using BizHawk.Common; using BizHawk.Emulation.Common; using BizHawk.Emulation.Cores.Components.H6280; using System; namespace BizHawk.Emulation.Cores.PCEngine { // HuC6270 Video Display Controller public sealed partial class VDC : IVideoProvider { public ushort[] VRAM = new ushort[0x8000]; public ushort[] SpriteAttributeTable = new ushort[256]; public readonly byte[] PatternBuffer = new byte[0x20000]; public readonly byte[] SpriteBuffer = new byte[0x20000]; public byte RegisterLatch; public ushort[] Registers = new ushort[0x20]; public ushort ReadBuffer; public byte StatusByte; internal bool DmaRequested; internal bool SatDmaRequested; internal bool SatDmaPerformed; public ushort IncrementWidth { get { switch ((Registers[5] >> 11) & 3) { case 0: return 1; case 1: return 32; case 2: return 64; case 3: return 128; } return 1; } } public bool BackgroundEnabled => (Registers[CR] & 0x80) != 0; public bool SpritesEnabled => (Registers[CR] & 0x40) != 0; public bool VBlankInterruptEnabled => (Registers[CR] & 0x08) != 0; public bool RasterCompareInterruptEnabled => (Registers[CR] & 0x04) != 0; public bool SpriteOverflowInterruptEnabled => (Registers[CR] & 0x02) != 0; public bool SpriteCollisionInterruptEnabled => (Registers[CR] & 0x01) != 0; public bool Sprite4ColorModeEnabled => (Registers[MWR] & 0x0C) == 4; public int BatWidth { get { switch ((Registers[MWR] >> 4) & 3) { case 0: return 32; case 1: return 64; default: return 128; } } } public int BatHeight => (Registers[MWR] & 0x40) == 0 ? 32 : 64; public int RequestedFrameWidth => ((Registers[HDR] & 0x3F) + 1) * 8; public int RequestedFrameHeight => (Registers[VDW] & 0x1FF) + 1; public int DisplayStartLine => (Registers[VPR] >> 8) + 3 + (Registers[VPR] & 0x1F); private const int MAWR = 0; // Memory Address Write Register private const int MARR = 1; // Memory Address Read Register private const int VRR = 2; // VRAM Read Register private const int VWR = 2; // VRAM Write Register private const int CR = 5; // Control Register private const int RCR = 6; // Raster Compare Register private const int BXR = 7; // Background X-scroll Register private const int BYR = 8; // Background Y-scroll Register private const int MWR = 9; // Memory-access Width Register private const int HSR = 10; // Horizontal Sync Register private const int HDR = 11; // Horizontal Display Register private const int VPR = 12; // Vertical synchronous register private const int VDW = 13; // Vertical display register private const int VCR = 14; // Vertical display END position register; private const int DCR = 15; // DMA Control Register private const int SOUR = 16; // Source address for DMA private const int DESR = 17; // Destination address for DMA private const int LENR = 18; // Length of DMA transfer. Writing this will initiate DMA. private const int SATB = 19; // Sprite Attribute Table base location in VRAM private const int RegisterSelect = 0; private const int LSB = 2; private const int MSB = 3; public const byte StatusVerticalBlanking = 0x20; public const byte StatusVramVramDmaComplete = 0x10; public const byte StatusVramSatDmaComplete = 0x08; public const byte StatusRasterCompare = 0x04; public const byte StatusSpriteOverflow = 0x02; public const byte StatusSprite0Collision = 0x01; const int VramSize = 0x8000; private readonly PCEngine pce; private readonly HuC6280 cpu; private readonly VCE vce; public int MultiResHack = 0; public VDC(PCEngine pce, HuC6280 cpu, VCE vce) { this.pce = pce; this.cpu = cpu; this.vce = vce; RenderBackgroundScanline = RenderBackgroundScanlineUnsafe; Registers[HSR] = 0x00FF; Registers[HDR] = 0x001F; Registers[VDW] = 0x01FF; Registers[VPR] = 0xFFFF; Registers[VCR] = 0xFFFF; ReadBuffer = 0xFFFF; } public void WriteVDC(int port, byte value) { cpu.PendingCycles--; port &= 3; if (port == RegisterSelect) { RegisterLatch = (byte)(value & 0x1F); } else if (port == LSB) { Registers[RegisterLatch] &= 0xFF00; Registers[RegisterLatch] |= value; if (RegisterLatch == BYR) { latch_bgy = true; } //BackgroundY = Registers[BYR] & 0x1FF; RegisterCommit(RegisterLatch, msbComplete: false); } else if (port == MSB) { Registers[RegisterLatch] &= 0x00FF; Registers[RegisterLatch] |= (ushort)(value << 8); RegisterCommit(RegisterLatch, msbComplete: true); } } private void RegisterCommit(int register, bool msbComplete) { switch (register) { case MARR: // Memory Address Read Register if (!msbComplete) break; ReadBuffer = VRAM[Registers[MARR] & 0x7FFF]; break; case VWR: // VRAM Write Register if (!msbComplete) break; if (Registers[MAWR] < VramSize) // Several games attempt to write past the end of VRAM { VRAM[Registers[MAWR]] = Registers[VWR]; UpdatePatternData((ushort)(Registers[MAWR] & 0x7FFF)); UpdateSpriteData((ushort)(Registers[MAWR] & 0x7FFF)); } Registers[MAWR] += IncrementWidth; break; case BXR: Registers[BXR] &= 0x3FF; break; case BYR: Registers[BYR] &= 0x1FF; latch_bgy = true; //BackgroundY = Registers[BYR]; break; case HDR: // Horizontal Display Register - update framebuffer size FrameWidth = RequestedFrameWidth; FramePitch = MultiResHack == 0 ? FrameWidth : MultiResHack; //if (FrameBuffer.Length != FramePitch * FrameHeight) //FrameBuffer = new int[FramePitch * FrameHeight]; break; case VDW: // Vertical Display Word? - update framebuffer size //FrameHeight = RequestedFrameHeight; FrameWidth = RequestedFrameWidth; //if (FrameHeight > 242) //FrameHeight = 242; if (MultiResHack != 0) FramePitch = MultiResHack; //if (FrameBuffer.Length != FramePitch * FrameHeight) //FrameBuffer = new int[FramePitch * FrameHeight]; break; case LENR: // Initiate DMA transfer if (!msbComplete) break; DmaRequested = true; break; case SATB: if (!msbComplete) break; SatDmaRequested = true; break; } } public byte ReadVDC(int port) { cpu.PendingCycles--; byte retval = 0; port &= 3; switch (port) { case 0: // return status byte; retval = StatusByte; StatusByte = 0; // maybe bit 6 should be preserved. but we dont currently emulate it. cpu.IRQ1Assert = false; return retval; case 1: // unused return 0; case 2: // LSB return (byte)ReadBuffer; case 3: // MSB retval = (byte)(ReadBuffer >> 8); if (RegisterLatch == VRR) { Registers[MARR] += IncrementWidth; ReadBuffer = VRAM[Registers[MARR] & 0x7FFF]; } return retval; } return 0; } internal void RunDmaForScanline() { // TODO: dont do this all in one scanline. I guess it can do about 227 words per scanline. // TODO: to be honest, dont do it in a block per scanline. put it in the CPU think function. //Console.WriteLine("******************************* Doing some dma ******************************"); int advanceSource = (Registers[DCR] & 4) == 0 ? +1 : -1; int advanceDest = (Registers[DCR] & 8) == 0 ? +1 : -1; int wordsDone = 0; for (; Registers[LENR] < 0xFFFF; Registers[LENR]--, wordsDone++) { VRAM[Registers[DESR] & 0x7FFF] = VRAM[Registers[SOUR] & 0x7FFF]; UpdatePatternData(Registers[DESR]); UpdateSpriteData(Registers[DESR]); Registers[DESR] = (ushort)(Registers[DESR] + advanceDest); Registers[SOUR] = (ushort)(Registers[SOUR] + advanceSource); /*if (wordsDone == 227) { Console.WriteLine("ended dma for this scanline"); return; }*/ } DmaRequested = false; //Console.WriteLine("DMA finished"); if ((Registers[DCR] & 2) > 0) { //Log.Note("Vdc","FIRE VRAM-VRAM DMA COMPLETE IRQ"); StatusByte |= StatusVramVramDmaComplete; cpu.IRQ1Assert = true; } } public void UpdateSpriteAttributeTable() { if ((SatDmaRequested || (Registers[DCR] & 0x10) != 0) && Registers[SATB] <= 0x7F00) { SatDmaRequested = false; SatDmaPerformed = true; for (int i = 0; i < 256; i++) { SpriteAttributeTable[i] = VRAM[Registers[SATB] + i]; } } } public void UpdatePatternData(ushort addr) { int tileNo = addr >> 4; int tileLineOffset = addr & 0x7; int bitplane01 = VRAM[(tileNo * 16) + tileLineOffset]; int bitplane23 = VRAM[(tileNo * 16) + tileLineOffset + 8]; int patternBufferBase = (tileNo * 64) + (tileLineOffset * 8); for (int x = 0; x < 8; x++) { byte pixel = (byte)((bitplane01 >> x) & 1); pixel |= (byte)(((bitplane01 >> (x + 8)) & 1) << 1); pixel |= (byte)(((bitplane23 >> x) & 1) << 2); pixel |= (byte)(((bitplane23 >> (x + 8)) & 1) << 3); PatternBuffer[patternBufferBase + (7 - x)] = pixel; } } public void UpdateSpriteData(ushort addr) { int tileNo = addr >> 6; int tileOfs = addr & 0x3F; int bitplane = tileOfs / 16; int line = addr & 0x0F; int ofs = (tileNo * 256) + (line * 16) + 15; ushort value = VRAM[addr]; byte bitAnd = (byte)(~(1 << bitplane)); byte bitOr = (byte)(1 << bitplane); for (int i = 0; i < 16; i++) { if ((value & 1) == 1) SpriteBuffer[ofs] |= bitOr; else SpriteBuffer[ofs] &= bitAnd; ofs--; value >>= 1; } } public void SyncState(Serializer ser, int vdcNo) { ser.BeginSection("VDC"+vdcNo); ser.Sync("VRAM", ref VRAM, false); ser.Sync("SAT", ref SpriteAttributeTable, false); ser.Sync("Registers", ref Registers, false); ser.Sync("RegisterLatch", ref RegisterLatch); ser.Sync("ReadBuffer", ref ReadBuffer); ser.Sync("StatusByte", ref StatusByte); ser.Sync("DmaRequested", ref DmaRequested); ser.Sync("SatDmaRequested", ref SatDmaRequested); ser.Sync("SatDmaPerformed", ref SatDmaPerformed); ser.Sync("ScanLine", ref ScanLine); ser.Sync("BackgroundY", ref BackgroundY); ser.Sync("latch_bgy", ref latch_bgy); ser.Sync("RCRCounter", ref RCRCounter); ser.Sync("ActiveLine", ref ActiveLine); ser.EndSection(); if (ser.IsReader) { for (ushort i = 0; i < VRAM.Length; i++) { UpdatePatternData(i); UpdateSpriteData(i); } RegisterCommit(HDR, true); RegisterCommit(VDW, true); } } } }