#pragma once namespace nall { inline auto image::scale(u32 outputWidth, u32 outputHeight, bool linear) -> void { if(!_data) return; if(_width == outputWidth && _height == outputHeight) return; //no scaling necessary if(linear == false) return scaleNearest(outputWidth, outputHeight); if(_width == outputWidth ) return scaleLinearHeight(outputHeight); if(_height == outputHeight) return scaleLinearWidth(outputWidth); //find fastest scaling method, based on number of interpolation operations required //magnification usually benefits from two-pass linear interpolation //minification usually benefits from one-pass bilinear interpolation u32 d1wh = ((_width * outputWidth ) + (outputWidth * outputHeight)) * 1; u32 d1hw = ((_height * outputHeight) + (outputWidth * outputHeight)) * 1; u32 d2wh = (outputWidth * outputHeight) * 3; if(d1wh <= d1hw && d1wh <= d2wh) return scaleLinearWidth(outputWidth), scaleLinearHeight(outputHeight); if(d1hw <= d2wh) return scaleLinearHeight(outputHeight), scaleLinearWidth(outputWidth); return scaleLinear(outputWidth, outputHeight); } inline auto image::scaleLinearWidth(u32 outputWidth) -> void { u8* outputData = allocate(outputWidth, _height, stride()); u32 outputPitch = outputWidth * stride(); u64 xstride = ((u64)(_width - 1) << 32) / max(1u, outputWidth - 1); for(u32 y = 0; y < _height; y++) { u64 xfraction = 0; const u8* sp = _data + pitch() * y; u8* dp = outputData + outputPitch * y; u64 a = read(sp); u64 b = read(sp + stride()); sp += stride(); u32 x = 0; while(true) { while(xfraction < 0x100000000 && x++ < outputWidth) { write(dp, interpolate4i(a, b, xfraction)); dp += stride(); xfraction += xstride; } if(x >= outputWidth) break; sp += stride(); a = b; b = read(sp); xfraction -= 0x100000000; } } free(); _data = outputData; _width = outputWidth; } inline auto image::scaleLinearHeight(u32 outputHeight) -> void { u8* outputData = allocate(_width, outputHeight, stride()); u64 ystride = ((u64)(_height - 1) << 32) / max(1u, outputHeight - 1); for(u32 x = 0; x < _width; x++) { u64 yfraction = 0; const u8* sp = _data + stride() * x; u8* dp = outputData + stride() * x; u64 a = read(sp); u64 b = read(sp + pitch()); sp += pitch(); u32 y = 0; while(true) { while(yfraction < 0x100000000 && y++ < outputHeight) { write(dp, interpolate4i(a, b, yfraction)); dp += pitch(); yfraction += ystride; } if(y >= outputHeight) break; sp += pitch(); a = b; b = read(sp); yfraction -= 0x100000000; } } free(); _data = outputData; _height = outputHeight; } inline auto image::scaleLinear(u32 outputWidth, u32 outputHeight) -> void { u8* outputData = allocate(outputWidth, outputHeight, stride()); u32 outputPitch = outputWidth * stride(); u64 xstride = ((u64)(_width - 1) << 32) / max(1u, outputWidth - 1); u64 ystride = ((u64)(_height - 1) << 32) / max(1u, outputHeight - 1); for(u32 y = 0; y < outputHeight; y++) { u64 yfraction = ystride * y; u64 xfraction = 0; const u8* sp = _data + pitch() * (yfraction >> 32); u8* dp = outputData + outputPitch * y; u64 a = read(sp); u64 b = read(sp + stride()); u64 c = read(sp + pitch()); u64 d = read(sp + pitch() + stride()); sp += stride(); u32 x = 0; while(true) { while(xfraction < 0x100000000 && x++ < outputWidth) { write(dp, interpolate4i(a, b, c, d, xfraction, yfraction)); dp += stride(); xfraction += xstride; } if(x >= outputWidth) break; sp += stride(); a = b; c = d; b = read(sp); d = read(sp + pitch()); xfraction -= 0x100000000; } } free(); _data = outputData; _width = outputWidth; _height = outputHeight; } inline auto image::scaleNearest(u32 outputWidth, u32 outputHeight) -> void { u8* outputData = allocate(outputWidth, outputHeight, stride()); u32 outputPitch = outputWidth * stride(); u64 xstride = ((u64)_width << 32) / outputWidth; u64 ystride = ((u64)_height << 32) / outputHeight; for(u32 y = 0; y < outputHeight; y++) { u64 yfraction = ystride * y; u64 xfraction = 0; const u8* sp = _data + pitch() * (yfraction >> 32); u8* dp = outputData + outputPitch * y; u64 a = read(sp); u32 x = 0; while(true) { while(xfraction < 0x100000000 && x++ < outputWidth) { write(dp, a); dp += stride(); xfraction += xstride; } if(x >= outputWidth) break; sp += stride(); a = read(sp); xfraction -= 0x100000000; } } free(); _data = outputData; _width = outputWidth; _height = outputHeight; } }