BizHawk/BizHawk.Emulation/Consoles/Nintendo/NES/APU.cs

464 lines
11 KiB
C#

using System;
using System.IO;
using System.Collections.Generic;
using BizHawk.Emulation.Sound;
//http://wiki.nesdev.com/w/index.php/APU_Mixer_Emulation
//http://wiki.nesdev.com/w/index.php/APU
//http://wiki.nesdev.com/w/index.php/APU_Pulse
//sequencer ref: http://wiki.nesdev.com/w/index.php/APU_Frame_Counter
namespace BizHawk.Emulation.Consoles.Nintendo
{
partial class NES
{
public class APU : ISoundProvider
{
public static bool CFG_USE_METASPU = true;
public static bool CFG_DECLICK = true;
NES nes;
public APU(NES nes)
{
this.nes = nes;
}
static int[] LENGTH_TABLE = { 10, 254, 20, 2, 40, 4, 80, 6, 160, 8, 60, 10, 14, 12, 26, 14, 12, 16, 24, 18, 48, 20, 96, 22, 192, 24, 72, 26, 16, 28, 32, 30 };
static byte[,] PULSE_DUTY = {
{0,1,0,0,0,0,0,0}, //(12.5%)
{0,1,1,0,0,0,0,0}, //(25%)
{0,1,1,1,1,0,0,0}, //(50%)
{1,0,0,1,1,1,1,1}, //(25% negated (75%))
};
static byte[] TRIANGLE_TABLE =
{
15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
};
class PulseUnit
{
public PulseUnit(int unit) { this.unit = unit; }
public int unit;
//reg0
int duty_cnt, env_loop, env_constant, env_cnt_value;
//reg1
int sweep_en, sweep_period, negate, shiftcount;
//reg2/3
int len_cnt;
int timer_raw_reload_value, timer_reload_value;
//from other apu regs
public int lenctr_en;
public void WriteReg(int addr, byte val)
{
//Console.WriteLine("write pulse {0:X} {1:X}", addr, val);
switch(addr)
{
case 0:
env_cnt_value = val & 0xF;
env_constant = (val >> 4) & 1;
env_loop = (val >> 5) & 1;
duty_cnt = (val >> 6) & 3;
break;
case 1:
shiftcount = val & 7;
negate = (val >> 3) & 1;
sweep_period = (val >> 4) & 7;
sweep_en = (val >> 7) & 1;
break;
case 2:
timer_reload_value = (timer_reload_value & ~0xFF) | val;
calc_sweep_unit();
break;
case 3:
len_cnt = LENGTH_TABLE[(val >> 3) & 0x1F];
timer_reload_value = (timer_reload_value & 0xFF) | ((val & 0x07) << 8);
timer_raw_reload_value = timer_reload_value * 2;
duty_step = 0;
timer_counter = timer_raw_reload_value;
calc_sweep_unit();
env_start_flag = 1;
//serves as a useful note-on diagnostic
//Console.WriteLine("{0} timer_reload_value: {1}", unit, timer_reload_value);
break;
}
}
int swp_val_result;
bool swp_silence;
int duty_step;
int timer_counter;
public int sample;
int env_start_flag, env_divider, env_counter, env_output;
void calc_sweep_unit()
{
//1's complement for chan 0, 2's complement if chan 1
if (negate == 1) //check to see if negate is on
swp_val_result = ~swp_val_result + unit;
//add with the shifter chan
swp_val_result += timer_reload_value;
if ((timer_reload_value < 8) ||
((swp_val_result > 0x7FF) && (negate==0)))
swp_silence = true; //silence
else
swp_silence = false; //don't silence
}
public void clock_length_and_sweep()
{
//(as well as length counter)
if(sweep_en==1)
timer_raw_reload_value = swp_val_result & 0x7FF;
}
public void clock_env()
{
if (env_start_flag == 1)
{
env_start_flag = 0;
env_divider = (env_cnt_value + 1);
env_counter = 15;
}
else
{
env_divider--;
if (env_divider == 0)
{
env_divider = (env_cnt_value + 1);
if (env_counter == 0)
{
if (env_loop == 1)
{
env_counter = 15;
}
}
else env_counter--;
}
}
if (env_constant == 1)
env_output = env_cnt_value;
else env_output = env_counter;
}
public void Run()
{
//sweep units are figured out during memory writes to the regs
//that set the timer, length counter are figured out in the
//writes and frame counter, and envelope is set through the memory
//regs also, so we just need to deal with the timer and sequencer here
timer_counter--;
if (timer_counter == 0)
{
duty_step = (duty_step + 1) & 7;
//reload timer
timer_counter = timer_raw_reload_value + 2;
}
if (PULSE_DUTY[duty_cnt, duty_step] == 1) //we are outputting something
{
sample = env_output;
if (swp_silence)
sample = 0;
//if (len_cnt==0) //length counter is 0
// sample = 0; //silenced
}
else
sample = 0; //duty cycle is 0, silenced.
}
}
class TriangleUnit
{
//reg0
int linear_counter_reload, control_flag;
//reg1 (n/a)
//reg2/3
int timer_cnt, length_counter_load, halt_flag;
public void WriteReg(int addr, byte val)
{
switch (addr)
{
case 0:
linear_counter_reload = (val & 0x7F);
control_flag = (val >> 7) & 1;
break;
case 1: break;
case 2:
timer_cnt = (timer_cnt & ~0xFF) | val;
break;
case 3:
timer_cnt = (timer_cnt & 0xFF) | ((val & 0x7) << 8);
timer_cnt_reload = timer_cnt + 1;
length_counter_load = (val>>3)&0x1F;
halt_flag = 1;
break;
}
}
int linear_counter, timer, timer_cnt_reload;
int seq;
public int sample;
public void Run()
{
//when clocked by timer
//seq steps forward
//except when linear counter or
//length counter is 0
bool en = length_counter_load != 0 && linear_counter != 0;
//length counter and linear counter
//is clocked in frame counter.
if (en)
{
timer--;
if (timer == 0)
{
seq = (seq + 1) & 0x1F;
timer = timer_cnt_reload;
}
if(CFG_DECLICK)
sample = TRIANGLE_TABLE[(seq+8)&0x1F];
else
sample = TRIANGLE_TABLE[seq];
}
else
sample = 0;
}
public void clock_length_and_sweep()
{
}
public void clock_linear_counter()
{
// Console.WriteLine("linear_counter: {0}", linear_counter);
if (halt_flag == 1)
{
timer = timer_cnt_reload;
linear_counter = linear_counter_reload;
}
else if (linear_counter != 0)
{
linear_counter--;
}
if (control_flag == 0)
{
halt_flag = 0;
}
}
}
PulseUnit[] pulse = { new PulseUnit(0), new PulseUnit(1) };
TriangleUnit triangle = new TriangleUnit();
int sequencer_counter, sequencer_step, sequencer_mode, sequencer_irq_inhibit, sequencer_irq_flag;
void sequencer_reset()
{
sequencer_counter = 0;
sequencer_step = 1;
if(sequencer_mode == 1) sequencer_check();
}
//21477272 master clock
//1789772 cpu clock (master / 12)
//240 apu clock (master / 89490) = (cpu / 7457)
void sequencer_tick()
{
sequencer_counter++;
//this figure is not valid for PAL. it must be recalculated
if (sequencer_counter != 7457) return;
sequencer_counter = 0;
sequencer_step++;
sequencer_check();
}
void sequencer_check()
{
switch (sequencer_mode)
{
case 0: //4-step
pulse[0].clock_env();
pulse[1].clock_env();
triangle.clock_linear_counter();
if (sequencer_step == 2 || sequencer_step == 4)
{
pulse[0].clock_length_and_sweep();
pulse[1].clock_length_and_sweep();
triangle.clock_length_and_sweep();
}
if (sequencer_step == 4)
{
if (sequencer_irq_inhibit == 0)
{
sequencer_irq_flag = 1;
//nes.cpu.Interrupt = true;
//Console.WriteLine("APU trigger IRQ (cpu needs implementation)");
}
sequencer_step = 0;
}
break;
case 1: //5-step
if (sequencer_step != 5)
{
pulse[0].clock_env();
pulse[1].clock_env();
triangle.clock_linear_counter();
}
if (sequencer_step == 1 || sequencer_step == 3)
{
pulse[0].clock_length_and_sweep();
pulse[1].clock_length_and_sweep();
triangle.clock_length_and_sweep();
}
if (sequencer_step == 5)
sequencer_step = 0;
break;
}
}
public void WriteReg(int addr, byte val)
{
switch (addr)
{
case 0x4000: case 0x4001: case 0x4002: case 0x4003:
pulse[0].WriteReg(addr - 0x4000, val);
break;
case 0x4004: case 0x4005: case 0x4006: case 0x4007:
pulse[1].WriteReg(addr - 0x4004, val);
break;
case 0x4008: case 0x4009: case 0x400A: case 0x400B:
triangle.WriteReg(addr - 0x4008, val);
break;
case 0x4015:
pulse[0].lenctr_en = (val & 1);
pulse[1].lenctr_en = ((val>>1) & 1);
break;
case 0x4017:
sequencer_mode = (val>>7)&1;
if(((val>>6)&1)==1)
sequencer_irq_inhibit = 0;
sequencer_reset();
break;
}
}
public byte ReadReg(int addr)
{
switch (addr)
{
default:
return 0x00;
}
}
public void Run(int cycles)
{
for (int i = 0; i < cycles; i++)
RunOne();
}
void RunOne()
{
pulse[0].Run();
pulse[1].Run();
triangle.Run();
int mix = 0;
mix += pulse[0].sample;
mix += pulse[1].sample;
mix += triangle.sample;
EmitSample(mix);
sequencer_tick();
//since the units run concurrently, the APU frame sequencer
//is ran last because
//it can change the ouput values of the pulse/triangle channels,
//we want the
//changes to affect it on the *next* cycle.
}
double accumulate;
double timer;
Queue<int> squeue = new Queue<int>();
int last_hwsamp;
void EmitSample(int samp)
{
int this_samp = samp;
const double kMixRate = 44100.0/1789772.0;
const double kInvMixRate = (1 / kMixRate);
timer += kMixRate;
accumulate += samp;
if (timer <= 1)
return;
accumulate -= samp;
timer -= 1;
double ratio = (timer / kMixRate);
double fractional = (this_samp - last_hwsamp) * ratio;
double factional_remainder = (this_samp - last_hwsamp) * (1-ratio);
accumulate += fractional;
accumulate *= 600;
int outsamp = (int)(accumulate / kInvMixRate);
if (CFG_USE_METASPU)
metaspu.buffer.enqueue_sample((short)outsamp, (short)outsamp);
else squeue.Enqueue(outsamp);
accumulate = factional_remainder;
last_hwsamp = this_samp;
}
MetaspuSoundProvider metaspu = new MetaspuSoundProvider(ESynchMethod.ESynchMethod_Z);
void ISoundProvider.GetSamples(short[] samples)
{
if(CFG_USE_METASPU)
metaspu.GetSamples(samples);
else
MyGetSamples(samples);
}
//static BinaryWriter bw = new BinaryWriter(File.OpenWrite("d:\\out.raw"));
void MyGetSamples(short[] samples)
{
//Console.WriteLine("a: {0} with todo: {1}",squeue.Count,samples.Length/2);
for (int i = 0; i < samples.Length/2; i++)
{
int samp = 0;
if (squeue.Count != 0)
samp = squeue.Dequeue();
samples[i*2+0] = (short)(samp);
samples[i*2+1] = (short)(samp);
//bw.Write((short)samp);
}
}
} //class APU
}
}