_read_memory_32 = m68k_read32;
pm68k_write_memory_8 = m68k_write8;
pm68k_write_memory_16 = m68k_write16;
pm68k_write_memory_32 = m68k_write32;
}
#endif // EMU_M68K
// -----------------------------------------------------------------
static int get_scanline(int is_from_z80)
{
if (is_from_z80) {
int cycles = z80_cyclesDone();
while (cycles - z80_scanline_cycles >= 228)
z80_scanline++, z80_scanline_cycles += 228;
return z80_scanline;
}
return Pico.m.scanline;
}
/* probably should not be in this file, but it's near related code here */
void ym2612_sync_timers(int z80_cycles, int mode_old, int mode_new)
{
int xcycles = z80_cycles << 8;
/* check for overflows */
if ((mode_old & 4) && xcycles > timer_a_next_oflow)
ym2612.OPN.ST.status |= 1;
if ((mode_old & 8) && xcycles > timer_b_next_oflow)
ym2612.OPN.ST.status |= 2;
/* update timer a */
if (mode_old & 1)
while (xcycles > timer_a_next_oflow)
timer_a_next_oflow += timer_a_step;
if ((mode_old ^ mode_new) & 1) // turning on/off
{
if (mode_old & 1)
timer_a_next_oflow = TIMER_NO_OFLOW;
else
timer_a_next_oflow = xcycles + timer_a_step;
}
if (mode_new & 1)
elprintf(EL_YMTIMER, "timer a upd to %i @ %i", timer_a_next_oflow>>8, z80_cycles);
/* update timer b */
if (mode_old & 2)
while (xcycles > timer_b_next_oflow)
timer_b_next_oflow += timer_b_step;
if ((mode_old ^ mode_new) & 2)
{
if (mode_old & 2)
timer_b_next_oflow = TIMER_NO_OFLOW;
else
timer_b_next_oflow = xcycles + timer_b_step;
}
if (mode_new & 2)
elprintf(EL_YMTIMER, "timer b upd to %i @ %i", timer_b_next_oflow>>8, z80_cycles);
}
// ym2612 DAC and timer I/O handlers for z80
static int ym2612_write_local(u32 a, u32 d, int is_from_z80)
{
int addr;
a &= 3;
if (a == 1 && ym2612.OPN.ST.address == 0x2a) /* DAC data */
{
int scanline = get_scanline(is_from_z80);
//elprintf(EL_STATUS, "%03i -> %03i dac w %08x z80 %i", PsndDacLine, scanline, d, is_from_z80);
ym2612.dacout = ((int)d - 0x80) << 6;
if (PsndOut && ym2612.dacen && scanline >= PsndDacLine)
PsndDoDAC(scanline);
return 0;
}
switch (a)
{
case 0: /* address port 0 */
ym2612.OPN.ST.address = d;
ym2612.addr_A1 = 0;
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, -1);
#endif
return 0;
case 1: /* data port 0 */
if (ym2612.addr_A1 != 0)
return 0;
addr = ym2612.OPN.ST.address;
ym2612.REGS[addr] = d;
switch (addr)
{
case 0x24: // timer A High 8
case 0x25: { // timer A Low 2
int TAnew = (addr == 0x24) ? ((ym2612.OPN.ST.TA & 0x03)|(((int)d)<<2))
: ((ym2612.OPN.ST.TA & 0x3fc)|(d&3));
if (ym2612.OPN.ST.TA != TAnew)
{
//elprintf(EL_STATUS, "timer a set %i", TAnew);
ym2612.OPN.ST.TA = TAnew;
//ym2612.OPN.ST.TAC = (1024-TAnew)*18;
//ym2612.OPN.ST.TAT = 0;
timer_a_step = TIMER_A_TICK_ZCYCLES * (1024 - TAnew);
if (ym2612.OPN.ST.mode & 1) {
// this is not right, should really be done on overflow only
int cycles = is_from_z80 ? z80_cyclesDone() : z80_cycles_from_68k();
timer_a_next_oflow = (cycles << 8) + timer_a_step;
}
elprintf(EL_YMTIMER, "timer a set to %i, %i", 1024 - TAnew, timer_a_next_oflow>>8);
}
return 0;
}
case 0x26: // timer B
if (ym2612.OPN.ST.TB != d) {
//elprintf(EL_STATUS, "timer b set %i", d);
ym2612.OPN.ST.TB = d;
//ym2612.OPN.ST.TBC = (256-d) * 288;
//ym2612.OPN.ST.TBT = 0;
timer_b_step = TIMER_B_TICK_ZCYCLES * (256 - d); // 262800
if (ym2612.OPN.ST.mode & 2) {
int cycles = is_from_z80 ? z80_cyclesDone() : z80_cycles_from_68k();
timer_b_next_oflow = (cycles << 8) + timer_b_step;
}
elprintf(EL_YMTIMER, "timer b set to %i, %i", 256 - d, timer_b_next_oflow>>8);
}
return 0;
case 0x27: { /* mode, timer control */
int old_mode = ym2612.OPN.ST.mode;
int cycles = is_from_z80 ? z80_cyclesDone() : z80_cycles_from_68k();
ym2612.OPN.ST.mode = d;
elprintf(EL_YMTIMER, "st mode %02x", d);
ym2612_sync_timers(cycles, old_mode, d);
/* reset Timer a flag */
if (d & 0x10)
ym2612.OPN.ST.status &= ~1;
/* reset Timer b flag */
if (d & 0x20)
ym2612.OPN.ST.status &= ~2;
if ((d ^ old_mode) & 0xc0) {
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM) return YM2612Write_940(a, d, get_scanline(is_from_z80));
#endif
return 1;
}
return 0;
}
case 0x2b: { /* DAC Sel (YM2612) */
int scanline = get_scanline(is_from_z80);
ym2612.dacen = d & 0x80;
if (d & 0x80) PsndDacLine = scanline;
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, scanline);
#endif
return 0;
}
}
break;
case 2: /* address port 1 */
ym2612.OPN.ST.address = d;
ym2612.addr_A1 = 1;
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM) YM2612Write_940(a, d, -1);
#endif
return 0;
case 3: /* data port 1 */
if (ym2612.addr_A1 != 1)
return 0;
addr = ym2612.OPN.ST.address | 0x100;
ym2612.REGS[addr] = d;
break;
}
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM)
return YM2612Write_940(a, d, get_scanline(is_from_z80));
#endif
return YM2612Write_(a, d);
}
#define ym2612_read_local() \
if (xcycles >= timer_a_next_oflow) \
ym2612.OPN.ST.status |= (ym2612.OPN.ST.mode >> 2) & 1; \
if (xcycles >= timer_b_next_oflow) \
ym2612.OPN.ST.status |= (ym2612.OPN.ST.mode >> 2) & 2
static u32 ym2612_read_local_z80(void)
{
int xcycles = z80_cyclesDone() << 8;
ym2612_read_local();
elprintf(EL_YMTIMER, "timer z80 read %i, sched %i, %i @ %i|%i", ym2612.OPN.ST.status,
timer_a_next_oflow>>8, timer_b_next_oflow>>8, xcycles >> 8, (xcycles >> 8) / 228);
return ym2612.OPN.ST.status;
}
static u32 ym2612_read_local_68k(void)
{
int xcycles = z80_cycles_from_68k() << 8;
ym2612_read_local();
elprintf(EL_YMTIMER, "timer 68k read %i, sched %i, %i @ %i|%i", ym2612.OPN.ST.status,
timer_a_next_oflow>>8, timer_b_next_oflow>>8, xcycles >> 8, (xcycles >> 8) / 228);
return ym2612.OPN.ST.status;
}
void ym2612_pack_state(void)
{
// timers are saved as tick counts, in 16.16 int format
int tac, tat = 0, tbc, tbt = 0;
tac = 1024 - ym2612.OPN.ST.TA;
tbc = 256 - ym2612.OPN.ST.TB;
if (timer_a_next_oflow != TIMER_NO_OFLOW)
tat = (int)((double)(timer_a_step - timer_a_next_oflow) / (double)timer_a_step * tac * 65536);
if (timer_b_next_oflow != TIMER_NO_OFLOW)
tbt = (int)((double)(timer_b_step - timer_b_next_oflow) / (double)timer_b_step * tbc * 65536);
elprintf(EL_YMTIMER, "save: timer a %i/%i", tat >> 16, tac);
elprintf(EL_YMTIMER, "save: timer b %i/%i", tbt >> 16, tbc);
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM)
YM2612PicoStateSave2_940(tat, tbt);
else
#endif
YM2612PicoStateSave2(tat, tbt);
}
void ym2612_unpack_state(void)
{
int i, ret, tac, tat, tbc, tbt;
YM2612PicoStateLoad();
// feed all the registers and update internal state
for (i = 0x20; i < 0xA0; i++) {
ym2612_write_local(0, i, 0);
ym2612_write_local(1, ym2612.REGS[i], 0);
}
for (i = 0x30; i < 0xA0; i++) {
ym2612_write_local(2, i, 0);
ym2612_write_local(3, ym2612.REGS[i|0x100], 0);
}
for (i = 0xAF; i >= 0xA0; i--) { // must apply backwards
ym2612_write_local(2, i, 0);
ym2612_write_local(3, ym2612.REGS[i|0x100], 0);
ym2612_write_local(0, i, 0);
ym2612_write_local(1, ym2612.REGS[i], 0);
}
for (i = 0xB0; i < 0xB8; i++) {
ym2612_write_local(0, i, 0);
ym2612_write_local(1, ym2612.REGS[i], 0);
ym2612_write_local(2, i, 0);
ym2612_write_local(3, ym2612.REGS[i|0x100], 0);
}
#ifdef __GP2X__
if (PicoOpt & POPT_EXT_FM)
ret = YM2612PicoStateLoad2_940(&tat, &tbt);
else
#endif
ret = YM2612PicoStateLoad2(&tat, &tbt);
if (ret != 0) {
elprintf(EL_STATUS, "old ym2612 state");
return; // no saved timers
}
tac = (1024 - ym2612.OPN.ST.TA) << 16;
tbc = (256 - ym2612.OPN.ST.TB) << 16;
if (ym2612.OPN.ST.mode & 1)
timer_a_next_oflow = (int)((double)(tac - tat) / (double)tac * timer_a_step);
else
timer_a_next_oflow = TIMER_NO_OFLOW;
if (ym2612.OPN.ST.mode & 2)
timer_b_next_oflow = (int)((double)(tbc - tbt) / (double)tbc * timer_b_step);
else
timer_b_next_oflow = TIMER_NO_OFLOW;
elprintf(EL_YMTIMER, "load: %i/%i, timer_a_next_oflow %i", tat>>16, tac>>16, timer_a_next_oflow >> 8);
elprintf(EL_YMTIMER, "load: %i/%i, timer_b_next_oflow %i", tbt>>16, tbc>>16, timer_b_next_oflow >> 8);
}
#if defined(NO_32X) && defined(_ASM_MEMORY_C)
// referenced by asm code
u32 PicoRead8_32x(u32 a) { return 0; }
u32 PicoRead16_32x(u32 a) { return 0; }
void PicoWrite8_32x(u32 a, u32 d) {}
void PicoWrite16_32x(u32 a, u32 d) {}
#endif
// -----------------------------------------------------------------
// z80 memhandlers
static unsigned char z80_md_vdp_read(unsigned short a)
{
// TODO?
elprintf(EL_ANOMALY, "z80 invalid r8 [%06x] %02x", a, 0xff);
return 0xff;
}
static unsigned char z80_md_bank_read(unsigned short a)
{
unsigned int addr68k;
unsigned char ret;
addr68k = Pico.m.z80_bank68k<<15;
addr68k += a & 0x7fff;
ret = m68k_read8(addr68k);
elprintf(EL_Z80BNK, "z80->68k r8 [%06x] %02x", addr68k, ret);
return ret;
}
static void z80_md_ym2612_write(unsigned int a, unsigned char data)
{
if (PicoOpt & POPT_EN_FM)
emustatus |= ym2612_write_local(a, data, 1) & 1;
}
static void z80_md_vdp_br_write(unsigned int a, unsigned char data)
{
// TODO: allow full VDP access
if ((a&0xfff9) == 0x7f11) // 7f11 7f13 7f15 7f17
{
if (PicoOpt & POPT_EN_PSG)
SN76496Write(data);
return;
}
if ((a>>8) == 0x60)
{
Pico.m.z80_bank68k >>= 1;
Pico.m.z80_bank68k |= data << 8;
Pico.m.z80_bank68k &= 0x1ff; // 9 bits and filled in the new top one
return;
}
elprintf(EL_ANOMALY, "z80 invalid w8 [%06x] %02x", a, data);
}
static void z80_md_bank_write(unsigned int a, unsigned char data)
{
unsigned int addr68k;
addr68k = Pico.m.z80_bank68k << 15;
addr68k += a & 0x7fff;
elprintf(EL_Z80BNK, "z80->68k w8 [%06x] %02x", addr68k, data);
m68k_write8(addr68k, data);
}
// -----------------------------------------------------------------
static unsigned char z80_md_in(unsigned short p)
{
elprintf(EL_ANOMALY, "Z80 port %04x read", p);
return 0xff;
}
static void z80_md_out(unsigned short p, unsigned char d)
{
elprintf(EL_ANOMALY, "Z80 port %04x write %02x", p, d);
}
static void z80_mem_setup(void)
{
z80_map_set(z80_read_map, 0x0000, 0x1fff, Pico.zram, 0);
z80_map_set(z80_read_map, 0x2000, 0x3fff, Pico.zram, 0);
z80_map_set(z80_read_map, 0x4000, 0x5fff, ym2612_read_local_z80, 1);
z80_map_set(z80_read_map, 0x6000, 0x7fff, z80_md_vdp_read, 1);
z80_map_set(z80_read_map, 0x8000, 0xffff, z80_md_bank_read, 1);
z80_map_set(z80_write_map, 0x0000, 0x1fff, Pico.zram, 0);
z80_map_set(z80_write_map, 0x2000, 0x3fff, Pico.zram, 0);
z80_map_set(z80_write_map, 0x4000, 0x5fff, z80_md_ym2612_write, 1);
z80_map_set(z80_write_map, 0x6000, 0x7fff, z80_md_vdp_br_write, 1);
z80_map_set(z80_write_map, 0x8000, 0xffff, z80_md_bank_write, 1);
#ifdef _USE_DRZ80
drZ80.z80_in = z80_md_in;
drZ80.z80_out = z80_md_out;
#endif
#ifdef _USE_CZ80
Cz80_Set_Fetch(&CZ80, 0x0000, 0x1fff, (FPTR)Pico.zram); // main RAM
Cz80_Set_Fetch(&CZ80, 0x2000, 0x3fff, (FPTR)Pico.zram); // mirror
Cz80_Set_INPort(&CZ80, z80_md_in);
Cz80_Set_OUTPort(&CZ80, z80_md_out);
#endif
}
// vim:shiftwidth=2:ts=2:expandtab