using System; using System.Globalization; using System.IO; using BizHawk.Common; using BizHawk.Emulation.Common; using BizHawk.Common.NumberExtensions; // Z80A CPU namespace BizHawk.Emulation.Cores.Components.Z80A { public sealed partial class Z80A { // operations that can take place in an instruction public const ushort IDLE = 0; public const ushort OP = 1; public const ushort OP_F = 2; // used for repeating operations public const ushort HALT = 3; public const ushort RD = 4; public const ushort WR = 5; public const ushort RD_INC = 6; // read and increment public const ushort WR_INC = 7; // write and increment public const ushort WR_DEC = 8; // write and increment (for stack pointer) public const ushort TR = 9; public const ushort TR16 = 10; public const ushort ADD16 = 11; public const ushort ADD8 = 12; public const ushort SUB8 = 13; public const ushort ADC8 = 14; public const ushort SBC8 = 15; public const ushort SBC16 = 16; public const ushort ADC16 = 17; public const ushort INC16 = 18; public const ushort INC8 = 19; public const ushort DEC16 = 20; public const ushort DEC8 = 21; public const ushort RLC = 22; public const ushort RL = 23; public const ushort RRC = 24; public const ushort RR = 25; public const ushort CPL = 26; public const ushort DA = 27; public const ushort SCF = 28; public const ushort CCF = 29; public const ushort AND8 = 30; public const ushort XOR8 = 31; public const ushort OR8 = 32; public const ushort CP8 = 33; public const ushort SLA = 34; public const ushort SRA = 35; public const ushort SRL = 36; public const ushort SLL = 37; public const ushort BIT = 38; public const ushort RES = 39; public const ushort SET = 40; public const ushort EI = 41; public const ushort DI = 42; public const ushort EXCH = 43; public const ushort EXX = 44; public const ushort EXCH_16 = 45; public const ushort PREFIX = 46; public const ushort PREFETCH = 47; public const ushort ASGN = 48; public const ushort ADDS = 49; // signed 16 bit operation used in 2 instructions public const ushort INT_MODE = 50; public const ushort EI_RETN = 51; public const ushort EI_RETI = 52; // reti has no delay in interrupt enable public const ushort OUT = 53; public const ushort IN = 54; public const ushort NEG = 55; public const ushort RRD = 56; public const ushort RLD = 57; public const ushort SET_FL_LD_R = 58; public const ushort SET_FL_CP_R = 59; public const ushort SET_FL_IR = 60; public const ushort I_BIT = 61; public const ushort HL_BIT = 62; public const ushort FTCH_DB = 63; public const ushort WAIT = 64; // enterred when reading or writing and FlagW is true public const ushort RST = 65; public const ushort REP_OP_I = 66; public const ushort REP_OP_O = 67; public const ushort IN_A_N_INC = 68; public const ushort RD_INC_TR_PC = 69; // transfer WZ to PC after read public const ushort WR_TR_PC = 70; // transfer WZ to PC after write public const ushort OUT_INC = 71; public const ushort IN_INC = 72; public const ushort WR_INC_WA = 73; // A -> W after WR_INC public const ushort RD_OP = 74; public const ushort IORQ = 75; // non-state variables public ushort Ztemp1, Ztemp2, Ztemp3, Ztemp4; public byte temp_R; public Z80A() { Reset(); InitTableParity(); } public void Reset() { ResetRegisters(); ResetInterrupts(); TotalExecutedCycles = 0; cur_instr = new ushort[] {IDLE, DEC16, F, A, DEC16, SPl, SPh }; BUSRQ = new ushort[] { 0, 0, 0 }; MEMRQ = new ushort[] { 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; NO_prefix = true; } public IMemoryCallbackSystem MemoryCallbacks { get; set; } // Memory Access public Func FetchMemory; public Func ReadMemory; public Action WriteMemory; public Func PeekMemory; public Func DummyReadMemory; // Hardware I/O Port Access public Func ReadHardware; public Action WriteHardware; // Data Bus // Interrupting Devices are responsible for putting a value onto the data bus // for as long as the interrupt is valid public Func FetchDB; //this only calls when the first byte of an instruction is fetched. public Action OnExecFetch; public void UnregisterMemoryMapper() { ReadMemory = null; WriteMemory = null; PeekMemory = null; DummyReadMemory = null; ReadHardware = null; WriteHardware = null; } public void SetCallbacks ( Func ReadMemory, Func DummyReadMemory, Func PeekMemory, Action WriteMemory, Func ReadHardware, Action WriteHardware ) { this.ReadMemory = ReadMemory; this.DummyReadMemory = DummyReadMemory; this.PeekMemory = PeekMemory; this.WriteMemory = WriteMemory; this.ReadHardware = ReadHardware; this.WriteHardware = WriteHardware; } // Execute instructions public void ExecuteOne() { bus_pntr++; mem_pntr++; switch (cur_instr[instr_pntr++]) { case IDLE: // do nothing break; case OP: // should never reach here break; case OP_F: // Read the opcode of the next instruction if (OnExecFetch != null) OnExecFetch(RegPC); if (TraceCallback != null) TraceCallback(State()); opcode = FetchMemory(RegPC++); FetchInstruction(); temp_R = (byte)(Regs[R] & 0x7F); temp_R++; temp_R &= 0x7F; Regs[R] = (byte)((Regs[R] & 0x80) | temp_R); instr_pntr = bus_pntr = mem_pntr = irq_pntr = 0; I_skip = true; break; case HALT: halted = true; // NOTE: Check how halt state effects the DB Regs[DB] = 0xFF; temp_R = (byte)(Regs[R] & 0x7F); temp_R++; temp_R &= 0x7F; Regs[R] = (byte)((Regs[R] & 0x80) | temp_R); break; case RD: Read_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case WR: Write_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case RD_INC: Read_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case RD_INC_TR_PC: Read_INC_TR_PC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case RD_OP: if (cur_instr[instr_pntr++] == 1) { Read_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); } else { Read_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); } switch (cur_instr[instr_pntr++]) { case ADD8: ADD8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADC8: ADC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SUB8: SUB8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SBC8: SBC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case AND8: AND8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case XOR8: XOR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case OR8: OR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case CP8: CP8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case TR: TR_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; } break; case WR_INC: Write_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case WR_DEC: Write_DEC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case WR_TR_PC: Write_TR_PC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case WR_INC_WA: Write_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); Regs[W] = Regs[A]; break; case TR: TR_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case TR16: TR16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADD16: ADD16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADD8: ADD8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SUB8: SUB8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADC8: ADC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADC16: ADC_16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SBC8: SBC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SBC16: SBC_16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case INC16: INC16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case INC8: INC8_Func(cur_instr[instr_pntr++]); break; case DEC16: DEC16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case DEC8: DEC8_Func(cur_instr[instr_pntr++]); break; case RLC: RLC_Func(cur_instr[instr_pntr++]); break; case RL: RL_Func(cur_instr[instr_pntr++]); break; case RRC: RRC_Func(cur_instr[instr_pntr++]); break; case RR: RR_Func(cur_instr[instr_pntr++]); break; case CPL: CPL_Func(cur_instr[instr_pntr++]); break; case DA: DA_Func(cur_instr[instr_pntr++]); break; case SCF: SCF_Func(cur_instr[instr_pntr++]); break; case CCF: CCF_Func(cur_instr[instr_pntr++]); break; case AND8: AND8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case XOR8: XOR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case OR8: OR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case CP8: CP8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SLA: SLA_Func(cur_instr[instr_pntr++]); break; case SRA: SRA_Func(cur_instr[instr_pntr++]); break; case SRL: SRL_Func(cur_instr[instr_pntr++]); break; case SLL: SLL_Func(cur_instr[instr_pntr++]); break; case BIT: BIT_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case I_BIT: I_BIT_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case RES: RES_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SET: SET_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case EI: EI_pending = 2; break; case DI: IFF1 = IFF2 = false; break; case EXCH: EXCH_16_Func(F_s, A_s, F, A); break; case EXX: EXCH_16_Func(C_s, B_s, C, B); EXCH_16_Func(E_s, D_s, E, D); EXCH_16_Func(L_s, H_s, L, H); break; case EXCH_16: EXCH_16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case PREFIX: ushort src_t = PRE_SRC; NO_prefix = false; if (PRE_SRC == CBpre) { CB_prefix = true; } if (PRE_SRC == EXTDpre) { EXTD_prefix = true; } if (PRE_SRC == IXpre) { IX_prefix = true; } if (PRE_SRC == IYpre) { IY_prefix = true; } if (PRE_SRC == IXCBpre) { IXCB_prefix = true; } if (PRE_SRC == IYCBpre) { IYCB_prefix = true; } // only the first prefix in a double prefix increases R, although I don't know how / why if (PRE_SRC < 4) { temp_R = (byte)(Regs[R] & 0x7F); temp_R++; temp_R &= 0x7F; Regs[R] = (byte)((Regs[R] & 0x80) | temp_R); } opcode = FetchMemory(RegPC++); FetchInstruction(); instr_pntr = bus_pntr = mem_pntr = irq_pntr = 0; I_skip = true; // for prefetched case, the PC stays on the BUS one cycle longer if ((src_t == IXCBpre) || (src_t == IXCBpre)) { BUSRQ[0] = PCh; } break; case ASGN: ASGN_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case ADDS: ADDS_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case EI_RETI: // NOTE: This is needed for systems using multiple interrupt sources, it triggers the next interrupt // Not currently implemented here iff1 = iff2; break; case EI_RETN: iff1 = iff2; break; case OUT: OUT_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case OUT_INC: OUT_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case IN: IN_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case IN_INC: IN_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case IN_A_N_INC: IN_A_N_INC_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case NEG: NEG_8_Func(cur_instr[instr_pntr++]); break; case INT_MODE: interruptMode = cur_instr[instr_pntr++]; break; case RRD: RRD_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case RLD: RLD_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]); break; case SET_FL_LD_R: DEC16_Func(C, B); SET_FL_LD_Func(); Ztemp1 = cur_instr[instr_pntr++]; Ztemp2 = cur_instr[instr_pntr++]; Ztemp3 = cur_instr[instr_pntr++]; if (((Regs[C] | (Regs[B] << 8)) != 0) && (Ztemp3 > 0)) { cur_instr = new ushort[] {DEC16, PCl, PCh, DEC16, PCl, PCh, TR16, Z, W, PCl, PCh, INC16, Z, W, Ztemp2, E, D }; BUSRQ = new ushort[] { D, D, D, D, D }; MEMRQ = new ushort[] { 0, 0, 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; I_skip = true; } else { if (Ztemp2 == INC16) { INC16_Func(E, D); } else { DEC16_Func(E, D); } } break; case SET_FL_CP_R: SET_FL_CP_Func(); Ztemp1 = cur_instr[instr_pntr++]; Ztemp2 = cur_instr[instr_pntr++]; Ztemp3 = cur_instr[instr_pntr++]; if (((Regs[C] | (Regs[B] << 8)) != 0) && (Ztemp3 > 0) && !FlagZ) { cur_instr = new ushort[] {DEC16, PCl, PCh, DEC16, PCl, PCh, TR16, Z, W, PCl, PCh, INC16, Z, W, Ztemp2, L, H }; BUSRQ = new ushort[] { H, H, H, H, H }; MEMRQ = new ushort[] { 0, 0, 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; I_skip = true; } else { if (Ztemp2 == INC16) { INC16_Func(L, H); } else { DEC16_Func(L, H); } } break; case SET_FL_IR: ushort dest_t = cur_instr[instr_pntr++]; TR_Func(dest_t, cur_instr[instr_pntr++]); SET_FL_IR_Func(dest_t); break; case FTCH_DB: FTCH_DB_Func(); break; case WAIT: if (FlagW) { instr_pntr--; bus_pntr--; mem_pntr--; I_skip = true; } break; case RST: Regs[Z] = cur_instr[instr_pntr++]; Regs[W] = 0; break; case REP_OP_I: Write_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); Ztemp4 = cur_instr[instr_pntr++]; if (Ztemp4 == DEC16) { TR16_Func(Z, W, C, B); DEC16_Func(Z, W); DEC8_Func(B); // take care of other flags // taken from 'undocumented z80 documented' and Fuse FlagN = Regs[ALU].Bit(7); FlagH = FlagC = ((Regs[ALU] + Regs[C] - 1) & 0xFF) < Regs[ALU]; FlagP = TableParity[((Regs[ALU] + Regs[C] - 1) & 7) ^ Regs[B]]; } else { TR16_Func(Z, W, C, B); INC16_Func(Z, W); DEC8_Func(B); // take care of other flags // taken from 'undocumented z80 documented' and Fuse FlagN = Regs[ALU].Bit(7); FlagH = FlagC = ((Regs[ALU] + Regs[C] + 1) & 0xFF) < Regs[ALU]; FlagP = TableParity[((Regs[ALU] + Regs[C] + 1) & 7) ^ Regs[B]]; } Ztemp1 = cur_instr[instr_pntr++]; Ztemp2 = cur_instr[instr_pntr++]; Ztemp3 = cur_instr[instr_pntr++]; if ((Regs[B] != 0) && (Ztemp3 > 0)) { cur_instr = new ushort[] {IDLE, IDLE, DEC16, PCl, PCh, DEC16, PCl, PCh, Ztemp2, L, H }; BUSRQ = new ushort[] { H, H, H, H, H }; MEMRQ = new ushort[] { 0, 0, 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; I_skip = true; } else { if (Ztemp2 == INC16) { INC16_Func(L, H); } else { DEC16_Func(L, H); } } break; case REP_OP_O: OUT_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]); Ztemp4 = cur_instr[instr_pntr++]; if (Ztemp4 == DEC16) { DEC16_Func(L, H); DEC8_Func(B); TR16_Func(Z, W, C, B); DEC16_Func(Z, W); } else { INC16_Func(L, H); DEC8_Func(B); TR16_Func(Z, W, C, B); INC16_Func(Z, W); } // take care of other flags // taken from 'undocumented z80 documented' FlagN = Regs[ALU].Bit(7); FlagH = FlagC = (Regs[ALU] + Regs[L]) > 0xFF; FlagP = TableParity[((Regs[ALU] + Regs[L]) & 7) ^ (Regs[B])]; Ztemp1 = cur_instr[instr_pntr++]; Ztemp2 = cur_instr[instr_pntr++]; Ztemp3 = cur_instr[instr_pntr++]; if ((Regs[B] != 0) && (Ztemp3 > 0)) { cur_instr = new ushort[] {IDLE, IDLE, DEC16, PCl, PCh, DEC16, PCl, PCh, IDLE }; BUSRQ = new ushort[] { B, B, B, B, B }; MEMRQ = new ushort[] { 0, 0, 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; I_skip = true; } break; case IORQ: IRQACKCallback(); break; } if (I_skip) { I_skip = false; } else if (IRQS[irq_pntr++] == 1) { if (EI_pending > 0) { EI_pending--; if (EI_pending == 0) { IFF1 = IFF2 = true; } } // NMI has priority if (nonMaskableInterruptPending) { nonMaskableInterruptPending = false; if (TraceCallback != null) { TraceCallback(new TraceInfo { Disassembly = "====NMI====", RegisterInfo = "" }); } iff2 = iff1; iff1 = false; NMI_(); NMICallback(); instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; temp_R = (byte)(Regs[R] & 0x7F); temp_R++; temp_R &= 0x7F; Regs[R] = (byte)((Regs[R] & 0x80) | temp_R); halted = false; } // if we are processing an interrrupt, we need to modify the instruction vector else if (iff1 && FlagI) { iff1 = iff2 = false; EI_pending = 0; if (TraceCallback != null) { TraceCallback(new TraceInfo { Disassembly = "====IRQ====", RegisterInfo = "" }); } switch (interruptMode) { case 0: // Requires something to be pushed onto the data bus // we'll assume it's a zero for now INTERRUPT_0(0); break; case 1: INTERRUPT_1(); break; case 2: INTERRUPT_2(); break; } IRQCallback(); instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; temp_R = (byte)(Regs[R] & 0x7F); temp_R++; temp_R &= 0x7F; Regs[R] = (byte)((Regs[R] & 0x80) | temp_R); halted = false; } // otherwise start a new normal access else if (!halted) { cur_instr = new ushort[] {IDLE, WAIT, OP_F, OP}; BUSRQ = new ushort[] { PCh, 0, 0, 0 }; MEMRQ = new ushort[] { PCh, 0, 0, 0 }; IRQS = new ushort[] { 0, 0, 0, 1 }; instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; } else { instr_pntr = mem_pntr = bus_pntr = irq_pntr = 0; } } TotalExecutedCycles++; } // tracer stuff public Action TraceCallback; public string TraceHeader { get { return "Z80A: PC, machine code, mnemonic, operands, registers (AF, BC, DE, HL, IX, IY, SP, Cy), flags (CNP3H5ZS)"; } } public TraceInfo State(bool disassemble = true) { int bytes_read = 0; string disasm = disassemble ? Disassemble(RegPC, ReadMemory, out bytes_read) : "---"; string byte_code = null; for (ushort i = 0; i < bytes_read; i++) { byte_code += ReadMemory((ushort)(RegPC + i)).ToHexString(2); if (i < (bytes_read - 1)) { byte_code += " "; } } return new TraceInfo { Disassembly = string.Format( "{0:X4}: {1} {2}", RegPC, byte_code.PadRight(12), disasm.PadRight(26)), RegisterInfo = string.Format( "AF:{0:X4} BC:{1:X4} DE:{2:X4} HL:{3:X4} IX:{4:X4} IY:{5:X4} SP:{6:X4} Cy:{7} {8}{9}{10}{11}{12}{13}{14}{15}{16}", (Regs[A] << 8) + Regs[F], (Regs[B] << 8) + Regs[C], (Regs[D] << 8) + Regs[E], (Regs[H] << 8) + Regs[L], (Regs[Ixh] << 8) + Regs[Ixl], (Regs[Iyh] << 8) + Regs[Iyl], Regs[SPl] | (Regs[SPh] << 8), TotalExecutedCycles, FlagC ? "C" : "c", FlagN ? "N" : "n", FlagP ? "P" : "p", Flag3 ? "3" : "-", FlagH ? "H" : "h", Flag5 ? "5" : "-", FlagZ ? "Z" : "z", FlagS ? "S" : "s", FlagI ? "E" : "e") }; } // State Save/Load public void SyncState(Serializer ser) { ser.BeginSection("Z80A"); ser.Sync("Regs", ref Regs, false); ser.Sync("NMI", ref nonMaskableInterrupt); ser.Sync("NMIPending", ref nonMaskableInterruptPending); ser.Sync("IM", ref interruptMode); ser.Sync("IFF1", ref iff1); ser.Sync("IFF2", ref iff2); ser.Sync("Halted", ref halted); ser.Sync("I_skip", ref I_skip); ser.Sync("ExecutedCycles", ref TotalExecutedCycles); ser.Sync("EI_pending", ref EI_pending); ser.Sync("instr_pntr", ref instr_pntr); ser.Sync("bus_pntr", ref bus_pntr); ser.Sync("mem_pntr", ref mem_pntr); ser.Sync("irq_pntr", ref irq_pntr); ser.Sync("cur_instr", ref cur_instr, false); ser.Sync("BUSRQ", ref BUSRQ, false); ser.Sync("IRQS", ref IRQS, false); ser.Sync("MEMRQ", ref MEMRQ, false); ser.Sync("opcode", ref opcode); ser.Sync("FlagI", ref FlagI); ser.Sync("FlagW", ref FlagW); ser.Sync("NO Preifx", ref NO_prefix); ser.Sync("CB Preifx", ref CB_prefix); ser.Sync("IX_prefix", ref IX_prefix); ser.Sync("IY_prefix", ref IY_prefix); ser.Sync("IXCB_prefix", ref IXCB_prefix); ser.Sync("IYCB_prefix", ref IYCB_prefix); ser.Sync("EXTD_prefix", ref EXTD_prefix); ser.Sync("PRE_SRC", ref PRE_SRC); ser.EndSection(); } } }