
NES ASM Tutorial

Tools 5

Tutorial Tools 5

Alternate Tools 5

NES Architecture 6

System Overview 6

CPU Overview 6

PPU Overview 7

Graphics System Overview 8

Tiles 8

Sprites 8

Background 8

Pattern Tables 8

Attribute Tables 9

Palettes 9

6502 Assembly 10

Overview 10

Binary/Hex 10

6502 Registers 11

Accumulator 11

Index Register X 11

Index Register Y 11

Status Register 11

Code Layout 11

Directives 11

Label 11

Opcode 12

Operands 12

Comments 12

NES Code Structure 13

Getting Started 13

iNES Header 13

Banking 13

Vectors 13

Adding Binary Files 14

Reset Code 14

Completing The Program 15

Putting It All Together 15

Palettes 17

Sprites 19

Sprite DMA 19

Sprite Data 19

Turning NMI/Sprites On 19

Putting It All Together 20

Multiple Sprites 21

Another Block Copy 21

Putting It All Together 21

Reading Controllers 23

Controller Ports 23

AND Instruction 23

BEQ instruction 24

CLC/ADC instructions 24

SEC/SBC instructions 25

Putting It All Together 25

Variables 26

Tools
Tutorial Tools
These tutorials use a specific set of tools that you should get:

NESASM 3 - This is the assembler you will use to convert your source code into the .NES file.

Tile Layer Pro - This app is a graphics tile editor for the NES format. It can also import bitmaps you
have created other places.

FCEUXD SP - This is a good accurate emulator, with many extra debugger features added. If your
game runs in this emulator, it is very likely to run on the real NES. You should NOT use old
inaccurate emulators like Nesticle.

PowerPak - This is the easiest way to see your game running on the actual hardware. No mods are
needed to your NES or your game.

PowerPak Lite - This is the fastest cycle time when you are frequently testing your game on real
hardware. Requires a CopyNES system.

NESDevWiki - Great technical reference, most errors have been corrected....

NESDev - Collection of links and messageboards for technical info. Ask questions there once you
have learned the basics.

Alternate Tools
You may want to investigate these tools as you get deeper into NES programming:

Assemblers - There are many other popular assemblers including CA65, P65, and WLA-DX. They
tend to handle larger projects better, but are harder to set up correctly. Each assembler has small
differences in syntax so your code will generally need modification to work on them.

Graphics Editors - The main alternatives are Tile Molester and YYCHR. Many people also create
their own graphics editors.

Emulators - Other accurate emulators include Nintendulator, Nestopia, and FCEU. Inaccurate
emulators like Nesticle are the reason so many older homebrew games and hacks will not run on the
actual NES.

Flash Carts - If you have an eprom programmer you can rewire NES carts with your game. This can
be significantly cheaper than the PowerPak or PowerPak Lite but is lots more manual work.

http://www.nesmuseum.com/NESASM3.zip
http://www.nesmuseum.com/NESASM3.zip
http://www.zophar.net/trans/transutils/tlp11.zip
http://www.zophar.net/trans/transutils/tlp11.zip
http://www.the-interweb.com/serendipity/index.php?/categories/9-FCEUXD-SP
http://www.the-interweb.com/serendipity/index.php?/categories/9-FCEUXD-SP
http://www.retrousb.com
http://www.retrousb.com
http://www.retrousb.com
http://www.retrousb.com
http://www.tripoint.org/kevtris/Projects/copynes/index.html
http://www.tripoint.org/kevtris/Projects/copynes/index.html
http://nesdevwiki.org/
http://nesdevwiki.org/
http://nesdev.parodius.com/
http://nesdev.parodius.com/
http://nesdev.parodius.com/bbs/
http://nesdev.parodius.com/bbs/
http://www.cc65.org
http://www.cc65.org
http://freshmeat.net/projects/p65/
http://freshmeat.net/projects/p65/
http://freshmeat.net/projects/wla/
http://freshmeat.net/projects/wla/
http://www.zophar.net/utilities/download/TileMolester_015a_bin.zip
http://www.zophar.net/utilities/download/TileMolester_015a_bin.zip
http://www.zophar.net/trans/transutils/yy-chr_e.zip
http://www.zophar.net/trans/transutils/yy-chr_e.zip
http://qmt.ath.cx/~nes/nintendulator/
http://qmt.ath.cx/~nes/nintendulator/
http://nestopia.sourceforge.net/
http://nestopia.sourceforge.net/
http://fceultra.sourceforge.net/
http://fceultra.sourceforge.net/

NES Architecture
ROM - Read Only Memory, holds data that cannot be changed

RAM - Random Access Memory, holds data that can be read and written. When power is removed, the chip is
erased.

PRG - Program memory, the code for the game

CHR - Character memory, the data for graphics

CPU - Central Processing Unit, the main processor chip

PPU - Picture Processing Unit, the graphics chip

APU - Audio Processing Unit, the sound chip inside the CPU

System Overview
The NES include a CPU with built in APU and controller handling, and a PPU that displays graphics.
Your code runs on the CPU and sends out commands to the APU and PPU. The NOAC clones put
all of these parts onto one chip.

There is only 2KB of RAM connected to the CPU for storing variables, and 2KB of RAM connected to
the PPU for holding two screens of background graphics. Some carts add extra CPU RAM, and a
few add extra PPU RAM.

Each cart includes at least two chips. One holds the program code (PRG) and the other holds the
character graphics (CHR). The graphics chip can be RAM instead of ROM, which means the code
would copy graphics from the PRG chip to the CHR RAM.

CPU Overview
The NES CPU is a modified 6502, an 8 bit data processor similar to the Apple 2, Atari 2600, C64, and
many other systems. By the time the Famicom was created it was underpowered for a computer but
great for a game system.

http://nesdevwiki.org/wiki/index.php/NES_CPU
http://nesdevwiki.org/wiki/index.php/NES_CPU
http://www.obelisk.demon.co.uk/6502/
http://www.obelisk.demon.co.uk/6502/
http://en.wikipedia.org/wiki/Apple_2
http://en.wikipedia.org/wiki/Apple_2
http://en.wikipedia.org/wiki/Atari_2600
http://en.wikipedia.org/wiki/Atari_2600
http://en.wikipedia.org/wiki/C64
http://en.wikipedia.org/wiki/C64

The CPU has a 16 bit address bus which can access up to 64KB of memory. Included in there is the
2KB of RAM, ports to access PPU/APU/controllers, and 32KB for PRG ROM.

32KB quickly became too small for games, which is why memory mappers were used. Those
mappers can swap in different banks of PRG code or CHR graphics. No mappers will be used for
these docs.

PPU Overview
The NES PPU is a custom chip that does all the graphics display. It includes RAM for sprites and the
color palette. There is RAM on board that holds the background, and all actual graphics are fetched
from the cart CHR memory.

Your program does not run on the PPU, it always does the same process. You only set some options
like colors and scrolling.

Both the NTSC and PAL systems have a resolution of 256x240 pixels, but the top and bottom 8 rows
are typically cut off by the NTSC TV resulting in 256x224.

NTSC runs at 60Hz and PAL runs at 50Hz. Running an NTSC game on a PAL system will be slower
because of this timing difference.

http://nesdevwiki.org/wiki/index.php/NES_PPU
http://nesdevwiki.org/wiki/index.php/NES_PPU
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/NTSC
http://en.wikipedia.org/wiki/PAL
http://en.wikipedia.org/wiki/PAL

PAL has a longer VBlank time (when the TV scanline is going back to the top of the screen) which
allows more time for graphics updates. This is why some PAL games and demos do not run on
NTSC systems.

Graphics System Overview
Tiles
All graphics are made up of 8x8 pixel tiles. Large characters like Mario are made from multiple 8x8
tiles. All the backgrounds are also made from these tiles.

Sprites
The PPU has enough memory for 64 sprites, or things that move around on screen like Mario. Only 8
sprites per scanline are allowed, any more than that will be ignored. This is where the flickering
comes from in some games when there are too many objects on screen.

Background
This is the landscape graphics, which scrolls all at once. The sprites can either be displayed in front
or behind the background. The screen is big enough for 32x30 background tiles.

Pattern Tables
These are where the actual tile data is stored. It is either ROM or RAM on the cart. Each pattern
table holds 256 tiles. One table is used for backgrounds, and the other for sprites.

Attribute Tables
These tables set the color information in 2x2 tile sections. This means that a 16x16 pixel area can
only have 4 different colors selected from the palette.

Palettes
These two areas hold the color information, one for the background and one for sprites. Each palette
has 16 colors.

To display a tile on screen, the pixel color index is taken from the Pattern Table and the Attribute
Table. That index is then looked up in the Palette to get the actual color.

6502 Assembly
Bit - The smallest unit in computers. It is either a 1 (on) or a 0 (off), like a light switch.

Byte - 8 bits together form one byte, a number from 0 to 255. Two bytes put together is 16 bits, forming a
number from 0 to 65535. Bits in the byte are numbered starting from the right at 0.

Instruction - one command a processor executes. Instructions are run sequentially.

Overview
This section is only a quick overview of the 6502, not a detailed explanation. Much better
explanations can be found at sites like http://www.obelisk.demon.co.uk/6502/

Binary/Hex
Before starting programming you should understand binary and hex encoding. The Windows
Calculator app, set to Scientific mode, can quickly translate between these encodings.

Binary (bin) - Base 2, every digit is a 0 or 1. In NESASM this is used with a % like %00101110.
Because this is an 8 bit data system there will be 8 digits. The bits are numbered starting from 0 on
the right side.

 0 = %00000000
 1 = %00000001 D7-1 = 0, D0 = 1
 2 = %00000010
 3 = %00000011
128 = %10000000
255 = %11111111

Hexadecimal (hex) - Base 16, every digit is 0-F. In NESASM this is used with a $ like $8B. Each
hex digit is 4 bits, so the 8 bit data is 2 hex digits.

 0 = $00
 1 = $01
 2 = $02
 9 = $09
 10 = $0A
 11 = $0B
 12 = $0C
 13 = $0D
 14 = $0E
 15 = $0F
 16 = $10
 17 = $11
128 = $80
255 = $FF

Addresses are 16 bits, or 4 hex digits.

$0000 = start of memory space
$8000 = start of PRG
$FFFF = last byte in memory space

http://www.obelisk.demon.co.uk/6502/
http://www.obelisk.demon.co.uk/6502/

6502 Registers
The 6502 has three 8 bit registers and a status register that you will be using. All your data
processing uses these registers. There are additional registers that are not covered in this tutorial.

Accumulator
The Accumulator (A) is the main 8 bit register for loading, storing, comparing, and doing math on
data. Some of the most frequent operations are:

LDA #$FF ;load the hex value $FF (decimal 256) into A
STA $0000 ;store the accumulator into memory location $0000, internal RAM

Index Register X
The Index Register X (X) is another 8 bit register, usually used for counting or memory access. In
loops you will use this register to keep track of how many times the loop has gone, while using A to
process data. Some frequent operations are:

LDX $0000 ;load the value at memory location $0000 into X
INX ;increment X X = X + 1

Index Register Y
The Index Register Y (Y) works the same as X. Some operations are:

STY $00BA ;store Y into memory location $00BA
TYA ;transfer Y into Accumulator

Status Register
The Status Register holds flags with information about the last instruction. For example when doing a
subtract you can check if the result was a zero.

Code Layout
In assembly language there are 5 main parts. Some parts must be in a specific horizontal position for
the assembler to use them correctly.

Directives
Directives are commands you send to the assembler to do things like locating code in memory. They
start with a . and are indented. Some people use tabs, or 4 spaces, and I use 2 spaces. This sample
directive tells the assembler to put the code starting at memory location $8000:

 .org $8000

Label
The label is aligned to the far left and has a : at the end. The label is just something you use to
organize your code. The assembler translates the label into an address. Sample label:

 .org $8000
MyFunction:

Opcode
The opcode is the instruction that the processor will run, and is indented like the directives. In this
sample, JMP is the opcode that tells the processor to jump to the MyFunction label:

 .org $8000
MyFunction:
 JMP MyFunction

Operands
The operands are additional information for the opcode. Opcodes have between one and three
operands. In this example the #$FF is the operand:

 .org $8000
MyFunction:
 LDA #$FF
 JMP MyFunction

Comments
Comments are to help you understand in English what the code is doing. When you write code and
come back later, the comments will save you. You do not need a comment on every line, but should
have enough to explain what is happening. Comments start with a ; and are completely ignored by
the assembler. They can be put anywhere horizontally, but are usually spaced beyond the long lines.

 .org $8000
MyFunction: ; loads FF into accumulator
 LDA #$FF
 JMP MyFunction

This code would just continually run the loop, loading the hex value $FF into the accumulator each
time.

NES Code Structure
Getting Started
This section has a lot of information because it will get everything set up to run your first NES
program. Much of the code can be copy/pasted then ignored for now. The main goal is to just get
NESASM to output something useful.

iNES Header
The 16 byte iNES header gives the emulator all the information about the game including mapper,
graphics mirroring, and PRG/CHR sizes. You can include all this inside your asm file at the very
beginning.

 .inesprg 1 ; 1x 16KB bank of PRG code
 .ineschr 1 ; 1x 8KB bank of CHR data
 .inesmap 0 ; mapper 0 = NROM, no bank swapping
 .inesmir 1 ; background mirroring

Banking
NESASM arranges everything in 8KB code and 8KB graphics banks. To fill the 16KB PRG space 2
banks are needed. Like most things in computing, the numbering starts at 0. For each bank you
have to tell the assembler where in memory it will start.

 .bank 0
 .org $C000
;some code here

 .bank 1
 .org $E000
; more code here

 .bank 2
 .org $0000
; graphics here

Vectors
There are three times when the NES processor will interrupt your code and jump to a new location.
These vectors, held in PRG ROM tell the processor where to go when that happens. Only the first
two will be used in this tutorial.

NMI Vector - this happens once per video frame, when enabled. The PPU tells the processor it is
starting the VBlank time and is available for graphics updates.

RESET Vector - this happens every time the NES starts up, or the reset button is pressed.

IRQ Vector - this is triggered from some mapper chips or audio interrupts and will not be covered.

These three must always appear in your assembly file in this order:

 .bank 1
 .org $FFFA ;first of the three vectors starts here
 .dw NMI ;when an NMI happens (once per frame if enabled) the
 ;processor will jump to the label NMI:
 .dw RESET ;when the processor first turns on or is reset, it will jump
 ;to the label RESET:
 .dw 0 ;external interrupt IRQ is not used in this tutorial

Adding Binary Files
Additional data files are frequently used for graphics data or level data. The incbin directive can be
used to include that data in your .NES file.

 .bank 2
 .org $0000
 .incbin "mario.chr" ;includes 8KB graphics file from SMB1

Reset Code
There are some things you must do when the NES starts up. Some modes are set, RAM is cleared
out, and you have to wait for the PPU to start up. All of this is needed, but you do not need to
understand it for now:

 .bank 0
 .org $C000
RESET:
 SEI ; disable IRQs
 CLD ; disable decimal mode
 LDX #$40
 STX $4017 ; disable APU frame IRQ
 LDX #$FF
 TXS ; Set up stack
 INX ; now X = 0
 STX $2000 ; disable NMI
 STX $2001 ; disable rendering
 STX $4010 ; disable DMC IRQs

vblankwait1: ; First wait for vblank to make sure PPU is ready
 BIT $2002
 BPL vblankwait1

clrmem:
 LDA #$00
 STA $0000, x
 STA $0100, x
 STA $0200, x
 STA $0400, x
 STA $0500, x
 STA $0600, x

 STA $0700, x
 LDA #$FE
 STA $0300, x
 INX
 BNE clrmem

vblankwait2: ; Second wait for vblank, PPU is ready after this
 BIT $2002
 BPL vblankwait2

Completing The Program
Your first program will be very exciting, displaying an entire screen of one color! To do this the first
PPU settings need to be written. This is done to memory address $2001. The 76543210 is the bit
number, from 7 to 0. Those 8 bits form the byte you will write to $2001.

PPUMASK ($2001)

76543210
||||||||
|||||||+- Grayscale (0: normal color; 1: AND all palette entries
||||||| with 0x30, effectively producing a monochrome display;
||||||| note that colour emphasis STILL works when this is on!)
||||||+-- Disable background clipping in leftmost 8 pixels of screen
|||||+--- Disable sprite clipping in leftmost 8 pixels of screen
||||+---- Enable background rendering
|||+----- Enable sprite rendering
||+------ Intensify reds (and darken other colors)
|+------- Intensify greens (and darken other colors)
+-------- Intensify blues (and darken other colors)

So if you want to enable the sprites, you set bit 3 to 1. For this app bits 7, 6, 5 will be used to set the
screen color:

 LDA %10000000 ;intensify blues
 STA $2001
Forever:
 JMP Forever ;infinite loop

Putting It All Together
Download and unzip the background.zip sample files. All the code above is in the background.asm
file. Make sure that file, mario.chr, and background.bat is in the same folder as NESASM, then
double click on background.bat. That will run NESASM and should produce background.nes. Run
that NES file in FCEUXD SP to see your background color! Edit background.asm to change the
intensity bits 7-5 to make the background red or green.

You can start the Debug... from the Tools menu in FCEUXD SP to watch your code run. Hit the Step
Into button, choose Reset from the NES menu, then keep hitting Step Into to run one instruction at a
time. On the left is the memory address, next is the hex opcode that the 6502 is actually running.
This will be between one and three bytes. After that is the code you wrote, with the comments taken

http://www.nespowerpak.com/background.zip
http://www.nespowerpak.com/background.zip

out and labels translated to addresses. The top line is the instruction that is going to run next. Try
figuring out what the instruction will do before hitting Step Into, then see if you were right.

Palettes
Before putting any graphics on screen, you first need to set the color palette. There are two separate
palettes, each 16 bytes. One is used for the background, and the other for sprites. The byte in the
palette corresponds to one of the 52 base colors the NES can display. $0D is a bad color and should
not be used.

The palettes start at PPU address $3F00 and $3F10. To set this address, PPU port $2006 is used.
This port must be written twice, once for the high byte then for the low byte:

 LDA $2002 ; read PPU status to reset the high/low latch
 LDA #$3F
 STA $2006 ; write the high byte of $3F10 address
 LDA #$10
 STA $2006 ; write the low byte of $3F10 address

Now the PPU data port at $2007 is ready to accept data. The first write will go to the address you set
($3F00), then the PPU will increment the address ($3F01). You can keep writing data and it will keep
incrementing. This sets the first 4 colors in the palette:

 LDA #$32 ;light blueish
 STA $2007
 LDA #$14 ;pinkish
 STA $2007
 LDA #$2A ;greenish
 STA $2007
 LDA #$16 ;redish
 STA $2007

You would continue to do writes to fill out the rest of the palette. Fortunately there is a smaller way to
write all that code. First you can use the .db directive to store data bytes.

PaletteData:
 .db $0F,$31,$32,$33,$34,$35,$36,$37,$38,$39,$3A,$3B,$3C,$3D,$3E,$0F
 .db $0F,$1C,$15,$14,$31,$02,$38,$3C,$0F,$1C,$15,$14,$31,$02,$38,$3C

Then a loop is used to copy those bytes to the palette in the PPU. The X register is used as an index
into the palette, and used to count how many times the loop has repeated. You want to copy 32
bytes, so the loop starts at 0 and counts up to 32.

 LDX #$00 ; start out at 0
LoadPalettesLoop:
 LDA PaletteData, x ; load data from address (PaletteData + the value in x)
 ; 1st time through loop it will load PaletteData+0
 ; 2nd time through loop it will load PaletteData+1
 ; 3rd time through loop it will load PaletteData+2
 ; etc
 STA $2007 ; write to PPU
 INX ; X = X + 1
 CPX #$20 ; Compare X to hex $20, decimal 32
 BNE LoadPalettesLoop ; Branch to LoadPalettesLoop if compare was Not Equal to zero
 ; if compare was equal to 32, keep going down

Sprites
Anything that moves separately from the background will be made of sprites. A sprite is just an 8x8
pixel tile that the PPU renders anywhere. The PPU has enough internal memory for 64 sprites.

Sprite DMA
The fastest and easiest way to transfer your sprites to the sprite memory is using DMA (direct
memory access). This just means a block of RAM is copied from CPU memory to the PPU. The on
board RAM space from $0200-02FF is usually used for this purpose. To start the transfer, two bytes
need to be written to the PPU ports:

 LDA #$00
 STA $2003 ; set the low byte (00) of the RAM address
 LDA #$02
 STA $4014 ; set the high byte (02) of the RAM address, start the transfer

Like all graphics updates, this needs to be done at the beginning of the VBlank period, so it will go in
the NMI section.

Sprite Data
Each sprite needs 4 bytes of data for its position and tile information in this order:

Y Position - vertical position of the sprite on screen. $00 is the top of the screen. Anything above
$EF is off the bottom of the screen.

Tile Number - this is the tile number (0 to 256) for the graphic to be taken from a Pattern Table.

Attributes - this byte holds color and displaying information:

 76543210
 ||| ||
 ||| ++- Palette (4 to 7) of sprite
 |||
 ||+------ Priority (0: in front of background; 1: behind background)
 |+------- Flip sprite horizontally
 +-------- Flip sprite vertically

X Position - horizontal position on the screen. $00 is the left side, anything above $F9 is off screen.

If you want to edit sprite 0, you change bytes $0300-0303. Sprite 1 is $0304-0307, sprite 2 is
$0308-030B, etc

Turning NMI/Sprites On
The PPU port $2001 is used again to enable sprites. Setting bit 4 to 1 will make them appear.

NMI also needs to be turned on, so the Sprite DMA will run and the sprites will be copied. This is
done with the PPU port $2000. The Pattern Table 1 is also selected to choose sprites from.

 PPUCTRL ($2000)

 76543210
 | ||||||
 | ||||++- Base nametable address
 | |||| (0 = $2000; 1 = $2400; 2 = $2800; 3 = $2C00)
 | |||+--- VRAM address increment per CPU read/write of PPUDATA
 | ||| (0: increment by 1, going across; 1: increment by 32, going down)
 | ||+---- Sprite pattern table address for 8x8 sprites (0: $0000; 1: $1000)
 | |+----- Background pattern table address (0: $0000; 1: $1000)
 | +------ Sprite size (0: 8x8; 1: 8x16)
 |
 +-------- Generate an NMI at the start of the
 vertical blanking interval (0: off; 1: on)

And the code:

 LDA #$80
 STA $0200 ;put sprite 0 in center of screen
 STA $0203 ;put sprite 0 in center of screen
 LDA #$00
 STA $0201 ;tile number = 0
 STA $0202 ;color = 0, no flipping

 LDA #%10000000 ; enable NMI, sprites from Pattern Table 0
 STA $2000

 LDA #%00010000 ; no intensify, enable sprites
 STA $2001

Putting It All Together
Download and unzip the sprites.zip sample files. All the code above is in the sprites.asm file. Make
sure that file, mario.chr, and sprites.bat is in the same folder as NESASM, then double click on
sprites.bat. That will run NESASM and should produce sprites.nes. Run that NES file in FCEUXD
SP to see your sprite! Tile number 0 is the back of Mario's head and hat, can you see it? Edit
sprites.asm to change the sprite position, or to change the color palette.

You can choose the PPU viewer in FCEUXD SP to see both Pattern Tables, and both Palettes. You
can also see that the color in Palette entry $3F00 gets copied to multiple places and used for the
background color. Generally this color will be black or white in games.

http://en.wikipedia.org/wiki/Vertical_blanking_interval
http://en.wikipedia.org/wiki/Vertical_blanking_interval
http://www.nespowerpak.com/sprites.zip
http://www.nespowerpak.com/sprites.zip

Multiple Sprites
Another Block Copy
Instead of writing 4 LDA/STA lines of code for each sprite, you can use the .db directive like the
palette data and use a loop to copy it all at once. First the data is set:

sprites:
 ;vert tile attr horiz
 .db $80, $32, $00, $80 ;sprite 0
 .db $80, $33, $00, $88 ;sprite 1
 .db $88, $34, $00, $80 ;sprite 2
 .db $88, $35, $00, $88 ;sprite 3

There are 4 bytes per sprite, each on one line. The bytes are in the correct order and easily changed.
This is only the starting data, when the program is running the copy in RAM can be changed to move
the sprite around.

Next you need the loop to copy the data into RAM. This loop also works the same way as the palette
loading, with the X register as the loop counter.

LoadSprites:
 LDX #$00 ; start at 0
LoadSpritesLoop:
 LDA sprites, x ; load data from address (sprites + x)
 STA $0200, x ; store into RAM address ($0200 + x)
 INX ; X = X + 1
 CPX #$20 ; Compare X to hex $20, decimal 32
 BNE LoadSpritesLoop ; Branch to LoadSpritesLoop if compare was Not Equal to zero
 ; if compare was equal to 32, keep going down

If you wanted to add more sprites, you would add lines into the sprite .db section then increase the
CPX compare value. That will run the loop more times, copying more bytes.

Putting It All Together
Download and unzip the sprites2.zip sample files. All the code above is in the sprites2.asm file.
Make sure that file, mario.chr, and sprites2.bat is in the same folder as NESASM, then double click on
sprites2.bat. That will run NESASM and should produce sprites2.nes. Run that NES file in FCEUXD
SP to see small Mario! Try editing the color palette to get Marios colors correct. You can also change
the horiz/vert values in the sprites data to move him around.

Start Tile Layer Pro, then open your sprites2.nes file. The static you see in the top left is your
program code. Scroll down until you see the graphics tiles. First will be the 256 (16x16) sprite tiles,
then the 256 background tiles. Use the scroll bar arrow to go to the bottom of the file, then back up to
the sprites. Count the sprite tiles starting from 0 to see where the Mario $32-35 is. Keep counting and
edit the sprite .db data to put a turtle or a beetle on screen.

http://www.nespowerpak.com/sprites2.zip
http://www.nespowerpak.com/sprites2.zip

Reading Controllers
This section will show how to read from both controllers, and use that input to move sprites around.

Controller Ports
The controllers are accessed through memory addresses $4016 and $4017. First you have to write
the value $01 then the value $00 to port $4016. This tells the controllers to latch the current button
positions. Then you read from $4016 for first player or $4017 for second player. The buttons are sent
one at a time, in bit 0. If bit 0 is 0, the button is not pressed. If bit 0 is 1, the button is pressed.

Button status for each controller is returned in the following order: A, B, Select, Start, Up, Down, Left,
Right.

 LDA #$01
 STA $4016
 LDA #$00
 STA $4016 ; tell both the controllers to latch buttons

 LDA $4016 ; player 1 - A
 LDA $4016 ; player 1 - B
 LDA $4016 ; player 1 - Select
 LDA $4016 ; player 1 - Start
 LDA $4016 ; player 1 - Up
 LDA $4016 ; player 1 - Down
 LDA $4016 ; player 1 - Left
 LDA $4016 ; player 1 - Right

 LDA $4017 ; player 2 - A
 LDA $4017 ; player 2 - B
 LDA $4017 ; player 2 - Select
 LDA $4017 ; player 2 - Start
 LDA $4017 ; player 2 - Up
 LDA $4017 ; player 2 - Down
 LDA $4017 ; player 2 - Left
 LDA $4017 ; player 2 - Right

AND Instruction
Button information is only sent in bit 0, so we want to erase all the other bits. This can be done with
the AND instruction. Each of the 8 bits is ANDed with the bits from another value. If the bit from both
the first AND second value is 1, then the result is 1. Otherwise the result is 0.

0 AND 0 = 0
0 AND 1 = 0
1 AND 0 = 0
1 AND 1 = 1

For a full random 8 bit value:

 01011011
AND 10101101

 00001001

We only want bit 0, so that bit is set and the others are cleared:

 01011011 controller data
AND 00000001 AND value

 00000001 only bit 0 is used

So to erase all the other bits when reading controllers, the AND should come after each read from
$4016 or $4017:

 LDA $4016 ; player 1 - A
 AND #%00000001

 LDA $4016 ; player 1 - B
 AND #%00000001

 LDA $4016 ; player 1 - Select
 AND #%00000001

BEQ instruction
The BNE instruction was used earlier in loops to Branch when Not Equal to a compared value. Here
BEQ will be used without the compare instruction to Branch when EQual to zero. When a button is
not pressed, the value will be zero, so the branch is taken. That skips over all the instructions that do
something when the button is pressed:

ReadA:
 LDA $4016 ; player 1 - A
 AND #%00000001 ; only look at bit 0
 BEQ ReadADone ; branch to ReadADone if button is NOT pressed (0)

 ; add instructions here to do something when button IS pressed (1)

ReadADone: ; handling this button is done

CLC/ADC instructions
For this demo we will use the player 1 controller to move the Mario sprite around. To do that we need
to be able to add to values. The ADC instruction stands for Add with Carry. Before adding, you have

to make sure the carry is cleared, using CLC. This sample will load the sprite position into A, clear
the carry, add one to the value, then store back into the sprite position:

 LDA $0203 ; load sprite X (horizontal) position
 CLC ; make sure the carry flag is clear
 ADC #$01 ; A = A + 1
 STA $0203 ; save sprite X (horizontal) position

SEC/SBC instructions
To move the sprite the other direction, a subtract is needed. SBC is Subtract with Carry. This time
the carry has to be set before doing the subtract:

 LDA $0203 ; load sprite position
 SEC ; make sure carry flag is set
 SBC #$01 ; A = A - 1
 STA $0203 ; save sprite position

Putting It All Together
Download and unzip the controller.zip sample files. All the code above is in the controller.asm file.
Make sure that file, mario.chr, and controller.bat is in the same folder as NESASM, then double click
on controller.bat. That will run NESASM and should produce controller.nes. Run that NES file in
FCEUXD SP to see small Mario. Press the A and B buttons on the player 1 controller to move one
sprite of Mario. The movement will be one pixel per frame, or 60 pixels per second on NTSC
machines. If Mario isn't moving, make sure your controls are set up correctly in the Config menu
under Input... If you hold both buttons together, the value will be added then subtracted so no
movement will happen.

Try editing the ADC and SBC values to make him move faster. The screen is only 256 pixels across,
so too fast and he will just jump around randomly! Also try editing the code to move each of the 4
sprites together.

http://www.nespowerpak.com/controller.zip
http://www.nespowerpak.com/controller.zip

Variables
To store the button information for later use, a variable is created. First the space for the variable is
reserved in RAM:

 .rsset $0000 ; start the reserve counter at memory address $0000
Buttons1 .rs 1 ; reserve one byte of space

Now in your code you can do STA Buttons1, which will store the accumulator into that memory space.
You can also do LDA Buttons1 to load that memory value into the accumulator.

