/* * PicoDrive * (C) notaz, 2009,2010,2013 * * This work is licensed under the terms of MAME license. * See COPYING file in the top-level directory. */ #include "../pico_int.h" static int pwm_cycles; static int pwm_mult; static int pwm_ptr; static int pwm_irq_reload; static int pwm_doing_fifo; static int pwm_silent; void p32x_pwm_ctl_changed(void) { int control = Pico32x.regs[0x30 / 2]; int cycles = Pico32x.regs[0x32 / 2]; cycles = (cycles - 1) & 0x0fff; pwm_cycles = cycles; // supposedly we should stop FIFO when xMd is 0, // but mars test disagrees pwm_mult = 0; if ((control & 0x0f) != 0) pwm_mult = 0x10000 / cycles; pwm_irq_reload = (control & 0x0f00) >> 8; pwm_irq_reload = ((pwm_irq_reload - 1) & 0x0f) + 1; if (Pico32x.pwm_irq_cnt == 0) Pico32x.pwm_irq_cnt = pwm_irq_reload; } static void do_pwm_irq(SH2 *sh2, unsigned int m68k_cycles) { p32x_trigger_irq(sh2, m68k_cycles, P32XI_PWM); if (Pico32x.regs[0x30 / 2] & P32XP_RTP) { p32x_event_schedule(m68k_cycles, P32X_EVENT_PWM, pwm_cycles / 3 + 1); // note: might recurse p32x_dreq1_trigger(); } } static int convert_sample(unsigned int v) { if (v == 0) return 0; if (v > pwm_cycles) v = pwm_cycles; return ((int)v - pwm_cycles / 2) * pwm_mult; } #define consume_fifo(sh2, m68k_cycles) { \ int cycles_diff = ((m68k_cycles) * 3) - Pico32x.pwm_cycle_p; \ if (cycles_diff >= pwm_cycles) \ consume_fifo_do(sh2, m68k_cycles, cycles_diff); \ } static void consume_fifo_do(SH2 *sh2, unsigned int m68k_cycles, int sh2_cycles_diff) { struct Pico32xMem *mem = Pico32xMem; unsigned short *fifo_l = mem->pwm_fifo[0]; unsigned short *fifo_r = mem->pwm_fifo[1]; int sum = 0; if (pwm_cycles == 0 || pwm_doing_fifo) return; elprintf(EL_PWM, "pwm: %u: consume %d/%d, %d,%d ptr %d", m68k_cycles, sh2_cycles_diff, sh2_cycles_diff / pwm_cycles, Pico32x.pwm_p[0], Pico32x.pwm_p[1], pwm_ptr); // this is for recursion from dreq1 writes pwm_doing_fifo = 1; for (; sh2_cycles_diff >= pwm_cycles; sh2_cycles_diff -= pwm_cycles) { if (Pico32x.pwm_p[0] > 0) { fifo_l[0] = fifo_l[1]; fifo_l[1] = fifo_l[2]; fifo_l[2] = fifo_l[3]; Pico32x.pwm_p[0]--; mem->pwm_current[0] = convert_sample(fifo_l[0]); sum += mem->pwm_current[0]; } if (Pico32x.pwm_p[1] > 0) { fifo_r[0] = fifo_r[1]; fifo_r[1] = fifo_r[2]; fifo_r[2] = fifo_r[3]; Pico32x.pwm_p[1]--; mem->pwm_current[1] = convert_sample(fifo_r[0]); sum += mem->pwm_current[1]; } mem->pwm[pwm_ptr * 2 ] = mem->pwm_current[0]; mem->pwm[pwm_ptr * 2 + 1] = mem->pwm_current[1]; pwm_ptr = (pwm_ptr + 1) & (PWM_BUFF_LEN - 1); if (--Pico32x.pwm_irq_cnt == 0) { Pico32x.pwm_irq_cnt = pwm_irq_reload; do_pwm_irq(sh2, m68k_cycles); } } Pico32x.pwm_cycle_p = m68k_cycles * 3 - sh2_cycles_diff; pwm_doing_fifo = 0; if (sum != 0) pwm_silent = 0; } static int p32x_pwm_schedule_(SH2 *sh2, unsigned int m68k_now) { unsigned int sh2_now = m68k_now * 3; int cycles_diff_sh2; if (pwm_cycles == 0) return 0; cycles_diff_sh2 = sh2_now - Pico32x.pwm_cycle_p; if (cycles_diff_sh2 >= pwm_cycles) consume_fifo_do(sh2, m68k_now, cycles_diff_sh2); if (!((Pico32x.sh2irq_mask[0] | Pico32x.sh2irq_mask[1]) & 1)) return 0; // masked by everyone cycles_diff_sh2 = sh2_now - Pico32x.pwm_cycle_p; return (Pico32x.pwm_irq_cnt * pwm_cycles - cycles_diff_sh2) / 3 + 1; } void p32x_pwm_schedule(unsigned int m68k_now) { int after = p32x_pwm_schedule_(NULL, m68k_now); if (after != 0) p32x_event_schedule(m68k_now, P32X_EVENT_PWM, after); } void p32x_pwm_schedule_sh2(SH2 *sh2) { int after = p32x_pwm_schedule_(sh2, sh2_cycles_done_m68k(sh2)); if (after != 0) p32x_event_schedule_sh2(sh2, P32X_EVENT_PWM, after); } void p32x_pwm_sync_to_sh2(SH2 *sh2) { int m68k_cycles = sh2_cycles_done_m68k(sh2); consume_fifo(sh2, m68k_cycles); } void p32x_pwm_irq_event(unsigned int m68k_now) { p32x_pwm_schedule(m68k_now); } unsigned int p32x_pwm_read16(unsigned int a, SH2 *sh2, unsigned int m68k_cycles) { unsigned int d = 0; consume_fifo(sh2, m68k_cycles); a &= 0x0e; switch (a) { case 0: // control case 2: // cycle d = Pico32x.regs[(0x30 + a) / 2]; break; case 4: // L ch if (Pico32x.pwm_p[0] == 3) d |= P32XP_FULL; else if (Pico32x.pwm_p[0] == 0) d |= P32XP_EMPTY; break; case 6: // R ch case 8: // MONO if (Pico32x.pwm_p[1] == 3) d |= P32XP_FULL; else if (Pico32x.pwm_p[1] == 0) d |= P32XP_EMPTY; break; } elprintf(EL_PWM, "pwm: %u: r16 %02x %04x (p %d %d)", m68k_cycles, a, d, Pico32x.pwm_p[0], Pico32x.pwm_p[1]); return d; } void p32x_pwm_write16(unsigned int a, unsigned int d, SH2 *sh2, unsigned int m68k_cycles) { elprintf(EL_PWM, "pwm: %u: w16 %02x %04x (p %d %d)", m68k_cycles, a & 0x0e, d, Pico32x.pwm_p[0], Pico32x.pwm_p[1]); consume_fifo(sh2, m68k_cycles); a &= 0x0e; if (a == 0) { // control // avoiding pops.. if ((Pico32x.regs[0x30 / 2] & 0x0f) == 0) Pico32xMem->pwm_fifo[0][0] = Pico32xMem->pwm_fifo[1][0] = 0; Pico32x.regs[0x30 / 2] = d; p32x_pwm_ctl_changed(); Pico32x.pwm_irq_cnt = pwm_irq_reload; // ? } else if (a == 2) { // cycle Pico32x.regs[0x32 / 2] = d & 0x0fff; p32x_pwm_ctl_changed(); } else if (a <= 8) { d = (d - 1) & 0x0fff; if (a == 4 || a == 8) { // L ch or MONO unsigned short *fifo = Pico32xMem->pwm_fifo[0]; if (Pico32x.pwm_p[0] < 3) Pico32x.pwm_p[0]++; else { fifo[1] = fifo[2]; fifo[2] = fifo[3]; } fifo[Pico32x.pwm_p[0]] = d; } if (a == 6 || a == 8) { // R ch or MONO unsigned short *fifo = Pico32xMem->pwm_fifo[1]; if (Pico32x.pwm_p[1] < 3) Pico32x.pwm_p[1]++; else { fifo[1] = fifo[2]; fifo[2] = fifo[3]; } fifo[Pico32x.pwm_p[1]] = d; } } } void p32x_pwm_update(int *buf32, int length, int stereo) { short *pwmb; int step; int p = 0; int xmd; consume_fifo(NULL, SekCyclesDone()); xmd = Pico32x.regs[0x30 / 2] & 0x0f; if (xmd == 0 || xmd == 0x06 || xmd == 0x09 || xmd == 0x0f) goto out; // invalid? if (pwm_silent) return; step = (pwm_ptr << 16) / length; pwmb = Pico32xMem->pwm; if (stereo) { if (xmd == 0x05) { // normal while (length-- > 0) { *buf32++ += pwmb[0]; *buf32++ += pwmb[1]; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; } } else if (xmd == 0x0a) { // channel swap while (length-- > 0) { *buf32++ += pwmb[1]; *buf32++ += pwmb[0]; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; } } else { // mono - LMD, RMD specify dst if (xmd & 0x06) // src is R pwmb++; if (xmd & 0x0c) // dst is R buf32++; while (length-- > 0) { *buf32 += *pwmb; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; buf32 += 2; } } } else { // mostly unused while (length-- > 0) { *buf32++ += pwmb[0]; p += step; pwmb += (p >> 16) * 2; p &= 0xffff; } } elprintf(EL_PWM, "pwm_update: pwm_ptr %d, len %d, step %04x, done %d", pwm_ptr, length, step, (pwmb - Pico32xMem->pwm) / 2); out: pwm_ptr = 0; pwm_silent = Pico32xMem->pwm_current[0] == 0 && Pico32xMem->pwm_current[1] == 0; } void p32x_pwm_state_loaded(void) { int cycles_diff_sh2; p32x_pwm_ctl_changed(); // for old savestates cycles_diff_sh2 = SekCycleCnt * 3 - Pico32x.pwm_cycle_p; if (cycles_diff_sh2 >= pwm_cycles || cycles_diff_sh2 < 0) { Pico32x.pwm_irq_cnt = pwm_irq_reload; Pico32x.pwm_cycle_p = SekCycleCnt * 3; p32x_pwm_schedule(SekCycleCnt); } } // vim:shiftwidth=2:ts=2:expandtab