using System; using System.Linq; using System.Text; using System.IO; using System.Collections.Generic; //ARCHITECTURE NOTE: //No provisions are made for caching synthesized data for later accelerated use. //This is because, in the worst case that might result in synthesizing an entire disc in memory. //Instead, users should be advised to `hawk` the disc first for most rapid access so that synthesis won't be necessary and speed will be maximized. //This will result in a completely flattened CCD where everything comes right off the hard drive //Our choice here might be an unwise decision for disc ID and miscellaneous purposes but it's best for gaming and stream-converting (hawking and hashing) //TODO: in principle, we could mount audio to decode only on an as-needed basis //this might result in hiccups during emulation, though, so it should be an option. //This would imply either decode-length processing (scan file without decoding) or decoding and discarding the data. //We should probably have some richer policy specifications for this kind of thing, but it's not a high priority. Main workflow is still discohawking. //Alternate policies would probably be associated with copious warnings (examples: ? ? ?) //https://books.google.com/books?id=caF_AAAAQBAJ&lpg=PA124&ots=OA9Ttj9CHZ&dq=disc%20TOC%20point%20A2&pg=PA124 //http://www.staff.uni-mainz.de/tacke/scsi/SCSI2-14.html //http://www.pctechguide.com/iso-9660-data-format-for-cds-cd-roms-cd-rs-and-cd-rws //http://linux.die.net/man/1/cue2toc //http://cdemu.sourceforge.net/project.php#sf //apparently cdrdao is the ultimate linux tool for doing this stuff but it doesnt support DAO96 (or other DAO modes) that would be necessary to extract P-Q subchannels //(cdrdao only supports R-W) //here is a featureset list of windows cd burning programs (useful for cuesheet compatibility info) //http://www.dcsoft.com/cue_mastering_progs.htm //good links //http://linux-sxs.org/bedtime/cdapi.html //http://en.wikipedia.org/wiki/Track_%28CD%29 //http://docs.google.com/viewer?a=v&q=cache:imNKye05zIEJ:www.13thmonkey.org/documentation/SCSI/mmc-r10a.pdf+q+subchannel+TOC+format&hl=en&gl=us&pid=bl&srcid=ADGEEShtYqlluBX2lgxTL3pVsXwk6lKMIqSmyuUCX4RJ3DntaNq5vI2pCvtkyze-fumj7vvrmap6g1kOg5uAVC0IxwU_MRhC5FB0c_PQ2BlZQXDD7P3GeNaAjDeomelKaIODrhwOoFNb&sig=AHIEtbRXljAcFjeBn3rMb6tauHWjSNMYrw //http://digitalx.org/cue-sheet/examples/ //"qemu cdrom emulator" //http://www.koders.com/c/fid7171440DEC7C18B932715D671DEE03743111A95A.aspx //less good //http://www.cyberciti.biz/faq/getting-volume-information-from-cds-iso-images/ //http://www.cims.nyu.edu/cgi-systems/man.cgi?section=7I&topic=cdio //some other docs //http://www.emutalk.net/threads/54428-Reference-for-8-byte-sub-header-used-in-CDROM-XA references http://ccsun.nchu.edu.tw/~imtech/cou...act%20Disc.pdf which is pretty cool //ideas: /* * do some stuff asynchronously. for example, decoding mp3 sectors. * keep a list of sectors and the blob/offset from which they pull -- also whether the sector is available * if it is not available and something requests it then it will have to block while that sector gets generated * perhaps the blobs know how to resolve themselves and the requested sector can be immediately resolved (priority boost) * mp3 blobs should be hashed and dropped in %TEMP% as a wav decode */ //here is an MIT licensed C mp3 decoder //http://core.fluendo.com/gstreamer/src/gst-fluendo-mp3/ /*information on saturn TOC and session data structures is on pdf page 58 of System Library User's Manual; * as seen in yabause, there are 1000 u32s in this format: * Ctrl[4bit] Adr[4bit] StartFrameAddressFAD[24bit] (nonexisting tracks are 0xFFFFFFFF) * Followed by Fist Track Information, Last Track Information.. * Ctrl[4bit] Adr[4bit] FirstTrackNumber/LastTrackNumber[8bit] and then some stuff I dont understand * ..and Read Out Information: * Ctrl[4bit] Adr[4bit] ReadOutStartFrameAddress[24bit] * * Also there is some stuff about FAD of sessions. * This should be generated by the saturn core, but we need to make sure we pass down enough information to do it */ //2048 bytes packed into 2352: //12 bytes sync(00 ff ff ff ff ff ff ff ff ff ff 00) //3 bytes sector address (min+A0),sec,frac //does this correspond to ccd `point` field in the TOC entries? //sector mode byte (0: silence; 1: 2048Byte mode (EDC,ECC,CIRC), 2: mode2 (could be 2336[vanilla mode2], 2048[xa mode2 form1], 2324[xa mode2 form2]) //cue sheets may use mode1_2048 (and the error coding needs to be regenerated to get accurate raw data) or mode1_2352 (the entire sector is present) //audio is a different mode, seems to be just 2352 bytes with no sync, header or error correction. i guess the CIRC error correction is still there namespace BizHawk.Emulation.DiscSystem { public partial class Disc : IDisposable { /// /// Free-form optional memos about the disc /// public Dictionary Memos = new Dictionary(); /// /// The raw TOC entries found in the lead-in track. /// These aren't very useful, but theyre one of the most lowest-level data structures from which other TOC-related stuff is derived /// public List RawTOCEntries = new List(); /// /// The DiscTOCRaw corresponding to the RawTOCEntries. /// TODO - rename to TOC /// TODO - there's one of these for every session, so... having one here doesnt make sense /// public DiscTOCRaw TOCRaw; /// /// The DiscStructure corresponding to the TOCRaw /// public DiscStructure Structure; /// /// DiscStructure.Session 1 of the disc, since that's all thats needed most of the time. /// public DiscStructure.Session Session1 { get { return Structure.Sessions[1]; } } /// /// Disposable resources (blobs, mostly) referenced by this disc /// internal List DisposableResources = new List(); /// /// The sectors on the disc /// internal List Sectors = new List(); /// /// Parameters set during disc loading which can be referenced by the sector synthesizers /// internal SectorSynthParams SynthParams = new SectorSynthParams(); /// /// The DiscMountPolicy used to mount the disc. Consider this read-only. /// NOT SURE WE NEED THIS /// //public DiscMountPolicy DiscMountPolicy; public Disc() { } public void Dispose() { foreach (var res in DisposableResources) { res.Dispose(); } } /// /// generates lead-out sectors according to very crude approximations /// TODO - this isnt being used right now /// public class SynthesizeLeadoutJob { public int Length; public Disc Disc; public void Run() { //TODO: encode_mode2_form2_sector var leadoutTs = Disc.TOCRaw.LeadoutLBA; var lastTrackTOCItem = Disc.TOCRaw.TOCItems[Disc.TOCRaw.LastRecordedTrackNumber]; //NOTE: in case LastRecordedTrackNumber is al ie, this will malfunction //leadout flags.. let's set them the same as the last track. //THIS IS NOT EXACTLY THE SAME WAY MEDNAFEN DOES IT EControlQ leadoutFlags = lastTrackTOCItem.Control; //TODO - needs to be encoded as a certain mode (mode 2 form 2 for psx... i guess...) for (int i = 0; i < Length; i++) { //var se = new SectorEntry(sz); //Disc.Sectors.Add(se); SubchannelQ sq = new SubchannelQ(); int track_relative_msf = i; sq.min = BCD2.FromDecimal(new Timestamp(track_relative_msf).MIN); sq.sec = BCD2.FromDecimal(new Timestamp(track_relative_msf).SEC); sq.frame = BCD2.FromDecimal(new Timestamp(track_relative_msf).FRAC); int absolute_msf = i + leadoutTs.Sector; sq.ap_min = BCD2.FromDecimal(new Timestamp(absolute_msf+150).MIN); sq.ap_sec = BCD2.FromDecimal(new Timestamp(absolute_msf + 150).SEC); sq.ap_frame = BCD2.FromDecimal(new Timestamp(absolute_msf + 150).FRAC); sq.q_tno.DecimalValue = 0xAA; //special value for leadout sq.q_index.DecimalValue = 1; byte ADR = 1; sq.SetStatus(ADR, leadoutFlags); //TODO - actually stash the subQ } } } /// /// Automagically loads a disc, without any fine-tuned control at all /// public static Disc LoadAutomagic(string path) { var job = new DiscMountJob { IN_FromPath = path }; //job.IN_DiscInterface = DiscInterface.MednaDisc; //TEST job.Run(); return job.OUT_Disc; } class SS_PatchQ : ISectorSynthJob2448 { public ISectorSynthJob2448 Original; public byte[] Buffer_SubQ = new byte[12]; public void Synth(SectorSynthJob job) { Original.Synth(job); if ((job.Parts & ESectorSynthPart.SubchannelQ) == 0) return; //apply patched subQ for (int i = 0; i < 12; i++) job.DestBuffer2448[2352 + 12 + i] = Buffer_SubQ[i]; } } /// /// applies an SBI file to the disc /// public void ApplySBI(SBI.SubQPatchData sbi, bool asMednafen) { //TODO - could implement as a blob, to avoid allocating so many byte buffers //save this, it's small, and we'll want it for disc processing a/b checks Memos["sbi"] = sbi; DiscSectorReader dsr = new DiscSectorReader(this); int n = sbi.ABAs.Count; int b=0; for (int i = 0; i < n; i++) { int lba = sbi.ABAs[i] - 150; //create a synthesizer which can return the patched data var ss_patchq = new SS_PatchQ() { Original = this.Sectors[lba+150] }; byte[] subQbuf = ss_patchq.Buffer_SubQ; //read the old subcode dsr.ReadLBA_SubQ(lba, subQbuf, 0); //insert patch Sectors[lba + 150] = ss_patchq; //apply SBI patch for (int j = 0; j < 12; j++) { short patch = sbi.subq[b++]; if (patch == -1) continue; else subQbuf[j] = (byte)patch; } //Apply mednafen hacks //The reasoning here is that we know we expect these sectors to have a wrong checksum. therefore, generate a checksum, and make it wrong //However, this seems senseless to me. The whole point of the SBI data is that it stores the patches needed to generate an acceptable subQ, right? if (asMednafen) { SynthUtils.SubQ_SynthChecksum(subQbuf, 0); subQbuf[10] ^= 0xFF; subQbuf[11] ^= 0xFF; } } } static byte IntToBCD(int n) { int ones; int tens = Math.DivRem(n,10,out ones); return (byte)((tens<<4)|ones); } } /// /// encapsulates a 2 digit BCD number as used various places in the CD specs /// public struct BCD2 { /// /// The raw BCD value. you can't do math on this number! but you may be asked to supply it to a game program. /// The largest number it can logically contain is 99 /// public byte BCDValue; /// /// The derived decimal value. you can do math on this! the largest number it can logically contain is 99. /// public int DecimalValue { get { return (BCDValue & 0xF) + ((BCDValue >> 4) & 0xF) * 10; } set { BCDValue = IntToBCD(value); } } /// /// makes a BCD2 from a decimal number. don't supply a number > 99 or you might not like the results /// public static BCD2 FromDecimal(int d) { return new BCD2 {DecimalValue = d}; } public static BCD2 FromBCD(byte b) { return new BCD2 { BCDValue = b }; } public static int BCDToInt(byte n) { var bcd = new BCD2(); bcd.BCDValue = n; return bcd.DecimalValue; } public static byte IntToBCD(int n) { int ones; int tens = Math.DivRem(n, 10, out ones); return (byte)((tens << 4) | ones); } public override string ToString() { return BCDValue.ToString("X2"); } } /// /// todo - rename to MSF? It can specify durations, so maybe it should be not suggestive of timestamp /// TODO - can we maybe use BCD2 in here /// public struct Timestamp { /// /// Checks if the string is a legit MSF. It's strict. /// public static bool IsMatch(string str) { return new Timestamp(str).Valid; } /// /// creates a timestamp from a string in the form mm:ss:ff /// public Timestamp(string str) { if (str.Length != 8) goto BOGUS; if (str[0] < '0' || str[0] > '9') goto BOGUS; if (str[1] < '0' || str[1] > '9') goto BOGUS; if (str[2] != ':') goto BOGUS; if (str[3] < '0' || str[3] > '9') goto BOGUS; if (str[4] < '0' || str[4] > '9') goto BOGUS; if (str[5] != ':') goto BOGUS; if (str[6] < '0' || str[6] > '9') goto BOGUS; if (str[7] < '0' || str[7] > '9') goto BOGUS; MIN = (byte)((str[0] - '0') * 10 + (str[1] - '0')); SEC = (byte)((str[3] - '0') * 10 + (str[4] - '0')); FRAC = (byte)((str[6] - '0') * 10 + (str[7] - '0')); Valid = true; Negative = false; return; BOGUS: MIN = SEC = FRAC = 0; Valid = false; Negative = false; return; } /// /// The string representation of the MSF /// public string Value { get { if (!Valid) return "--:--:--"; return string.Format("{0}{1:D2}:{2:D2}:{3:D2}", Negative?'-':'+',MIN, SEC, FRAC); } } public readonly byte MIN, SEC, FRAC; public readonly bool Valid, Negative; /// /// The fully multiplied out flat-address Sector number /// public int Sector { get { return MIN * 60 * 75 + SEC * 75 + FRAC; } } /// /// creates timestamp from the supplied MSF /// public Timestamp(int m, int s, int f) { MIN = (byte)m; SEC = (byte)s; FRAC = (byte)f; Valid = true; Negative = false; } /// /// creates timestamp from supplied SectorNumber /// public Timestamp(int SectorNumber) { if (SectorNumber < 0) { SectorNumber = -SectorNumber; Negative = true; } else Negative = false; MIN = (byte)(SectorNumber / (60 * 75)); SEC = (byte)((SectorNumber / 75) % 60); FRAC = (byte)(SectorNumber % 75); Valid = true; } public override string ToString() { return Value; } } static class SynthUtils { /// /// Calculates the checksum of the provided Q subchannel buffer and emplaces it /// /// 12 byte Q subchannel buffer: input and output buffer for operation /// location within buffer of Q subchannel public static ushort SubQ_SynthChecksum(byte[] buf12, int offset) { ushort crc16 = CRC16_CCITT.Calculate(buf12, offset, 10); //CRC is stored inverted and big endian buf12[offset + 10] = (byte)(~(crc16 >> 8)); buf12[offset + 11] = (byte)(~(crc16)); return crc16; } /// /// Caclulates the checksum of the provided Q subchannel buffer /// public static ushort SubQ_CalcChecksum(byte[] buf12, int offset) { return CRC16_CCITT.Calculate(buf12, offset, 10); } /// /// Serializes the provided SubchannelQ structure into a buffer /// Returns the crc, calculated or otherwise. /// public static ushort SubQ_Serialize(byte[] buf12, int offset, ref SubchannelQ sq) { buf12[offset + 0] = sq.q_status; buf12[offset + 1] = sq.q_tno.BCDValue; buf12[offset + 2] = sq.q_index.BCDValue; buf12[offset + 3] = sq.min.BCDValue; buf12[offset + 4] = sq.sec.BCDValue; buf12[offset + 5] = sq.frame.BCDValue; buf12[offset + 6] = sq.zero; buf12[offset + 7] = sq.ap_min.BCDValue; buf12[offset + 8] = sq.ap_sec.BCDValue; buf12[offset + 9] = sq.ap_frame.BCDValue; return SubQ_SynthChecksum(buf12, offset); } /// /// Synthesizes the typical subP data into the provided buffer depending on the indicated pause flag /// public static void SubP(byte[] buffer12, int offset, bool pause) { byte val = (byte)(pause ? 0xFF : 0x00); for (int i = 0; i < 12; i++) buffer12[offset + i] = val; } /// /// Synthesizes a data sector header /// public static void SectorHeader(byte[] buffer16, int offset, int LBA, byte mode) { buffer16[offset + 0] = 0x00; for (int i = 1; i < 11; i++) buffer16[offset + i] = 0xFF; buffer16[offset + 11] = 0x00; Timestamp ts = new Timestamp(LBA + 150); buffer16[offset + 12] = BCD2.IntToBCD(ts.MIN); buffer16[offset + 13] = BCD2.IntToBCD(ts.SEC); buffer16[offset + 14] = BCD2.IntToBCD(ts.FRAC); buffer16[offset + 15] = mode; } /// /// Synthesizes the EDC checksum for a Mode 2 Form 1 data sector (and puts it in place) /// public static void EDC_Mode2_Form1(byte[] buf2352, int offset) { uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2048 + 8); ECM.PokeUint(buf2352, offset + 2072, edc); } /// /// Synthesizes the EDC checksum for a Mode 2 Form 2 data sector (and puts it in place) /// public static void EDC_Mode2_Form2(byte[] buf2352, int offset) { uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2324 + 8); ECM.PokeUint(buf2352, offset + 2348, edc); } /// /// Synthesizes the complete ECM data (EDC + ECC) for a Mode 1 data sector (and puts it in place) /// Make sure everything else in the sector userdata is done before calling this /// public static void ECM_Mode1(byte[] buf2352, int offset, int LBA) { //EDC uint edc = ECM.EDC_Calc(buf2352, offset, 2064); ECM.PokeUint(buf2352, offset + 2064, edc); //reserved, zero for (int i = 0; i < 8; i++) buf2352[offset + 2068 + i] = 0; //ECC ECM.ECC_Populate(buf2352, offset, buf2352, offset, false); } /// /// Converts the useful (but unrealistic) deinterleaved subchannel data into the useless (but realistic) interleaved format. /// in_buf and out_buf should not overlap /// public static void InterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index) { for (int d = 0; d < 12; d++) { for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++) { int rawb = 0; for (int ch = 0; ch < 8; ch++) { rawb |= ((in_buf[ch * 12 + d + in_buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch); } out_buf[(d << 3) + bitpoodle + out_buf_index] = (byte)rawb; } } } /// /// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format. /// in_buf and out_buf should not overlap /// public static void DeinterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index) { for (int i = 0; i < 96; i++) out_buf[i] = 0; for (int ch = 0; ch < 8; ch++) { for (int i = 0; i < 96; i++) { out_buf[(ch * 12) + (i >> 3) + out_buf_index] |= (byte)(((in_buf[i + in_buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7))); } } } /// /// Converts the useful (but unrealistic) deinterleaved data into the useless (but realistic) interleaved subchannel format. /// public unsafe static void InterleaveSubcodeInplace(byte[] buf, int buf_index) { byte* out_buf = stackalloc byte[96]; for (int i = 0; i < 96; i++) out_buf[i] = 0; for (int d = 0; d < 12; d++) { for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++) { int rawb = 0; for (int ch = 0; ch < 8; ch++) { rawb |= ((buf[ch * 12 + d + buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch); } out_buf[(d << 3) + bitpoodle] = (byte)rawb; } } for (int i = 0; i < 96; i++) buf[i + buf_index] = out_buf[i]; } /// /// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format. /// public unsafe static void DeinterleaveSubcodeInplace(byte[] buf, int buf_index) { byte* out_buf = stackalloc byte[96]; for (int i = 0; i < 96; i++) out_buf[i] = 0; for (int ch = 0; ch < 8; ch++) { for (int i = 0; i < 96; i++) { out_buf[(ch * 12) + (i >> 3)] |= (byte)(((buf[i + buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7))); } } for (int i = 0; i < 96; i++) buf[i + buf_index] = out_buf[i]; } } }