BizHawk/psx/octoshock/cdrom/CDUtility.h

228 lines
6.3 KiB
C++

#ifndef __MDFN_CDROM_CDUTILITY_H
#define __MDFN_CDROM_CDUTILITY_H
#include <string.h>
namespace CDUtility
{
// Call once at app startup before creating any threads that could potentially cause re-entrancy to these functions.
// It will also be called automatically if needed for the first time a function in this namespace that requires
// the initialization function to be called is called, for potential
// usage in constructors of statically-declared objects.
void CDUtility_Init(void);
// Quick definitions here:
//
// ABA - Absolute block address, synonymous to absolute MSF
// aba = (m_a * 60 * 75) + (s_a * 75) + f_a
//
// LBA - Logical block address(related: data CDs are required to have a pregap of 2 seconds, IE 150 frames/sectors)
// lba = aba - 150
enum
{
ADR_NOQINFO = 0x00,
ADR_CURPOS = 0x01,
ADR_MCN = 0x02,
ADR_ISRC = 0x03
};
struct TOC_Track
{
uint8 adr;
uint8 control;
uint32 lba;
};
// SubQ control field flags.
enum
{
SUBQ_CTRLF_PRE = 0x01, // With 50/15us pre-emphasis.
SUBQ_CTRLF_DCP = 0x02, // Digital copy permitted.
SUBQ_CTRLF_DATA = 0x04, // Data track.
SUBQ_CTRLF_4CH = 0x08, // 4-channel CD-DA.
};
enum
{
DISC_TYPE_CDDA_OR_M1 = 0x00,
DISC_TYPE_CD_I = 0x10,
DISC_TYPE_CD_XA = 0x20
};
struct TOC
{
INLINE TOC()
{
Clear();
}
INLINE void Clear(void)
{
first_track = last_track = 0;
disc_type = 0;
memset(tracks, 0, sizeof(tracks)); // FIXME if we change TOC_Track to non-POD type.
}
INLINE int FindTrackByLBA(uint32 LBA)
{
for(int32 track = first_track; track <= (last_track + 1); track++)
{
if(track == (last_track + 1))
{
if(LBA < tracks[100].lba)
return(track - 1);
}
else
{
if(LBA < tracks[track].lba)
return(track - 1);
}
}
return(0);
}
uint8 first_track;
uint8 last_track;
uint8 disc_type;
TOC_Track tracks[100 + 1]; // [0] is unused, [100] is for the leadout track.
// Also, for convenience, tracks[last_track + 1] will always refer
// to the leadout track(even if last_track < 99, IE the leadout track details are duplicated).
};
//
// Address conversion functions.
//
static INLINE uint32 AMSF_to_ABA(int32 m_a, int32 s_a, int32 f_a)
{
return(f_a + 75 * s_a + 75 * 60 * m_a);
}
static INLINE void ABA_to_AMSF(uint32 aba, uint8 *m_a, uint8 *s_a, uint8 *f_a)
{
*m_a = aba / 75 / 60;
*s_a = (aba - *m_a * 75 * 60) / 75;
*f_a = aba - (*m_a * 75 * 60) - (*s_a * 75);
}
static INLINE int32 ABA_to_LBA(uint32 aba)
{
return(aba - 150);
}
static INLINE uint32 LBA_to_ABA(int32 lba)
{
return(lba + 150);
}
static INLINE int32 AMSF_to_LBA(uint8 m_a, uint8 s_a, uint8 f_a)
{
return(ABA_to_LBA(AMSF_to_ABA(m_a, s_a, f_a)));
}
static INLINE void LBA_to_AMSF(int32 lba, uint8 *m_a, uint8 *s_a, uint8 *f_a)
{
ABA_to_AMSF(LBA_to_ABA(lba), m_a, s_a, f_a);
}
//
// BCD conversion functions
//
static INLINE bool BCD_is_valid(uint8 bcd_number)
{
if((bcd_number & 0xF0) >= 0xA0)
return(false);
if((bcd_number & 0x0F) >= 0x0A)
return(false);
return(true);
}
static INLINE uint8 BCD_to_U8(uint8 bcd_number)
{
return( ((bcd_number >> 4) * 10) + (bcd_number & 0x0F) );
}
static INLINE uint8 U8_to_BCD(uint8 num)
{
return( ((num / 10) << 4) + (num % 10) );
}
// should always perform the conversion, even if the bcd number is invalid.
static INLINE bool BCD_to_U8_check(uint8 bcd_number, uint8 *out_number)
{
*out_number = BCD_to_U8(bcd_number);
if(!BCD_is_valid(bcd_number))
return(false);
return(true);
}
//
// Sector data encoding functions(to full 2352 bytes raw sector).
//
// sector_data must be able to contain at least 2352 bytes.
void encode_mode0_sector(uint32 aba, uint8 *sector_data);
void encode_mode1_sector(uint32 aba, uint8 *sector_data); // 2048 bytes of user data at offset 16
void encode_mode2_sector(uint32 aba, uint8 *sector_data); // 2336 bytes of user data at offset 16
void encode_mode2_form1_sector(uint32 aba, uint8 *sector_data); // 2048+8 bytes of user data at offset 16
void encode_mode2_form2_sector(uint32 aba, uint8 *sector_data); // 2324+8 bytes of user data at offset 16
// out_buf must be able to contain 2352+96 bytes.
// "mode" is only used if(toc.tracks[100].control & 0x4)
void synth_leadout_sector_lba(const uint8 mode, const TOC& toc, const int32 lba, uint8* out_buf);
//
// User data error detection and correction
//
// Check EDC of a mode 1 or mode 2 form 1 sector.
// Returns "true" if checksum is ok(matches).
// Returns "false" if checksum mismatch.
// sector_data should contain 2352 bytes of raw sector data.
bool edc_check(const uint8 *sector_data, bool xa);
// Check EDC and L-EC data of a mode 1 or mode 2 form 1 sector, and correct bit errors if any exist.
// Returns "true" if errors weren't detected, or they were corrected succesfully.
// Returns "false" if errors couldn't be corrected.
// sector_data should contain 2352 bytes of raw sector data.
bool edc_lec_check_and_correct(uint8 *sector_data, bool xa);
//
// Subchannel(Q in particular) functions
//
// Returns false on checksum mismatch, true on match.
bool subq_check_checksum(const uint8 *subq_buf);
// Calculates the checksum of Q subchannel data(not including the checksum bytes of course ;)) from subq_buf, and stores it into the appropriate position
// in subq_buf.
void subq_generate_checksum(uint8 *subq_buf);
// Deinterleaves 12 bytes of subchannel Q data from 96 bytes of interleaved subchannel PW data.
void subq_deinterleave(const uint8 *subpw_buf, uint8 *subq_buf);
// Deinterleaves 96 bytes of subchannel P-W data from 96 bytes of interleaved subchannel PW data.
void subpw_deinterleave(const uint8 *in_buf, uint8 *out_buf);
// Interleaves 96 bytes of subchannel P-W data from 96 bytes of uninterleaved subchannel PW data.
void subpw_interleave(const uint8 *in_buf, uint8 *out_buf);
// Extrapolates Q subchannel current position data from subq_input, with frame/sector delta position_delta, and writes to subq_output.
// Only valid for ADR_CURPOS.
// subq_input must pass subq_check_checksum().
// TODO
//void subq_extrapolate(const uint8 *subq_input, int32 position_delta, uint8 *subq_output);
// (De)Scrambles data sector.
void scrambleize_data_sector(uint8 *sector_data);
}
#endif