#pragma once namespace nall { //nall::format is a vector of parameters that can be applied to a string //each {#} token will be replaced with its appropriate format parameter inline auto string::format(const nall::string_format& params) -> type& { auto size = (s32)this->size(); auto data = memory::allocate(size); memory::copy(data, this->data(), size); s32 x = 0; while(x < size - 2) { //2 = minimum tag length if(data[x] != '{') { x++; continue; } s32 y = x + 1; while(y < size - 1) { //-1 avoids going out of bounds on test after this loop if(data[y] != '}') { y++; continue; } break; } if(data[y++] != '}') { x++; continue; } static auto isNumeric = [](char* s, char* e) -> bool { if(s == e) return false; //ignore empty tags: {} while(s < e) { if(*s >= '0' && *s <= '9') { s++; continue; } return false; } return true; }; if(!isNumeric(&data[x + 1], &data[y - 1])) { x++; continue; } u32 index = toNatural(&data[x + 1]); if(index >= params.size()) { x++; continue; } u32 sourceSize = y - x; u32 targetSize = params[index].size(); u32 remaining = size - x; if(sourceSize > targetSize) { u32 difference = sourceSize - targetSize; memory::move(&data[x], &data[x + difference], remaining - difference); size -= difference; } else if(targetSize > sourceSize) { u32 difference = targetSize - sourceSize; data = (char*)realloc(data, size + difference); size += difference; memory::move(&data[x + difference], &data[x], remaining); } memory::copy(&data[x], params[index].data(), targetSize); x += targetSize; } resize(size); memory::copy(get(), data, size); memory::free(data); return *this; } template inline auto string_format::append(const T& value, P&&... p) -> string_format& { vector::append(value); return append(std::forward

(p)...); } inline auto string_format::append() -> string_format& { return *this; } template inline auto print(P&&... p) -> void { string s{std::forward

(p)...}; fwrite(s.data(), 1, s.size(), stdout); fflush(stdout); } template inline auto print(FILE* fp, P&&... p) -> void { string s{std::forward

(p)...}; fwrite(s.data(), 1, s.size(), fp); if(fp == stdout || fp == stderr) fflush(fp); } template inline auto pad(const T& value, long precision, char padchar) -> string { string buffer{value}; if(precision) buffer.size(precision, padchar); return buffer; } template inline auto hex(T value, long precision, char padchar) -> string { string buffer; buffer.resize(sizeof(T) * 2); char* p = buffer.get(); //create a mask to clear the upper four bits after shifting right in case T is a signed type T mask = 1; mask <<= sizeof(T) * 8 - 4; mask -= 1; u32 size = 0; do { u32 n = value & 15; p[size++] = n < 10 ? '0' + n : 'a' + n - 10; value = value >> 4 & mask; } while(value); buffer.resize(size); buffer.reverse(); if(precision) buffer.size(precision, padchar); return buffer; } template inline auto octal(T value, long precision, char padchar) -> string { string buffer; buffer.resize(sizeof(T) * 3); char* p = buffer.get(); //create a mask to clear the upper three bits T mask = 1; mask <<= sizeof(T) * 8 - 3; mask -= 1; u32 size = 0; do { p[size++] = '0' + (value & 7); value = value >> 3 & mask; } while(value); buffer.resize(size); buffer.reverse(); if(precision) buffer.size(precision, padchar); return buffer; } template inline auto binary(T value, long precision, char padchar) -> string { string buffer; buffer.resize(sizeof(T) * 8); char* p = buffer.get(); //create a mask to clear the upper one bit T mask = 1; mask <<= sizeof(T) * 8 - 1; mask -= 1; u32 size = 0; do { p[size++] = '0' + (value & 1); value = value >> 1 & mask; } while(value); buffer.resize(size); buffer.reverse(); if(precision) buffer.size(precision, padchar); return buffer; } }