// Copyright (c) 2012- PPSSPP Project. // This program is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, version 2.0 or later versions. // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License 2.0 for more details. // A copy of the GPL 2.0 should have been included with the program. // If not, see http://www.gnu.org/licenses/ // Official git repository and contact information can be found at // https://github.com/hrydgard/ppsspp and http://www.ppsspp.org/. #include "Core/Reporting.h" #include "../../HLE/HLE.h" #include "../../Host.h" #include "../MIPS.h" #include "../MIPSCodeUtils.h" #include "../MIPSAnalyst.h" #include "../MIPSTables.h" #include "Jit.h" #include "RegCache.h" #include "Core/MIPS/JitCommon/JitBlockCache.h" #define _RS ((op>>21) & 0x1F) #define _RT ((op>>16) & 0x1F) #define _RD ((op>>11) & 0x1F) #define _FS ((op>>11) & 0x1F) #define _FT ((op>>16) & 0x1F) #define _FD ((op>>6 ) & 0x1F) #define _POS ((op>>6 ) & 0x1F) #define _SIZE ((op>>11 ) & 0x1F) #define LOOPOPTIMIZATION 0 using namespace MIPSAnalyst; // NOTE: Can't use CONDITIONAL_DISABLE in this file, branches are so special // that they cannot be interpreted in the context of the Jit. // But we can at least log and compare. // #define DO_CONDITIONAL_LOG 1 #define DO_CONDITIONAL_LOG 0 // We can also disable nice delay slots. // #define CONDITIONAL_NICE_DELAYSLOT delaySlotIsNice = false; #define CONDITIONAL_NICE_DELAYSLOT ; #if DO_CONDITIONAL_LOG #define CONDITIONAL_LOG BranchLog(op); #define CONDITIONAL_LOG_EXIT(addr) BranchLogExit(op, addr, false); #define CONDITIONAL_LOG_EXIT_EAX() BranchLogExit(op, 0, true); #else #define CONDITIONAL_LOG ; #define CONDITIONAL_LOG_EXIT(addr) ; #define CONDITIONAL_LOG_EXIT_EAX() ; #endif namespace MIPSComp { static u32 intBranchExit; static u32 jitBranchExit; static void JitBranchLog(u32 op, u32 pc) { currentMIPS->pc = pc; currentMIPS->inDelaySlot = false; MIPSInterpretFunc func = MIPSGetInterpretFunc(op); u32 info = MIPSGetInfo(op); func(op); // Branch taken, use nextPC. if (currentMIPS->inDelaySlot) intBranchExit = currentMIPS->nextPC; else { // Branch not taken, likely delay slot skipped. if (info & LIKELY) intBranchExit = currentMIPS->pc; // Branch not taken, so increment over delay slot. else intBranchExit = currentMIPS->pc + 4; } currentMIPS->pc = pc; currentMIPS->inDelaySlot = false; } static void JitBranchLogMismatch(u32 op, u32 pc) { char temp[256]; MIPSDisAsm(op, pc, temp, true); ERROR_LOG(JIT, "Bad jump: %s - int:%08x jit:%08x", temp, intBranchExit, jitBranchExit); host->SetDebugMode(true); } void Jit::BranchLog(u32 op) { FlushAll(); ABI_CallFunctionCC(thunks.ProtectFunction((void *) &JitBranchLog, 2), op, js.compilerPC); } void Jit::BranchLogExit(u32 op, u32 dest, bool useEAX) { OpArg destArg = useEAX ? R(EAX) : Imm32(dest); CMP(32, M((void *) &intBranchExit), destArg); FixupBranch skip = J_CC(CC_E); MOV(32, M((void *) &jitBranchExit), destArg); ABI_CallFunctionCC(thunks.ProtectFunction((void *) &JitBranchLogMismatch, 2), op, js.compilerPC); // Restore EAX, we probably ruined it. if (useEAX) MOV(32, R(EAX), M((void *) &jitBranchExit)); SetJumpTarget(skip); } void Jit::BranchRSRTComp(u32 op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in RSRTComp delay slot at %08x", js.compilerPC); return; } int offset = (signed short)(op&0xFFFF)<<2; int rt = _RT; int rs = _RS; u32 targetAddr = js.compilerPC + offset + 4; u32 delaySlotOp = Memory::Read_Instruction(js.compilerPC+4); bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rt, rs); CONDITIONAL_NICE_DELAYSLOT; if (!likely && delaySlotIsNice) CompileDelaySlot(DELAYSLOT_NICE); if (rt == 0) { gpr.KillImmediate(rs, true, false); CMP(32, gpr.R(rs), Imm32(0)); } else { gpr.BindToRegister(rs, true, false); CMP(32, gpr.R(rs), rt == 0 ? Imm32(0) : gpr.R(rt)); } Gen::FixupBranch ptr; if (!likely) { if (!delaySlotIsNice) CompileDelaySlot(DELAYSLOT_SAFE_FLUSH); else FlushAll(); ptr = J_CC(cc, true); } else { FlushAll(); ptr = J_CC(cc, true); CompileDelaySlot(DELAYSLOT_FLUSH); } // Take the branch CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); SetJumpTarget(ptr); // Not taken CONDITIONAL_LOG_EXIT(js.compilerPC + 8); WriteExit(js.compilerPC + 8, 1); js.compiling = false; } void Jit::BranchRSZeroComp(u32 op, Gen::CCFlags cc, bool andLink, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in RSZeroComp delay slot at %08x", js.compilerPC); return; } int offset = (signed short)(op&0xFFFF)<<2; int rs = _RS; u32 targetAddr = js.compilerPC + offset + 4; u32 delaySlotOp = Memory::Read_Instruction(js.compilerPC + 4); bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs); CONDITIONAL_NICE_DELAYSLOT; if (!likely && delaySlotIsNice) CompileDelaySlot(DELAYSLOT_NICE); gpr.BindToRegister(rs, true, false); CMP(32, gpr.R(rs), Imm32(0)); Gen::FixupBranch ptr; if (!likely) { if (!delaySlotIsNice) CompileDelaySlot(DELAYSLOT_SAFE_FLUSH); else FlushAll(); ptr = J_CC(cc, true); } else { FlushAll(); ptr = J_CC(cc, true); CompileDelaySlot(DELAYSLOT_FLUSH); } // Take the branch if (andLink) MOV(32, M(&mips_->r[MIPS_REG_RA]), Imm32(js.compilerPC + 8)); CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); SetJumpTarget(ptr); // Not taken CONDITIONAL_LOG_EXIT(js.compilerPC + 8); WriteExit(js.compilerPC + 8, 1); js.compiling = false; } void Jit::Comp_RelBranch(u32 op) { switch (op>>26) { case 4: BranchRSRTComp(op, CC_NZ, false); break;//beq case 5: BranchRSRTComp(op, CC_Z, false); break;//bne case 6: BranchRSZeroComp(op, CC_G, false, false); break;//blez case 7: BranchRSZeroComp(op, CC_LE, false, false); break;//bgtz case 20: BranchRSRTComp(op, CC_NZ, true); break;//beql case 21: BranchRSRTComp(op, CC_Z, true); break;//bnel case 22: BranchRSZeroComp(op, CC_G, false, true); break;//blezl case 23: BranchRSZeroComp(op, CC_LE, false, true); break;//bgtzl default: _dbg_assert_msg_(CPU,0,"Trying to compile instruction that can't be compiled"); break; } js.compiling = false; } void Jit::Comp_RelBranchRI(u32 op) { switch ((op >> 16) & 0x1F) { case 0: BranchRSZeroComp(op, CC_GE, false, false); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltz case 1: BranchRSZeroComp(op, CC_L, false, false); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgez case 2: BranchRSZeroComp(op, CC_GE, false, true); break; //if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 8; break;//bltzl case 3: BranchRSZeroComp(op, CC_L, false, true); break; //if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 8; break;//bgezl case 16: BranchRSZeroComp(op, CC_GE, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else PC += 4; break;//bltzal case 17: BranchRSZeroComp(op, CC_L, true, false); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else PC += 4; break;//bgezal case 18: BranchRSZeroComp(op, CC_GE, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) < 0) DelayBranchTo(addr); else SkipLikely(); break;//bltzall case 19: BranchRSZeroComp(op, CC_L, true, true); break; //R(MIPS_REG_RA) = PC + 8; if ((s32)R(rs) >= 0) DelayBranchTo(addr); else SkipLikely(); break;//bgezall default: _dbg_assert_msg_(CPU,0,"Trying to compile instruction that can't be compiled"); break; } js.compiling = false; } // If likely is set, discard the branch slot if NOT taken. void Jit::BranchFPFlag(u32 op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in FPFlag delay slot at %08x", js.compilerPC); return; } int offset = (signed short)(op & 0xFFFF) << 2; u32 targetAddr = js.compilerPC + offset + 4; u32 delaySlotOp = Memory::Read_Instruction(js.compilerPC + 4); bool delaySlotIsNice = IsDelaySlotNiceFPU(op, delaySlotOp); CONDITIONAL_NICE_DELAYSLOT; if (!likely && delaySlotIsNice) CompileDelaySlot(DELAYSLOT_NICE); FlushAll(); TEST(32, M((void *)&(mips_->fpcond)), Imm32(1)); Gen::FixupBranch ptr; if (!likely) { if (!delaySlotIsNice) CompileDelaySlot(DELAYSLOT_SAFE_FLUSH); ptr = J_CC(cc, true); } else { ptr = J_CC(cc, true); CompileDelaySlot(DELAYSLOT_FLUSH); } // Take the branch CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); SetJumpTarget(ptr); // Not taken CONDITIONAL_LOG_EXIT(js.compilerPC + 8); WriteExit(js.compilerPC + 8, 1); js.compiling = false; } void Jit::Comp_FPUBranch(u32 op) { switch((op >> 16) & 0x1f) { case 0: BranchFPFlag(op, CC_NZ, false); break; //bc1f case 1: BranchFPFlag(op, CC_Z, false); break; //bc1t case 2: BranchFPFlag(op, CC_NZ, true); break; //bc1fl case 3: BranchFPFlag(op, CC_Z, true); break; //bc1tl default: _dbg_assert_msg_(CPU,0,"Trying to interpret instruction that can't be interpreted"); break; } js.compiling = false; } // If likely is set, discard the branch slot if NOT taken. void Jit::BranchVFPUFlag(u32 op, Gen::CCFlags cc, bool likely) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in VFPU delay slot at %08x", js.compilerPC); return; } int offset = (signed short)(op & 0xFFFF) << 2; u32 targetAddr = js.compilerPC + offset + 4; u32 delaySlotOp = Memory::Read_Instruction(js.compilerPC + 4); bool delaySlotIsNice = IsDelaySlotNiceVFPU(op, delaySlotOp); CONDITIONAL_NICE_DELAYSLOT; if (!likely && delaySlotIsNice) CompileDelaySlot(DELAYSLOT_NICE); FlushAll(); // THE CONDITION int imm3 = (op >> 18) & 7; //int val = (mips_->vfpuCtrl[VFPU_CTRL_CC] >> imm3) & 1; TEST(32, M((void *)&(mips_->vfpuCtrl[VFPU_CTRL_CC])), Imm32(1 << imm3)); Gen::FixupBranch ptr; if (!likely) { if (!delaySlotIsNice) CompileDelaySlot(DELAYSLOT_SAFE_FLUSH); ptr = J_CC(cc, true); } else { ptr = J_CC(cc, true); CompileDelaySlot(DELAYSLOT_FLUSH); } // Take the branch CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); SetJumpTarget(ptr); // Not taken CONDITIONAL_LOG_EXIT(js.compilerPC + 8); WriteExit(js.compilerPC + 8, 1); js.compiling = false; } void Jit::Comp_VBranch(u32 op) { switch ((op >> 16) & 3) { case 0: BranchVFPUFlag(op, CC_NZ, false); break; //bvf case 1: BranchVFPUFlag(op, CC_Z, false); break; //bvt case 2: BranchVFPUFlag(op, CC_NZ, true); break; //bvfl case 3: BranchVFPUFlag(op, CC_Z, true); break; //bvtl default: _dbg_assert_msg_(CPU,0,"Comp_VBranch: Invalid instruction"); break; } js.compiling = false; } void Jit::Comp_Jump(u32 op) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in Jump delay slot at %08x", js.compilerPC); return; } u32 off = ((op & 0x3FFFFFF) << 2); u32 targetAddr = (js.compilerPC & 0xF0000000) | off; switch (op >> 26) { case 2: //j CompileDelaySlot(DELAYSLOT_NICE); FlushAll(); CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); break; case 3: //jal gpr.BindToRegister(MIPS_REG_RA, false, true); MOV(32, gpr.R(MIPS_REG_RA), Imm32(js.compilerPC + 8)); // Save return address CompileDelaySlot(DELAYSLOT_NICE); FlushAll(); CONDITIONAL_LOG_EXIT(targetAddr); WriteExit(targetAddr, 0); break; default: _dbg_assert_msg_(CPU,0,"Trying to compile instruction that can't be compiled"); break; } js.compiling = false; } static u32 savedPC; void Jit::Comp_JumpReg(u32 op) { CONDITIONAL_LOG; if (js.inDelaySlot) { ERROR_LOG_REPORT(JIT, "Branch in JumpReg delay slot at %08x", js.compilerPC); return; } int rs = _RS; u32 delaySlotOp = Memory::Read_Instruction(js.compilerPC + 4); bool delaySlotIsNice = IsDelaySlotNiceReg(op, delaySlotOp, rs); CONDITIONAL_NICE_DELAYSLOT; if (IsSyscall(delaySlotOp)) { // If this is a syscall, write the pc (for thread switching and other good reasons.) gpr.BindToRegister(rs, true, false); MOV(32, M(¤tMIPS->pc), gpr.R(rs)); CompileDelaySlot(DELAYSLOT_FLUSH); // Syscalls write the exit code for us. _dbg_assert_msg_(JIT, !js.compiling, "Expected syscall to write an exit code."); return; } else if (delaySlotIsNice) { CompileDelaySlot(DELAYSLOT_NICE); MOV(32, R(EAX), gpr.R(rs)); FlushAll(); } else { // Latch destination now - save it in memory. gpr.BindToRegister(rs, true, false); MOV(32, M(&savedPC), gpr.R(rs)); CompileDelaySlot(DELAYSLOT_NICE); MOV(32, R(EAX), M(&savedPC)); FlushAll(); } switch (op & 0x3f) { case 8: //jr break; case 9: //jalr MOV(32, M(&mips_->r[MIPS_REG_RA]), Imm32(js.compilerPC + 8)); break; default: _dbg_assert_msg_(CPU,0,"Trying to compile instruction that can't be compiled"); break; } CONDITIONAL_LOG_EXIT_EAX(); WriteExitDestInEAX(); js.compiling = false; } void Jit::Comp_Syscall(u32 op) { FlushAll(); // If we're in a delay slot, this is off by one. const int offset = js.inDelaySlot ? -1 : 0; WriteDowncount(offset); js.downcountAmount = -offset; ABI_CallFunctionC((void *)&CallSyscall, op); WriteSyscallExit(); js.compiling = false; } void Jit::Comp_Break(u32 op) { Comp_Generic(op); WriteSyscallExit(); js.compiling = false; } } // namespace Mipscomp