Vectrex Initial Commit

This commit is contained in:
alyosha-tas 2019-03-30 16:09:04 -05:00
parent 31237e0c92
commit ba4ec02cb5
30 changed files with 3970 additions and 0 deletions

View File

@ -597,6 +597,39 @@
</Compile>
<Compile Include="Consoles\Belogic\LibUzem.cs" />
<Compile Include="Consoles\Belogic\Uzem.cs" />
<Compile Include="Consoles\GCE\Vectrex\Audio.cs" />
<Compile Include="Consoles\GCE\Vectrex\Vectrex.CpuLink.cs" />
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.cs" />
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.ICodeDataLog.cs" />
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.IDebuggable.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.IEmulator.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.IInputPollable.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.IMemoryDomains.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.ISaveRam.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.ISettable.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawk.IStatable.cs">
<DependentUpon>VectrexHawk.cs</DependentUpon>
</Compile>
<Compile Include="Consoles\GCE\Vectrex\VectrexHawkControllerDeck.cs" />
<Compile Include="Consoles\GCE\Vectrex\VectrexHawkControllers.cs" />
<Compile Include="Consoles\GCE\Vectrex\HW_Registers.cs" />
<Compile Include="Consoles\GCE\Vectrex\Mappers\MapperBase.cs" />
<Compile Include="Consoles\GCE\Vectrex\Mappers\Mapper_Default.cs" />
<Compile Include="Consoles\GCE\Vectrex\MemoryMap.cs" />
<Compile Include="Consoles\GCE\Vectrex\PPU.cs" />
<Compile Include="Consoles\GCE\Vectrex\SerialPort.cs" />
<Compile Include="Consoles\Coleco\ColecoVision.cs" />
<Compile Include="Consoles\Coleco\ColecoVision.IDebuggable.cs">
<DependentUpon>ColecoVision.cs</DependentUpon>
@ -1493,6 +1526,13 @@
<Compile Include="CPUs\CP1610\CP1610.Disassembler.cs" />
<Compile Include="CPUs\CP1610\CP1610.Execute.cs" />
<Compile Include="CPUs\HuC6280\HuC6280_CDL.cs" />
<Compile Include="CPUs\MC6809\Execute.cs" />
<Compile Include="CPUs\MC6809\Interrupts.cs" />
<Compile Include="CPUs\MC6809\MC6809.cs" />
<Compile Include="CPUs\MC6809\NewDisassembler.cs" />
<Compile Include="CPUs\MC6809\Operations.cs" />
<Compile Include="CPUs\MC6809\Registers.cs" />
<Compile Include="CPUs\MC6809\Tables_Direct.cs" />
<Compile Include="CPUs\LR35902\Execute.cs" />
<Compile Include="CPUs\LR35902\Interrupts.cs" />
<Compile Include="CPUs\LR35902\LR35902.cs" />

View File

@ -0,0 +1,303 @@
using System;
namespace BizHawk.Emulation.Common.Components.MC6809
{
public partial class MC6809
{
private ulong totalExecutedCycles;
public ulong TotalExecutedCycles { get { return totalExecutedCycles; } set { totalExecutedCycles = value; } }
private int EI_pending;
private bool interrupts_enabled;
// variables for executing instructions
public int instr_pntr = 0;
public ushort[] cur_instr;
public int opcode;
public bool halted;
public bool stopped;
public bool jammed;
public int LY;
public void FetchInstruction(byte opcode)
{
switch (opcode)
{
case 0x00: DIRECT_MEM(NEG); break; // NEG (Direct)
case 0x01: ILLEGAL(); break; // ILLEGAL
case 0x02: ILLEGAL(); break; // ILLEGAL
case 0x03: DIRECT_MEM(COM); break; // COM (Direct)
case 0x04: DIRECT_MEM(LSR); break; // LSR (Direct)
case 0x05: ILLEGAL(); break; // ILLEGAL
case 0x06: DIRECT_MEM(ROR); break; // ROR (Direct)
case 0x07: DIRECT_MEM(ASR); break; // ASR (Direct)
case 0x08: DIRECT_MEM(ASL); break; // ASL , LSL (Direct)
case 0x09: DIRECT_MEM(ROL); break; // ROL (Direct)
case 0x0A: DIRECT_MEM(DEC8); break; // DEC (Direct)
case 0x0B: ILLEGAL(); break; // ILLEGAL
case 0x0C: DIRECT_MEM(INC8); break; // INC (Direct)
case 0x0D: DIRECT_MEM(TST); break; // TST (Direct)
case 0x0E: JMP_DIR_(); break; // JMP (Direct)
case 0x0F: DIRECT_MEM(CLR); break; // CLR (Direct)
case 0x10: PAGE_2(); break; // Page 2
case 0x11: PAGE_3(); break; // Page 3
case 0x12: NOP_(); break; // NOP (Inherent)
case 0x13: SYNC_(); break; // SYNC (Inherent)
case 0x14: ILLEGAL(); break; // ILLEGAL
case 0x15: ILLEGAL(); break; // ILLEGAL
case 0x16: LBR_(true); break; // LBRA (Relative)
case 0x17: LBSR_(); break; // LBSR (Relative)
case 0x18: ILLEGAL(); break; // ILLEGAL
case 0x19: REG_OP(DA, A); break; // DAA (Inherent)
case 0x1A: REG_OP_IMD_CC(OR8); break; // ORCC (Immediate)
case 0x1B: ILLEGAL(); break; // ILLEGAL
case 0x1C: REG_OP_IMD_CC(AND8); break; // ANDCC (Immediate)
case 0x1D: REG_OP(SEX, A); break; // SEX (Inherent)
case 0x1E: EXG_(); break; // EXG (Immediate)
case 0x1F: TFR_(); break; // TFR (Immediate)
case 0x20: BR_(true); break; // BRA (Relative)
case 0x21: BR_(false); break; // BRN (Relative)
case 0x22: BR_(!(FlagC | FlagZ)); break; // BHI (Relative)
case 0x23: BR_(FlagC | FlagZ); break; // BLS (Relative)
case 0x24: BR_(!FlagC); break; // BHS , BCC (Relative)
case 0x25: BR_(FlagC); break; // BLO , BCS (Relative)
case 0x26: BR_(!FlagZ); break; // BNE (Relative)
case 0x27: BR_(FlagZ); break; // BEQ (Relative)
case 0x28: BR_(!FlagV); break; // BVC (Relative)
case 0x29: BR_(FlagV); break; // BVS (Relative)
case 0x2A: BR_(!FlagN); break; // BPL (Relative)
case 0x2B: BR_(FlagN); break; // BMI (Relative)
case 0x2C: BR_(FlagN == FlagV); break; // BGE (Relative)
case 0x2D: BR_(FlagN ^ FlagV); break; // BLT (Relative)
case 0x2E: BR_((!FlagZ) & (FlagN == FlagV)); break; // BGT (Relative)
case 0x2F: BR_(FlagZ | (FlagN ^ FlagV)); break; // BLE (Relative)
case 0x30: JR_COND(!FlagC); break; // LEAX (Indexed)
case 0x31: ; break; // LEAY (Indexed)
case 0x32: ; break; // LEAS (Indexed)
case 0x33: ; break; // LEAU (Indexed)
case 0x34: ; break; // PSHS (Immediate)
case 0x35: ; break; // PULS (Immediate)
case 0x36: ; break; // PSHU (Immediate)
case 0x37: ; break; // PULU (Immediate)
case 0x38: ILLEGAL(); break; // ILLEGAL
case 0x39: ; break; // RTS (Inherent)
case 0x3A: ; break; // ABX (Inherent)
case 0x3B: ; break; // RTI (Inherent)
case 0x3C: ; break; // CWAI (Inherent)
case 0x3D: ; break; // MUL (Inherent)
case 0x3E: ILLEGAL(); break; // ILLEGAL
case 0x3F: ; break; // SWI (Inherent)
case 0x40: REG_OP(NEG, A); break; // NEGA (Inherent)
case 0x41: ILLEGAL(); break; // ILLEGAL
case 0x42: ILLEGAL(); break; // ILLEGAL
case 0x43: REG_OP(COM, A); break; // COMA (Inherent)
case 0x44: REG_OP(LSR, A); break; // LSRA (Inherent)
case 0x45: ILLEGAL(); break; // ILLEGAL
case 0x46: REG_OP(ROR, A); break; // RORA (Inherent)
case 0x47: REG_OP(ASR, A); break; // ASRA (Inherent)
case 0x48: REG_OP(ASL, A); break; // ASLA , LSLA (Inherent)
case 0x49: REG_OP(ROL, A); break; // ROLA (Inherent)
case 0x4A: REG_OP(DEC8, A); break; // DECA (Inherent)
case 0x4B: ILLEGAL(); break; // ILLEGAL
case 0x4C: REG_OP(INC8, A); break; // INCA (Inherent)
case 0x4D: REG_OP(TST, A); break; // TSTA (Inherent)
case 0x4E: ILLEGAL(); break; // ILLEGAL
case 0x4F: REG_OP(CLR, A); break; // CLRA (Inherent)
case 0x50: REG_OP(NEG, B); break; // NEGB (Inherent)
case 0x51: ILLEGAL(); break; // ILLEGAL
case 0x52: ILLEGAL(); break; // ILLEGAL
case 0x53: REG_OP(COM, B); break; // COMB (Inherent)
case 0x54: REG_OP(LSR, B); break; // LSRB (Inherent)
case 0x55: ILLEGAL(); break; // ILLEGAL
case 0x56: REG_OP(ROR, B); break; // RORB (Inherent)
case 0x57: REG_OP(ASR, B); break; // ASRB (Inherent)
case 0x58: REG_OP(ASL, B); break; // ASLB , LSLB (Inherent)
case 0x59: REG_OP(ROL, B); break; // ROLB (Inherent)
case 0x5A: REG_OP(DEC8, B); break; // DECB (Inherent)
case 0x5B: ILLEGAL(); break; // ILLEGAL
case 0x5C: REG_OP(INC8, B); break; // INCB (Inherent)
case 0x5D: REG_OP(TST, B); break; // TSTB (Inherent)
case 0x5E: ILLEGAL(); break; // ILLEGAL
case 0x5F: REG_OP(CLR, B); break; // CLRB (Inherent)
case 0x60: REG_OP(TR, B); break; // NEG (Indexed)
case 0x61: ILLEGAL(); break; // ILLEGAL
case 0x62: ILLEGAL(); break; // ILLEGAL
case 0x63: REG_OP(TR, B); break; // COM (Indexed)
case 0x64: REG_OP(TR, B); break; // LSR (Indexed)
case 0x65: ILLEGAL(); break; // ILLEGAL
case 0x66: REG_OP(TR, B); break; // ROR (Indexed)
case 0x67: REG_OP(TR, A); break; // ASR (Indexed)
case 0x68: REG_OP(TR, A); break; // ASL , LSL (Indexed)
case 0x69: REG_OP(TR, A); break; // ROL (Indexed)
case 0x6A: REG_OP(TR, A); break; // DEC (Indexed)
case 0x6B: ILLEGAL(); break; // ILLEGAL
case 0x6C: REG_OP(TR, A); break; // INC (Indexed)
case 0x6D: REG_OP(TR, A); break; // TST (Indexed)
case 0x6E: REG_OP(TR, A); break; // JMP (Indexed)
case 0x6F: REG_OP(TR, A); break; // CLR (Indexed)
case 0x70: REG_OP(TR, A); break; // NEG (Extended)
case 0x71: ILLEGAL(); break; // ILLEGAL
case 0x72: ILLEGAL(); break; // ILLEGAL
case 0x73: REG_OP(TR, A); break; // COM (Extended)
case 0x74: REG_OP(TR, A); break; // LSR (Extended)
case 0x75: ILLEGAL(); break; // ILLEGAL
case 0x76: REG_OP(TR, A); break; // ROR (Extended)
case 0x77: REG_OP(TR, A); break; // ASR (Extended)
case 0x78: REG_OP(TR, A); break; // ASL , LSL (Extended)
case 0x79: REG_OP(TR, A); break; // ROL (Extended)
case 0x7A: REG_OP(TR, A); break; // DEC (Extended)
case 0x7B: ILLEGAL(); break; // ILLEGAL
case 0x7C: REG_OP(TR, A); break; // INC (Extended)
case 0x7D: REG_OP(TR, A); break; // TST (Extended)
case 0x7E: REG_OP(TR, A); break; // JMP (Extended)
case 0x7F: REG_OP(TR, A); break; // CLR (Extended)
case 0x80: REG_OP(ADD8, A); break; // SUBA (Immediate)
case 0x81: REG_OP(ADD8, A); break; // CMPA (Immediate)
case 0x82: REG_OP(ADD8, A); break; // SBCA (Immediate)
case 0x83: REG_OP(ADD8, A); break; // SUBD (Immediate)
case 0x84: REG_OP(ADD8, A); break; // ANDA (Immediate)
case 0x85: REG_OP(ADD8, A); break; // BITA (Immediate)
case 0x86: REG_OP(ADD8, A); break; // LDA (Immediate)
case 0x87: ILLEGAL(); break; // ILLEGAL
case 0x88: REG_OP(ADC8, A); break; // EORA (Immediate)
case 0x89: REG_OP(ADC8, A); break; // ADCA (Immediate)
case 0x8A: REG_OP(ADC8, A); break; // ORA (Immediate)
case 0x8B: REG_OP(ADC8, A); break; // ADDA (Immediate)
case 0x8C: REG_OP(ADC8, A); break; // CMPX (Immediate)
case 0x8D: REG_OP(ADC8, A); break; // BSR (Relative)
case 0x8E: REG_OP(ADC8, A); break; // LDX (Immediate)
case 0x8F: ILLEGAL(); break; // ILLEGAL
case 0x90: REG_OP(ADD8, A); break; // SUBA (Direct)
case 0x91: REG_OP(ADD8, A); break; // CMPA (Direct)
case 0x92: REG_OP(ADD8, A); break; // SBCA (Direct)
case 0x93: REG_OP(ADD8, A); break; // SUBD (Direct)
case 0x94: REG_OP(ADD8, A); break; // ANDA (Direct)
case 0x95: REG_OP(ADD8, A); break; // BITA (Direct)
case 0x96: REG_OP(ADD8, A); break; // LDA (Direct)
case 0x97: REG_OP(ADD8, A); break; // STA (Direct)
case 0x98: REG_OP(ADC8, A); break; // EORA (Direct)
case 0x99: REG_OP(ADC8, A); break; // ADCA (Direct)
case 0x9A: REG_OP(ADC8, A); break; // ORA (Direct)
case 0x9B: REG_OP(ADC8, A); break; // ADDA (Direct)
case 0x9C: REG_OP(ADC8, A); break; // CMPX (Direct)
case 0x9D: REG_OP(ADC8, A); break; // JSR (Direct)
case 0x9E: REG_OP(ADC8, A); break; // LDX (Direct)
case 0x9F: REG_OP(ADC8, A); break; // STX (Direct)
case 0xA0: REG_OP(AND8, A); break; // SUBA (Indexed)
case 0xA1: REG_OP(AND8, A); break; // CMPA (Indexed)
case 0xA2: REG_OP(AND8, A); break; // SBCA (Indexed)
case 0xA3: REG_OP(AND8, A); break; // SUBD (Indexed)
case 0xA4: REG_OP(AND8, A); break; // ANDA (Indexed)
case 0xA5: REG_OP(AND8, A); break; // BITA (Indexed)
case 0xA6: REG_OP(AND8, A); break; // LDA (Indexed)
case 0xA7: REG_OP(AND8, A); break; // STA (Indexed)
case 0xA8: REG_OP(XOR8, A); break; // EORA (Indexed)
case 0xA9: REG_OP(XOR8, A); break; // ADCA (Indexed)
case 0xAA: REG_OP(XOR8, A); break; // ORA (Indexed)
case 0xAB: REG_OP(XOR8, A); break; // ADDA (Indexed)
case 0xAC: REG_OP(XOR8, A); break; // CMPX (Indexed)
case 0xAD: REG_OP(XOR8, A); break; // JSR (Indexed)
case 0xAE: REG_OP(XOR8, A); break; // LDX (Indexed)
case 0xAF: REG_OP(XOR8, A); break; // STX (Indexed)
case 0xB0: REG_OP(AND8, A); break; // SUBA (Extended)
case 0xB1: REG_OP(AND8, A); break; // CMPA (Extended)
case 0xB2: REG_OP(AND8, A); break; // SBCA (Extended)
case 0xB3: REG_OP(AND8, A); break; // SUBD (Extended)
case 0xB4: REG_OP(AND8, A); break; // ANDA (Extended)
case 0xB5: REG_OP(AND8, A); break; // BITA (Extended)
case 0xB6: REG_OP(AND8, A); break; // LDA (Extended)
case 0xB7: REG_OP(AND8, A); break; // STA (Extended)
case 0xB8: REG_OP(XOR8, A); break; // EORA (Extended)
case 0xB9: REG_OP(XOR8, A); break; // ADCA (Extended)
case 0xBA: REG_OP(XOR8, A); break; // ORA (Extended)
case 0xBB: REG_OP(XOR8, A); break; // ADDA (Extended)
case 0xBC: REG_OP(XOR8, A); break; // CMPX (Extended)
case 0xBD: REG_OP(XOR8, A); break; // JSR (Extended)
case 0xBE: REG_OP(XOR8, A); break; // LDX (Extended)
case 0xBF: REG_OP(XOR8, A); break; // STX (Extended)
case 0xC0: REG_OP(ADD8, A); break; // SUBB (Immediate)
case 0xC1: REG_OP(ADD8, A); break; // CMPB (Immediate)
case 0xC2: REG_OP(ADD8, A); break; // SBCB (Immediate)
case 0xC3: REG_OP(ADD8, A); break; // ADDD (Immediate)
case 0xC4: REG_OP(ADD8, A); break; // ANDB (Immediate)
case 0xC5: REG_OP(ADD8, A); break; // BITB (Immediate)
case 0xC6: REG_OP(ADD8, A); break; // LDB (Immediate)
case 0xC7: ILLEGAL(); break; // ILLEGAL
case 0xC8: REG_OP(ADC8, A); break; // EORB (Immediate)
case 0xC9: REG_OP(ADC8, A); break; // ADCB (Immediate)
case 0xCA: REG_OP(ADC8, A); break; // ORB (Immediate)
case 0xCB: REG_OP(ADC8, A); break; // ADDB (Immediate)
case 0xCC: REG_OP(ADC8, A); break; // LDD (Immediate)
case 0xCD: ILLEGAL(); break; // ILLEGAL
case 0xCE: REG_OP(ADC8, A); break; // LDU (Immediate)
case 0xCF: ILLEGAL(); break; // ILLEGAL
case 0xD0: REG_OP(ADD8, B); break; // SUBB (Direct)
case 0xD1: REG_OP(ADD8, B); break; // CMPB (Direct)
case 0xD2: REG_OP(ADD8, B); break; // SBCB (Direct)
case 0xD3: REG_OP(ADD8, B); break; // ADDD (Direct)
case 0xD4: REG_OP(ADD8, B); break; // ANDB (Direct)
case 0xD5: REG_OP(ADD8, B); break; // BITB (Direct)
case 0xD6: REG_OP(ADD8, B); break; // LDB (Direct)
case 0xD7: REG_OP(ADD8, B); break; // STB (Direct)
case 0xD8: REG_OP(ADC8, B); break; // EORB (Direct)
case 0xD9: REG_OP(ADC8, B); break; // ADCB (Direct)
case 0xDA: REG_OP(ADC8, B); break; // ORB (Direct)
case 0xDB: REG_OP(ADC8, B); break; // ADDB (Direct)
case 0xDC: REG_OP(ADC8, B); break; // LDD (Direct)
case 0xDD: REG_OP(ADC8, B); break; // STD (Direct)
case 0xDE: REG_OP(ADC8, B); break; // LDU (Direct)
case 0xDF: REG_OP(ADC8, B); break; // STU (Direct)
case 0xE0: REG_OP(AND8, B); break; // SUBB (Indexed)
case 0xE1: REG_OP(AND8, B); break; // CMPB (Indexed)
case 0xE2: REG_OP(AND8, B); break; // SBCB (Indexed)
case 0xE3: REG_OP(AND8, B); break; // ADDD (Indexed)
case 0xE4: REG_OP(AND8, B); break; // ANDB (Indexed)
case 0xE5: REG_OP(AND8, B); break; // BITB (Indexed)
case 0xE6: REG_OP(AND8, B); break; // LDB (Indexed)
case 0xE7: REG_OP(AND8, B); break; // STB (Indexed)
case 0xE8: REG_OP(XOR8, B); break; // EORB (Indexed)
case 0xE9: REG_OP(XOR8, B); break; // ADCB (Indexed)
case 0xEA: REG_OP(XOR8, B); break; // ORB (Indexed)
case 0xEB: REG_OP(XOR8, B); break; // ADDB (Indexed)
case 0xEC: REG_OP(XOR8, B); break; // LDD (Indexed)
case 0xED: REG_OP(XOR8, B); break; // STD (Indexed)
case 0xEE: REG_OP(XOR8, B); break; // LDU (Indexed)
case 0xEF: REG_OP(XOR8, B); break; // STU (Indexed)
case 0xF0: REG_OP(AND8, B); break; // SUBB (Extended)
case 0xF1: REG_OP(AND8, B); break; // CMPB (Extended)
case 0xF2: REG_OP(AND8, B); break; // SBCB (Extended)
case 0xF3: REG_OP(AND8, B); break; // ADDD (Extended)
case 0xF4: REG_OP(AND8, B); break; // ANDB (Extended)
case 0xF5: REG_OP(AND8, B); break; // BITB (Extended)
case 0xF6: REG_OP(AND8, B); break; // LDB (Extended)
case 0xF7: REG_OP(AND8, B); break; // STB (Extended)
case 0xF8: REG_OP(XOR8, B); break; // EORB (Extended)
case 0xF9: REG_OP(XOR8, B); break; // ADCB (Extended)
case 0xFA: REG_OP(XOR8, B); break; // ORB (Extended)
case 0xFB: REG_OP(XOR8, B); break; // ADDB (Extended)
case 0xFC: REG_OP(XOR8, B); break; // LDD (Extended)
case 0xFD: REG_OP(XOR8, B); break; // STD (Extended)
case 0xFE: REG_OP(XOR8, B); break; // LDU (Extended)
case 0xFF: REG_OP(XOR8, B); break; // STU (Extended)
}
}
public void FetchInstruction2(byte opcode)
{
switch (opcode)
{
default: ILLEGAL(); break;
}
}
public void FetchInstruction3(byte opcode)
{
switch (opcode)
{
default: ILLEGAL(); break;
}
}
}
}

View File

@ -0,0 +1,36 @@
using System;
namespace BizHawk.Emulation.Common.Components.MC6809
{
public partial class MC6809
{
private void INTERRUPT_()
{
}
private void INTERRUPT_GBC_NOP()
{
}
private static ushort[] INT_vectors = new ushort[] {0x40, 0x48, 0x50, 0x58, 0x60, 0x00};
public ushort int_src;
public int stop_time;
public bool stop_check;
public bool is_GBC; // GBC automatically adds a NOP to avoid the HALT bug (according to Sinimas)
public bool I_use; // in halt mode, the I flag is checked earlier then when deicision to IRQ is taken
public bool skip_once;
public bool Halt_bug_2;
public bool Halt_bug_3;
private void ResetInterrupts()
{
I_use = false;
skip_once = false;
Halt_bug_2 = false;
Halt_bug_3 = false;
}
}
}

View File

@ -0,0 +1,461 @@
using System;
using System.Globalization;
using System.IO;
using BizHawk.Common;
using BizHawk.Emulation.Common;
using BizHawk.Common.NumberExtensions;
// Motorola Corp 6809
namespace BizHawk.Emulation.Common.Components.MC6809
{
public sealed partial class MC6809
{
// operations that can take place in an instruction
public const ushort IDLE = 0;
public const ushort OP = 1;
public const ushort RD = 2;
public const ushort WR = 3;
public const ushort TR = 4;
public const ushort ADD16BR = 5;
public const ushort ADD8 = 6;
public const ushort SUB8 = 7;
public const ushort ADC8 = 8;
public const ushort SBC8 = 9;
public const ushort INC16 = 10;
public const ushort INC8 = 11;
public const ushort DEC16 = 12;
public const ushort DEC8 = 13;
public const ushort RLC = 14;
public const ushort ROL = 15;
public const ushort RRC = 16;
public const ushort ROR = 17;
public const ushort COM = 18;
public const ushort DA = 19;
public const ushort SCF = 20;
public const ushort CCF = 21;
public const ushort AND8 = 22;
public const ushort XOR8 = 23;
public const ushort OR8 = 24;
public const ushort CP8 = 25;
public const ushort ASL = 26;
public const ushort ASR = 27;
public const ushort LSR = 28;
public const ushort SWAP = 29;
public const ushort BIT = 30;
public const ushort RES = 31;
public const ushort SET = 32;
public const ushort EI = 33;
public const ushort DI = 34;
public const ushort HALT = 35;
public const ushort STOP = 36;
public const ushort ASGN = 38;
public const ushort ADDS = 39; // signed 16 bit operation used in 2 instructions
public const ushort OP_G = 40; // glitchy opcode read performed by halt when interrupts disabled
public const ushort JAM = 41; // all undocumented opcodes jam the machine
public const ushort RD_F = 42; // special read case to pop value into F
public const ushort EI_RETI = 43; // reti has no delay in interrupt enable
public const ushort INT_GET = 44;
public const ushort HALT_CHK = 45; // when in halt mode, actually check I Flag here
public const ushort RD_INC = 46;
public const ushort SET_ADDR = 47;
public const ushort NEG = 48;
public const ushort TST = 49;
public const ushort CLR = 50;
public const ushort OP_PG_2 = 51;
public const ushort OP_PG_3 = 52;
public const ushort SEX = 53;
public const ushort RD_INC_OP = 54;
public const ushort EXG = 55;
public const ushort TFR = 56;
public const ushort WR_DEC_LO = 57;
public const ushort WR_HI = 58;
public const ushort ADD8BR = 59;
public MC6809()
{
Reset();
}
public void Reset()
{
ResetRegisters();
ResetInterrupts();
TotalExecutedCycles = 8;
stop_check = false;
cur_instr = new ushort[] { IDLE, IDLE, HALT_CHK, OP };
}
// Memory Access
public Func<ushort, byte> ReadMemory;
public Action<ushort, byte> WriteMemory;
public Func<ushort, byte> PeekMemory;
public Func<ushort, byte> DummyReadMemory;
// Special Function for Speed switching executed on a STOP
public Func<int, int> SpeedFunc;
//this only calls when the first byte of an instruction is fetched.
public Action<ushort> OnExecFetch;
public void UnregisterMemoryMapper()
{
ReadMemory = null;
ReadMemory = null;
PeekMemory = null;
DummyReadMemory = null;
}
public void SetCallbacks
(
Func<ushort, byte> ReadMemory,
Func<ushort, byte> DummyReadMemory,
Func<ushort, byte> PeekMemory,
Action<ushort, byte> WriteMemory
)
{
this.ReadMemory = ReadMemory;
this.DummyReadMemory = DummyReadMemory;
this.PeekMemory = PeekMemory;
this.WriteMemory = WriteMemory;
}
//a little CDL related stuff
public delegate void DoCDLCallbackType(ushort addr, MC6809.eCDLogMemFlags flags);
public DoCDLCallbackType CDLCallback;
public enum eCDLogMemFlags
{
FetchFirst = 1,
FetchOperand = 2,
Data = 4,
Write = 8
};
// Execute instructions
public void ExecuteOne(ref byte interrupt_src, byte interrupt_enable)
{
switch (cur_instr[instr_pntr++])
{
case IDLE:
// do nothing
break;
case OP:
// Read the opcode of the next instruction
if (EI_pending > 0)
{
EI_pending--;
if (EI_pending == 0)
{
interrupts_enabled = true;
}
}
if (I_use && interrupts_enabled && !jammed)
{
interrupts_enabled = false;
if (TraceCallback != null)
{
TraceCallback(new TraceInfo
{
Disassembly = "====IRQ====",
RegisterInfo = ""
});
}
// call interrupt processor
// lowest bit set is highest priority
INTERRUPT_();
}
else
{
if (OnExecFetch != null) OnExecFetch(PC);
if (TraceCallback != null) TraceCallback(State());
if (CDLCallback != null) CDLCallback(PC, eCDLogMemFlags.FetchFirst);
FetchInstruction(ReadMemory(Regs[PC]++));
}
instr_pntr = 0;
I_use = false;
break;
case OP_PG_2:
FetchInstruction2(ReadMemory(Regs[PC]++));
break;
case OP_PG_3:
FetchInstruction3(ReadMemory(Regs[PC]++));
break;
case RD:
Read_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case RD_INC:
Read_Inc_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case RD_INC_OP:
Read_Inc_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
switch (cur_instr[instr_pntr++])
{
case AND8:
AND8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case OR8:
OR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case SUB8:
SUB8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
}
break;
case WR:
Write_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case WR_DEC_LO:
Write_Dec_Lo_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case WR_HI:
Write_Hi_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case TR:
TR_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case EXG:
EXG_Func(cur_instr[instr_pntr++]);
break;
case TFR:
TFR_Func(cur_instr[instr_pntr++]);
break;
case SET_ADDR:
Regs[cur_instr[instr_pntr++]] = (ushort)((Regs[cur_instr[instr_pntr++]] << 8) | Regs[cur_instr[instr_pntr++]]);
break;
case NEG:
NEG_8_Func(cur_instr[instr_pntr++]);
break;
case TST:
TST_Func(cur_instr[instr_pntr++]);
break;
case CLR:
CLR_Func(cur_instr[instr_pntr++]);
break;
case SEX:
SEX_Func(cur_instr[instr_pntr++]);
break;
case ADD16BR:
ADD16BR_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case ADD8BR:
ADD8BR_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case ADD8:
ADD8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case SUB8:
SUB8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case ADC8:
ADC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case SBC8:
SBC8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case INC16:
INC16_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case INC8:
INC8_Func(cur_instr[instr_pntr++]);
break;
case DEC16:
DEC16_Func(cur_instr[instr_pntr++]);
break;
case DEC8:
DEC8_Func(cur_instr[instr_pntr++]);
break;
case RLC:
RLC_Func(cur_instr[instr_pntr++]);
break;
case ROL:
ROL_Func(cur_instr[instr_pntr++]);
break;
case RRC:
RRC_Func(cur_instr[instr_pntr++]);
break;
case ROR:
ROR_Func(cur_instr[instr_pntr++]);
break;
case COM:
COM_Func(cur_instr[instr_pntr++]);
break;
case DA:
DA_Func(cur_instr[instr_pntr++]);
break;
case SCF:
SCF_Func(cur_instr[instr_pntr++]);
break;
case CCF:
CCF_Func(cur_instr[instr_pntr++]);
break;
case AND8:
AND8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case XOR8:
XOR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case OR8:
OR8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case CP8:
CP8_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case ASL:
ASL_Func(cur_instr[instr_pntr++]);
break;
case ASR:
ASR_Func(cur_instr[instr_pntr++]);
break;
case LSR:
LSR_Func(cur_instr[instr_pntr++]);
break;
case SWAP:
SWAP_Func(cur_instr[instr_pntr++]);
break;
case BIT:
BIT_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case RES:
RES_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case SET:
SET_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case EI:
if (EI_pending == 0) { EI_pending = 2; }
break;
case DI:
interrupts_enabled = false;
EI_pending = 0;
break;
case HALT:
break;
case STOP:
break;
case ASGN:
ASGN_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case ADDS:
ADDS_Func(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case OP_G:
if (OnExecFetch != null) OnExecFetch(PC);
if (TraceCallback != null) TraceCallback(State());
if (CDLCallback != null) CDLCallback(PC, eCDLogMemFlags.FetchFirst);
FetchInstruction(ReadMemory(PC)); // note no increment
instr_pntr = 0;
break;
case JAM:
jammed = true;
instr_pntr--;
break;
case RD_F:
Read_Func_F(cur_instr[instr_pntr++], cur_instr[instr_pntr++], cur_instr[instr_pntr++]);
break;
case EI_RETI:
EI_pending = 1;
break;
case INT_GET:
break;
case HALT_CHK:
break;
}
totalExecutedCycles++;
}
// tracer stuff
public Action<TraceInfo> TraceCallback;
public string TraceHeader
{
get { return "MC6809: PC, machine code, mnemonic, operands, registers (A, F, B, C, D, E, H, L, SP), Cy, flags (ZNHCI)"; }
}
public TraceInfo State(bool disassemble = true)
{
ushort notused;
return new TraceInfo
{
Disassembly = string.Format(
"{0} ",
disassemble ? Disassemble(PC, ReadMemory, out notused) : "---").PadRight(40),
RegisterInfo = string.Format(
"A:{0:X2} F:{1:X2} B:{2:X2} C:{3:X2} D:{4:X2} E:{5:X2} H:{6:X2} L:{7:X2}",
TotalExecutedCycles,
LY,
FlagZ ? "Z" : "z",
FlagN ? "N" : "n",
FlagH ? "H" : "h",
FlagC ? "C" : "c",
FlagI ? "I" : "i",
interrupts_enabled ? "E" : "e")
};
}
/// <summary>
/// Optimization method to set cur_instr
/// </summary>
private void PopulateCURINSTR(ushort d0 = 0, ushort d1 = 0, ushort d2 = 0, ushort d3 = 0, ushort d4 = 0, ushort d5 = 0, ushort d6 = 0, ushort d7 = 0, ushort d8 = 0,
ushort d9 = 0, ushort d10 = 0, ushort d11 = 0, ushort d12 = 0, ushort d13 = 0, ushort d14 = 0, ushort d15 = 0, ushort d16 = 0, ushort d17 = 0, ushort d18 = 0,
ushort d19 = 0, ushort d20 = 0, ushort d21 = 0, ushort d22 = 0, ushort d23 = 0, ushort d24 = 0, ushort d25 = 0, ushort d26 = 0, ushort d27 = 0, ushort d28 = 0,
ushort d29 = 0, ushort d30 = 0, ushort d31 = 0, ushort d32 = 0, ushort d33 = 0, ushort d34 = 0, ushort d35 = 0, ushort d36 = 0, ushort d37 = 0)
{
cur_instr[0] = d0; cur_instr[1] = d1; cur_instr[2] = d2;
cur_instr[3] = d3; cur_instr[4] = d4; cur_instr[5] = d5;
cur_instr[6] = d6; cur_instr[7] = d7; cur_instr[8] = d8;
cur_instr[9] = d9; cur_instr[10] = d10; cur_instr[11] = d11;
cur_instr[12] = d12; cur_instr[13] = d13; cur_instr[14] = d14;
cur_instr[15] = d15; cur_instr[16] = d16; cur_instr[17] = d17;
cur_instr[18] = d18; cur_instr[19] = d19; cur_instr[20] = d20;
cur_instr[21] = d21; cur_instr[22] = d22; cur_instr[23] = d23;
cur_instr[24] = d24; cur_instr[25] = d25; cur_instr[26] = d26;
cur_instr[27] = d27; cur_instr[28] = d28; cur_instr[29] = d29;
cur_instr[30] = d30; cur_instr[31] = d31; cur_instr[32] = d32;
cur_instr[33] = d33; cur_instr[34] = d34; cur_instr[35] = d35;
cur_instr[36] = d36; cur_instr[37] = d37;
}
// State Save/Load
public void SyncState(Serializer ser)
{
ser.BeginSection("MC6809");
ser.Sync("IRQ", ref interrupts_enabled);
ser.Sync("I_use", ref I_use);
ser.Sync("skip_once", ref skip_once);
ser.Sync("Halt_bug_2", ref Halt_bug_2);
ser.Sync("Halt_bug_3", ref Halt_bug_3);
ser.Sync("Halted", ref halted);
ser.Sync("ExecutedCycles", ref totalExecutedCycles);
ser.Sync("EI_pending", ref EI_pending);
ser.Sync("int_src", ref int_src);
ser.Sync("stop_time", ref stop_time);
ser.Sync("stop_check", ref stop_check);
ser.Sync("is_GBC", ref is_GBC);
ser.Sync("instr_pntr", ref instr_pntr);
ser.Sync("cur_instr", ref cur_instr, false);
ser.Sync("Stopped", ref stopped);
ser.Sync("opcode", ref opcode);
ser.Sync("jammped", ref jammed);
ser.Sync("LY", ref LY);
ser.EndSection();
}
}
}

View File

@ -0,0 +1,587 @@
using System;
using System.Collections.Generic;
using System.Text;
namespace BizHawk.Emulation.Common.Components.MC6809
{
// adapted from the information at http://www.pastraiser.com/cpu/gameboy/gameboy_opcodes.html
public sealed partial class MC6809
{
static string[] table =
{
"NOP", // 00
"LD BC,d16", // 01
"LD (BC),A", // 02
"INC BC", // 03
"INC B", // 04
"DEC B", // 05
"LD B,d8", // 06
"RLCA", // 07
"LD (a16),SP", // 08
"ADD HL,BC", // 09
"LD A,(BC)", // 0a
"DEC BC", // 0b
"INC C", // 0c
"DEC C", // 0d
"LD C,d8", // 0e
"RRCA", // 0f
"STOP 0", // 10
"LD DE,d16", // 11
"LD (DE),A", // 12
"INC DE", // 13
"INC D", // 14
"DEC D", // 15
"LD D,d8", // 16
"RLA", // 17
"JR r8", // 18
"ADD HL,DE", // 19
"LD A,(DE)", // 1a
"DEC DE", // 1b
"INC E", // 1c
"DEC E", // 1d
"LD E,d8", // 1e
"RRA", // 1f
"JR NZ,r8", // 20
"LD HL,d16", // 21
"LD (HL+),A", // 22
"INC HL", // 23
"INC H", // 24
"DEC H", // 25
"LD H,d8", // 26
"DAA", // 27
"JR Z,r8", // 28
"ADD HL,HL", // 29
"LD A,(HL+)", // 2a
"DEC HL", // 2b
"INC L", // 2c
"DEC L", // 2d
"LD L,d8", // 2e
"CPL", // 2f
"JR NC,r8", // 30
"LD SP,d16", // 31
"LD (HL-),A", // 32
"INC SP", // 33
"INC (HL)", // 34
"DEC (HL)", // 35
"LD (HL),d8", // 36
"SCF", // 37
"JR C,r8", // 38
"ADD HL,SP", // 39
"LD A,(HL-)", // 3a
"DEC SP", // 3b
"INC A", // 3c
"DEC A", // 3d
"LD A,d8", // 3e
"CCF", // 3f
"LD B,B", // 40
"LD B,C", // 41
"LD B,D", // 42
"LD B,E", // 43
"LD B,H", // 44
"LD B,L", // 45
"LD B,(HL)", // 46
"LD B,A", // 47
"LD C,B", // 48
"LD C,C", // 49
"LD C,D", // 4a
"LD C,E", // 4b
"LD C,H", // 4c
"LD C,L", // 4d
"LD C,(HL)", // 4e
"LD C,A", // 4f
"LD D,B", // 50
"LD D,C", // 51
"LD D,D", // 52
"LD D,E", // 53
"LD D,H", // 54
"LD D,L", // 55
"LD D,(HL)", // 56
"LD D,A", // 57
"LD E,B", // 58
"LD E,C", // 59
"LD E,D", // 5a
"LD E,E", // 5b
"LD E,H", // 5c
"LD E,L", // 5d
"LD E,(HL)", // 5e
"LD E,A", // 5f
"LD H,B", // 60
"LD H,C", // 61
"LD H,D", // 62
"LD H,E", // 63
"LD H,H", // 64
"LD H,L", // 65
"LD H,(HL)", // 66
"LD H,A", // 67
"LD L,B", // 68
"LD L,C", // 69
"LD L,D", // 6a
"LD L,E", // 6b
"LD L,H", // 6c
"LD L,L", // 6d
"LD L,(HL)", // 6e
"LD L,A", // 6f
"LD (HL),B", // 70
"LD (HL),C", // 71
"LD (HL),D", // 72
"LD (HL),E", // 73
"LD (HL),H", // 74
"LD (HL),L", // 75
"HALT", // 76
"LD (HL),A", // 77
"LD A,B", // 78
"LD A,C", // 79
"LD A,D", // 7a
"LD A,E", // 7b
"LD A,H", // 7c
"LD A,L", // 7d
"LD A,(HL)", // 7e
"LD A,A", // 7f
"ADD A,B", // 80
"ADD A,C", // 81
"ADD A,D", // 82
"ADD A,E", // 83
"ADD A,H", // 84
"ADD A,L", // 85
"ADD A,(HL)", // 86
"ADD A,A", // 87
"ADC A,B", // 88
"ADC A,C", // 89
"ADC A,D", // 8a
"ADC A,E", // 8b
"ADC A,H", // 8c
"ADC A,L", // 8d
"ADC A,(HL)", // 8e
"ADC A,A", // 8f
"SUB B", // 90
"SUB C", // 91
"SUB D", // 92
"SUB E", // 93
"SUB H", // 94
"SUB L", // 95
"SUB (HL)", // 96
"SUB A", // 97
"SBC A,B", // 98
"SBC A,C", // 99
"SBC A,D", // 9a
"SBC A,E", // 9b
"SBC A,H", // 9c
"SBC A,L", // 9d
"SBC A,(HL)", // 9e
"SBC A,A", // 9f
"AND B", // a0
"AND C", // a1
"AND D", // a2
"AND E", // a3
"AND H", // a4
"AND L", // a5
"AND (HL)", // a6
"AND A", // a7
"XOR B", // a8
"XOR C", // a9
"XOR D", // aa
"XOR E", // ab
"XOR H", // ac
"XOR L", // ad
"XOR (HL)", // ae
"XOR A", // af
"OR B", // b0
"OR C", // b1
"OR D", // b2
"OR E", // b3
"OR H", // b4
"OR L", // b5
"OR (HL)", // b6
"OR A", // b7
"CP B", // b8
"CP C", // b9
"CP D", // ba
"CP E", // bb
"CP H", // bc
"CP L", // bd
"CP (HL)", // be
"CP A", // bf
"RET NZ", // c0
"POP BC", // c1
"JP NZ,a16", // c2
"JP a16", // c3
"CALL NZ,a16", // c4
"PUSH BC", // c5
"ADD A,d8", // c6
"RST 00H", // c7
"RET Z", // c8
"RET", // c9
"JP Z,a16", // ca
"PREFIX CB", // cb
"CALL Z,a16", // cc
"CALL a16", // cd
"ADC A,d8", // ce
"RST 08H", // cf
"RET NC", // d0
"POP DE", // d1
"JP NC,a16", // d2
"???", // d3
"CALL NC,a16", // d4
"PUSH DE", // d5
"SUB d8", // d6
"RST 10H", // d7
"RET C", // d8
"RETI", // d9
"JP C,a16", // da
"???", // db
"CALL C,a16", // dc
"???", // dd
"SBC A,d8", // de
"RST 18H", // df
"LDH (a8),A", // e0
"POP HL", // e1
"LD (C),A", // e2
"???", // e3
"???", // e4
"PUSH HL", // e5
"AND d8", // e6
"RST 20H", // e7
"ADD SP,r8", // e8
"JP (HL)", // e9
"LD (a16),A", // ea
"???", // eb
"???", // ec
"???", // ed
"XOR d8", // ee
"RST 28H", // ef
"LDH A,(a8)", // f0
"POP AF", // f1
"LD A,(C)", // f2
"DI", // f3
"???", // f4
"PUSH AF", // f5
"OR d8", // f6
"RST 30H", // f7
"LD HL,SP+r8", // f8
"LD SP,HL", // f9
"LD A,(a16)", // fa
"EI ", // fb
"???", // fc
"???", // fd
"CP d8", // fe
"RST 38H", // ff
"RLC B", // 00
"RLC C", // 01
"RLC D", // 02
"RLC E", // 03
"RLC H", // 04
"RLC L", // 05
"RLC (HL)", // 06
"RLC A", // 07
"RRC B", // 08
"RRC C", // 09
"RRC D", // 0a
"RRC E", // 0b
"RRC H", // 0c
"RRC L", // 0d
"RRC (HL)", // 0e
"RRC A", // 0f
"RL B", // 10
"RL C", // 11
"RL D", // 12
"RL E", // 13
"RL H", // 14
"RL L", // 15
"RL (HL)", // 16
"RL A", // 17
"RR B", // 18
"RR C", // 19
"RR D", // 1a
"RR E", // 1b
"RR H", // 1c
"RR L", // 1d
"RR (HL)", // 1e
"RR A", // 1f
"SLA B", // 20
"SLA C", // 21
"SLA D", // 22
"SLA E", // 23
"SLA H", // 24
"SLA L", // 25
"SLA (HL)", // 26
"SLA A", // 27
"SRA B", // 28
"SRA C", // 29
"SRA D", // 2a
"SRA E", // 2b
"SRA H", // 2c
"SRA L", // 2d
"SRA (HL)", // 2e
"SRA A", // 2f
"SWAP B", // 30
"SWAP C", // 31
"SWAP D", // 32
"SWAP E", // 33
"SWAP H", // 34
"SWAP L", // 35
"SWAP (HL)", // 36
"SWAP A", // 37
"SRL B", // 38
"SRL C", // 39
"SRL D", // 3a
"SRL E", // 3b
"SRL H", // 3c
"SRL L", // 3d
"SRL (HL)", // 3e
"SRL A", // 3f
"BIT 0,B", // 40
"BIT 0,C", // 41
"BIT 0,D", // 42
"BIT 0,E", // 43
"BIT 0,H", // 44
"BIT 0,L", // 45
"BIT 0,(HL)", // 46
"BIT 0,A", // 47
"BIT 1,B", // 48
"BIT 1,C", // 49
"BIT 1,D", // 4a
"BIT 1,E", // 4b
"BIT 1,H", // 4c
"BIT 1,L", // 4d
"BIT 1,(HL)", // 4e
"BIT 1,A", // 4f
"BIT 2,B", // 50
"BIT 2,C", // 51
"BIT 2,D", // 52
"BIT 2,E", // 53
"BIT 2,H", // 54
"BIT 2,L", // 55
"BIT 2,(HL)", // 56
"BIT 2,A", // 57
"BIT 3,B", // 58
"BIT 3,C", // 59
"BIT 3,D", // 5a
"BIT 3,E", // 5b
"BIT 3,H", // 5c
"BIT 3,L", // 5d
"BIT 3,(HL)", // 5e
"BIT 3,A", // 5f
"BIT 4,B", // 60
"BIT 4,C", // 61
"BIT 4,D", // 62
"BIT 4,E", // 63
"BIT 4,H", // 64
"BIT 4,L", // 65
"BIT 4,(HL)", // 66
"BIT 4,A", // 67
"BIT 5,B", // 68
"BIT 5,C", // 69
"BIT 5,D", // 6a
"BIT 5,E", // 6b
"BIT 5,H", // 6c
"BIT 5,L", // 6d
"BIT 5,(HL)", // 6e
"BIT 5,A", // 6f
"BIT 6,B", // 70
"BIT 6,C", // 71
"BIT 6,D", // 72
"BIT 6,E", // 73
"BIT 6,H", // 74
"BIT 6,L", // 75
"BIT 6,(HL)", // 76
"BIT 6,A", // 77
"BIT 7,B", // 78
"BIT 7,C", // 79
"BIT 7,D", // 7a
"BIT 7,E", // 7b
"BIT 7,H", // 7c
"BIT 7,L", // 7d
"BIT 7,(HL)", // 7e
"BIT 7,A", // 7f
"RES 0,B", // 80
"RES 0,C", // 81
"RES 0,D", // 82
"RES 0,E", // 83
"RES 0,H", // 84
"RES 0,L", // 85
"RES 0,(HL)", // 86
"RES 0,A", // 87
"RES 1,B", // 88
"RES 1,C", // 89
"RES 1,D", // 8a
"RES 1,E", // 8b
"RES 1,H", // 8c
"RES 1,L", // 8d
"RES 1,(HL)", // 8e
"RES 1,A", // 8f
"RES 2,B", // 90
"RES 2,C", // 91
"RES 2,D", // 92
"RES 2,E", // 93
"RES 2,H", // 94
"RES 2,L", // 95
"RES 2,(HL)", // 96
"RES 2,A", // 97
"RES 3,B", // 98
"RES 3,C", // 99
"RES 3,D", // 9a
"RES 3,E", // 9b
"RES 3,H", // 9c
"RES 3,L", // 9d
"RES 3,(HL)", // 9e
"RES 3,A", // 9f
"RES 4,B", // a0
"RES 4,C", // a1
"RES 4,D", // a2
"RES 4,E", // a3
"RES 4,H", // a4
"RES 4,L", // a5
"RES 4,(HL)", // a6
"RES 4,A", // a7
"RES 5,B", // a8
"RES 5,C", // a9
"RES 5,D", // aa
"RES 5,E", // ab
"RES 5,H", // ac
"RES 5,L", // ad
"RES 5,(HL)", // ae
"RES 5,A", // af
"RES 6,B", // b0
"RES 6,C", // b1
"RES 6,D", // b2
"RES 6,E", // b3
"RES 6,H", // b4
"RES 6,L", // b5
"RES 6,(HL)", // b6
"RES 6,A", // b7
"RES 7,B", // b8
"RES 7,C", // b9
"RES 7,D", // ba
"RES 7,E", // bb
"RES 7,H", // bc
"RES 7,L", // bd
"RES 7,(HL)", // be
"RES 7,A", // bf
"SET 0,B", // c0
"SET 0,C", // c1
"SET 0,D", // c2
"SET 0,E", // c3
"SET 0,H", // c4
"SET 0,L", // c5
"SET 0,(HL)", // c6
"SET 0,A", // c7
"SET 1,B", // c8
"SET 1,C", // c9
"SET 1,D", // ca
"SET 1,E", // cb
"SET 1,H", // cc
"SET 1,L", // cd
"SET 1,(HL)", // ce
"SET 1,A", // cf
"SET 2,B", // d0
"SET 2,C", // d1
"SET 2,D", // d2
"SET 2,E", // d3
"SET 2,H", // d4
"SET 2,L", // d5
"SET 2,(HL)", // d6
"SET 2,A", // d7
"SET 3,B", // d8
"SET 3,C", // d9
"SET 3,D", // da
"SET 3,E", // db
"SET 3,H", // dc
"SET 3,L", // dd
"SET 3,(HL)", // de
"SET 3,A", // df
"SET 4,B", // e0
"SET 4,C", // e1
"SET 4,D", // e2
"SET 4,E", // e3
"SET 4,H", // e4
"SET 4,L", // e5
"SET 4,(HL)", // e6
"SET 4,A", // e7
"SET 5,B", // e8
"SET 5,C", // e9
"SET 5,D", // ea
"SET 5,E", // eb
"SET 5,H", // ec
"SET 5,L", // ed
"SET 5,(HL)", // ee
"SET 5,A", // ef
"SET 6,B", // f0
"SET 6,C", // f1
"SET 6,D", // f2
"SET 6,E", // f3
"SET 6,H", // f4
"SET 6,L", // f5
"SET 6,(HL)", // f6
"SET 6,A", // f7
"SET 7,B", // f8
"SET 7,C", // f9
"SET 7,D", // fa
"SET 7,E", // fb
"SET 7,H", // fc
"SET 7,L", // fd
"SET 7,(HL)", // fe
"SET 7,A", // ff
};
public static string Disassemble(ushort addr, Func<ushort, byte> reader, out ushort size)
{
ushort origaddr = addr;
List<byte> bytes = new List<byte>();
bytes.Add(reader(addr++));
string result = table[bytes[0]];
if (bytes[0] == 0xcb)
{
bytes.Add(reader(addr++));
result = table[bytes[1] + 256];
}
if (result.Contains("d8"))
{
byte d = reader(addr++);
bytes.Add(d);
result = result.Replace("d8", string.Format("#{0:X2}h", d));
}
else if (result.Contains("d16"))
{
byte dlo = reader(addr++);
byte dhi = reader(addr++);
bytes.Add(dlo);
bytes.Add(dhi);
result = result.Replace("d16", string.Format("#{0:X2}{1:X2}h", dhi, dlo));
}
else if (result.Contains("a16"))
{
byte dlo = reader(addr++);
byte dhi = reader(addr++);
bytes.Add(dlo);
bytes.Add(dhi);
result = result.Replace("a16", string.Format("#{0:X2}{1:X2}h", dhi, dlo));
}
else if (result.Contains("a8"))
{
byte d = reader(addr++);
bytes.Add(d);
result = result.Replace("a8", string.Format("#FF{0:X2}h", d));
}
else if (result.Contains("r8"))
{
byte d = reader(addr++);
bytes.Add(d);
int offs = d;
if (offs >= 128)
offs -= 256;
result = result.Replace("r8", string.Format("{0:X4}h", (ushort)(addr + offs)));
}
StringBuilder ret = new StringBuilder();
ret.Append(string.Format("{0:X4}: ", origaddr));
foreach (var b in bytes)
ret.Append(string.Format("{0:X2} ", b));
while (ret.Length < 17)
ret.Append(' ');
ret.Append(result);
size = (ushort)(addr - origaddr);
return ret.ToString();
}
}
}

View File

@ -0,0 +1,666 @@
using BizHawk.Common.NumberExtensions;
using System;
namespace BizHawk.Emulation.Common.Components.MC6809
{
public partial class MC6809
{
public void Read_Func(ushort dest, ushort src)
{
if (CDLCallback != null)
{
if (src == PC) CDLCallback(Regs[src], eCDLogMemFlags.FetchOperand);
else CDLCallback(Regs[src], eCDLogMemFlags.Data);
}
Regs[dest] = ReadMemory(Regs[src]);
}
public void Read_Inc_Func(ushort dest, ushort src)
{
if (CDLCallback != null)
{
if (src == PC) CDLCallback(Regs[src], eCDLogMemFlags.FetchOperand);
else CDLCallback(Regs[src], eCDLogMemFlags.Data);
}
Regs[dest] = ReadMemory(Regs[src]);
Regs[src] = Regs[src]++;
}
public void Write_Func(ushort dest_l, ushort dest_h, ushort src)
{
ushort addr = (ushort)(Regs[dest_l] | (Regs[dest_h]) << 8);
if (CDLCallback != null) CDLCallback(addr, eCDLogMemFlags.Write | eCDLogMemFlags.Data);
WriteMemory(addr, (byte)Regs[src]);
}
public void NEG_8_Func(ushort src)
{
int Reg16_d = 0;
Reg16_d -= Regs[src];
FlagC = Regs[src] != 0x0;
FlagZ = (Reg16_d & 0xFF) == 0;
FlagV = Regs[src] == 0x80;
FlagN = (Reg16_d & 0xFF) > 127;
ushort ans = (ushort)(Reg16_d & 0xFF);
// redo for half carry flag
Reg16_d = 0;
Reg16_d -= (Regs[src] & 0xF);
FlagH = Reg16_d.Bit(4);
Regs[src] = ans;
}
// speical read for POP AF that always clears the lower 4 bits of F
public void Read_Func_F(ushort dest, ushort src_l, ushort src_h)
{
Regs[dest] = (ushort)(ReadMemory((ushort)(Regs[src_l] | (Regs[src_h]) << 8)) & 0xF0);
}
public void Write_Dec_Lo_Func(ushort dest, ushort src)
{
if (CDLCallback != null) CDLCallback(Regs[dest], eCDLogMemFlags.Write | eCDLogMemFlags.Data);
WriteMemory(Regs[dest], (byte)Regs[src]);
Regs[dest] -= 1;
}
public void Write_Hi_Func(ushort dest, ushort src)
{
if (CDLCallback != null) CDLCallback(Regs[dest], eCDLogMemFlags.Write | eCDLogMemFlags.Data);
WriteMemory(Regs[dest], (byte)(Regs[src] >> 8));
}
public void TR_Func(ushort dest, ushort src)
{
Regs[dest] = Regs[src];
}
public void TST_Func(ushort src)
{
FlagZ = Regs[src] == 0;
FlagV = false;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void CLR_Func(ushort src)
{
Regs[src] = 0;
FlagZ = true;
FlagV = false;
FlagC = false;
FlagN = false;
}
// source is considered a 16 bit signed value, used for long relative branch
// no flags used
public void ADD16BR_Func(ushort dest, ushort src)
{
Regs[dest] = (ushort)(Regs[dest] + (short)Regs[src]);
}
public void ADD8BR_Func(ushort dest, ushort src)
{
if (Regs[src] > 127) { Regs[src] |= 0xFF00; }
Regs[dest] = (ushort)(Regs[dest] + (short)Regs[src]);
}
public void ADD8_Func(ushort dest, ushort src)
{
int Reg16_d = Regs[dest];
Reg16_d += Regs[src];
FlagC = Reg16_d.Bit(8);
FlagZ = (Reg16_d & 0xFF) == 0;
ushort ans = (ushort)(Reg16_d & 0xFF);
// redo for half carry flag
Reg16_d = Regs[dest] & 0xF;
Reg16_d += (Regs[src] & 0xF);
FlagH = Reg16_d.Bit(4);
FlagN = false;
Regs[dest] = ans;
}
public void SUB8_Func(ushort dest, ushort src)
{
int Reg16_d = Regs[dest];
Reg16_d -= Regs[src];
FlagC = Reg16_d.Bit(8);
FlagZ = (Reg16_d & 0xFF) == 0;
ushort ans = (ushort)(Reg16_d & 0xFF);
// redo for half carry flag
Reg16_d = Regs[dest] & 0xF;
Reg16_d -= (Regs[src] & 0xF);
FlagH = Reg16_d.Bit(4);
FlagN = true;
Regs[dest] = ans;
}
public void BIT_Func(ushort bit, ushort src)
{
FlagZ = !Regs[src].Bit(bit);
FlagH = true;
FlagN = false;
}
public void SET_Func(ushort bit, ushort src)
{
Regs[src] |= (ushort)(1 << bit);
}
public void RES_Func(ushort bit, ushort src)
{
Regs[src] &= (ushort)(0xFF - (1 << bit));
}
public void ASGN_Func(ushort src, ushort val)
{
Regs[src] = val;
}
public void SWAP_Func(ushort src)
{
ushort temp = (ushort)((Regs[src] << 4) & 0xF0);
Regs[src] = (ushort)(temp | (Regs[src] >> 4));
FlagZ = Regs[src] == 0;
FlagH = false;
FlagN = false;
FlagC = false;
}
public void ASL_Func(ushort src)
{
FlagC = Regs[src].Bit(7);
FlagV = Regs[src].Bit(7) ^ Regs[src].Bit(6);
Regs[src] = (ushort)((Regs[src] << 1) & 0xFF);
FlagZ = Regs[src] == 0;
FlagH = false;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void ASR_Func(ushort src)
{
FlagC = Regs[src].Bit(0);
ushort temp = (ushort)(Regs[src] & 0x80); // MSB doesn't change in this operation
Regs[src] = (ushort)((Regs[src] >> 1) | temp);
FlagZ = Regs[src] == 0;
FlagH = false;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void LSR_Func(ushort src)
{
FlagC = Regs[src].Bit(0);
Regs[src] = (ushort)(Regs[src] >> 1);
FlagZ = Regs[src] == 0;
FlagN = false;
}
public void COM_Func(ushort src)
{
Regs[src] = (ushort)((~Regs[src]) & 0xFF);
FlagC = true;
FlagZ = Regs[src] == 0;
FlagV = false;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void SEX_Func(ushort src)
{
if (Regs[B] > 127)
{
Regs[A] = 0xFF;
}
else
{
Regs[A] = 0;
}
FlagZ = D == 0;
FlagN = Regs[B] > 127;
}
public void CCF_Func(ushort src)
{
FlagC = !FlagC;
FlagH = false;
FlagN = false;
}
public void SCF_Func(ushort src)
{
FlagC = true;
FlagH = false;
FlagN = false;
}
public void AND8_Func(ushort dest, ushort src)
{
Regs[dest] = (ushort)(Regs[dest] & Regs[src]);
FlagZ = Regs[dest] == 0;
FlagV = false;
FlagN = Regs[B] > 127;
}
public void OR8_Func(ushort dest, ushort src)
{
Regs[dest] = (ushort)(Regs[dest] | Regs[src]);
FlagZ = Regs[dest] == 0;
FlagV = false;
FlagN = Regs[B] > 127;
}
public void XOR8_Func(ushort dest, ushort src)
{
Regs[dest] = (ushort)(Regs[dest] ^ Regs[src]);
FlagZ = Regs[dest] == 0;
FlagC = false;
FlagH = false;
FlagN = false;
}
public void CP8_Func(ushort dest, ushort src)
{
int Reg16_d = Regs[dest];
Reg16_d -= Regs[src];
FlagC = Reg16_d.Bit(8);
FlagZ = (Reg16_d & 0xFF) == 0;
// redo for half carry flag
Reg16_d = Regs[dest] & 0xF;
Reg16_d -= (Regs[src] & 0xF);
FlagH = Reg16_d.Bit(4);
FlagN = true;
}
public void RRC_Func(ushort src)
{
FlagC = Regs[src].Bit(0);
Regs[src] = (ushort)((FlagC ? 0x80 : 0) | (Regs[src] >> 1));
FlagZ = (Regs[src] == 0);
FlagH = false;
FlagN = false;
}
public void ROR_Func(ushort src)
{
ushort c = (ushort)(FlagC ? 0x80 : 0);
FlagC = Regs[src].Bit(0);
Regs[src] = (ushort)(c | (Regs[src] >> 1));
FlagZ = Regs[src] == 0;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void RLC_Func(ushort src)
{
bool imm = false;
if (imm) { src = A; }
ushort c = (ushort)(Regs[src].Bit(7) ? 1 : 0);
FlagC = Regs[src].Bit(7);
Regs[src] = (ushort)(((Regs[src] << 1) & 0xFF) | c);
FlagZ = imm ? false : (Regs[src] == 0);
FlagH = false;
FlagN = false;
}
public void ROL_Func(ushort src)
{
ushort c = (ushort)(FlagC ? 1 : 0);
FlagC = Regs[src].Bit(7);
FlagV = Regs[src].Bit(7) ^ Regs[src].Bit(6);
Regs[src] = (ushort)(((Regs[src] << 1) & 0xFF) | c);
FlagZ = Regs[src] == 0;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void INC8_Func(ushort src)
{
FlagV = Regs[src] == 0x7F;
Regs[src] = (ushort)((Regs[src] + 1) & 0xFF);
FlagZ = Regs[src] == 0;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void DEC8_Func(ushort src)
{
FlagV = Regs[src] == 0x80;
Regs[src] = (ushort)((Regs[src] - 1) & 0xFF);
FlagZ = Regs[src] == 0;
FlagN = (Regs[src] & 0xFF) > 127;
}
public void INC16_Func(ushort src_l, ushort src_h)
{
int Reg16_d = Regs[src_l] | (Regs[src_h] << 8);
Reg16_d += 1;
Regs[src_l] = (ushort)(Reg16_d & 0xFF);
Regs[src_h] = (ushort)((Reg16_d & 0xFF00) >> 8);
}
public void DEC16_Func(ushort src)
{
Regs[src] -= 1;
}
public void ADC8_Func(ushort dest, ushort src)
{
int Reg16_d = Regs[dest];
int c = FlagC ? 1 : 0;
Reg16_d += (Regs[src] + c);
FlagC = Reg16_d.Bit(8);
FlagZ = (Reg16_d & 0xFF) == 0;
ushort ans = (ushort)(Reg16_d & 0xFF);
// redo for half carry flag
Reg16_d = Regs[dest] & 0xF;
Reg16_d += ((Regs[src] & 0xF) + c);
FlagH = Reg16_d.Bit(4);
FlagN = false;
Regs[dest] = ans;
}
public void SBC8_Func(ushort dest, ushort src)
{
int Reg16_d = Regs[dest];
int c = FlagC ? 1 : 0;
Reg16_d -= (Regs[src] + c);
FlagC = Reg16_d.Bit(8);
FlagZ = (Reg16_d & 0xFF) == 0;
ushort ans = (ushort)(Reg16_d & 0xFF);
// redo for half carry flag
Reg16_d = Regs[dest] & 0xF;
Reg16_d -= ((Regs[src] & 0xF) + c);
FlagH = Reg16_d.Bit(4);
FlagN = true;
Regs[dest] = ans;
}
// DA code courtesy of AWJ: http://forums.nesdev.com/viewtopic.php?f=20&t=15944
public void DA_Func(ushort src)
{
byte a = (byte)Regs[src];
if (!FlagN)
{ // after an addition, adjust if (half-)carry occurred or if result is out of bounds
if (FlagC || a > 0x99) { a += 0x60; FlagC = true; }
if (FlagH || (a & 0x0f) > 0x09) { a += 0x6; }
}
else
{ // after a subtraction, only adjust if (half-)carry occurred
if (FlagC) { a -= 0x60; }
if (FlagH) { a -= 0x6; }
}
a &= 0xFF;
Regs[src] = a;
FlagZ = a == 0;
FlagH = false;
}
// used for signed operations
public void ADDS_Func(ushort dest_l, ushort dest_h, ushort src_l, ushort src_h)
{
int Reg16_d = Regs[dest_l];
int Reg16_s = Regs[src_l];
Reg16_d += Reg16_s;
ushort temp = 0;
// since this is signed addition, calculate the high byte carry appropriately
if (Reg16_s.Bit(7))
{
if (((Reg16_d & 0xFF) >= Regs[dest_l]))
{
temp = 0xFF;
}
else
{
temp = 0;
}
}
else
{
temp = (ushort)(Reg16_d.Bit(8) ? 1 : 0);
}
ushort ans_l = (ushort)(Reg16_d & 0xFF);
// JR operations do not effect flags
if (dest_l != PC)
{
FlagC = Reg16_d.Bit(8);
// redo for half carry flag
Reg16_d = Regs[dest_l] & 0xF;
Reg16_d += Regs[src_l] & 0xF;
FlagH = Reg16_d.Bit(4);
FlagN = false;
FlagZ = false;
}
Regs[dest_l] = ans_l;
Regs[dest_h] += temp;
Regs[dest_h] &= 0xFF;
}
public void EXG_Func(ushort sel)
{
ushort src = 0;
ushort dest = 0;
ushort temp = 0;
if ((Regs[sel] & 0x8) == 0)
{
switch (Regs[sel] & 0xF)
{
case 0: src = Dr; break;
case 1: src = X; break;
case 2: src = Y; break;
case 3: src = US; break;
case 4: src = SP; break;
case 5: src = PC; break;
case 6: src = 0xFF; break;
case 7: src = 0xFF; break;
}
switch ((Regs[sel] >> 4) & 0xF)
{
case 0: dest = Dr; break;
case 1: dest = X; break;
case 2: dest = Y; break;
case 3: dest = US; break;
case 4: dest = SP; break;
case 5: dest = PC; break;
case 6: dest = 0xFF; break;
case 7: dest = 0xFF; break;
default: dest = 0xFF; break;
}
}
else
{
switch (Regs[sel] & 0xF)
{
case 8: src = A; break;
case 9: src = B; break;
case 10: src = CC; break;
case 11: src = DP; break;
case 12: src = 0xFF; break;
case 13: src = 0xFF; break;
case 14: src = 0xFF; break;
case 15: src = 0xFF; break;
}
switch ((Regs[sel] >> 4) & 0xF)
{
case 8: dest = A; break;
case 9: dest = B; break;
case 10: dest = CC; break;
case 11: dest = DP; break;
case 12: dest = 0xFF; break;
case 13: dest = 0xFF; break;
case 14: dest = 0xFF; break;
case 15: dest = 0xFF; break;
default: dest = 0xFF; break;
}
}
if ((src != 0xFF) && (dest != 0xFF))
{
if (src == Dr)
{
temp = D;
D = Regs[dest];
Regs[dest] = temp;
}
else if (dest == Dr)
{
temp = D;
D = Regs[src];
Regs[src] = temp;
}
else
{
temp = Regs[src];
Regs[src] = Regs[dest];
Regs[dest] = temp;
}
}
}
public void TFR_Func(ushort sel)
{
ushort src = 0;
ushort dest = 0;
if ((Regs[sel] & 0x8) == 0)
{
switch (Regs[sel] & 0xF)
{
case 0: dest = Dr; break;
case 1: dest = X; break;
case 2: dest = Y; break;
case 3: dest = US; break;
case 4: dest = SP; break;
case 5: dest = PC; break;
case 6: dest = 0xFF; break;
case 7: dest = 0xFF; break;
}
switch ((Regs[sel] >> 4) & 0xF)
{
case 0: src = Dr; break;
case 1: src = X; break;
case 2: src = Y; break;
case 3: src = US; break;
case 4: src = SP; break;
case 5: src = PC; break;
case 6: src = 0xFF; break;
case 7: src = 0xFF; break;
default: src = 0xFF; break;
}
}
else
{
switch (Regs[sel] & 0xF)
{
case 8: dest = A; break;
case 9: dest = B; break;
case 10: dest = CC; break;
case 11: dest = DP; break;
case 12: dest = 0xFF; break;
case 13: dest = 0xFF; break;
case 14: dest = 0xFF; break;
case 15: dest = 0xFF; break;
}
switch ((Regs[sel] >> 4) & 0xF)
{
case 8: src = A; break;
case 9: src = B; break;
case 10: src = CC; break;
case 11: src = DP; break;
case 12: src = 0xFF; break;
case 13: src = 0xFF; break;
case 14: src = 0xFF; break;
case 15: src = 0xFF; break;
default: src = 0xFF; break;
}
}
if ((src != 0xFF) && (dest != 0xFF))
{
if (src == Dr)
{
Regs[dest] = D;
}
else if (dest == Dr)
{
D = Regs[src];
}
else
{
Regs[dest] = Regs[dest];
}
}
}
}
}

View File

@ -0,0 +1 @@
TODO: STOP for second byte nonzero

View File

@ -0,0 +1,87 @@
using System.Runtime.InteropServices;
using System;
namespace BizHawk.Emulation.Common.Components.MC6809
{
public partial class MC6809
{
// registers
public ushort[] Regs = new ushort[12];
public const ushort PC = 0;
public const ushort US = 1;
public const ushort SP = 2;
public const ushort X = 3;
public const ushort Y = 4;
public const ushort A = 5;
public const ushort B = 6;
public const ushort ADDR = 7; // internal
public const ushort ALU = 8; // internal
public const ushort ALU2 = 9; // internal
public const ushort DP = 10;
public const ushort CC = 11;
public const ushort Dr = 12;
public ushort D
{
get { return (ushort)(Regs[B] | (Regs[A] << 8)); }
set { Regs[B] = (ushort)(value & 0xFF); Regs[A] = (ushort)((value >> 8) & 0xFF); }
}
public bool FlagC
{
get { return (Regs[CC] & 0x01) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x01) | (value ? 0x01 : 0x00)); }
}
public bool FlagV
{
get { return (Regs[CC] & 0x02) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x02) | (value ? 0x02 : 0x00)); }
}
public bool FlagZ
{
get { return (Regs[CC] & 0x04) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x04) | (value ? 0x04 : 0x00)); }
}
public bool FlagN
{
get { return (Regs[CC] & 0x08) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x08) | (value ? 0x08 : 0x00)); }
}
public bool FlagI
{
get { return (Regs[CC] & 0x10) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x10) | (value ? 0x10 : 0x00)); }
}
public bool FlagH
{
get { return (Regs[CC] & 0x20) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x20) | (value ? 0x20 : 0x00)); }
}
public bool FlagF
{
get { return (Regs[CC] & 0x40) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x40) | (value ? 0x40 : 0x00)); }
}
public bool FlagE
{
get { return (Regs[CC] & 0x80) != 0; }
set { Regs[CC] = (byte)((Regs[CC] & ~0x80) | (value ? 0x80 : 0x00)); }
}
private void ResetRegisters()
{
for (int i = 0; i < 12; i++)
{
Regs[i] = 0;
}
}
}
}

View File

@ -0,0 +1,268 @@
using System;
namespace BizHawk.Emulation.Common.Components.MC6809
{
public partial class MC6809
{
// this contains the vectors of instrcution operations
// NOTE: This list is NOT confirmed accurate for each individual cycle
private void NOP_()
{
PopulateCURINSTR(IDLE);
}
private void ILLEGAL()
{
}
private void SYNC_()
{
}
private void DIRECT_MEM(ushort oper)
{
PopulateCURINSTR(RD_INC, ALU, PC,
SET_ADDR, ADDR, DP, ALU,
RD, ADDR,
oper, ALU,
WR, ADDR);
}
private void REG_OP_IMD_CC(ushort oper)
{
Regs[ALU2] = Regs[CC];
PopulateCURINSTR(RD_INC_OP, ALU, PC, oper, ALU2, ALU,
TR, CC, ALU2);
}
private void EXG_()
{
PopulateCURINSTR(RD_INC, ALU,
EXG, ALU,
IDLE,
IDLE,
IDLE,
IDLE,
IDLE);
}
private void TFR_()
{
PopulateCURINSTR(RD_INC, ALU,
TFR, ALU,
IDLE,
IDLE,
IDLE);
}
private void REG_OP(ushort oper, ushort src)
{
PopulateCURINSTR(oper, src);
}
private void JMP_DIR_()
{
PopulateCURINSTR(RD_INC, ALU, PC,
SET_ADDR, PC, DP, ALU);
}
private void LBR_(bool cond)
{
if (cond)
{
PopulateCURINSTR(RD_INC, ALU, PC,
RD_INC, ALU2, PC,
SET_ADDR, ADDR, ALU, ALU2,
ADD16BR, PC, ADDR);
}
else
{
PopulateCURINSTR(RD_INC, ALU, PC,
RD_INC, ALU2, PC,
SET_ADDR, PC, ALU, ALU2);
}
}
private void BR_(bool cond)
{
if (cond)
{
PopulateCURINSTR(RD_INC, ALU, PC,
ADD8BR, PC, ALU);
}
else
{
PopulateCURINSTR(RD_INC, ALU, PC,
IDLE);
}
}
private void LBSR_()
{
PopulateCURINSTR(RD_INC, ALU, PC,
RD_INC, ALU2, PC,
SET_ADDR, ADDR, ALU, ALU2,
ADD16BR, PC, ADDR,
TR, ADDR, PC,
DEC16, SP,
WR_DEC_LO, SP, ADDR,
WR_HI, SP, ADDR);
}
private void PAGE_2()
{
PopulateCURINSTR(OP_PG_2);
}
private void PAGE_3()
{
PopulateCURINSTR(OP_PG_3);
}
private void INC_16(ushort src_l, ushort src_h)
{
cur_instr = new ushort[]
{IDLE,
IDLE,
IDLE,
INC16, src_l, src_h,
IDLE,
IDLE,
HALT_CHK,
OP };
}
private void DEC_16(ushort src_l, ushort src_h)
{
cur_instr = new ushort[]
{IDLE,
IDLE,
IDLE,
DEC16, src_l, src_h,
IDLE,
IDLE,
HALT_CHK,
OP };
}
private void ADD_16(ushort dest_l, ushort dest_h, ushort src_l, ushort src_h)
{
}
private void STOP_()
{
}
private void HALT_()
{
}
private void JR_COND(bool cond)
{
}
private void JP_COND(bool cond)
{
}
private void RET_()
{
}
private void RETI_()
{
}
private void RET_COND(bool cond)
{
}
private void CALL_COND(bool cond)
{
}
private void INT_OP(ushort operation, ushort src)
{
}
private void BIT_OP(ushort operation, ushort bit, ushort src)
{
}
private void PUSH_(ushort src_l, ushort src_h)
{
}
// NOTE: this is the only instruction that can write to F
// but the bottom 4 bits of F are always 0, so instead of putting a special check for every read op
// let's just put a special operation here specifically for F
private void POP_(ushort src_l, ushort src_h)
{
}
private void RST_(ushort n)
{
}
private void PREFIX_()
{
}
private void DI_()
{
}
private void EI_()
{
}
private void JP_HL()
{
}
private void ADD_SP()
{
}
private void LD_SP_HL()
{
}
private void LD_HL_SPn()
{
}
private void JAM_()
{
}
}
}

View File

@ -0,0 +1,379 @@
using System;
using BizHawk.Common;
using BizHawk.Common.BufferExtensions;
using BizHawk.Emulation.Common;
using BizHawk.Common.NumberExtensions;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
// An AY_3_8912
public class Audio : ISoundProvider
{
public VectrexHawk Core { get; set; }
private BlipBuffer _blip_L = new BlipBuffer(15000);
private BlipBuffer _blip_R = new BlipBuffer(15000);
public uint master_audio_clock;
private short current_sample;
public byte[] Register = new byte[16];
public byte port_sel;
public short Sample()
{
return current_sample;
}
private static readonly int[] VolumeTable =
{
0x0000, 0x0055, 0x0079, 0x00AB, 0x00F1, 0x0155, 0x01E3, 0x02AA,
0x03C5, 0x0555, 0x078B, 0x0AAB, 0x0F16, 0x1555, 0x1E2B, 0x2AAA
};
private int psg_clock;
private int sq_per_A, sq_per_B, sq_per_C;
private int clock_A, clock_B, clock_C;
private int vol_A, vol_B, vol_C;
private bool A_on, B_on, C_on;
private bool A_up, B_up, C_up;
private bool A_noise, B_noise, C_noise;
private int env_per;
private int env_clock;
private int env_shape;
private int env_E;
private int E_up_down;
private int env_vol_A, env_vol_B, env_vol_C;
private int noise_clock;
private int noise_per;
private int noise = 0x1;
public void SyncState(Serializer ser)
{
ser.BeginSection("PSG");
ser.Sync("Register", ref Register, false);
ser.Sync("psg_clock", ref psg_clock);
ser.Sync("clock_A", ref clock_A);
ser.Sync("clock_B", ref clock_B);
ser.Sync("clock_C", ref clock_C);
ser.Sync("noise_clock", ref noise_clock);
ser.Sync("env_clock", ref env_clock);
ser.Sync("A_up", ref A_up);
ser.Sync("B_up", ref B_up);
ser.Sync("C_up", ref C_up);
ser.Sync("noise", ref noise);
ser.Sync("env_E", ref env_E);
ser.Sync("E_up_down", ref E_up_down);
ser.Sync("port_sel", ref port_sel);
sync_psg_state();
ser.EndSection();
}
public byte ReadReg(int addr)
{
return Register[port_sel];
}
private void sync_psg_state()
{
sq_per_A = (Register[0] & 0xFF) | (((Register[1] & 0xF) << 8));
if (sq_per_A == 0)
{
sq_per_A = 0x1000;
}
sq_per_B = (Register[2] & 0xFF) | (((Register[3] & 0xF) << 8));
if (sq_per_B == 0)
{
sq_per_B = 0x1000;
}
sq_per_C = (Register[4] & 0xFF) | (((Register[5] & 0xF) << 8));
if (sq_per_C == 0)
{
sq_per_C = 0x1000;
}
env_per = (Register[11] & 0xFF) | (((Register[12] & 0xFF) << 8));
if (env_per == 0)
{
env_per = 0x10000;
}
env_per *= 2;
A_on = Register[7].Bit(0);
B_on = Register[7].Bit(1);
C_on = Register[7].Bit(2);
A_noise = Register[7].Bit(3);
B_noise = Register[7].Bit(4);
C_noise = Register[7].Bit(5);
noise_per = Register[6] & 0x1F;
if (noise_per == 0)
{
noise_per = 0x20;
}
var shape_select = Register[13] & 0xF;
if (shape_select < 4)
env_shape = 0;
else if (shape_select < 8)
env_shape = 1;
else
env_shape = 2 + (shape_select - 8);
vol_A = Register[8] & 0xF;
env_vol_A = (Register[8] >> 4) & 0x1;
vol_B = Register[9] & 0xF;
env_vol_B = (Register[9] >> 4) & 0x1;
vol_C = Register[10] & 0xF;
env_vol_C = (Register[10] >> 4) & 0x1;
}
public void WriteReg(int addr, byte value)
{
value &= 0xFF;
Register[port_sel] = value;
sync_psg_state();
if (port_sel == 13)
{
env_clock = env_per;
if (env_shape == 0 || env_shape == 2 || env_shape == 3 || env_shape == 4 || env_shape == 5)
{
env_E = 15;
E_up_down = -1;
}
else
{
env_E = 0;
E_up_down = 1;
}
}
}
public void tick()
{
// there are 8 cpu cycles for every psg cycle
bool sound_out_A;
bool sound_out_B;
bool sound_out_C;
psg_clock++;
if (psg_clock == 8)
{
psg_clock = 0;
clock_A--;
clock_B--;
clock_C--;
noise_clock--;
env_clock--;
// clock noise
if (noise_clock == 0)
{
noise = (noise >> 1) ^ (noise.Bit(0) ? 0x10004 : 0);
noise_clock = noise_per;
}
if (env_clock == 0)
{
env_clock = env_per;
env_E += E_up_down;
if (env_E == 16 || env_E == -1)
{
// we just completed a period of the envelope, determine what to do now based on the envelope shape
if (env_shape == 0 || env_shape == 1 || env_shape == 3 || env_shape == 9)
{
E_up_down = 0;
env_E = 0;
}
else if (env_shape == 5 || env_shape == 7)
{
E_up_down = 0;
env_E = 15;
}
else if (env_shape == 4 || env_shape == 8)
{
if (env_E == 16)
{
env_E = 15;
E_up_down = -1;
}
else
{
env_E = 0;
E_up_down = 1;
}
}
else if (env_shape == 2)
{
env_E = 15;
}
else
{
env_E = 0;
}
}
}
if (clock_A == 0)
{
A_up = !A_up;
clock_A = sq_per_A;
}
if (clock_B == 0)
{
B_up = !B_up;
clock_B = sq_per_B;
}
if (clock_C == 0)
{
C_up = !C_up;
clock_C = sq_per_C;
}
sound_out_A = (noise.Bit(0) | A_noise) & (A_on | A_up);
sound_out_B = (noise.Bit(0) | B_noise) & (B_on | B_up);
sound_out_C = (noise.Bit(0) | C_noise) & (C_on | C_up);
// now calculate the volume of each channel and add them together
int v;
if (env_vol_A == 0)
{
v = (short)(sound_out_A ? VolumeTable[vol_A] : 0);
}
else
{
v = (short)(sound_out_A ? VolumeTable[vol_A] : 0);
}
if (env_vol_B == 0)
{
v += (short)(sound_out_B ? VolumeTable[vol_B] : 0);
}
else
{
v += (short)(sound_out_B ? VolumeTable[env_E] : 0);
}
if (env_vol_C == 0)
{
v += (short)(sound_out_C ? VolumeTable[vol_C] : 0);
}
else
{
v += (short)(sound_out_C ? VolumeTable[env_E] : 0);
}
current_sample = (short)v;
}
}
public void Reset()
{
clock_A = clock_B = clock_C = 0x1000;
noise_clock = 0x20;
port_sel = 0;
for (int i = 0; i < 16; i++)
{
Register[i] = 0x0000;
}
sync_psg_state();
_blip_L.SetRates(4194304, 44100);
_blip_R.SetRates(4194304, 44100);
}
#region audio
public bool CanProvideAsync => false;
public void SetSyncMode(SyncSoundMode mode)
{
if (mode != SyncSoundMode.Sync)
{
throw new InvalidOperationException("Only Sync mode is supported_");
}
}
public SyncSoundMode SyncMode => SyncSoundMode.Sync;
public void GetSamplesSync(out short[] samples, out int nsamp)
{
_blip_L.EndFrame(master_audio_clock);
_blip_R.EndFrame(master_audio_clock);
nsamp = _blip_L.SamplesAvailable();
// only for running without errors, remove this line once you get audio
nsamp = 1;
samples = new short[nsamp * 2];
// uncomment these once you have audio to play
//_blip_L.ReadSamplesLeft(samples, nsamp);
//_blip_R.ReadSamplesRight(samples, nsamp);
master_audio_clock = 0;
}
public void GetSamplesAsync(short[] samples)
{
throw new NotSupportedException("Async is not available");
}
public void DiscardSamples()
{
_blip_L.Clear();
_blip_R.Clear();
master_audio_clock = 0;
}
private void GetSamples(short[] samples)
{
}
public void DisposeSound()
{
_blip_L.Clear();
_blip_R.Clear();
_blip_L.Dispose();
_blip_R.Dispose();
_blip_L = null;
_blip_R = null;
}
#endregion
}
}

View File

@ -0,0 +1,39 @@
using System;
using BizHawk.Emulation.Common;
using BizHawk.Common.NumberExtensions;
using BizHawk.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk
{
// Interact with Hardware registers through these read and write methods
// Typically you will only be able to access different parts of the hardware through their available registers
// Sending the memory map of these regiesters through here helps keep things organized even though it results in an extra function call
public byte Read_Registers(int addr)
{
byte ret = 0;
switch (addr)
{
default:
break;
}
return ret;
}
public void Write_Registers(int addr, byte value)
{
switch (addr)
{
default:
break;
}
}
public void Register_Reset()
{
// Registers will start with a default value at power on, use this funciton to set them
}
}
}

View File

@ -0,0 +1,54 @@
using BizHawk.Common;
using System;
using BizHawk.Emulation.Common.Components.MC6809;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public class MapperBase
{
public VectrexHawk Core { get; set; }
public virtual byte ReadMemory(ushort addr)
{
return 0;
}
public virtual byte PeekMemory(ushort addr)
{
return 0;
}
public virtual void WriteMemory(ushort addr, byte value)
{
}
public virtual void PokeMemory(ushort addr, byte value)
{
}
public virtual void SyncState(Serializer ser)
{
}
public virtual void Dispose()
{
}
public virtual void Initialize()
{
}
public virtual void Mapper_Tick()
{
}
public virtual void RTC_Get(byte value, int index)
{
}
public virtual void MapCDL(ushort addr, MC6809.eCDLogMemFlags flags)
{
}
}
}

View File

@ -0,0 +1,38 @@
using BizHawk.Common;
using BizHawk.Common.NumberExtensions;
using System;
using BizHawk.Emulation.Common.Components.MC6809;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
// Default mapper with no bank switching
// make sure peekmemory and poke memory don't effect the rest of the system!
public class MapperDefault : MapperBase
{
public override void Initialize()
{
// nothing to initialize
}
public override byte ReadMemory(ushort addr)
{
return 0xFF;
}
public override byte PeekMemory(ushort addr)
{
return ReadMemory(addr);
}
public override void WriteMemory(ushort addr, byte value)
{
}
public override void PokeMemory(ushort addr, byte value)
{
WriteMemory(addr, value);
}
}
}

View File

@ -0,0 +1,3 @@
TODO:
Official Mappers
Unofficial Mappers

View File

@ -0,0 +1,44 @@
using System;
using BizHawk.Common.BufferExtensions;
using BizHawk.Emulation.Common;
/*
Fill in the memory map in this space for easy reference
ex:
0x0000 - 0x0FFF RAM
etc
*/
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk
{
// typically here you have a big if / else if block to decide what to do with memory reads and writes
// send hardware register accesses to the Read_register / Write_register methods
// make sure you are returning the correct value (typically 0 or 0xFF) for unmapped memory
// PeekMemory is called by the hex eidtor and other tools to read what's on the bus
// make sure it doesn't modify anything in the core or you will be in debugging hell.
public byte ReadMemory(ushort addr)
{
// memory callbacks are used for LUA and such
MemoryCallbacks.CallReads(addr, "System Bus");
return 0;
}
public void WriteMemory(ushort addr, byte value)
{
MemoryCallbacks.CallWrites(addr, "System Bus");
}
public byte PeekMemory(ushort addr)
{
return 0;
}
}
}

View File

@ -0,0 +1,53 @@
using System;
using BizHawk.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
// Here is where you will write the renderer for the core.
// You will probably spend just about all of your time writing this part.
// Plan ahead on what types of memory structures you want, and understand how the physical display unit sees data
// if you get stuck, probably GBHawk has the cleanest implementation to use for reference
public class PPU
{
public VectrexHawk Core { get; set; }
public byte ReadReg(int addr)
{
return 0;
}
public void WriteReg(int addr, byte value)
{
}
// you should be able to run the PPU one step at a time through this method.
public void tick()
{
}
// if some values aren't latched immediately, you might need this function to delay their latching
public virtual void latch_delay()
{
}
public void render(int render_cycle)
{
}
// Reset all values here, should be called along with other reset methods
public void Reset()
{
}
public void SyncState(Serializer ser)
{
}
}
}

View File

@ -0,0 +1 @@
TODO:

View File

@ -0,0 +1,43 @@
using System;
using BizHawk.Emulation.Common;
using BizHawk.Common.NumberExtensions;
using BizHawk.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
// your core may have several integral peripherals beyond the usual graphics / sound / controller
// here is one such example
// Treat it the same way as any other component. you should be able to run it one tick at a time in sync with the
// other parts of the core
public class SerialPort
{
public VectrexHawk Core { get; set; }
public byte ReadReg(int addr)
{
return 0xFF;
}
public void WriteReg(int addr, byte value)
{
}
public void serial_transfer_tick()
{
}
public void Reset()
{
}
public void SyncState(Serializer ser)
{
}
}
}

View File

@ -0,0 +1,27 @@
using BizHawk.Emulation.Cores.Components.M6502;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk
{
public struct CpuLink : IMOS6502XLink
{
private readonly VectrexHawk _Vectrex;
public CpuLink(VectrexHawk Vectrex)
{
_Vectrex = Vectrex;
}
public byte DummyReadMemory(ushort address) => _Vectrex.ReadMemory(address);
public void OnExecFetch(ushort address) => _Vectrex.ExecFetch(address);
public byte PeekMemory(ushort address) => _Vectrex.CDL == null ? _Vectrex.PeekMemory(address) : _Vectrex.FetchMemory_CDL(address);
public byte ReadMemory(ushort address) => _Vectrex.CDL == null ? _Vectrex.ReadMemory(address) : _Vectrex.ReadMemory_CDL(address);
public void WriteMemory(ushort address, byte value) => _Vectrex.WriteMemory(address, value);
}
}
}

View File

@ -0,0 +1,104 @@
using System;
using System.IO;
using System.Collections.Generic;
using BizHawk.Emulation.Common;
using BizHawk.Emulation.Cores.Components.M6502;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public sealed partial class VectrexHawk : ICodeDataLogger
{
public void SetCDL(ICodeDataLog cdl)
{
CDL = cdl;
}
public void NewCDL(ICodeDataLog cdl)
{
cdl["RAM"] = new byte[MemoryDomains["RAM"].Size];
if (MemoryDomains.Has("Save RAM"))
{
cdl["Save RAM"] = new byte[MemoryDomains["Save RAM"].Size];
}
if (MemoryDomains.Has("Battery RAM"))
{
cdl["Battery RAM"] = new byte[MemoryDomains["Battery RAM"].Size];
}
if (MemoryDomains.Has("Battery RAM"))
{
cdl["Battery RAM"] = new byte[MemoryDomains["Battery RAM"].Size];
}
cdl.SubType = "VIC20";
cdl.SubVer = 0;
}
[FeatureNotImplemented]
public void DisassembleCDL(Stream s, ICodeDataLog cdl)
{
}
private enum CDLog_AddrType
{
None,
ROM,
MainRAM,
SaveRAM,
}
[Flags]
private enum CDLog_Flags
{
ExecFirst = 0x01,
ExecOperand = 0x02,
Data = 0x04
};
private struct CDLog_MapResults
{
public CDLog_AddrType Type;
public int Address;
}
private delegate CDLog_MapResults MapMemoryDelegate(ushort addr, bool write);
private MapMemoryDelegate MapMemory;
private ICodeDataLog CDL;
private void RunCDL(ushort address, CDLog_Flags flags)
{
if (MapMemory != null)
{
CDLog_MapResults results = MapMemory(address, false);
switch (results.Type)
{
case CDLog_AddrType.None: break;
case CDLog_AddrType.MainRAM: CDL["Main RAM"][results.Address] |= (byte)flags; break;
case CDLog_AddrType.SaveRAM: CDL["Save RAM"][results.Address] |= (byte)flags; break;
}
}
}
/// <summary>
/// A wrapper for FetchMemory which inserts CDL logic
/// </summary>
private byte FetchMemory_CDL(ushort address)
{
RunCDL(address, CDLog_Flags.ExecFirst);
return PeekMemory(address);
}
/// <summary>
/// A wrapper for ReadMemory which inserts CDL logic
/// </summary>
private byte ReadMemory_CDL(ushort address)
{
RunCDL(address, CDLog_Flags.Data);
return ReadMemory(address);
}
}
}

View File

@ -0,0 +1,77 @@
using System;
using System.Collections.Generic;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : IDebuggable
{
public IDictionary<string, RegisterValue> GetCpuFlagsAndRegisters()
{
return new Dictionary<string, RegisterValue>
{
/*
["A"] = cpu.A,
["X"] = cpu.X,
["Y"] = cpu.Y,
["S"] = cpu.S,
["PC"] = cpu.PC,
["Flag C"] = cpu.FlagC,
["Flag Z"] = cpu.FlagZ,
["Flag I"] = cpu.FlagI,
["Flag D"] = cpu.FlagD,
["Flag B"] = cpu.FlagB,
["Flag V"] = cpu.FlagV,
["Flag N"] = cpu.FlagN,
["Flag T"] = cpu.FlagT
*/
};
}
public void SetCpuRegister(string register, int value)
{
switch (register)
{
default:
throw new InvalidOperationException();
case "A":
//cpu.A = (byte)value;
break;
case "X":
//cpu.X = (byte)value;
break;
case "Y":
//cpu.Y = (byte)value;
break;
case "S":
//cpu.S = (byte)value;
break;
case "PC":
//cpu.PC = (ushort)value;
break;
case "Flag I":
//cpu.FlagI = value > 0;
break;
}
}
public IMemoryCallbackSystem MemoryCallbacks { get; } = new MemoryCallbackSystem(new[] { "System Bus" });
public bool CanStep(StepType type)
{
return false;
}
[FeatureNotImplemented]
public void Step(StepType type)
{
throw new NotImplementedException();
}
public long TotalExecutedCycles
{
get { return (long)cpu.TotalExecutedCycles; }
}
}
}

View File

@ -0,0 +1,96 @@
using BizHawk.Common.NumberExtensions;
using BizHawk.Emulation.Common;
using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : IEmulator, IVideoProvider
{
public IEmulatorServiceProvider ServiceProvider { get; }
public ControllerDefinition ControllerDefinition => _controllerDeck.Definition;
public bool FrameAdvance(IController controller, bool render, bool rendersound)
{
if (_tracer.Enabled)
{
cpu.TraceCallback = s => _tracer.Put(s);
}
else
{
cpu.TraceCallback = null;
}
_frame++;
if (controller.IsPressed("Power"))
{
HardReset();
}
_islag = true;
do_frame();
if (_islag)
{
_lagcount++;
}
return true;
}
public void do_frame()
{
}
public int Frame => _frame;
public string SystemId => "VIC20";
public bool DeterministicEmulation { get; set; }
public void ResetCounters()
{
_frame = 0;
_lagcount = 0;
_islag = false;
}
public CoreComm CoreComm { get; }
public void Dispose()
{
audio.DisposeSound();
}
#region Video provider
public int _frameHz = 60;
public int[] _vidbuffer;
public int[] GetVideoBuffer()
{
return _vidbuffer;
}
public int VirtualWidth => 160;
public int VirtualHeight => 144;
public int BufferWidth => 160;
public int BufferHeight => 144;
public int BackgroundColor => unchecked((int)0xFF000000);
public int VsyncNumerator => _frameHz;
public int VsyncDenominator => 1;
public static readonly uint[] color_palette_BW = { 0xFFFFFFFF , 0xFFAAAAAA, 0xFF555555, 0xFF000000 };
public static readonly uint[] color_palette_Gr = { 0xFFA4C505, 0xFF88A905, 0xFF1D551D, 0xFF052505 };
public uint[] color_palette = new uint[4];
#endregion
}
}

View File

@ -0,0 +1,24 @@
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : IInputPollable
{
public int LagCount
{
get { return _lagcount; }
set { _lagcount = value; }
}
public bool IsLagFrame
{
get { return _islag; }
set { _islag = value; }
}
public IInputCallbackSystem InputCallbacks { get; } = new InputCallbackSystem();
public bool _islag = true;
private int _lagcount;
}
}

View File

@ -0,0 +1,62 @@
using System;
using System.Collections.Generic;
using System.Linq;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk
{
private IMemoryDomains MemoryDomains;
public void SetupMemoryDomains()
{
var domains = new List<MemoryDomain>
{
new MemoryDomainDelegate(
"Main RAM",
RAM.Length,
MemoryDomain.Endian.Little,
addr => RAM[addr],
(addr, value) => RAM[addr] = value,
1),
new MemoryDomainDelegate(
"System Bus",
0X10000,
MemoryDomain.Endian.Little,
addr => PeekSystemBus(addr),
(addr, value) => PokeSystemBus(addr, value),
1),
new MemoryDomainDelegate(
"ROM",
_rom.Length,
MemoryDomain.Endian.Little,
addr => _rom[addr],
(addr, value) => _rom[addr] = value,
1),
};
if (cart_RAM != null)
{
var CartRam = new MemoryDomainByteArray("Cart RAM", MemoryDomain.Endian.Little, cart_RAM, true, 1);
domains.Add(CartRam);
}
MemoryDomains = new MemoryDomainList(domains);
(ServiceProvider as BasicServiceProvider).Register<IMemoryDomains>(MemoryDomains);
}
private byte PeekSystemBus(long addr)
{
ushort addr2 = (ushort)(addr & 0xFFFF);
return PeekMemory(addr2);
}
private void PokeSystemBus(long addr, byte value)
{
ushort addr2 = (ushort)(addr & 0xFFFF);
WriteMemory(addr2, value);
}
}
}

View File

@ -0,0 +1,34 @@
using System;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : ISaveRam
{
public byte[] CloneSaveRam()
{
if (cart_RAM != null)
{
return (byte[])cart_RAM.Clone();
}
else
{
return null;
}
}
public void StoreSaveRam(byte[] data)
{
Buffer.BlockCopy(data, 0, cart_RAM, 0, data.Length);
Console.WriteLine("loading SRAM here");
}
public bool SaveRamModified
{
get
{
return has_bat & _syncSettings.Use_SRAM;
}
}
}
}

View File

@ -0,0 +1,92 @@
using System;
using System.ComponentModel;
using Newtonsoft.Json;
using BizHawk.Common;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : IEmulator, IStatable, ISettable<VectrexHawk.VectrexSettings, VectrexHawk.VectrexSyncSettings>
{
public VectrexSettings GetSettings()
{
return _settings.Clone();
}
public VectrexSyncSettings GetSyncSettings()
{
return _syncSettings.Clone();
}
public bool PutSettings(VectrexSettings o)
{
_settings = o;
return false;
}
public bool PutSyncSettings(VectrexSyncSettings o)
{
bool ret = VectrexSyncSettings.NeedsReboot(_syncSettings, o);
_syncSettings = o;
return ret;
}
private VectrexSettings _settings = new VectrexSettings();
public VectrexSyncSettings _syncSettings = new VectrexSyncSettings();
public class VectrexSettings
{
public VectrexSettings Clone()
{
return (VectrexSettings)MemberwiseClone();
}
}
public class VectrexSyncSettings
{
[JsonIgnore]
public string Port1 = VectrexHawkControllerDeck.DefaultControllerName;
public enum ControllerType
{
Default,
}
[JsonIgnore]
private ControllerType _VectrexController;
[DisplayName("Controller")]
[Description("Select Controller Type")]
[DefaultValue(ControllerType.Default)]
public ControllerType VectrexController
{
get { return _VectrexController; }
set
{
if (value == ControllerType.Default) { Port1 = VectrexHawkControllerDeck.DefaultControllerName; }
else { Port1 = VectrexHawkControllerDeck.DefaultControllerName; }
_VectrexController = value;
}
}
[DisplayName("Use Existing SaveRAM")]
[Description("When true, existing SaveRAM will be loaded at boot up")]
[DefaultValue(false)]
public bool Use_SRAM { get; set; }
public VectrexSyncSettings Clone()
{
return (VectrexSyncSettings)MemberwiseClone();
}
public static bool NeedsReboot(VectrexSyncSettings x, VectrexSyncSettings y)
{
return !DeepEquality.DeepEquals(x, y);
}
}
}
}

View File

@ -0,0 +1,77 @@
using System.IO;
using BizHawk.Common;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public partial class VectrexHawk : IStatable
{
public bool BinarySaveStatesPreferred => true;
public void SaveStateText(TextWriter writer)
{
SyncState(new Serializer(writer));
}
public void LoadStateText(TextReader reader)
{
SyncState(new Serializer(reader));
}
public void SaveStateBinary(BinaryWriter bw)
{
SyncState(new Serializer(bw));
}
public void LoadStateBinary(BinaryReader br)
{
SyncState(new Serializer(br));
}
public byte[] SaveStateBinary()
{
MemoryStream ms = new MemoryStream();
BinaryWriter bw = new BinaryWriter(ms);
SaveStateBinary(bw);
bw.Flush();
return ms.ToArray();
}
// here is where all your savestated stuff will be called
// make sure every variable you make is savestated
// also all the components with their own savestate functions need to be called form here
// for normal single variables the format is:
// ser.Sync("var_name", ref var_name);
// for arrays, use:
// ser.Sync("var_name", ref var_name, false);
private void SyncState(Serializer ser)
{
byte[] core = null;
if (ser.IsWriter)
{
var ms = new MemoryStream();
ms.Close();
core = ms.ToArray();
}
cpu.SyncState(ser);
mapper.SyncState(ser);
ppu.SyncState(ser);
serialport.SyncState(ser);
audio.SyncState(ser);
ser.BeginSection("VIC20");
ser.Sync("RAM", ref RAM, false);
// probably a better way to do this
if (cart_RAM != null)
{
ser.Sync("cart_RAM", ref cart_RAM, false);
}
ser.EndSection();
}
}
}

View File

@ -0,0 +1,142 @@
using System;
using BizHawk.Common.BufferExtensions;
using BizHawk.Emulation.Common;
using BizHawk.Emulation.Common.Components.MC6809;
using System.Runtime.InteropServices;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
[Core(
"VectrexHawk",
"",
isPorted: false,
isReleased: true)]
[ServiceNotApplicable(typeof(IDriveLight))]
public partial class VectrexHawk : IEmulator, ISaveRam, IDebuggable, IStatable, IInputPollable, IRegionable,
ISettable<VectrexHawk.VectrexSettings, VectrexHawk.VectrexSyncSettings>
{
// declaractions
// put top level core variables here
// including things like RAM and BIOS
// they will be used in the hex editor and others
// the following declaraion is only an example
// see memoryDomains.cs to see how it is used to define a Memory Domain that you can see in Hex editor
// ex:
public byte[] RAM = new byte[0x8000];
public byte[] _bios;
public readonly byte[] _rom;
// sometimes roms will have a header
// the following is only an example in order to demonstrate how to extract the header
public readonly byte[] header = new byte[0x50];
public byte[] cart_RAM;
public bool has_bat;
private int _frame = 0;
public MapperBase mapper;
private readonly ITraceable _tracer;
public MC6809 cpu;
public PPU ppu;
public Audio audio;
public SerialPort serialport;
private static byte[] GBA_override = { 0xFF, 0x00, 0xCD, 0x03, 0x35, 0xAA, 0x31, 0x90, 0x94, 0x00, 0x00, 0x00, 0x00 };
[CoreConstructor("Vectrex")]
public VectrexHawk(CoreComm comm, GameInfo game, byte[] rom, /*string gameDbFn,*/ object settings, object syncSettings)
{
var ser = new BasicServiceProvider(this);
cpu = new MC6809
{
ReadMemory = ReadMemory,
WriteMemory = WriteMemory,
PeekMemory = PeekMemory,
DummyReadMemory = ReadMemory,
OnExecFetch = ExecFetch,
};
audio = new Audio();
ppu = new PPU();
serialport = new SerialPort();
CoreComm = comm;
_settings = (VectrexSettings)settings ?? new VectrexSettings();
_syncSettings = (VectrexSyncSettings)syncSettings ?? new VectrexSyncSettings();
_controllerDeck = new VectrexHawkControllerDeck(_syncSettings.Port1);
// BIOS stuff can be tricky. Sometimes you'll have more then one vailable BIOS or different BIOSes for different regions
// for now I suggest just picking one going
byte[] Bios = null;
//Bios = comm.CoreFileProvider.GetFirmware("Vectrex", "Bios", true, "BIOS Not Found, Cannot Load");
_bios = Bios;
// the following few lines are jsut examples of working with a header and hashes
Buffer.BlockCopy(rom, 0x100, header, 0, 0x50);
string hash_md5 = null;
hash_md5 = "md5:" + rom.HashMD5(0, rom.Length);
Console.WriteLine(hash_md5);
// in this case our working ROm has the header removed (might not be the case for your system)
_rom = rom;
Setup_Mapper();
_frameHz = 60;
// usually you want to have a reflected core available to the various components since they share some information
audio.Core = this;
ppu.Core = this;
serialport.Core = this;
// the following is just interface setup, dont worry to much about it
ser.Register<IVideoProvider>(this);
ser.Register<ISoundProvider>(audio);
ServiceProvider = ser;
_settings = (VectrexSettings)settings ?? new VectrexSettings();
_syncSettings = (VectrexSyncSettings)syncSettings ?? new VectrexSyncSettings();
_tracer = new TraceBuffer { Header = cpu.TraceHeader };
ser.Register<ITraceable>(_tracer);
SetupMemoryDomains();
HardReset();
}
public DisplayType Region => DisplayType.NTSC;
private readonly VectrexHawkControllerDeck _controllerDeck;
public void HardReset()
{
Register_Reset();
ppu.Reset();
audio.Reset();
serialport.Reset();
_vidbuffer = new int[VirtualWidth * VirtualHeight];
}
private void ExecFetch(ushort addr)
{
MemoryCallbacks.CallExecutes(addr, "System Bus");
}
// most systems have cartridges or other storage media that map memory in more then one way.
// Use this ethod to set that stuff up when first starting the core
private void Setup_Mapper()
{
mapper = new MapperDefault();
}
}
}

View File

@ -0,0 +1,71 @@
using System;
using System.Collections.Generic;
using System.Linq;
using BizHawk.Common;
using BizHawk.Common.ReflectionExtensions;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
public class VectrexHawkControllerDeck
{
public VectrexHawkControllerDeck(string controller1Name)
{
if (!ValidControllerTypes.ContainsKey(controller1Name))
{
throw new InvalidOperationException("Invalid controller type: " + controller1Name);
}
Port1 = (IPort)Activator.CreateInstance(ValidControllerTypes[controller1Name], 1);
Definition = new ControllerDefinition
{
Name = Port1.Definition.Name,
BoolButtons = Port1.Definition.BoolButtons
.ToList()
};
Definition.FloatControls.AddRange(Port1.Definition.FloatControls);
Definition.FloatRanges.AddRange(Port1.Definition.FloatRanges);
}
public byte ReadPort1(IController c)
{
return Port1.Read(c);
}
public ControllerDefinition Definition { get; }
public void SyncState(Serializer ser)
{
ser.BeginSection("Port1");
Port1.SyncState(ser);
ser.EndSection();
}
private readonly IPort Port1;
private static Dictionary<string, Type> _controllerTypes;
public static Dictionary<string, Type> ValidControllerTypes
{
get
{
if (_controllerTypes == null)
{
_controllerTypes = typeof(VectrexHawkControllerDeck).Assembly
.GetTypes()
.Where(t => typeof(IPort).IsAssignableFrom(t))
.Where(t => !t.IsAbstract && !t.IsInterface)
.ToDictionary(tkey => tkey.DisplayName());
}
return _controllerTypes;
}
}
public static string DefaultControllerName => typeof(StandardControls).DisplayName();
}
}

View File

@ -0,0 +1,61 @@
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using BizHawk.Common;
using BizHawk.Emulation.Common;
namespace BizHawk.Emulation.Cores.Consoles.Vectrex
{
/// <summary>
/// Represents a Vectrex add on
/// </summary>
public interface IPort
{
byte Read(IController c);
ControllerDefinition Definition { get; }
void SyncState(Serializer ser);
int PortNum { get; }
}
[DisplayName("Vectrex Controller")]
public class StandardControls : IPort
{
public StandardControls(int portNum)
{
PortNum = portNum;
Definition = new ControllerDefinition
{
Name = "Vectrex Controller",
BoolButtons = BaseDefinition
.Select(b => "P" + PortNum + " " + b)
.ToList()
};
}
public int PortNum { get; }
public ControllerDefinition Definition { get; }
public byte Read(IController c)
{
byte result = 0xFF;
return result;
}
private static readonly string[] BaseDefinition =
{
};
public void SyncState(Serializer ser)
{
//nothing
}
}
}