#pragma once #include #if defined(EC_REFERENCE) #include #else #include #endif namespace nall::EllipticCurve { static const u256 L = (1_u256 << 252) + 27742317777372353535851937790883648493_u256; struct Ed25519 { auto publicKey(u256 privateKey) const -> u256 { return compress(scalarMultiply(B, clamp(hash(privateKey)) % L)); } auto sign(array_view message, u256 privateKey) const -> u512 { u512 H = hash(privateKey); u256 a = clamp(H) % L; u256 A = compress(scalarMultiply(B, a)); u512 r = hash(upper(H), message) % L; u256 R = compress(scalarMultiply(B, r)); u512 k = hash(R, A, message) % L; u256 S = (k * a + r) % L; return u512(S) << 256 | R; } auto verify(array_view message, u512 signature, u256 publicKey) const -> bool { auto R = decompress(lower(signature)); auto A = decompress(publicKey); if(!R || !A) return false; u256 S = upper(signature) % L; u512 r = hash(lower(signature), publicKey, message) % L; auto p = scalarMultiply(B, S); auto q = edwardsAdd(R(), scalarMultiply(A(), r)); if(!onCurve(p) || !onCurve(q)) return false; if(p.x * q.z - q.x * p.z) return false; if(p.y * q.z - q.y * p.z) return false; return true; } private: using field = Modulo25519; struct point { field x, y, z, t; }; const field D = -field(121665) * reciprocal(field(121666)); const point B = *decompress((field(4) * reciprocal(field(5)))()); const BarrettReduction<256> L = BarrettReduction<256>{EllipticCurve::L}; auto input(Hash::SHA512&) const -> void {} template auto input(Hash::SHA512& hash, u256 value, P&&... p) const -> void { for(u32 byte : range(32)) hash.input(u8(value >> byte * 8)); input(hash, std::forward

(p)...); } template auto input(Hash::SHA512& hash, array_view value, P&&... p) const -> void { hash.input(value); input(hash, std::forward

(p)...); } template auto hash(P&&... p) const -> u512 { Hash::SHA512 hash; input(hash, std::forward

(p)...); u512 result; for(auto byte : reverse(hash.output())) result = result << 8 | byte; return result; } auto clamp(u256 p) const -> u256 { p &= (1_u256 << 254) - 8; p |= (1_u256 << 254); return p; } auto onCurve(point p) const -> bool { if(!p.z) return false; if(p.x * p.y - p.z * p.t) return false; if(square(p.y) - square(p.x) - square(p.z) - square(p.t) * D) return false; return true; } auto decompress(u256 c) const -> maybe { field y = c & ~0_u256 >> 1; field x = squareRoot((square(y) - 1) * reciprocal(D * square(y) + 1)); if(c >> 255) x = -x; point p{x, y, 1, x * y}; if(!onCurve(p)) return nothing; return p; } auto compress(point p) const -> u256 { field r = reciprocal(p.z); field x = p.x * r; field y = p.y * r; return (x & 1) << 255 | (y & ~0_u256 >> 1); } auto edwardsDouble(point p) const -> point { field a = square(p.x); field b = square(p.y); field c = square(p.z); field d = -a; field e = square(p.x + p.y) - a - b; field g = d + b; field f = g - (c + c); field h = d - b; return {e * f, g * h, f * g, e * h}; } auto edwardsAdd(point p, point q) const -> point { field a = (p.y - p.x) * (q.y - q.x); field b = (p.y + p.x) * (q.y + q.x); field c = (p.t + p.t) * q.t * D; field d = (p.z + p.z) * q.z; field e = b - a; field f = d - c; field g = d + c; field h = b + a; return {e * f, g * h, f * g, e * h}; } auto scalarMultiply(point q, u256 exponent) const -> point { point p{0, 1, 1, 0}, c; for(u32 bit : reverse(range(253))) { p = edwardsDouble(p); c = edwardsAdd(p, q); bool condition = exponent >> bit & 1; cmove(condition, p.x, c.x); cmove(condition, p.y, c.y); cmove(condition, p.z, c.z); cmove(condition, p.t, c.t); } return p; } }; }