-Set the pending cycles for setting Sr1 to 14934 - 3791 instead of adding it. This working makes NO sense in my opinion, and I'm sure it will break as the number of interrupts increases, but for now, it matches up.
The newest issue is reading PSG registers which have not been set. Cool, expecting this to work without doing anything would be silly, so I've gotten somewhere!
-Cleanup.
-Added "Total Executed Cycles" to the log.
-By observing the aforementioned data, I realized that the docs probably meant to say 14934 instead of 14394.
--By adjusting this...TITLE SCREEN!
--Still, there are definitely discrepancies with the log that imply that I'm far from done.
-Enabled ANDR and XOR because they were executed during the title sequence, though it's hard to tell if it should at this point.
--VirtualHeight / Width will be useful due to how the scanlines are doubled on TVs, but for now, I will just be drawing to scale.
-Enabled XOR@, SAR, and COMR. Advanced Dungeons & Dragons provided more test cases.
-Noticed that Commando, as well as some other games, triggers a HLT. This should be looked into later.
-Added and Interrupted flag to make it so that interrupts only trigger once per falling edge.
-For now, interrupts take 28 cycles.
-Made it so that the STIC tracks Pending / Total Executed Cycles just like the CPU.
-Forwarded the cycles executed in the CPU to the STIC's Execute.
-SR1 is now inverted when there are no pending cycles.
--If SR1 is high, 14394 cycles are added to the pending cycles.
--If SR1 is low, 3791 cycles are added to the pending cycles.
--Not sure why the STIC has any connection to the SST, but the docs on the SST are virtually non-existent from what I could find.
--I took advantage of Func and Action instead of passing bool references to both devices. I think this makes sense.
-Added reset functions for both devices.
My comparison log for INTRM is still weird because it says it is true initially (Expected) and remains as such after the first instruction (A bit odd). I think this happens because the STIC is supposed to "tick" and shift SR1 to false immediately, but the STIC tick happens after the CPU tick, and the CPU tick is where the logging happens. I need to find a better place to put this logging, and I need to implement the STIC ticking for IntelliHawk. I'm not positive how to approach the latter issue as I assume a tick means one instruction execution, and my executions happen in a loop on the CPU, which has no reference to the STIC, so I'm not sure where this fits into the equation.
-I will now assume that 0x7000 is not mapped for the sake of continuing on. I will need to implement a mapper system shortly though.
--Did the same thing for 0x4800.
-AND@, MOVR, CMP enabled.
-Made the logging separator generate before an instruction instead of after the register states. This is quite petty, but I don't like the separator at the end of the file.
I hit an infinite loop, and I'm very very certain it's happening because I don't have an interrupt system yet. Time to stop avoiding that!
-Separated cartridge logic into a separate ICart named Cartridge.cs.
-Made WriteMemory return a bool to match ICart.Write. It currently returns true if either the cart or the core responded.
TODO: Parse the vanilla Intellivision ROM, which will hopefully include the read / writability of the data segments. adelikat seems to think that I just need to send the bytes to $5000, but I'm not convinced.
-Applied to the old Gameboy core. Why not? It at least fixes that annoying bug from before if we ever care to use it again.
-Both logs are now written to different files.
--It now just builds a strings and writes on finalization.
-Fixed up format strings.
-As RegisterPC already increments upon reading the third decle, I now just store PC as the return address for jumping instead of PC + 1.
-Fixed JMP disassembly; I need to return on an invalid opcode because I was breaking out of the inner switch statement, not both that and the outer one.
-Definitions.
--Registers, Flags, TotalExecutedCycles, PendingCycles, ReadMemory, and WriteMemory.
-Execute.
--Implemented opcodes 0x001-0x027 with the exception of 0x004 and 0x005.