BizHawk/waterbox/bsnescore/bsnes/sfc/cpu/irq.cpp

95 lines
2.5 KiB
C++

//nmiPoll() and irqPoll() are called once every four clock cycles;
//as NMI steps by scanlines (divisible by 4) and IRQ by PPU 4-cycle dots.
//
//ppu.(vh)counter(n) returns the value of said counters n-clocks before current time;
//it is used to emulate hardware communication delay between opcode and interrupt units.
auto CPU::nmiPoll() -> void {
//NMI hold
if(status.nmiHold.lower() && io.nmiEnable) {
status.nmiTransition = 1;
}
//NMI test
if(status.nmiValid.flip(vcounter(2) >= ppu.vdisp())) {
if(status.nmiLine = status.nmiValid) status.nmiHold = 1; //hold /NMI for four cycles
}
}
auto CPU::irqPoll() -> void {
//IRQ hold
status.irqHold = 0;
if(status.irqLine && io.irqEnable) {
status.irqTransition = 1;
}
//IRQ test
if(status.irqValid.raise(io.irqEnable
&& (!io.virqEnable || vcounter(10) == io.vtime)
&& (!io.hirqEnable || hcounter(10) == io.htime)
&& (vcounter(6) || hcounter(6)) //IRQs cannot trigger on last dot of fields
)) status.irqLine = status.irqHold = 1; //hold /IRQ for four cycles
}
auto CPU::nmitimenUpdate(uint8 data) -> void {
io.hirqEnable = data & 0x10;
io.virqEnable = data & 0x20;
io.irqEnable = io.hirqEnable || io.virqEnable;
if(io.virqEnable && !io.hirqEnable && status.irqLine) {
status.irqTransition = 1;
} else if(!io.irqEnable) {
status.irqLine = 0;
status.irqTransition = 0;
}
if(io.nmiEnable.raise(data & 0x80) && status.nmiLine) {
status.nmiTransition = 1;
}
status.irqLock = 1;
}
auto CPU::rdnmi() -> bool {
bool result = status.nmiLine;
if(!status.nmiHold) {
status.nmiLine = 0;
}
return result;
}
auto CPU::timeup() -> bool {
bool result = status.irqLine;
if(!status.irqHold) {
status.irqLine = 0;
status.irqTransition = 0;
}
return result;
}
auto CPU::nmiTest() -> bool {
if(!status.nmiTransition) return 0;
status.nmiTransition = 0;
r.wai = 0;
return 1;
}
auto CPU::irqTest() -> bool {
if(!status.irqTransition && !r.irq) return 0;
status.irqTransition = 0;
r.wai = 0;
return !r.p.i;
}
//used to test for NMI/IRQ, which can trigger on the edge of every opcode.
//test one cycle early to simulate two-stage pipeline of the 65816 CPU.
//
//status.irqLock is used to simulate hardware delay before interrupts can
//trigger during certain events (immediately after DMA, writes to $4200, etc)
auto CPU::lastCycle() -> void {
if(!status.irqLock) {
if(nmiTest()) status.nmiPending = 1, status.interruptPending = 1;
if(irqTest()) status.irqPending = 1, status.interruptPending = 1;
}
}