// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include #include #include "Core/MemMap.h" #include "Core/Reporting.h" #include "GPU/ge_constants.h" #include "GPU/GPUState.h" #include "GPU/GLES/TextureCache.h" #include "GPU/GLES/Framebuffer.h" #include "Core/Config.h" #include "native/ext/cityhash/city.h" #ifdef _M_SSE #include #endif // If a texture hasn't been seen for this many frames, get rid of it. #define TEXTURE_KILL_AGE 200 #define TEXTURE_KILL_AGE_LOWMEM 60 // Not used in lowmem mode. #define TEXTURE_SECOND_KILL_AGE 100 u32 RoundUpToPowerOf2(u32 v) { v--; v |= v >> 1; v |= v >> 2; v |= v >> 4; v |= v >> 8; v |= v >> 16; v++; return v; } static inline u32 GetLevelBufw(int level, u32 texaddr) { // Special rules for kernel textures (PPGe): if (texaddr < PSP_GetUserMemoryBase()) return gstate.texbufwidth[level] & 0x1FFF; return gstate.texbufwidth[level] & 0x7FF; } TextureCache::TextureCache() : clearCacheNextFrame_(false), lowMemoryMode_(false), clutBuf_(NULL) { lastBoundTexture = -1; // This is 5MB of temporary storage. Might be possible to shrink it. tmpTexBuf32.resize(1024 * 512); // 2MB tmpTexBuf16.resize(1024 * 512); // 1MB tmpTexBufRearrange.resize(1024 * 512); // 2MB clutBufConverted_ = new u32[4096]; // 16KB clutBufRaw_ = new u32[4096]; // 16KB glGetFloatv(GL_MAX_TEXTURE_MAX_ANISOTROPY_EXT, &maxAnisotropyLevel); } TextureCache::~TextureCache() { delete [] clutBufConverted_; delete [] clutBufRaw_; } void TextureCache::Clear(bool delete_them) { glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; if (delete_them) { for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture); glDeleteTextures(1, &iter->second.texture); } for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ++iter) { DEBUG_LOG(G3D, "Deleting texture %i", iter->second.texture); glDeleteTextures(1, &iter->second.texture); } } if (cache.size() + secondCache.size()) { INFO_LOG(G3D, "Texture cached cleared from %i textures", (int)(cache.size() + secondCache.size())); cache.clear(); secondCache.clear(); } } // Removes old textures. void TextureCache::Decimate() { glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; int killAge = lowMemoryMode_ ? TEXTURE_KILL_AGE_LOWMEM : TEXTURE_KILL_AGE; for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ) { if (iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) { glDeleteTextures(1, &iter->second.texture); cache.erase(iter++); } else ++iter; } for (TexCache::iterator iter = secondCache.begin(); iter != secondCache.end(); ) { if (lowMemoryMode_ || iter->second.lastFrame + TEXTURE_KILL_AGE < gpuStats.numFrames) { glDeleteTextures(1, &iter->second.texture); secondCache.erase(iter++); } else ++iter; } } void TextureCache::Invalidate(u32 addr, int size, GPUInvalidationType type) { addr &= 0xFFFFFFF; u32 addr_end = addr + size; for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { u32 texAddr = iter->second.addr; u32 texEnd = iter->second.addr + iter->second.sizeInRAM; if (texAddr < addr_end && addr < texEnd) { if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) { // Clear status -> STATUS_HASHING. iter->second.status &= ~TexCacheEntry::STATUS_MASK; } if (type != GPU_INVALIDATE_ALL) { gpuStats.numTextureInvalidations++; // Start it over from 0 (unless it's safe.) iter->second.numFrames = type == GPU_INVALIDATE_SAFE ? 256 : 0; iter->second.framesUntilNextFullHash = 0; } else { iter->second.invalidHint++; } } } } void TextureCache::InvalidateAll(GPUInvalidationType /*unused*/) { for (TexCache::iterator iter = cache.begin(), end = cache.end(); iter != end; ++iter) { if ((iter->second.status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_RELIABLE) { // Clear status -> STATUS_HASHING. iter->second.status &= ~TexCacheEntry::STATUS_MASK; } iter->second.invalidHint++; } } void TextureCache::ClearNextFrame() { clearCacheNextFrame_ = true; } TextureCache::TexCacheEntry *TextureCache::GetEntryAt(u32 texaddr) { // If no CLUT, as in framebuffer textures, cache key is simply texaddr. auto iter = cache.find(texaddr); if (iter != cache.end() && iter->second.addr == texaddr) return &iter->second; else return 0; } void TextureCache::NotifyFramebuffer(u32 address, VirtualFramebuffer *framebuffer) { // Must be in VRAM so | 0x04000000 it is. TexCacheEntry *entry = GetEntryAt(address | 0x04000000); if (entry) { DEBUG_LOG(HLE, "Render to texture detected at %08x!", address); if (!entry->framebuffer) entry->framebuffer = framebuffer; // TODO: Delete the original non-fbo texture too. } } void TextureCache::NotifyFramebufferDestroyed(u32 address, VirtualFramebuffer *framebuffer) { TexCacheEntry *entry = GetEntryAt(address | 0x04000000); if (entry && entry->framebuffer == framebuffer) { // There's at least one. We're going to have to loop through all textures unfortunately to be // 100% safe. for (TexCache::iterator iter = cache.begin(); iter != cache.end(); ++iter) { if (iter->second.framebuffer == framebuffer) { iter->second.framebuffer = 0; } } // entry->framebuffer = 0; } } static u32 GetClutAddr() { return ((gstate.clutaddr & 0xFFFFFF) | ((gstate.clutaddrupper << 8) & 0x0F000000)); } static u32 GetClutIndex(u32 index) { const u32 clutBase = (gstate.clutformat & 0x1f0000) >> 12; const u32 clutMask = (gstate.clutformat >> 8) & 0xff; const u8 clutShift = (gstate.clutformat >> 2) & 0x1f; return ((index >> clutShift) & clutMask) | clutBase; } void *TextureCache::UnswizzleFromMem(u32 texaddr, u32 bufw, u32 bytesPerPixel, u32 level) { const u32 rowWidth = (bytesPerPixel > 0) ? (bufw * bytesPerPixel) : (bufw / 2); const u32 pitch = rowWidth / 4; const int bxc = rowWidth / 16; int byc = ((1 << ((gstate.texsize[level] >> 8) & 0xf)) + 7) / 8; if (byc == 0) byc = 1; u32 ydest = 0; if (rowWidth >= 16) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); u32 *ydest = tmpTexBuf32.data(); for (int by = 0; by < byc; by++) { u32 *xdest = ydest; for (int bx = 0; bx < bxc; bx++) { u32 *dest = xdest; for (int n = 0; n < 8; n++) { memcpy(dest, src, 16); dest += pitch; src += 4; } xdest += 4; } ydest += (rowWidth * 8) / 4; } } else if (rowWidth == 8) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest += 2) { tmpTexBuf32[ydest + 0] = *src++; tmpTexBuf32[ydest + 1] = *src++; src += 2; // skip two u32 } } } else if (rowWidth == 4) { const u32 *src = (u32 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 8; n++, ydest++) { tmpTexBuf32[ydest] = *src++; src += 3; } } } else if (rowWidth == 2) { const u16 *src = (u16 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 4; n++, ydest++) { u16 n1 = src[0]; u16 n2 = src[8]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 16); src += 16; } } } else if (rowWidth == 1) { const u8 *src = (u8 *) Memory::GetPointer(texaddr); for (int by = 0; by < byc; by++) { for (int n = 0; n < 2; n++, ydest++) { u8 n1 = src[ 0]; u8 n2 = src[16]; u8 n3 = src[32]; u8 n4 = src[48]; tmpTexBuf32[ydest] = (u32)n1 | ((u32)n2 << 8) | ((u32)n3 << 16) | ((u32)n4 << 24); src += 64; } } } return tmpTexBuf32.data(); } template inline void DeIndexTexture(ClutT *dest, const IndexT *indexed, int length, const ClutT *clut) { // Usually, there is no special offset, mask, or shift. const bool nakedIndex = (gstate.clutformat & ~3) == 0xC500FF00; if (nakedIndex) { if (sizeof(IndexT) == 1) { for (int i = 0; i < length; ++i) { *dest++ = clut[*indexed++]; } } else { for (int i = 0; i < length; ++i) { *dest++ = clut[(*indexed++) & 0xFF]; } } } else { for (int i = 0; i < length; ++i) { *dest++ = clut[GetClutIndex(*indexed++)]; } } } template inline void DeIndexTexture(ClutT *dest, const u32 texaddr, int length, const ClutT *clut) { const IndexT *indexed = (const IndexT *) Memory::GetPointer(texaddr); DeIndexTexture(dest, indexed, length, clut); } template inline void DeIndexTexture4(ClutT *dest, const u8 *indexed, int length, const ClutT *clut) { // Usually, there is no special offset, mask, or shift. const bool nakedIndex = (gstate.clutformat & ~3) == 0xC500FF00; if (nakedIndex) { for (int i = 0; i < length; i += 2) { u8 index = *indexed++; dest[i + 0] = clut[(index >> 0) & 0xf]; dest[i + 1] = clut[(index >> 4) & 0xf]; } } else { for (int i = 0; i < length; i += 2) { u8 index = *indexed++; dest[i + 0] = clut[GetClutIndex((index >> 0) & 0xf)]; dest[i + 1] = clut[GetClutIndex((index >> 4) & 0xf)]; } } } template inline void DeIndexTexture4Optimal(ClutT *dest, const u8 *indexed, int length, ClutT color) { for (int i = 0; i < length; i += 2) { u8 index = *indexed++; dest[i + 0] = color | ((index >> 0) & 0xf); dest[i + 1] = color | ((index >> 4) & 0xf); } } template <> inline void DeIndexTexture4Optimal(u16 *dest, const u8 *indexed, int length, u16 color) { const u16 *indexed16 = (const u16 *)indexed; const u32 color32 = (color << 16) | color; u32 *dest32 = (u32 *)dest; for (int i = 0; i < length / 2; i += 2) { u16 index = *indexed16++; dest32[i + 0] = color32 | ((index & 0x00f0) << 12) | ((index & 0x000f) >> 0); dest32[i + 1] = color32 | ((index & 0xf000) << 4) | ((index & 0x0f00) >> 8); } } template inline void DeIndexTexture4(ClutT *dest, const u32 texaddr, int length, const ClutT *clut) { const u8 *indexed = (const u8 *) Memory::GetPointer(texaddr); DeIndexTexture4(dest, indexed, length, clut); } template inline void DeIndexTexture4Optimal(ClutT *dest, const u32 texaddr, int length, ClutT color) { const u8 *indexed = (const u8 *) Memory::GetPointer(texaddr); DeIndexTexture4Optimal(dest, indexed, length, color); } void *TextureCache::readIndexedTex(int level, u32 texaddr, int bytesPerIndex, GLuint dstFmt) { int bufw = GetLevelBufw(level, texaddr); int w = 1 << (gstate.texsize[0] & 0xf); int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); int length = bufw * h; void *buf = NULL; switch ((gstate.clutformat & 3)) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut(); if (!(gstate.texmode & 1)) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), texaddr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), texaddr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), texaddr, length, clut); break; } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level); switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf16.data(), (u8 *) tmpTexBuf32.data(), length, clut); break; case 2: DeIndexTexture(tmpTexBuf16.data(), (u16 *) tmpTexBuf32.data(), length, clut); break; case 4: DeIndexTexture(tmpTexBuf16.data(), (u32 *) tmpTexBuf32.data(), length, clut); break; } } buf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut(); if (!(gstate.texmode & 1)) { switch (bytesPerIndex) { case 1: DeIndexTexture(tmpTexBuf32.data(), texaddr, length, clut); break; case 2: DeIndexTexture(tmpTexBuf32.data(), texaddr, length, clut); break; case 4: DeIndexTexture(tmpTexBuf32.data(), texaddr, length, clut); break; } buf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texaddr, bufw, bytesPerIndex, level); // Since we had to unswizzle to tmpTexBuf32, let's output to tmpTexBuf16. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); u32 *dest32 = (u32 *) tmpTexBuf16.data(); switch (bytesPerIndex) { case 1: DeIndexTexture(dest32, (u8 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 2: DeIndexTexture(dest32, (u16 *) tmpTexBuf32.data(), length, clut); buf = dest32; break; case 4: // TODO: If a game actually uses this mode, check if using dest32 or tmpTexBuf32 is faster. DeIndexTexture(tmpTexBuf32.data(), tmpTexBuf32.data(), length, clut); buf = tmpTexBuf32.data(); break; } } } break; default: ERROR_LOG(G3D, "Unhandled clut texture mode %d!!!", (gstate.clutformat & 3)); break; } return buf; } GLenum getClutDestFormat(GEPaletteFormat format) { switch (format) { case GE_CMODE_16BIT_ABGR4444: return GL_UNSIGNED_SHORT_4_4_4_4; case GE_CMODE_16BIT_ABGR5551: return GL_UNSIGNED_SHORT_5_5_5_1; case GE_CMODE_16BIT_BGR5650: return GL_UNSIGNED_SHORT_5_6_5; case GE_CMODE_32BIT_ABGR8888: return GL_UNSIGNED_BYTE; } return 0; } static const u8 texByteAlignMap[] = {2, 2, 2, 4}; static const GLuint MinFiltGL[8] = { GL_NEAREST, GL_LINEAR, GL_NEAREST, GL_LINEAR, GL_NEAREST_MIPMAP_NEAREST, GL_LINEAR_MIPMAP_NEAREST, GL_NEAREST_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_LINEAR, }; static const GLuint MagFiltGL[2] = { GL_NEAREST, GL_LINEAR }; // This should not have to be done per texture! OpenGL is silly yo // TODO: Dirty-check this against the current texture. void TextureCache::UpdateSamplingParams(TexCacheEntry &entry, bool force) { int minFilt = gstate.texfilter & 0x7; int magFilt = (gstate.texfilter>>8) & 1; bool sClamp = gstate.texwrap & 1; bool tClamp = (gstate.texwrap>>8) & 1; // bool noMip = (gstate.texlevel & 0xFFFFFF) == 0x000001; // Fix texlevel at 0 if (entry.maxLevel == 0) { // Enforce no mip filtering, for safety. minFilt &= 1; // no mipmaps yet } else { // TODO: Is this a signed value? Which direction? float lodBias = 0.0; // -(float)((gstate.texlevel >> 16) & 0xFF) / 16.0f; if (force || entry.lodBias != lodBias) { #ifndef USING_GLES2 glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_LOD_BIAS, lodBias); #endif entry.lodBias = lodBias; } } if (g_Config.bLinearFiltering && !gstate.isColorTestEnabled()) { magFilt |= 1; minFilt |= 1; } if (g_Config.bNearestFiltering) { magFilt &= ~1; minFilt &= ~1; } if (!g_Config.bMipMap) { magFilt &= 1; minFilt &= 1; } if (force || entry.minFilt != minFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, MinFiltGL[minFilt]); entry.minFilt = minFilt; } if (force || entry.magFilt != magFilt) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, MagFiltGL[magFilt]); entry.magFilt = magFilt; } if (force || entry.sClamp != sClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, sClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.sClamp = sClamp; } if (force || entry.tClamp != tClamp) { glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, tClamp ? GL_CLAMP_TO_EDGE : GL_REPEAT); entry.tClamp = tClamp; } } // All these DXT structs are in the reverse order, as compared to PC. // On PC, alpha comes before color, and interpolants are before the tile data. struct DXT1Block { u8 lines[4]; u16 color1; u16 color2; }; struct DXT3Block { DXT1Block color; u16 alphaLines[4]; }; struct DXT5Block { DXT1Block color; u32 alphadata2; u16 alphadata1; u8 alpha1; u8 alpha2; }; static inline u32 makecol(int r, int g, int b, int a) { return (a << 24) | (r << 16) | (g << 8) | b; } // This could probably be done faster by decoding two or four blocks at a time with SSE/NEON. static void decodeDXT1Block(u32 *dst, const DXT1Block *src, int pitch, bool ignore1bitAlpha = false) { // S3TC Decoder // Needs more speed and debugging. u16 c1 = (src->color1); u16 c2 = (src->color2); int red1 = Convert5To8(c1 & 0x1F); int red2 = Convert5To8(c2 & 0x1F); int green1 = Convert6To8((c1 >> 5) & 0x3F); int green2 = Convert6To8((c2 >> 5) & 0x3F); int blue1 = Convert5To8((c1 >> 11) & 0x1F); int blue2 = Convert5To8((c2 >> 11) & 0x1F); u32 colors[4]; colors[0] = makecol(red1, green1, blue1, 255); colors[1] = makecol(red2, green2, blue2, 255); if (c1 > c2 || ignore1bitAlpha) { int blue3 = ((blue2 - blue1) >> 1) - ((blue2 - blue1) >> 3); int green3 = ((green2 - green1) >> 1) - ((green2 - green1) >> 3); int red3 = ((red2 - red1) >> 1) - ((red2 - red1) >> 3); colors[2] = makecol(red1 + red3, green1 + green3, blue1 + blue3, 255); colors[3] = makecol(red2 - red3, green2 - green3, blue2 - blue3, 255); } else { colors[2] = makecol((red1 + red2 + 1) / 2, // Average (green1 + green2 + 1) / 2, (blue1 + blue2 + 1) / 2, 255); colors[3] = makecol(red2, green2, blue2, 0); // Color2 but transparent } for (int y = 0; y < 4; y++) { int val = src->lines[y]; for (int x = 0; x < 4; x++) { dst[x] = colors[val & 3]; val >>= 2; } dst += pitch; } } static void decodeDXT3Block(u32 *dst, const DXT3Block *src, int pitch) { decodeDXT1Block(dst, &src->color, pitch, true); for (int y = 0; y < 4; y++) { u32 line = src->alphaLines[y]; for (int x = 0; x < 4; x++) { const u8 a4 = line & 0xF; dst[x] = (dst[x] & 0xFFFFFF) | (a4 << 24) | (a4 << 28); line >>= 4; } dst += pitch; } } static inline u8 lerp8(const DXT5Block *src, int n) { float d = n / 7.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } static inline u8 lerp6(const DXT5Block *src, int n) { float d = n / 5.0f; return (u8)(src->alpha1 + (src->alpha2 - src->alpha1) * d); } // The alpha channel is not 100% correct static void decodeDXT5Block(u32 *dst, const DXT5Block *src, int pitch) { decodeDXT1Block(dst, &src->color, pitch, true); u8 alpha[8]; alpha[0] = src->alpha1; alpha[1] = src->alpha2; if (alpha[0] > alpha[1]) { alpha[2] = lerp8(src, 1); alpha[3] = lerp8(src, 2); alpha[4] = lerp8(src, 3); alpha[5] = lerp8(src, 4); alpha[6] = lerp8(src, 5); alpha[7] = lerp8(src, 6); } else { alpha[2] = lerp6(src, 1); alpha[3] = lerp6(src, 2); alpha[4] = lerp6(src, 3); alpha[5] = lerp6(src, 4); alpha[6] = 0; alpha[7] = 255; } u64 data = ((u64)src->alphadata1 << 32) | src->alphadata2; for (int y = 0; y < 4; y++) { for (int x = 0; x < 4; x++) { dst[x] = (dst[x] & 0xFFFFFF) | (alpha[data & 7] << 24); data >>= 3; } dst += pitch; } } static void ConvertColors(void *dstBuf, const void *srcBuf, GLuint dstFmt, int numPixels) { const u32 *src = (const u32 *)srcBuf; u32 *dst = (u32 *)dstBuf; // TODO: All these can be further sped up with SSE or NEON. switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: { for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 12) & 0x000F000F) | ((c >> 4) & 0x00F000F0) | ((c << 4) & 0x0F000F00) | ((c << 12) & 0xF000F000); } } break; case GL_UNSIGNED_SHORT_5_5_5_1: { for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 15) & 0x00010001) | ((c >> 9) & 0x003E003E) | ((c << 1) & 0x07C007C0) | ((c << 11) & 0xF800F800); } } break; case GL_UNSIGNED_SHORT_5_6_5: { for (int i = 0; i < (numPixels + 1) / 2; i++) { u32 c = src[i]; dst[i] = ((c >> 11) & 0x001F001F) | ((c >> 0) & 0x07E007E0) | ((c << 11) & 0xF800F800); } } break; default: { // No need to convert RGBA8888, right order already if (dst != src) memcpy(dst, src, numPixels * sizeof(u32)); } break; } } void TextureCache::StartFrame() { lastBoundTexture = -1; if(clearCacheNextFrame_) { Clear(true); clearCacheNextFrame_ = false; } else { Decimate(); } } static const u8 bitsPerPixel[11] = { 16, //GE_TFMT_5650, 16, //GE_TFMT_5551, 16, //GE_TFMT_4444, 32, //GE_TFMT_8888, 4, //GE_TFMT_CLUT4, 8, //GE_TFMT_CLUT8, 16, //GE_TFMT_CLUT16, 32, //GE_TFMT_CLUT32, 4, //GE_TFMT_DXT1, 8, //GE_TFMT_DXT3, 8, //GE_TFMT_DXT5, }; static inline u32 MiniHash(const u32 *ptr) { return ptr[0]; } static inline u32 QuickClutHash(const u8 *clut, u32 bytes) { // CLUTs always come in multiples of 32 bytes, can't load them any other way. _dbg_assert_msg_(G3D, (bytes & 31) == 0, "CLUT should always have a multiple of 32 bytes."); const u32 prime = 2246822519U; u32 hash = 0; #ifdef _M_SSE if ((((u32)(intptr_t)clut) & 0xf) == 0) { __m128i cursor = _mm_set1_epi32(0); const __m128i mult = _mm_set1_epi32(prime); const __m128i *p = (const __m128i *)clut; for (u32 i = 0; i < bytes / 16; ++i) { cursor = _mm_add_epi32(cursor, _mm_mul_epu32(_mm_load_si128(&p[i]), mult)); } // Add the four parts into the low i32. cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8)); cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4)); hash = _mm_cvtsi128_si32(cursor); } else { #else // TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.) { #endif for (const u32 *p = (u32 *)clut, *end = (u32 *)(clut + bytes); p < end; ) { hash += *p++ * prime; } } return hash; } static inline u32 QuickTexHash(u32 addr, int bufw, int w, int h, u32 format) { const u32 sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h) / 8; const u32 *checkp = (const u32 *) Memory::GetPointer(addr); u32 check = 0; #ifdef _M_SSE // Make sure both the size and start are aligned, OR will get either. if ((((u32)(intptr_t)checkp | sizeInRAM) & 0x1f) == 0) { __m128i cursor = _mm_set1_epi32(0); const __m128i *p = (const __m128i *)checkp; for (u32 i = 0; i < sizeInRAM / 16; i += 2) { cursor = _mm_add_epi32(cursor, _mm_load_si128(&p[i])); cursor = _mm_xor_si128(cursor, _mm_load_si128(&p[i + 1])); } // Add the four parts into the low i32. cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 8)); cursor = _mm_add_epi32(cursor, _mm_srli_si128(cursor, 4)); check = _mm_cvtsi128_si32(cursor); } else { #else // TODO: ARM NEON implementation (using CPUDetect to be sure it has NEON.) { #endif for (u32 i = 0; i < sizeInRAM / 8; ++i) { check += *checkp++; check ^= *checkp++; } } return check; } inline bool TextureCache::TexCacheEntry::Matches(u16 dim2, u8 format2, int maxLevel2) { return dim == dim2 && format == format2 && maxLevel == maxLevel2; } void TextureCache::LoadClut() { u32 clutAddr = GetClutAddr(); clutTotalBytes_ = (gstate.loadclut & 0x3f) * 32; if (Memory::IsValidAddress(clutAddr)) { Memory::Memcpy(clutBufRaw_, clutAddr, clutTotalBytes_); } else { memset(clutBufRaw_, 0xFF, clutTotalBytes_); } // Reload the clut next time. clutLastFormat_ = 0xFFFFFFFF; } void TextureCache::UpdateCurrentClut() { const GEPaletteFormat clutFormat = (GEPaletteFormat)(gstate.clutformat & 3); const u32 clutBase = (gstate.clutformat & 0x1f0000) >> 12; const u32 clutBaseBytes = clutBase * (clutFormat == GE_CMODE_32BIT_ABGR8888 ? sizeof(u32) : sizeof(u16)); // Technically, these extra bytes weren't loaded, but hopefully it was loaded earlier. // If not, we're going to hash random data, which hopefully doesn't cause a performance issue. const u32 clutExtendedBytes = clutTotalBytes_ + clutBaseBytes; // QuickClutHash is not quite good enough apparently. // clutHash_ = QuickClutHash((const u8 *)clutBufRaw_, clutExtendedBytes); clutHash_ = CityHash32((const char *)clutBufRaw_, clutExtendedBytes); // Avoid a copy when we don't need to convert colors. if (clutFormat != GE_CMODE_32BIT_ABGR8888) { ConvertColors(clutBufConverted_, clutBufRaw_, getClutDestFormat(clutFormat), clutExtendedBytes / sizeof(u16)); clutBuf_ = clutBufConverted_; } else { clutBuf_ = clutBufRaw_; } // Special optimization: fonts typically draw clut4 with just alpha values in a single color. clutAlphaLinear_ = false; clutAlphaLinearColor_ = 0; if (gstate.clutformat == (0xC500FF00 | GE_CMODE_16BIT_ABGR4444)) { const u16 *clut = GetCurrentClut(); clutAlphaLinear_ = true; clutAlphaLinearColor_ = clut[15] & 0xFFF0; for (int i = 0; i < 16; ++i) { if ((clut[i] & 0xf) != i) { clutAlphaLinear_ = false; break; } // Alpha 0 doesn't matter. if (i != 0 && (clut[i] & 0xFFF0) != clutAlphaLinearColor_) { clutAlphaLinear_ = false; break; } } } clutLastFormat_ = gstate.clutformat; } template inline const T *TextureCache::GetCurrentClut() { return (const T *)clutBuf_; } inline u32 TextureCache::GetCurrentClutHash() { return clutHash_; } // #define DEBUG_TEXTURES #ifdef DEBUG_TEXTURES bool SetDebugTexture() { static const int highlightFrames = 30; static int numTextures = 0; static int lastFrames = 0; static int mostTextures = 1; if (lastFrames != gpuStats.numFrames) { mostTextures = std::max(mostTextures, numTextures); numTextures = 0; lastFrames = gpuStats.numFrames; } static GLuint solidTexture = 0; bool changed = false; if (((gpuStats.numFrames / highlightFrames) % mostTextures) == numTextures) { if (gpuStats.numFrames % highlightFrames == 0) { NOTICE_LOG(HLE, "Highlighting texture # %d / %d", numTextures, mostTextures); } static const u32 solidTextureData[] = {0x99AA99FF}; if (solidTexture == 0) { glGenTextures(1, &solidTexture); glBindTexture(GL_TEXTURE_2D, solidTexture); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); glPixelStorei(GL_PACK_ALIGNMENT, 1); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, 1, 1, 0, GL_RGBA, GL_UNSIGNED_BYTE, solidTextureData); } else { glBindTexture(GL_TEXTURE_2D, solidTexture); } changed = true; } ++numTextures; return changed; } #endif void TextureCache::SetTexture() { #ifdef DEBUG_TEXTURES if (SetDebugTexture()) { // A different texture was bound, let's rebind next time. lastBoundTexture = -1; return; } #endif u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000); if (!Memory::IsValidAddress(texaddr)) { // Bind a null texture and return. glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; return; } u32 format = gstate.texformat & 0xF; if (format >= 11) { ERROR_LOG_REPORT(G3D, "Unknown texture format %i", format); format = 0; } // GE_TFMT_CLUT4 - GE_TFMT_CLUT32 are 0b1xx. bool hasClut = (format & 4) != 0; u64 cachekey = texaddr; u32 clutformat, cluthash; if (hasClut) { clutformat = gstate.clutformat & 3; if (clutLastFormat_ != gstate.clutformat) { // We update here because the clut format can be specified after the load. UpdateCurrentClut(); } cluthash = GetCurrentClutHash() ^ gstate.clutformat; cachekey |= (u64)cluthash << 32; } else { clutformat = 0; cluthash = 0; } int w = 1 << (gstate.texsize[0] & 0xf); int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); int bufw = GetLevelBufw(0, texaddr); int maxLevel = ((gstate.texmode >> 16) & 0x7); u32 texhash = MiniHash((const u32 *)Memory::GetPointer(texaddr)); u32 fullhash = 0; TexCache::iterator iter = cache.find(cachekey); TexCacheEntry *entry = NULL; gstate_c.flipTexture = false; gstate_c.skipDrawReason &= ~SKIPDRAW_BAD_FB_TEXTURE; bool replaceImages = false; if (iter != cache.end()) { entry = &iter->second; // Check for FBO - slow! if (entry->framebuffer) { entry->framebuffer->usageFlags |= FB_USAGE_TEXTURE; if (!g_Config.bBufferedRendering) { if (entry->framebuffer->fbo) entry->framebuffer->fbo = 0; glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; entry->lastFrame = gpuStats.numFrames; } else { if (entry->framebuffer->fbo) { fbo_bind_color_as_texture(entry->framebuffer->fbo, 0); } else { glBindTexture(GL_TEXTURE_2D, 0); lastBoundTexture = -1; gstate_c.skipDrawReason |= SKIPDRAW_BAD_FB_TEXTURE; } UpdateSamplingParams(*entry, false); } // This isn't right. gstate_c.curTextureWidth = entry->framebuffer->width; gstate_c.curTextureHeight = entry->framebuffer->height; int h = 1 << ((gstate.texsize[0] >> 8) & 0xf); gstate_c.actualTextureHeight = h; gstate_c.flipTexture = true; gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL; entry->lastFrame = gpuStats.numFrames; return; } //Validate the texture here (width, height etc) int dim = gstate.texsize[0] & 0xF0F; bool match = entry->Matches(dim, format, maxLevel); bool rehash = (entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE; bool doDelete = true; if (match) { if (entry->lastFrame != gpuStats.numFrames) { entry->numFrames++; } if (entry->framesUntilNextFullHash == 0) { // Exponential backoff up to 2048 frames. Textures are often reused. entry->framesUntilNextFullHash = std::min(2048, entry->numFrames); rehash = true; } else { --entry->framesUntilNextFullHash; } // If it's not huge or has been invalidated many times, recheck the whole texture. if (entry->invalidHint > 180 || (entry->invalidHint > 15 && dim <= 0x909)) { entry->invalidHint = 0; rehash = true; } bool hashFail = false; if (texhash != entry->hash) { fullhash = QuickTexHash(texaddr, bufw, w, h, format); hashFail = true; rehash = false; } if (rehash && (entry->status & TexCacheEntry::STATUS_MASK) != TexCacheEntry::STATUS_RELIABLE) { fullhash = QuickTexHash(texaddr, bufw, w, h, format); if (fullhash != entry->fullhash) { hashFail = true; } else if ((entry->status & TexCacheEntry::STATUS_MASK) == TexCacheEntry::STATUS_UNRELIABLE && entry->numFrames > TexCacheEntry::FRAMES_REGAIN_TRUST) { // Reset to STATUS_HASHING. entry->status &= ~TexCacheEntry::STATUS_MASK; } } if (hashFail) { match = false; entry->status |= TexCacheEntry::STATUS_UNRELIABLE; entry->numFrames = 0; // Don't give up just yet. Let's try the secondary cache if it's been invalidated before. // If it's failed a bunch of times, then the second cache is just wasting time and VRAM. if (entry->numInvalidated > 2 && entry->numInvalidated < 128 && !lowMemoryMode_) { u64 secondKey = fullhash | (u64)cluthash << 32; TexCache::iterator secondIter = secondCache.find(secondKey); if (secondIter != secondCache.end()) { TexCacheEntry *secondEntry = &secondIter->second; if (secondEntry->Matches(dim, format, maxLevel)) { // Reset the numInvalidated value lower, we got a match. if (entry->numInvalidated > 8) { --entry->numInvalidated; } entry = secondEntry; match = true; } } else { secondKey = entry->fullhash | (u64)entry->cluthash << 32; secondCache[secondKey] = *entry; doDelete = false; } } } } if (match) { // TODO: Mark the entry reliable if it's been safe for long enough? //got one! entry->lastFrame = gpuStats.numFrames; if (entry->texture != lastBoundTexture) { glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL; } UpdateSamplingParams(*entry, false); DEBUG_LOG(G3D, "Texture at %08x Found in Cache, applying", texaddr); return; //Done! } else { entry->numInvalidated++; gpuStats.numTextureInvalidations++; INFO_LOG(G3D, "Texture different or overwritten, reloading at %08x", texaddr); if (doDelete) { if (entry->maxLevel == maxLevel && entry->dim == (gstate.texsize[0] & 0xF0F) && entry->format == format && g_Config.iTexScalingLevel <= 1) { // Actually, if size and number of levels match, let's try to avoid deleting and recreating. // Instead, let's use glTexSubImage to replace the images. replaceImages = true; } else { if (entry->texture == lastBoundTexture) { lastBoundTexture = -1; } glDeleteTextures(1, &entry->texture); } } if (entry->status == TexCacheEntry::STATUS_RELIABLE) { entry->status = TexCacheEntry::STATUS_HASHING; } } } else { INFO_LOG(G3D, "No texture in cache, decoding..."); TexCacheEntry entryNew = {0}; cache[cachekey] = entryNew; entry = &cache[cachekey]; entry->status = TexCacheEntry::STATUS_HASHING; } if ((bufw == 0 || (gstate.texbufwidth[0] & 0xf800) != 0) && texaddr >= PSP_GetUserMemoryBase()) { ERROR_LOG_REPORT(HLE, "Texture with unexpected bufw (full=%d)", gstate.texbufwidth[0] & 0xffff); } // We have to decode it, let's setup the cache entry first. entry->addr = texaddr; entry->hash = texhash; entry->format = format; entry->lastFrame = gpuStats.numFrames; entry->framebuffer = 0; entry->maxLevel = maxLevel; entry->lodBias = 0.0f; entry->dim = gstate.texsize[0] & 0xF0F; // This would overestimate the size in many case so we underestimate instead // to avoid excessive clearing caused by cache invalidations. entry->sizeInRAM = (bitsPerPixel[format < 11 ? format : 0] * bufw * h / 2) / 8; entry->fullhash = fullhash == 0 ? QuickTexHash(texaddr, bufw, w, h, format) : fullhash; entry->cluthash = cluthash; entry->status &= ~TexCacheEntry::STATUS_ALPHA_MASK; gstate_c.curTextureWidth = w; gstate_c.curTextureHeight = h; if (!replaceImages) { glGenTextures(1, &entry->texture); } glBindTexture(GL_TEXTURE_2D, entry->texture); lastBoundTexture = entry->texture; // Adjust maxLevel to actually present levels.. for (int i = 0; i <= maxLevel; i++) { // If encountering levels pointing to nothing, adjust max level. u32 levelTexaddr = (gstate.texaddr[i] & 0xFFFFF0) | ((gstate.texbufwidth[i] << 8) & 0x0F000000); if (!Memory::IsValidAddress(levelTexaddr)) { maxLevel = i - 1; break; } } if (g_Config.bMipMap) { #ifdef USING_GLES2 // GLES2 doesn't have support for a "Max lod" which is critical as PSP games often // don't specify mips all the way down. As a result, we either need to manually generate // the bottom few levels or rely on OpenGL's autogen mipmaps instead, which might not // be as good quality as the game's own (might even be better in some cases though). // For now, I choose to use autogen mips on GLES2 and the game's own on other platforms. // As is usual, GLES3 will solve this problem nicely but wide distribution of that is // years away. LoadTextureLevel(*entry, 0, replaceImages); if (maxLevel > 0) glGenerateMipmap(GL_TEXTURE_2D); #else for (int i = 0; i <= maxLevel; i++) { LoadTextureLevel(*entry, i, replaceImages); } glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, maxLevel); glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_LOD, (float)maxLevel); #endif } else { LoadTextureLevel(*entry, 0, replaceImages); #ifndef USING_GLES2 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, 0); #endif } float anisotropyLevel = (float) g_Config.iAnisotropyLevel > maxAnisotropyLevel ? maxAnisotropyLevel : (float) g_Config.iAnisotropyLevel; glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, anisotropyLevel); UpdateSamplingParams(*entry, true); //glPixelStorei(GL_UNPACK_ROW_LENGTH, 0); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); //glPixelStorei(GL_PACK_ROW_LENGTH, 0); glPixelStorei(GL_PACK_ALIGNMENT, 1); gstate_c.textureFullAlpha = (entry->status & TexCacheEntry::STATUS_ALPHA_MASK) == TexCacheEntry::STATUS_ALPHA_FULL; } void *TextureCache::DecodeTextureLevel(u8 format, u8 clutformat, int level, u32 &texByteAlign, GLenum &dstFmt) { void *finalBuf = NULL; u32 texaddr = (gstate.texaddr[level] & 0xFFFFF0) | ((gstate.texbufwidth[level] << 8) & 0x0F000000); int bufw = GetLevelBufw(level, texaddr); int w = 1 << (gstate.texsize[level] & 0xf); int h = 1 << ((gstate.texsize[level] >> 8) & 0xf); const u8 *texptr = Memory::GetPointer(texaddr); switch (format) { case GE_TFMT_CLUT4: { dstFmt = getClutDestFormat((GEPaletteFormat)(clutformat)); const bool mipmapShareClut = (gstate.texmode & 0x100) == 0; const int clutSharingOffset = mipmapShareClut ? 0 : level * 16; switch (clutformat) { case GE_CMODE_16BIT_BGR5650: case GE_CMODE_16BIT_ABGR5551: case GE_CMODE_16BIT_ABGR4444: { tmpTexBuf16.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u16 *clut = GetCurrentClut() + clutSharingOffset; texByteAlign = 2; if (!(gstate.texmode & 1)) { if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), texaddr, bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), texaddr, bufw * h, clut); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); UnswizzleFromMem(texaddr, bufw, 0, level); if (clutAlphaLinear_ && mipmapShareClut) { DeIndexTexture4Optimal(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clutAlphaLinearColor_); } else { DeIndexTexture4(tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut); } } finalBuf = tmpTexBuf16.data(); } break; case GE_CMODE_32BIT_ABGR8888: { tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); const u32 *clut = GetCurrentClut() + clutSharingOffset; if (!(gstate.texmode & 1)) { DeIndexTexture4(tmpTexBuf32.data(), texaddr, bufw * h, clut); finalBuf = tmpTexBuf32.data(); } else { UnswizzleFromMem(texaddr, bufw, 0, level); // Let's reuse tmpTexBuf16, just need double the space. tmpTexBuf16.resize(std::max(bufw, w) * h * 2); DeIndexTexture4((u32 *)tmpTexBuf16.data(), (u8 *)tmpTexBuf32.data(), bufw * h, clut); finalBuf = tmpTexBuf16.data(); } } break; default: ERROR_LOG(G3D, "Unknown CLUT4 texture mode %d", (gstate.clutformat & 3)); return NULL; } } break; case GE_TFMT_CLUT8: dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); finalBuf = readIndexedTex(level, texaddr, 1, dstFmt); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT16: dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); finalBuf = readIndexedTex(level, texaddr, 2, dstFmt); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_CLUT32: dstFmt = getClutDestFormat((GEPaletteFormat)(gstate.clutformat & 3)); finalBuf = readIndexedTex(level, texaddr, 4, dstFmt); texByteAlign = texByteAlignMap[(gstate.clutformat & 3)]; break; case GE_TFMT_4444: case GE_TFMT_5551: case GE_TFMT_5650: if (format == GE_TFMT_4444) dstFmt = GL_UNSIGNED_SHORT_4_4_4_4; else if (format == GE_TFMT_5551) dstFmt = GL_UNSIGNED_SHORT_5_5_5_1; else if (format == GE_TFMT_5650) dstFmt = GL_UNSIGNED_SHORT_5_6_5; texByteAlign = 2; if (!(gstate.texmode & 1)) { int len = std::max(bufw, w) * h; tmpTexBuf16.resize(len); tmpTexBufRearrange.resize(len); Memory::Memcpy(tmpTexBuf16.data(), texaddr, len * sizeof(u16)); finalBuf = tmpTexBuf16.data(); } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texaddr, bufw, 2, level); } ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); break; case GE_TFMT_8888: dstFmt = GL_UNSIGNED_BYTE; if (!(gstate.texmode & 1)) { // Special case: if we don't need to deal with packing, we don't need to copy. if (w == bufw) { finalBuf = Memory::GetPointer(texaddr); } else { int len = bufw * h; tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); Memory::Memcpy(tmpTexBuf32.data(), texaddr, len * sizeof(u32)); finalBuf = tmpTexBuf32.data(); } } else { tmpTexBuf32.resize(std::max(bufw, w) * h); finalBuf = UnswizzleFromMem(texaddr, bufw, 4, level); } ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); break; case GE_TFMT_DXT1: dstFmt = GL_UNSIGNED_BYTE; { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT1Block *src = (DXT1Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { decodeDXT1Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); w = (w + 3) & ~3; } break; case GE_TFMT_DXT3: dstFmt = GL_UNSIGNED_BYTE; { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT3Block *src = (DXT3Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { decodeDXT3Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; case GE_TFMT_DXT5: // These work fine now dstFmt = GL_UNSIGNED_BYTE; { int minw = std::min(bufw, w); tmpTexBuf32.resize(std::max(bufw, w) * h); tmpTexBufRearrange.resize(std::max(bufw, w) * h); u32 *dst = tmpTexBuf32.data(); DXT5Block *src = (DXT5Block*)texptr; for (int y = 0; y < h; y += 4) { u32 blockIndex = (y / 4) * (bufw / 4); for (int x = 0; x < minw; x += 4) { decodeDXT5Block(dst + bufw * y + x, src + blockIndex, bufw); blockIndex++; } } w = (w + 3) & ~3; finalBuf = tmpTexBuf32.data(); ConvertColors(finalBuf, finalBuf, dstFmt, bufw * h); } break; default: ERROR_LOG_REPORT(G3D, "Unknown Texture Format %d!!!", format); return NULL; } if (!finalBuf) { ERROR_LOG_REPORT(G3D, "NO finalbuf! Will crash!"); } if (w != bufw) { int pixelSize; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: case GL_UNSIGNED_SHORT_5_5_5_1: case GL_UNSIGNED_SHORT_5_6_5: pixelSize = 2; break; default: pixelSize = 4; break; } // Need to rearrange the buffer to simulate GL_UNPACK_ROW_LENGTH etc. int inRowBytes = bufw * pixelSize; int outRowBytes = w * pixelSize; const u8 *read = (const u8 *)finalBuf; u8 *write = 0; if (w > bufw) { write = (u8 *)tmpTexBufRearrange.data(); finalBuf = tmpTexBufRearrange.data(); } else { write = (u8 *)finalBuf; } for (int y = 0; y < h; y++) { memmove(write, read, outRowBytes); read += inRowBytes; write += outRowBytes; } } return finalBuf; } void TextureCache::CheckAlpha(TexCacheEntry &entry, u32 *pixelData, GLenum dstFmt, int w, int h) { // TODO: Could probably be optimized more. u32 hitZeroAlpha = 0; u32 hitSomeAlpha = 0; switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: { const u32 *p = pixelData; for (int i = 0; i < (w * h + 1) / 2; ++i) { u32 a = p[i] & 0x000F000F; hitZeroAlpha |= a ^ 0x000F000F; if (a != 0x000F000F && a != 0x0000000F && a != 0x000F0000 && a != 0) { hitSomeAlpha = 1; break; } } } break; case GL_UNSIGNED_SHORT_5_5_5_1: { const u32 *p = pixelData; for (int i = 0; i < (w * h + 1) / 2; ++i) { u32 a = p[i] & 0x00010001; hitZeroAlpha |= a ^ 0x00010001; } } break; case GL_UNSIGNED_SHORT_5_6_5: { // Never has any alpha. } break; default: { const u32 *p = pixelData; for (int i = 0; i < w * h; ++i) { u32 a = p[i] & 0xFF000000; hitZeroAlpha |= a ^ 0xFF000000; if (a != 0xFF000000 && a != 0) { hitSomeAlpha = 1; break; } } } break; } if (hitSomeAlpha != 0) entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN; else if (hitZeroAlpha != 0) entry.status |= TexCacheEntry::STATUS_ALPHA_SIMPLE; else entry.status |= TexCacheEntry::STATUS_ALPHA_FULL; } void TextureCache::LoadTextureLevel(TexCacheEntry &entry, int level, bool replaceImages) { // TODO: only do this once u32 texByteAlign = 1; // TODO: Look into using BGRA for 32-bit textures when the GL_EXT_texture_format_BGRA8888 extension is available, as it's faster than RGBA on some chips. GLenum dstFmt = 0; u8 clutformat = gstate.clutformat & 3; void *finalBuf = DecodeTextureLevel(entry.format, clutformat, level, texByteAlign, dstFmt); if (finalBuf == NULL) { return; } int w = 1 << (gstate.texsize[level] & 0xf); int h = 1 << ((gstate.texsize[level] >> 8) & 0xf); gpuStats.numTexturesDecoded++; // Can restore these and remove the above fixup on some platforms. // glPixelStorei(GL_UNPACK_ROW_LENGTH, bufw); // glPixelStorei(GL_PACK_ROW_LENGTH, bufw); glPixelStorei(GL_UNPACK_ALIGNMENT, texByteAlign); glPixelStorei(GL_PACK_ALIGNMENT, texByteAlign); // INFO_LOG(G3D, "Creating texture level %i/%i from %08x: %i x %i (stride: %i). fmt: %i", level, entry.maxLevel, texaddr, w, h, bufw, entry.format); u32 *pixelData = (u32 *)finalBuf; int scaleFactor = g_Config.iTexScalingLevel; // Don't scale the PPGe texture. if (entry.addr > 0x05000000 && entry.addr < 0x08800000) scaleFactor = 1; if (scaleFactor > 1 && entry.numInvalidated == 0) scaler.Scale(pixelData, dstFmt, w, h, scaleFactor); // Or always? if (entry.numInvalidated == 0) CheckAlpha(entry, pixelData, dstFmt, w, h); else entry.status |= TexCacheEntry::STATUS_ALPHA_UNKNOWN; GLuint components = dstFmt == GL_UNSIGNED_SHORT_5_6_5 ? GL_RGB : GL_RGBA; if (replaceImages) { glTexSubImage2D(GL_TEXTURE_2D, level, 0, 0, w, h, components, dstFmt, pixelData); } else { glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, pixelData); GLenum err = glGetError(); if (err == GL_OUT_OF_MEMORY) { lowMemoryMode_ = true; Decimate(); // Try again. glTexImage2D(GL_TEXTURE_2D, level, components, w, h, 0, components, dstFmt, pixelData); } } } // Only used by Qt UI? bool TextureCache::DecodeTexture(u8* output, GPUgstate state) { GPUgstate oldState = gstate; gstate = state; u32 texaddr = (gstate.texaddr[0] & 0xFFFFF0) | ((gstate.texbufwidth[0]<<8) & 0x0F000000); if (!Memory::IsValidAddress(texaddr)) { return false; } u32 texByteAlign = 1; GLenum dstFmt = 0; u32 format = gstate.texformat & 0xF; u32 clutformat = gstate.clutformat & 3; u8 level = 0; int bufw = GetLevelBufw(level, texaddr); int w = 1 << (gstate.texsize[level] & 0xf); int h = 1 << ((gstate.texsize[level]>>8) & 0xf); void *finalBuf = DecodeTextureLevel(format, clutformat, level, texByteAlign, dstFmt); if (finalBuf == NULL) { return false; } switch (dstFmt) { case GL_UNSIGNED_SHORT_4_4_4_4: for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 r = ((val>>12) & 0xF) * 17; u32 g = ((val>> 8) & 0xF) * 17; u32 b = ((val>> 4) & 0xF) * 17; u32 a = ((val>> 0) & 0xF) * 17; ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } break; case GL_UNSIGNED_SHORT_5_5_5_1: for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 r = Convert5To8((val>>11) & 0x1F); u32 g = Convert5To8((val>> 6) & 0x1F); u32 b = Convert5To8((val>> 1) & 0x1F); u32 a = (val & 0x1) * 255; ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } break; case GL_UNSIGNED_SHORT_5_6_5: for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u16*)finalBuf)[x*bufw + y]; u32 a = 0xFF; u32 r = Convert5To8((val>>11) & 0x1F); u32 g = Convert6To8((val>> 5) & 0x3F); u32 b = Convert5To8((val ) & 0x1F); ((u32*)output)[x*w + y] = (a << 24) | (r << 16) | (g << 8) | b; } break; default: for(int x = 0; x < h; x++) for(int y = 0; y < bufw; y++) { u32 val = ((u32*)finalBuf)[x*bufw + y]; ((u32*)output)[x*w + y] = ((val & 0xFF000000)) | ((val & 0x00FF0000)>>16) | ((val & 0x0000FF00)) | ((val & 0x000000FF)<<16); } break; } gstate = oldState; return true; }