quicknes import @ d2901940e566841c7c35dd92ad7556fb59c753a4 from https://github.com/kode54/QuickNES_Core.git

only changes: add one pair of missing parens (https://github.com/kode54/QuickNES_Core/issues/3) and commented out HAVE_ZLIB_H
also includes new vs10 solution which may or may not build
This commit is contained in:
goyuken 2014-01-04 20:40:03 +00:00
parent 913760289d
commit ad0faa2a42
134 changed files with 27001 additions and 0 deletions

View File

@ -0,0 +1,77 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Binary_Extractor.h"
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// TODO: could close file once data has been read into memory
static File_Extractor* new_binary()
{
return BLARGG_NEW Binary_Extractor;
}
fex_type_t_ const fex_bin_type [1] = {{
"",
&new_binary,
"file",
NULL
}};
Binary_Extractor::Binary_Extractor() :
File_Extractor( fex_bin_type )
{ }
Binary_Extractor::~Binary_Extractor()
{
close();
}
blargg_err_t Binary_Extractor::open_path_v()
{
set_name( arc_path() );
return blargg_ok;
}
blargg_err_t Binary_Extractor::open_v()
{
set_name( arc_path() );
set_info( arc().remain(), 0, 0 );
return blargg_ok;
}
void Binary_Extractor::close_v()
{ }
blargg_err_t Binary_Extractor::next_v()
{
return blargg_ok;
}
blargg_err_t Binary_Extractor::rewind_v()
{
return open_path_v();
}
blargg_err_t Binary_Extractor::stat_v()
{
RETURN_ERR( open_arc_file() );
RETURN_ERR( arc().seek( 0 ) );
return open_v();
}
blargg_err_t Binary_Extractor::extract_v( void* p, int n )
{
return arc().read( p, n );
}

View File

@ -0,0 +1,26 @@
// Presents a single file as an "archive" of just that file.
// File_Extractor 1.0.0
#ifndef BINARY_EXTRACTOR_H
#define BINARY_EXTRACTOR_H
#include "File_Extractor.h"
class Binary_Extractor : public File_Extractor {
public:
Binary_Extractor();
virtual ~Binary_Extractor();
protected:
virtual blargg_err_t open_path_v();
virtual blargg_err_t open_v();
virtual void close_v();
virtual blargg_err_t next_v();
virtual blargg_err_t rewind_v();
virtual blargg_err_t stat_v();
virtual blargg_err_t extract_v( void*, int );
};
#endif

View File

@ -0,0 +1,774 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Data_Reader.h"
#include "blargg_endian.h"
#include <stdio.h>
#include <errno.h>
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// Data_Reader
blargg_err_t Data_Reader::read( void* p, int n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
if ( n > remain() )
return blargg_err_file_eof;
blargg_err_t err = read_v( p, n );
if ( !err )
remain_ -= n;
return err;
}
blargg_err_t Data_Reader::read_avail( void* p, int* n_ )
{
assert( *n_ >= 0 );
int n = min( (BOOST::uint64_t)(*n_), remain() );
*n_ = 0;
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
blargg_err_t err = read_v( p, n );
if ( !err )
{
remain_ -= n;
*n_ = n;
}
return err;
}
blargg_err_t Data_Reader::read_avail( void* p, long* n )
{
int i = STATIC_CAST(int, *n);
blargg_err_t err = read_avail( p, &i );
*n = i;
return err;
}
blargg_err_t Data_Reader::skip_v( int count )
{
char buf [512];
while ( count )
{
int n = min( count, (int) sizeof buf );
count -= n;
RETURN_ERR( read_v( buf, n ) );
}
return blargg_ok;
}
blargg_err_t Data_Reader::skip( int n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
if ( n > remain() )
return blargg_err_file_eof;
blargg_err_t err = skip_v( n );
if ( !err )
remain_ -= n;
return err;
}
// File_Reader
blargg_err_t File_Reader::seek( BOOST::uint64_t n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n == tell() )
return blargg_ok;
if ( n > size() )
return blargg_err_file_eof;
blargg_err_t err = seek_v( n );
if ( !err )
set_tell( n );
return err;
}
blargg_err_t File_Reader::skip_v( BOOST::uint64_t n )
{
return seek_v( tell() + n );
}
// Subset_Reader
Subset_Reader::Subset_Reader( Data_Reader* dr, BOOST::uint64_t size ) :
in( dr )
{
set_remain( min( size, dr->remain() ) );
}
blargg_err_t Subset_Reader::read_v( void* p, int s )
{
return in->read( p, s );
}
// Remaining_Reader
Remaining_Reader::Remaining_Reader( void const* h, int size, Data_Reader* r ) :
in( r )
{
header = h;
header_remain = size;
set_remain( size + r->remain() );
}
blargg_err_t Remaining_Reader::read_v( void* out, int count )
{
int first = min( count, header_remain );
if ( first )
{
memcpy( out, header, first );
header = STATIC_CAST(char const*, header) + first;
header_remain -= first;
}
return in->read( STATIC_CAST(char*, out) + first, count - first );
}
// Mem_File_Reader
Mem_File_Reader::Mem_File_Reader( const void* p, long s ) :
begin( STATIC_CAST(const char*, p) )
{
set_size( s );
}
blargg_err_t Mem_File_Reader::read_v( void* p, int s )
{
memcpy( p, begin + tell(), s );
return blargg_ok;
}
blargg_err_t Mem_File_Reader::seek_v( int )
{
return blargg_ok;
}
// Callback_Reader
Callback_Reader::Callback_Reader( callback_t c, BOOST::uint64_t s, void* d ) :
callback( c ),
user_data( d )
{
set_remain( s );
}
blargg_err_t Callback_Reader::read_v( void* out, int count )
{
return callback( user_data, out, count );
}
// Callback_File_Reader
Callback_File_Reader::Callback_File_Reader( callback_t c, BOOST::uint64_t s, void* d ) :
callback( c ),
user_data( d )
{
set_size( s );
}
blargg_err_t Callback_File_Reader::read_v( void* out, int count )
{
return callback( user_data, out, count, tell() );
}
blargg_err_t Callback_File_Reader::seek_v( int )
{
return blargg_ok;
}
static const BOOST::uint8_t mask_tab[6]={0x80,0xE0,0xF0,0xF8,0xFC,0xFE};
static const BOOST::uint8_t val_tab[6]={0,0xC0,0xE0,0xF0,0xF8,0xFC};
size_t utf8_char_len_from_header( char p_c )
{
BOOST::uint8_t c = (BOOST::uint8_t)p_c;
size_t cnt = 0;
for(;;)
{
if ( ( p_c & mask_tab[cnt] ) == val_tab[cnt] ) break;
if ( ++cnt >= 6 ) return 0;
}
return cnt + 1;
}
size_t utf8_decode_char( const char *p_utf8, unsigned & wide, size_t mmax )
{
const BOOST::uint8_t * utf8 = ( const BOOST::uint8_t* )p_utf8;
if ( mmax == 0 )
{
wide = 0;
return 0;
}
if ( utf8[0] < 0x80 )
{
wide = utf8[0];
return utf8[0]>0 ? 1 : 0;
}
if ( mmax > 6 ) mmax = 6;
wide = 0;
unsigned res=0;
unsigned n;
unsigned cnt=0;
for(;;)
{
if ( ( *utf8 & mask_tab[cnt] ) == val_tab[cnt] ) break;
if ( ++cnt >= mmax ) return 0;
}
cnt++;
if ( cnt==2 && !( *utf8 & 0x1E ) ) return 0;
if ( cnt == 1 )
res = *utf8;
else
res = ( 0xFF >> ( cnt + 1 ) ) & *utf8;
for ( n = 1; n < cnt; n++ )
{
if ( ( utf8[n] & 0xC0 ) != 0x80 )
return 0;
if ( !res && n == 2 && !( ( utf8[n] & 0x7F ) >> ( 7 - cnt ) ) )
return 0;
res = ( res << 6 ) | ( utf8[n] & 0x3F );
}
wide = res;
return cnt;
}
size_t utf8_encode_char( unsigned wide, char * target )
{
size_t count;
if ( wide < 0x80 )
count = 1;
else if ( wide < 0x800 )
count = 2;
else if ( wide < 0x10000 )
count = 3;
else if ( wide < 0x200000 )
count = 4;
else if ( wide < 0x4000000 )
count = 5;
else if ( wide <= 0x7FFFFFFF )
count = 6;
else
return 0;
if ( target == 0 )
return count;
switch ( count )
{
case 6:
target[5] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x4000000;
case 5:
target[4] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x200000;
case 4:
target[3] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x10000;
case 3:
target[2] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x800;
case 2:
target[1] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0xC0;
case 1:
target[0] = wide;
}
return count;
}
size_t utf16_encode_char( unsigned cur_wchar, blargg_wchar_t * out )
{
if ( cur_wchar < 0x10000 )
{
if ( out ) *out = (blargg_wchar_t) cur_wchar; return 1;
}
else if ( cur_wchar < ( 1 << 20 ) )
{
unsigned c = cur_wchar - 0x10000;
//MSDN:
//The first (high) surrogate is a 16-bit code value in the range U+D800 to U+DBFF. The second (low) surrogate is a 16-bit code value in the range U+DC00 to U+DFFF. Using surrogates, Unicode can support over one million characters. For more details about surrogates, refer to The Unicode Standard, version 2.0.
if ( out )
{
out[0] = ( blargg_wchar_t )( 0xD800 | ( 0x3FF & ( c >> 10 ) ) );
out[1] = ( blargg_wchar_t )( 0xDC00 | ( 0x3FF & c ) ) ;
}
return 2;
}
else
{
if ( out ) *out = '?'; return 1;
}
}
size_t utf16_decode_char( const blargg_wchar_t * p_source, unsigned * p_out, size_t p_source_length )
{
if ( p_source_length == 0 ) return 0;
else if ( p_source_length == 1 )
{
*p_out = p_source[0];
return 1;
}
else
{
size_t retval = 0;
unsigned decoded = p_source[0];
if ( decoded != 0 )
{
retval = 1;
if ( ( decoded & 0xFC00 ) == 0xD800 )
{
unsigned low = p_source[1];
if ( ( low & 0xFC00 ) == 0xDC00 )
{
decoded = 0x10000 + ( ( ( decoded & 0x3FF ) << 10 ) | ( low & 0x3FF ) );
retval = 2;
}
}
}
*p_out = decoded;
return retval;
}
}
// Converts wide-character path to UTF-8. Free result with free(). Only supported on Windows.
char* blargg_to_utf8( const blargg_wchar_t* wpath )
{
if ( wpath == NULL )
return NULL;
size_t needed = 0;
size_t mmax = blargg_wcslen( wpath );
if ( mmax <= 0 )
return NULL;
size_t ptr = 0;
while ( ptr < mmax )
{
unsigned wide = 0;
size_t char_len = utf16_decode_char( wpath + ptr, &wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
needed += utf8_encode_char( wide, 0 );
}
if ( needed <= 0 )
return NULL;
char* path = (char*) calloc( needed + 1, 1 );
if ( path == NULL )
return NULL;
ptr = 0;
size_t actual = 0;
while ( ptr < mmax && actual < needed )
{
unsigned wide = 0;
size_t char_len = utf16_decode_char( wpath + ptr, &wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
actual += utf8_encode_char( wide, path + actual );
}
if ( actual == 0 )
{
free( path );
return NULL;
}
assert( actual == needed );
return path;
}
// Converts UTF-8 path to wide-character. Free result with free() Only supported on Windows.
blargg_wchar_t* blargg_to_wide( const char* path )
{
if ( path == NULL )
return NULL;
size_t mmax = strlen( path );
if ( mmax <= 0 )
return NULL;
size_t needed = 0;
size_t ptr = 0;
while ( ptr < mmax )
{
unsigned wide = 0;
size_t char_len = utf8_decode_char( path + ptr, wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
needed += utf16_encode_char( wide, 0 );
}
if ( needed <= 0 )
return NULL;
blargg_wchar_t* wpath = (blargg_wchar_t*) calloc( needed + 1, sizeof *wpath );
if ( wpath == NULL )
return NULL;
ptr = 0;
size_t actual = 0;
while ( ptr < mmax && actual < needed )
{
unsigned wide = 0;
size_t char_len = utf8_decode_char( path + ptr, wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
actual += utf16_encode_char( wide, wpath + actual );
}
if ( actual == 0 )
{
free( wpath );
return NULL;
}
assert( actual == needed );
return wpath;
}
#ifdef _WIN32
static FILE* blargg_fopen( const char path [], const char mode [] )
{
FILE* file = NULL;
blargg_wchar_t* wmode = NULL;
blargg_wchar_t* wpath = NULL;
wpath = blargg_to_wide( path );
if ( wpath )
{
wmode = blargg_to_wide( mode );
if ( wmode )
file = _wfopen( wpath, wmode );
}
// Save and restore errno in case free() clears it
int saved_errno = errno;
free( wmode );
free( wpath );
errno = saved_errno;
return file;
}
#else
static inline FILE* blargg_fopen( const char path [], const char mode [] )
{
return fopen( path, mode );
}
#endif
// Std_File_Reader
Std_File_Reader::Std_File_Reader()
{
file_ = NULL;
}
Std_File_Reader::~Std_File_Reader()
{
close();
}
static blargg_err_t blargg_fopen( FILE** out, const char path [] )
{
errno = 0;
*out = blargg_fopen( path, "rb" );
if ( !*out )
{
#ifdef ENOENT
if ( errno == ENOENT )
return blargg_err_file_missing;
#endif
#ifdef ENOMEM
if ( errno == ENOMEM )
return blargg_err_memory;
#endif
return blargg_err_file_read;
}
return blargg_ok;
}
static blargg_err_t blargg_fsize( FILE* f, long* out )
{
if ( fseek( f, 0, SEEK_END ) )
return blargg_err_file_io;
*out = ftell( f );
if ( *out < 0 )
return blargg_err_file_io;
if ( fseek( f, 0, SEEK_SET ) )
return blargg_err_file_io;
return blargg_ok;
}
blargg_err_t Std_File_Reader::open( const char path [] )
{
close();
FILE* f;
RETURN_ERR( blargg_fopen( &f, path ) );
long s;
blargg_err_t err = blargg_fsize( f, &s );
if ( err )
{
fclose( f );
return err;
}
file_ = f;
set_size( s );
return blargg_ok;
}
void Std_File_Reader::make_unbuffered()
{
if ( setvbuf( STATIC_CAST(FILE*, file_), NULL, _IONBF, 0 ) )
check( false ); // shouldn't fail, but OK if it does
}
blargg_err_t Std_File_Reader::read_v( void* p, int s )
{
if ( (size_t) s != fread( p, 1, s, STATIC_CAST(FILE*, file_) ) )
{
// Data_Reader's wrapper should prevent EOF
check( !feof( STATIC_CAST(FILE*, file_) ) );
return blargg_err_file_io;
}
return blargg_ok;
}
#ifdef __CELLOS_LV2__
int
fseeko(FILE *stream, off_t pos, int whence)
{
return fseek(stream, (long)pos, whence);
}
#endif
blargg_err_t Std_File_Reader::seek_v( BOOST::uint64_t n )
{
#ifdef _WIN32
if ( fseek( STATIC_CAST(FILE*, file_), n, SEEK_SET ) )
#else
if ( fseeko( STATIC_CAST(FILE*, file_), n, SEEK_SET ) )
#endif
{
// Data_Reader's wrapper should prevent EOF
check( !feof( STATIC_CAST(FILE*, file_) ) );
return blargg_err_file_io;
}
return blargg_ok;
}
void Std_File_Reader::close()
{
if ( file_ )
{
fclose( STATIC_CAST(FILE*, file_) );
file_ = NULL;
}
}
// Gzip_File_Reader
#ifndef __LIBRETRO__
#ifdef HAVE_ZLIB_H
#include "zlib.h"
static const char* get_gzip_eof( const char path [], long* eof )
{
FILE* file;
RETURN_ERR( blargg_fopen( &file, path ) );
int const h_size = 4;
unsigned char h [h_size];
// read four bytes to ensure that we can seek to -4 later
if ( fread( h, 1, h_size, file ) != (size_t) h_size || h[0] != 0x1F || h[1] != 0x8B )
{
// Not gzipped
if ( ferror( file ) )
return blargg_err_file_io;
if ( fseek( file, 0, SEEK_END ) )
return blargg_err_file_io;
*eof = ftell( file );
if ( *eof < 0 )
return blargg_err_file_io;
}
else
{
// Gzipped; get uncompressed size from end
if ( fseek( file, -h_size, SEEK_END ) )
return blargg_err_file_io;
if ( fread( h, 1, h_size, file ) != (size_t) h_size )
return blargg_err_file_io;
*eof = get_le32( h );
}
if ( fclose( file ) )
check( false );
return blargg_ok;
}
Gzip_File_Reader::Gzip_File_Reader()
{
file_ = NULL;
}
Gzip_File_Reader::~Gzip_File_Reader()
{
close();
}
blargg_err_t Gzip_File_Reader::open( const char path [] )
{
close();
long s;
RETURN_ERR( get_gzip_eof( path, &s ) );
file_ = gzopen( path, "rb" );
if ( !file_ )
return blargg_err_file_read;
set_size( s );
return blargg_ok;
}
static blargg_err_t convert_gz_error( gzFile file )
{
int err;
gzerror( file, &err );
switch ( err )
{
case Z_STREAM_ERROR: break;
case Z_DATA_ERROR: return blargg_err_file_corrupt;
case Z_MEM_ERROR: return blargg_err_memory;
case Z_BUF_ERROR: break;
}
return blargg_err_internal;
}
blargg_err_t Gzip_File_Reader::read_v( void* p, int s )
{
int result = gzread( (gzFile) file_, p, s );
if ( result != s )
{
if ( result < 0 )
return convert_gz_error( (gzFile) file_ );
return blargg_err_file_corrupt;
}
return blargg_ok;
}
blargg_err_t Gzip_File_Reader::seek_v( int n )
{
if ( gzseek( (gzFile) file_, n, SEEK_SET ) < 0 )
return convert_gz_error( (gzFile) file_ );
return blargg_ok;
}
void Gzip_File_Reader::close()
{
if ( file_ )
{
if ( gzclose( (gzFile) file_ ) )
check( false );
file_ = NULL;
}
}
#endif
#endif

265
quicknes/fex/Data_Reader.h Normal file
View File

@ -0,0 +1,265 @@
// Lightweight interface for reading data from byte stream
// File_Extractor 1.0.0
#ifndef DATA_READER_H
#define DATA_READER_H
#include "blargg_common.h"
/* Some functions accept a long instead of int for convenience where caller has
a long due to some other interface, and would otherwise have to get a warning,
or cast it (and verify that it wasn't outside the range of an int).
To really support huge (>2GB) files, long isn't a solution, since there's no
guarantee it's more than 32 bits. We'd need to use long long (if available), or
something compiler-specific, and change all places file sizes or offsets are
used. */
// Supports reading and finding out how many bytes are remaining
class Data_Reader {
public:
// Reads min(*n,remain()) bytes and sets *n to this number, thus trying to read more
// tham remain() bytes doesn't result in error, just *n being set to remain().
blargg_err_t read_avail( void* p, int* n );
blargg_err_t read_avail( void* p, long* n );
// Reads exactly n bytes, or returns error if they couldn't ALL be read.
// Reading past end of file results in blargg_err_file_eof.
blargg_err_t read( void* p, int n );
// Number of bytes remaining until end of file
BOOST::uint64_t remain() const { return remain_; }
// Reads and discards n bytes. Skipping past end of file results in blargg_err_file_eof.
blargg_err_t skip( int n );
virtual ~Data_Reader() { }
private:
// noncopyable
Data_Reader( const Data_Reader& );
Data_Reader& operator = ( const Data_Reader& );
// Derived interface
protected:
Data_Reader() : remain_( 0 ) { }
// Sets remain
void set_remain( BOOST::uint64_t n ) { assert( n >= 0 ); remain_ = n; }
// Do same as read(). Guaranteed that 0 < n <= remain(). Value of remain() is updated
// AFTER this call succeeds, not before. set_remain() should NOT be called from this.
virtual blargg_err_t read_v( void*, int n ) BLARGG_PURE( { (void)n; return blargg_ok; } )
// Do same as skip(). Guaranteed that 0 < n <= remain(). Default just reads data
// and discards it. Value of remain() is updated AFTER this call succeeds, not
// before. set_remain() should NOT be called from this.
virtual blargg_err_t skip_v( int n );
// Implementation
public:
BLARGG_DISABLE_NOTHROW
private:
BOOST::uint64_t remain_;
};
// Supports seeking in addition to Data_Reader operations
class File_Reader : public Data_Reader {
public:
// Size of file
BOOST::uint64_t size() const { return size_; }
// Current position in file
BOOST::uint64_t tell() const { return size_ - remain(); }
// Goes to new position
blargg_err_t seek( BOOST::uint64_t );
// Derived interface
protected:
// Sets size and resets position
void set_size( BOOST::uint64_t n ) { size_ = n; Data_Reader::set_remain( n ); }
void set_size( int n ) { set_size( STATIC_CAST(BOOST::uint64_t, n) ); }
void set_size( long n ) { set_size( STATIC_CAST(BOOST::uint64_t, n) ); }
// Sets reported position
void set_tell( BOOST::uint64_t i ) { assert( 0 <= i && i <= size_ ); Data_Reader::set_remain( size_ - i ); }
// Do same as seek(). Guaranteed that 0 <= n <= size(). Value of tell() is updated
// AFTER this call succeeds, not before. set_* functions should NOT be called from this.
virtual blargg_err_t seek_v( BOOST::uint64_t n ) BLARGG_PURE( { (void)n; return blargg_ok; } )
// Implementation
protected:
File_Reader() : size_( 0 ) { }
virtual blargg_err_t skip_v( BOOST::uint64_t );
private:
BOOST::uint64_t size_;
void set_remain(); // avoid accidental use of set_remain
};
// Reads from file on disk
class Std_File_Reader : public File_Reader {
public:
// Opens file
blargg_err_t open( const char path [] );
// Closes file if one was open
void close();
// Switches to unbuffered mode. Useful if buffering is already being
// done at a higher level.
void make_unbuffered();
// Implementation
public:
Std_File_Reader();
virtual ~Std_File_Reader();
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( BOOST::uint64_t );
private:
void* file_;
};
// Treats range of memory as a file
class Mem_File_Reader : public File_Reader {
public:
Mem_File_Reader( const void* begin, long size );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
const char* const begin;
};
// Allows only count bytes to be read from reader passed
class Subset_Reader : public Data_Reader {
public:
Subset_Reader( Data_Reader*, BOOST::uint64_t count );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
Data_Reader* const in;
};
// Joins already-read header and remaining data into original file.
// Meant for cases where you've already read header and don't want
// to seek and re-read data (for efficiency).
class Remaining_Reader : public Data_Reader {
public:
Remaining_Reader( void const* header, int header_size, Data_Reader* );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
Data_Reader* const in;
void const* header;
int header_remain;
};
// Invokes callback function to read data
extern "C" { // necessary to be usable from C
typedef const char* (*callback_reader_func_t)(
void* user_data, // Same value passed to constructor
void* out, // Buffer to place data into
int count // Number of bytes to read
);
}
class Callback_Reader : public Data_Reader {
public:
typedef callback_reader_func_t callback_t;
Callback_Reader( callback_t, BOOST::uint64_t size, void* user_data );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
callback_t const callback;
void* const user_data;
};
// Invokes callback function to read data
extern "C" { // necessary to be usable from C
typedef const char* (*callback_file_reader_func_t)(
void* user_data, // Same value passed to constructor
void* out, // Buffer to place data into
int count, // Number of bytes to read
BOOST::uint64_t pos // Position in file to read from
);
}
class Callback_File_Reader : public File_Reader {
public:
typedef callback_file_reader_func_t callback_t;
Callback_File_Reader( callback_t, BOOST::uint64_t size, void* user_data );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
callback_t const callback;
void* const user_data;
};
#ifdef HAVE_ZLIB_H
// Reads file compressed with gzip (or uncompressed)
class Gzip_File_Reader : public File_Reader {
public:
// Opens possibly gzipped file
blargg_err_t open( const char path [] );
// Closes file if one was open
void close();
// Implementation
public:
Gzip_File_Reader();
~Gzip_File_Reader();
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
// void* so "zlib.h" doesn't have to be included here
void* file_;
};
#endif
char* blargg_to_utf8( const blargg_wchar_t* );
blargg_wchar_t* blargg_to_wide( const char* );
#endif

View File

@ -0,0 +1,341 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "File_Extractor.h"
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
File_Extractor::fex_t( fex_type_t t ) :
type_( t )
{
own_file_ = NULL;
close_();
}
// Open
blargg_err_t File_Extractor::set_path( const char* path )
{
if ( !path )
path = "";
RETURN_ERR( path_.resize( strlen( path ) + 1 ) );
memcpy( path_.begin(), path, path_.size() );
return blargg_ok;
}
blargg_err_t File_Extractor::open( const char path [] )
{
close();
RETURN_ERR( set_path( path ) );
blargg_err_t err = open_path_v();
if ( err )
close();
else
opened_ = true;
return err;
}
blargg_err_t File_Extractor::open_path_v()
{
RETURN_ERR( open_arc_file() );
return open_v();
}
inline
static void make_unbuffered( Std_File_Reader* r )
{
r->make_unbuffered();
}
inline
static void make_unbuffered( void* )
{ }
blargg_err_t File_Extractor::open_arc_file( bool unbuffered )
{
if ( reader_ )
return blargg_ok;
FEX_FILE_READER* in = BLARGG_NEW FEX_FILE_READER;
CHECK_ALLOC( in );
blargg_err_t err = in->open( arc_path() );
if ( err )
{
delete in;
}
else
{
reader_ = in;
own_file();
if ( unbuffered )
make_unbuffered( in );
}
return err;
}
blargg_err_t File_Extractor::open( File_Reader* input, const char* path )
{
close();
RETURN_ERR( set_path( path ) );
RETURN_ERR( input->seek( 0 ) );
reader_ = input;
blargg_err_t err = open_v();
if ( err )
close();
else
opened_ = true;
return err;
}
// Close
void File_Extractor::close()
{
close_v();
close_();
}
void File_Extractor::close_()
{
delete own_file_;
own_file_ = NULL;
tell_ = 0;
reader_ = NULL;
opened_ = false;
path_.clear();
clear_file();
}
File_Extractor::~fex_t()
{
check( !opened() ); // fails if derived destructor didn't call close()
delete own_file_;
}
// Scanning
void File_Extractor::clear_file()
{
name_ = NULL;
wname_ = NULL;
done_ = true;
stat_called = false;
data_ptr_ = NULL;
set_info( 0 );
own_data_.clear();
clear_file_v();
}
void File_Extractor::set_name( const char new_name [], const blargg_wchar_t* new_wname )
{
name_ = new_name;
wname_ = new_wname;
done_ = false;
}
void File_Extractor::set_info( BOOST::uint64_t new_size, unsigned date, unsigned crc )
{
size_ = new_size;
date_ = (date != 0xFFFFFFFF ? date : 0);
crc32_ = crc;
set_remain( new_size );
}
blargg_err_t File_Extractor::next_()
{
tell_++;
clear_file();
blargg_err_t err = next_v();
if ( err )
clear_file();
return err;
}
blargg_err_t File_Extractor::next()
{
assert( !done() );
return next_();
}
blargg_err_t File_Extractor::rewind()
{
assert( opened() );
tell_ = 0;
clear_file();
blargg_err_t err = rewind_v();
if ( err )
clear_file();
return err;
}
blargg_err_t File_Extractor::stat()
{
assert( !done() );
if ( !stat_called )
{
RETURN_ERR( stat_v() );
stat_called = true;
}
return blargg_ok;
}
// Tell/seek
int const pos_offset = 1;
fex_pos_t File_Extractor::tell_arc() const
{
assert( opened() );
fex_pos_t pos = tell_arc_v();
assert( pos >= 0 );
return pos + pos_offset;
}
blargg_err_t File_Extractor::seek_arc( fex_pos_t pos )
{
assert( opened() );
assert( pos != 0 );
clear_file();
blargg_err_t err = seek_arc_v( pos - pos_offset );
if ( err )
clear_file();
return err;
}
fex_pos_t File_Extractor::tell_arc_v() const
{
return tell_;
}
blargg_err_t File_Extractor::seek_arc_v( fex_pos_t pos )
{
// >= because seeking to current file should always reset read pointer etc.
if ( tell_ >= pos )
RETURN_ERR( rewind() );
while ( tell_ < pos )
{
RETURN_ERR( next_() );
if ( done() )
{
assert( false );
return blargg_err_caller;
}
}
assert( tell_ == pos );
return blargg_ok;
}
// Extraction
blargg_err_t File_Extractor::rewind_file()
{
RETURN_ERR( stat() );
if ( tell() > 0 )
{
if ( data_ptr_ )
{
set_remain( size() );
}
else
{
RETURN_ERR( seek_arc( tell_arc() ) );
RETURN_ERR( stat() );
}
}
return blargg_ok;
}
blargg_err_t File_Extractor::data( const void** data_out )
{
assert( !done() );
*data_out = NULL;
if ( !data_ptr_ )
{
BOOST::uint64_t old_tell = tell();
RETURN_ERR( rewind_file() );
void const* ptr;
RETURN_ERR( data_v( &ptr ) );
data_ptr_ = ptr;
// Now that data is in memory, we can seek by simply setting remain
set_remain( size() - old_tell );
}
*data_out = data_ptr_;
return blargg_ok;
}
blargg_err_t File_Extractor::data_v( void const** out )
{
RETURN_ERR( own_data_.resize( size() ) );
*out = own_data_.begin();
blargg_err_t err = extract_v( own_data_.begin(), own_data_.size() );
if ( err )
own_data_.clear();
return err;
}
blargg_err_t File_Extractor::extract_v( void* out, int count )
{
void const* p;
RETURN_ERR( data( &p ) );
memcpy( out, STATIC_CAST(char const*,p) + (size() - remain()), count );
return blargg_ok;
}
blargg_err_t File_Extractor::read_v( void* out, int count )
{
if ( data_ptr_ )
return File_Extractor::extract_v( out, count );
return extract_v( out, count );
}

View File

@ -0,0 +1,191 @@
// Compressed file archive interface
// File_Extractor 1.0.0
#ifndef FILE_EXTRACTOR_H
#define FILE_EXTRACTOR_H
#include "blargg_common.h"
#include "Data_Reader.h"
#include "fex.h"
struct fex_t : private Data_Reader {
public:
virtual ~fex_t();
// Open/close
// Opens archive from custom data source. Keeps pointer until close().
blargg_err_t open( File_Reader* input, const char* path = NULL );
// Takes ownership of File_Reader* passed to open(), so that close()
// will delete it.
void own_file() { own_file_ = reader_; }
// See fex.h
blargg_err_t open( const char path [] );
fex_type_t type() const { return type_; }
void close();
// Scanning
// See fex.h
bool done() const { return done_; }
blargg_err_t next();
blargg_err_t rewind();
fex_pos_t tell_arc() const;
blargg_err_t seek_arc( fex_pos_t );
// Info
// See fex.h
const char* name() const { return name_; }
const blargg_wchar_t* wname() const { return wname_; }
blargg_err_t stat();
BOOST::uint64_t size() const { assert( stat_called ); return size_; }
unsigned int dos_date() const { return date_; }
unsigned int crc32() const { return crc32_; }
// Extraction
// Data_Reader to current file's data, so standard Data_Reader interface can
// be used, rather than having to treat archives specially. stat() must have
// been called.
Data_Reader& reader() { assert( stat_called ); return *this; }
// See fex.h
blargg_err_t data( const void** data_out );
BOOST::uint64_t tell() const { return size_ - remain(); }
// Derived interface
protected:
// Sets type of object
fex_t( fex_type_t );
// Path to archive file, or "" if none supplied
const char* arc_path() const { return path_.begin(); }
// Opens archive file if it's not already. If unbuffered is true, opens file
// without any buffering.
blargg_err_t open_arc_file( bool unbuffered = false );
// Archive file
File_Reader& arc() const { return *reader_; }
// Sets current file name
void set_name( const char name [], const blargg_wchar_t* wname = NULL );
// Sets current file information
void set_info( BOOST::uint64_t size, unsigned date = 0, unsigned crc = 0 );
// User overrides
// Overrides must do indicated task. Non-pure functions have reasonable default
// implementation. Overrides should avoid calling public functions like
// next() and rewind().
// Open archive using file_path(). OK to delay actual file opening until later.
// Default just calls open_arc_file(), then open_v().
virtual blargg_err_t open_path_v();
// Open archive using file() for source data. If unsupported, return error.
virtual blargg_err_t open_v() BLARGG_PURE( ; )
// Go to next file in archive and call set_name() and optionally set_info()
virtual blargg_err_t next_v() BLARGG_PURE( ; )
// Go back to first file in archive
virtual blargg_err_t rewind_v() BLARGG_PURE( ; )
// Close archive. Called even if open_path_v() or open_v() return unsuccessfully.
virtual void close_v() BLARGG_PURE( ; )
// Clear any fields related to current file
virtual void clear_file_v() { }
// Call set_info() if not already called by next_v()
virtual blargg_err_t stat_v() { return blargg_ok; }
// Return value that allows later return to this file. Result must be >= 0.
virtual fex_pos_t tell_arc_v() const;
// Return to previously saved position
virtual blargg_err_t seek_arc_v( fex_pos_t );
// One or both of the following must be overridden
// Provide pointer to data for current file in archive
virtual blargg_err_t data_v( const void** out );
// Extract next n bytes
virtual blargg_err_t extract_v( void* out, int n );
// Implementation
public:
BLARGG_DISABLE_NOTHROW
private:
fex_type_t const type_;
// Archive file
blargg_vector<char> path_;
File_Reader* reader_;
File_Reader* own_file_;
bool opened_;
// Position in archive
fex_pos_t tell_; // only used by default implementation of tell/seek
bool done_;
// Info for current file in archive
const char* name_;
const blargg_wchar_t* wname_;
unsigned date_;
unsigned crc32_;
BOOST::uint64_t size_;
bool stat_called;
// Current file contents
void const* data_ptr_; // NULL if not read into memory
blargg_vector<char> own_data_;
bool opened() const { return opened_; }
void clear_file();
void close_();
blargg_err_t set_path( const char* path );
blargg_err_t rewind_file();
blargg_err_t next_();
// Data_Reader overrides
// TODO: override skip_v?
virtual blargg_err_t read_v( void* out, int n );
};
struct fex_type_t_
{
const char* extension;
File_Extractor* (*new_fex)();
const char* name;
blargg_err_t (*init)(); // Called by fex_init(). Can be NULL.
};
extern const fex_type_t_
fex_7z_type [1],
fex_gz_type [1],
fex_rar_type [1],
fex_zip_type [1],
fex_bin_type [1];
inline blargg_err_t File_Extractor::open_v() { return blargg_ok; }
inline blargg_err_t File_Extractor::next_v() { return blargg_ok; }
inline blargg_err_t File_Extractor::rewind_v() { return blargg_ok; }
inline void File_Extractor::close_v() { }
// Default to Std_File_Reader for archive access
#ifndef FEX_FILE_READER
#define FEX_FILE_READER Std_File_Reader
#elif defined (FEX_FILE_READER_INCLUDE)
#include FEX_FILE_READER_INCLUDE
#endif
#endif

View File

@ -0,0 +1,98 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Gzip_Extractor.h"
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// TODO: could close file once data has been read into memory
static blargg_err_t init_gzip_file()
{
get_crc_table(); // initialize zlib's CRC-32 tables
return blargg_ok;
}
static File_Extractor* new_gzip()
{
return BLARGG_NEW Gzip_Extractor;
}
fex_type_t_ const fex_gz_type [1] = {{
".gz",
&new_gzip,
"gzipped file",
&init_gzip_file
}};
Gzip_Extractor::Gzip_Extractor() :
File_Extractor( fex_gz_type )
{ }
Gzip_Extractor::~Gzip_Extractor()
{
close();
}
blargg_err_t Gzip_Extractor::open_path_v()
{
// skip opening file
return open_v();
}
blargg_err_t Gzip_Extractor::stat_v()
{
RETURN_ERR( open_arc_file( true ) );
if ( !gr.opened() || gr.tell() != 0 )
RETURN_ERR( gr.open( &arc() ) );
set_info( gr.remain(), 0, gr.crc32() );
return blargg_ok;
}
blargg_err_t Gzip_Extractor::open_v()
{
// Remove .gz suffix
size_t len = strlen( arc_path() );
if ( fex_has_extension( arc_path(), ".gz" ) )
len -= 3;
RETURN_ERR( name.resize( len + 1 ) );
memcpy( name.begin(), arc_path(), name.size() );
name [name.size() - 1] = '\0';
set_name( name.begin() );
return blargg_ok;
}
void Gzip_Extractor::close_v()
{
name.clear();
gr.close();
}
blargg_err_t Gzip_Extractor::next_v()
{
return blargg_ok;
}
blargg_err_t Gzip_Extractor::rewind_v()
{
set_name( name.begin() );
return blargg_ok;
}
blargg_err_t Gzip_Extractor::extract_v( void* p, int n )
{
return gr.read( p, n );
}

View File

@ -0,0 +1,34 @@
// Presents a gzipped file as an "archive" of just that file.
// Also handles non-gzipped files.
// File_Extractor 1.0.0
#ifndef GZIP_EXTRACTOR_H
#define GZIP_EXTRACTOR_H
#include "File_Extractor.h"
#include "Gzip_Reader.h"
class Gzip_Extractor : public File_Extractor {
public:
Gzip_Extractor();
virtual ~Gzip_Extractor();
protected:
virtual blargg_err_t open_path_v();
virtual blargg_err_t open_v();
virtual void close_v();
virtual blargg_err_t next_v();
virtual blargg_err_t rewind_v();
virtual blargg_err_t stat_v();
virtual blargg_err_t extract_v( void*, int );
private:
Gzip_Reader gr;
blargg_vector<char> name;
void set_info_();
};
#endif

View File

@ -0,0 +1,85 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Gzip_Reader.h"
#include "blargg_endian.h"
/* Copyright (C) 2006-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
Gzip_Reader::Gzip_Reader()
{
close();
}
Gzip_Reader::~Gzip_Reader()
{ }
static blargg_err_t gzip_reader_read( void* file, void* out, int* count )
{
return STATIC_CAST(File_Reader*,file)->read_avail( out, count );
}
blargg_err_t Gzip_Reader::calc_size()
{
size_ = in->size();
crc32_ = 0;
if ( inflater.deflated() )
{
byte trailer [8];
int old_pos = in->tell();
RETURN_ERR( in->seek( size_ - sizeof trailer ) );
RETURN_ERR( in->read( trailer, sizeof trailer ) );
RETURN_ERR( in->seek( old_pos ) );
crc32_ = get_le32( trailer + 0 );
unsigned n = get_le32( trailer + 4 );
if ( n > INT_MAX )
return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "gzip larger than 2GB" );
size_ = n;
}
return blargg_ok;
}
blargg_err_t Gzip_Reader::open( File_Reader* new_in )
{
close();
in = new_in;
RETURN_ERR( in->seek( 0 ) );
RETURN_ERR( inflater.begin( gzip_reader_read, new_in ) );
RETURN_ERR( inflater.set_mode( inflater.mode_auto ) );
RETURN_ERR( calc_size() );
set_remain( size_ );
return blargg_ok;
}
void Gzip_Reader::close()
{
in = NULL;
inflater.end();
}
blargg_err_t Gzip_Reader::read_v( void* out, int count )
{
assert( in );
int actual = count;
RETURN_ERR( inflater.read( out, &actual ) );
if ( actual != count )
return blargg_err_file_corrupt;
return blargg_ok;
}

View File

@ -0,0 +1,46 @@
// Transparently decompresses gzip files, as well as uncompressed
// File_Extractor 1.0.0
#ifndef GZIP_READER_H
#define GZIP_READER_H
#include "Data_Reader.h"
#include "Zlib_Inflater.h"
class Gzip_Reader : public Data_Reader {
public:
// Keeps pointer to reader until close(). If
blargg_err_t open( File_Reader* );
// True if file is open
bool opened() const { return in != NULL; }
// Frees memory
void close();
// True if file is compressed
bool deflated() const { return inflater.deflated(); }
// CRC-32 of data, of 0 if unavailable
unsigned int crc32() const { return crc32_; }
// Number of bytes read since opening
BOOST::uint64_t tell() const { return size_ - remain(); }
public:
Gzip_Reader();
virtual ~Gzip_Reader();
protected:
virtual blargg_err_t read_v( void*, int );
private:
File_Reader* in;
unsigned crc32_;
int size_;
Zlib_Inflater inflater;
blargg_err_t calc_size();
};
#endif

View File

@ -0,0 +1,197 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "blargg_common.h"
#if FEX_ENABLE_RAR
#include "Rar_Extractor.h"
/* Copyright (C) 2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
static blargg_err_t init_rar()
{
unrar_init();
return blargg_ok;
}
static File_Extractor* new_rar()
{
return BLARGG_NEW Rar_Extractor;
}
fex_type_t_ const fex_rar_type [1] = {{
".rar",
&new_rar,
"RAR archive",
&init_rar
}};
blargg_err_t Rar_Extractor::convert_err( unrar_err_t err )
{
blargg_err_t reader_err = reader.err;
reader.err = blargg_ok;
if ( reader_err )
check( err == unrar_next_err );
switch ( err )
{
case unrar_ok: return blargg_ok;
case unrar_err_memory: return blargg_err_memory;
case unrar_err_open: return blargg_err_file_read;
case unrar_err_not_arc: return blargg_err_file_type;
case unrar_err_corrupt: return blargg_err_file_corrupt;
case unrar_err_io: return blargg_err_file_io;
case unrar_err_arc_eof: return blargg_err_internal;
case unrar_err_encrypted: return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "RAR encryption not supported" );
case unrar_err_segmented: return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "RAR segmentation not supported" );
case unrar_err_huge: return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "Huge RAR files not supported" );
case unrar_err_old_algo: return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "Old RAR compression not supported" );
case unrar_err_new_algo: return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "RAR uses unknown newer compression" );
case unrar_next_err: break;
default:
check( false ); // unhandled RAR error
}
if ( reader_err )
return reader_err;
check( false );
return BLARGG_ERR( BLARGG_ERR_INTERNAL, "RAR archive" );
}
static inline unrar_err_t handle_err( Rar_Extractor::read_callback_t* h, blargg_err_t err )
{
if ( !err )
return unrar_ok;
h->err = err;
return unrar_next_err;
}
extern "C"
{
static unrar_err_t my_unrar_read( void* data, void* out, int* count, unrar_pos_t pos )
{
// TODO: 64-bit file support
Rar_Extractor::read_callback_t* h = STATIC_CAST(Rar_Extractor::read_callback_t*,data);
if ( h->pos != pos )
{
blargg_err_t err = h->in->seek( pos );
if ( err )
return handle_err( h, err );
h->pos = pos;
}
blargg_err_t err = h->in->read_avail( out, count );
if ( err )
return handle_err( h, err );
h->pos += *count;
return unrar_ok;
}
}
Rar_Extractor::Rar_Extractor() :
File_Extractor( fex_rar_type )
{
unrar = NULL;
}
Rar_Extractor::~Rar_Extractor()
{
close();
}
blargg_err_t Rar_Extractor::open_v()
{
reader.pos = 0;
reader.in = &arc();
reader.err = blargg_ok;
RETURN_ERR( arc().seek( 0 ) );
RETURN_ERR( convert_err( unrar_open_custom( &unrar, &my_unrar_read, &reader ) ) );
return skip_unextractables();
}
void Rar_Extractor::close_v()
{
unrar_close( unrar );
unrar = NULL;
reader.in = NULL;
}
blargg_err_t Rar_Extractor::skip_unextractables()
{
while ( !unrar_done( unrar ) && unrar_try_extract( unrar ) )
RETURN_ERR( next_raw() );
if ( !unrar_done( unrar ) )
{
unrar_info_t const* info = unrar_info( unrar );
set_name( info->name, (info->name_w && *info->name_w) ? info->name_w : NULL );
set_info( info->size, info->dos_date, (info->is_crc32 ? info->crc : 0) );
}
return blargg_ok;
}
blargg_err_t Rar_Extractor::next_raw()
{
return convert_err( unrar_next( unrar ) );
}
blargg_err_t Rar_Extractor::next_v()
{
RETURN_ERR( next_raw() );
return skip_unextractables();
}
blargg_err_t Rar_Extractor::rewind_v()
{
RETURN_ERR( convert_err( unrar_rewind( unrar ) ) );
return skip_unextractables();
}
fex_pos_t Rar_Extractor::tell_arc_v() const
{
return unrar_tell( unrar );
}
blargg_err_t Rar_Extractor::seek_arc_v( fex_pos_t pos )
{
RETURN_ERR( convert_err( unrar_seek( unrar, pos ) ) );
return skip_unextractables();
}
blargg_err_t Rar_Extractor::data_v( void const** out )
{
return convert_err( unrar_extract_mem( unrar, out ) );
}
blargg_err_t Rar_Extractor::extract_v( void* out, int count )
{
// We can read entire file directly into user buffer
if ( count == size() )
return convert_err( unrar_extract( unrar, out, count ) );
// This will call data_v() and copy from that buffer for us
return File_Extractor::extract_v( out, count );
}
#endif

View File

@ -0,0 +1,43 @@
// RAR archive extractor
// File_Extractor 1.0.0
#ifndef RAR_EXTRACTOR_H
#define RAR_EXTRACTOR_H
#include "File_Extractor.h"
#include "unrar/unrar.h"
class Rar_Extractor : public File_Extractor {
public:
Rar_Extractor();
virtual ~Rar_Extractor();
struct read_callback_t
{
const char* err;
BOOST::uint64_t pos;
File_Reader* in;
};
protected:
virtual blargg_err_t open_v();
virtual void close_v();
virtual blargg_err_t next_v();
virtual blargg_err_t rewind_v();
virtual fex_pos_t tell_arc_v() const;
virtual blargg_err_t seek_arc_v( fex_pos_t );
virtual blargg_err_t data_v( void const** );
virtual blargg_err_t extract_v( void*, int );
private:
unrar_t* unrar;
read_callback_t reader;
blargg_err_t convert_err( unrar_err_t );
blargg_err_t skip_unextractables();
blargg_err_t next_raw();
};
#endif

View File

@ -0,0 +1,290 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Zip7_Extractor.h"
extern "C" {
#include "7z_C/7z.h"
#include "7z_C/7zAlloc.h"
#include "7z_C/7zCrc.h"
}
#include <time.h>
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
static ISzAlloc zip7_alloc = { SzAlloc, SzFree };
static ISzAlloc zip7_alloc_temp = { SzAllocTemp, SzFreeTemp };
struct Zip7_Extractor_Impl :
ISeekInStream
{
CLookToRead look;
CSzArEx db;
// SzExtract state
UInt32 block_index;
Byte* buf;
size_t buf_size;
File_Reader* in;
const char* in_err;
};
extern "C"
{
// 7-zip callbacks pass an ISeekInStream* for data, so we must cast it
// back to ISeekInStream* FIRST, then cast to our Impl structure
static SRes zip7_read_( void* vstream, void* out, size_t* size )
{
assert( out && size );
ISeekInStream* stream = STATIC_CAST(ISeekInStream*,vstream);
Zip7_Extractor_Impl* impl = STATIC_CAST(Zip7_Extractor_Impl*,stream);
long lsize = *size;
blargg_err_t err = impl->in->read_avail( out, &lsize );
if ( err )
{
*size = 0;
impl->in_err = err;
return SZ_ERROR_READ;
}
*size = lsize;
return SZ_OK;
}
static SRes zip7_seek_( void* vstream, Int64* pos, ESzSeek mode )
{
ISeekInStream* stream = STATIC_CAST(ISeekInStream*,vstream);
Zip7_Extractor_Impl* impl = STATIC_CAST(Zip7_Extractor_Impl*,stream);
if ( mode == SZ_SEEK_CUR )
{
assert( *pos == 0 ); // only used to find the archive start position
*pos = impl->in->tell();
return SZ_OK;
}
if ( mode == SZ_SEEK_END )
{
assert( *pos == 0 ); // only used to find file length
*pos = impl->in->size();
return SZ_OK;
}
assert( mode == SZ_SEEK_SET );
blargg_err_t err = impl->in->seek( *pos );
if ( err )
{
// don't set in_err in this case, since it might be benign
if ( err == blargg_err_file_eof )
return SZ_ERROR_INPUT_EOF;
impl->in_err = err;
return SZ_ERROR_READ;
}
return SZ_OK;
}
}
blargg_err_t Zip7_Extractor::zip7_err( int err )
{
// TODO: ignore in_err in some cases? unsure about which error to use
blargg_err_t in_err = impl->in_err;
impl->in_err = NULL;
if ( in_err )
{
check( err != SZ_OK );
return in_err;
}
switch ( err )
{
case SZ_OK: return blargg_ok;
case SZ_ERROR_MEM: return blargg_err_memory;
case SZ_ERROR_READ: return blargg_err_file_io;
case SZ_ERROR_CRC:
case SZ_ERROR_DATA:
case SZ_ERROR_INPUT_EOF:
case SZ_ERROR_ARCHIVE: return blargg_err_file_corrupt;
case SZ_ERROR_UNSUPPORTED: return blargg_err_file_feature;
case SZ_ERROR_NO_ARCHIVE: return blargg_err_file_type;
}
return blargg_err_generic;
}
static blargg_err_t init_7z()
{
static bool inited;
if ( !inited )
{
inited = true;
CrcGenerateTable();
}
return blargg_ok;
}
static File_Extractor* new_7z()
{
return BLARGG_NEW Zip7_Extractor;
}
fex_type_t_ const fex_7z_type [1] = {{
".7z",
&new_7z,
"7-zip archive",
&init_7z
}};
Zip7_Extractor::Zip7_Extractor() :
File_Extractor( fex_7z_type )
{
impl = NULL;
}
Zip7_Extractor::~Zip7_Extractor()
{
close();
}
blargg_err_t Zip7_Extractor::open_v()
{
RETURN_ERR( init_7z() );
if ( !impl )
{
impl = (Zip7_Extractor_Impl*) malloc( sizeof *impl );
CHECK_ALLOC( impl );
}
impl->in = &arc();
impl->block_index = (UInt32) -1;
impl->buf = NULL;
impl->buf_size = 0;
LookToRead_CreateVTable( &impl->look, false );
impl->ISeekInStream::Read = zip7_read_;
impl->ISeekInStream::Seek = zip7_seek_;
impl->look.realStream = impl;
LookToRead_Init( &impl->look );
SzArEx_Init( &impl->db );
impl->in_err = NULL;
RETURN_ERR( zip7_err( SzArEx_Open( &impl->db, &impl->look.s,
&zip7_alloc, &zip7_alloc_temp ) ) );
return seek_arc_v( 0 );
}
void Zip7_Extractor::close_v()
{
if ( impl )
{
if ( impl->in )
{
impl->in = NULL;
SzArEx_Free( &impl->db, &zip7_alloc );
}
IAlloc_Free( &zip7_alloc, impl->buf );
free( impl );
impl = NULL;
}
}
blargg_err_t Zip7_Extractor::next_v()
{
while ( ++index < (int) impl->db.db.NumFiles )
{
CSzFileItem const& item = impl->db.db.Files [index];
if ( !item.IsDir )
{
unsigned long date = 0;
if ( item.MTimeDefined )
{
const UInt64 epoch = ((UInt64)0x019db1de << 32) + 0xd53e8000;
/* 0x019db1ded53e8000ULL: 1970-01-01 00:00:00 (UTC) */
struct tm tm;
UInt64 time = ((UInt64)item.MTime.High << 32) + item.MTime.Low - epoch;
time /= 1000000;
time_t _time = time;
#ifdef _MSC_VER
localtime_s( &tm, &_time );
#else
localtime_r( &_time, &tm );
#endif
date = ( tm.tm_sec >> 1 ) & 0x1F |
(( tm.tm_min & 0x3F ) << 5 ) |
(( tm.tm_hour & 0x1F ) << 11 ) |
(( tm.tm_mday & 0x1F ) << 16 ) |
(( ( tm.tm_mon + 1 ) & 0x0F ) << 21 ) |
(( ( tm.tm_year - 80 ) & 0x7F ) << 25 );
}
size_t name_length = SzArEx_GetFileNameUtf16( &impl->db, index, 0 );
name16.resize( name_length );
SzArEx_GetFileNameUtf16( &impl->db, index, ( UInt16 * ) name16.begin() );
char * temp = blargg_to_utf8( name16.begin() );
if ( !temp ) temp = "";
size_t utf8_length = strlen( temp );
name8.resize( utf8_length + 1 );
memcpy( name8.begin(), temp, utf8_length + 1 );
free( temp );
set_name( name8.begin(), name16.begin() );
set_info( item.Size, 0, (item.CrcDefined ? item.Crc : 0) );
break;
}
}
return blargg_ok;
}
blargg_err_t Zip7_Extractor::rewind_v()
{
return seek_arc_v( 0 );
}
fex_pos_t Zip7_Extractor::tell_arc_v() const
{
return index;
}
blargg_err_t Zip7_Extractor::seek_arc_v( fex_pos_t pos )
{
assert( 0 <= pos && pos <= (int) impl->db.db.NumFiles );
index = pos - 1;
return next_v();
}
blargg_err_t Zip7_Extractor::data_v( void const** out )
{
impl->in_err = NULL;
size_t offset = 0;
size_t count = 0;
RETURN_ERR( zip7_err( SzArEx_Extract( &impl->db, &impl->look.s, index,
&impl->block_index, &impl->buf, &impl->buf_size,
&offset, &count, &zip7_alloc, &zip7_alloc_temp ) ) );
assert( count == (size_t) size() );
*out = impl->buf + offset;
return blargg_ok;
}

View File

@ -0,0 +1,36 @@
// 7-zip archive extractor
// File_Extractor 1.0.0
#ifndef ZIP7_EXTRACTOR_H
#define ZIP7_EXTRACTOR_H
#include "File_Extractor.h"
struct Zip7_Extractor_Impl;
class Zip7_Extractor : public File_Extractor {
public:
Zip7_Extractor();
virtual ~Zip7_Extractor();
protected:
virtual blargg_err_t open_v();
virtual void close_v();
virtual blargg_err_t next_v();
virtual blargg_err_t rewind_v();
virtual fex_pos_t tell_arc_v() const;
virtual blargg_err_t seek_arc_v( fex_pos_t );
virtual blargg_err_t data_v( void const** out );
private:
Zip7_Extractor_Impl* impl;
int index;
blargg_vector<char> name8;
blargg_vector<blargg_wchar_t> name16;
blargg_err_t zip7_err( int err );
};
#endif

View File

@ -0,0 +1,390 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Zip_Extractor.h"
#include "blargg_endian.h"
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
/* To avoid copying filename string from catalog, I terminate it by modifying
catalog data. This potentially requires moving the first byte of the type
of the next entry elsewhere; I move it to the first byte of made_by. Kind
of hacky, but I'd rather not have to allocate memory for a copy of it. */
#include "blargg_source.h"
/* Reads this much from end of file when first opening. Only this much is
searched for the end catalog entry. If whole catalog is within this data,
nothing more needs to be read on open. */
int const end_read_size = 8 * 1024;
/* Reads are are made using file offset that's a multiple of this,
increasing performance. */
int const disk_block_size = 4 * 1024;
// Read buffer used for extracting file data
int const read_buf_size = 16 * 1024;
struct header_t
{
char type [4];
byte vers [2];
byte flags [2];
byte method [2];
byte date [4];
byte crc [4];
byte raw_size [4];
byte size [4];
byte filename_len [2];
byte extra_len [2];
char filename [2]; // [filename_len]
//char extra [extra_len];
};
int const header_size = 30;
struct entry_t
{
char type [4];
byte made_by [2];
byte vers [2];
byte flags [2];
byte method [2];
byte date [4];
byte crc [4];
byte raw_size [4];
byte size [4];
byte filename_len [2];
byte extra_len [2];
byte comment_len [2];
byte disk [2];
byte int_attrib [2];
byte ext_attrib [4];
byte file_offset [4];
char filename [2]; // [filename_len]
//char extra [extra_len];
//char comment [comment_len];
};
int const entry_size = 46;
struct end_entry_t
{
char type [4];
byte disk [2];
byte first_disk [2];
byte disk_entry_count [2];
byte entry_count [2];
byte dir_size [4];
byte dir_offset [4];
byte comment_len [2];
char comment [2]; // [comment_len]
};
int const end_entry_size = 22;
static blargg_err_t init_zip()
{
get_crc_table(); // initialize zlib's CRC-32 tables
return blargg_ok;
}
static File_Extractor* new_zip()
{
return BLARGG_NEW Zip_Extractor;
}
fex_type_t_ const fex_zip_type [1] = {{
".zip",
&new_zip,
"ZIP archive",
&init_zip
}};
Zip_Extractor::Zip_Extractor() :
File_Extractor( fex_zip_type )
{
Zip_Extractor::clear_file_v();
// If these fail, structures had extra padding inserted by compiler
assert( offsetof (header_t,filename) == header_size );
assert( offsetof (entry_t,filename) == entry_size );
assert( offsetof (end_entry_t,comment) == end_entry_size );
}
Zip_Extractor::~Zip_Extractor()
{
close();
}
blargg_err_t Zip_Extractor::open_path_v()
{
RETURN_ERR( open_arc_file( true ) );
return File_Extractor::open_path_v();
}
inline
void Zip_Extractor::reorder_entry_header( int offset )
{
catalog [offset + 0] = 0;
catalog [offset + 4] = 'P';
}
blargg_err_t Zip_Extractor::open_v()
{
if ( arc().size() < end_entry_size )
return blargg_err_file_type;
// Read final end_read_size bytes of file
BOOST::uint64_t file_pos = max( (BOOST::uint64_t) 0, arc().size() - end_read_size );
file_pos -= file_pos % disk_block_size;
RETURN_ERR( catalog.resize( arc().size() - file_pos ) );
RETURN_ERR( arc().seek( file_pos ) );
RETURN_ERR( arc().read( catalog.begin(), catalog.size() ) );
// Find end-of-catalog entry
BOOST::uint64_t end_pos = catalog.size() - end_entry_size;
while ( end_pos >= 0 && memcmp( &catalog [end_pos], "PK\5\6", 4 ) )
end_pos--;
if ( end_pos < 0 )
return blargg_err_file_type;
end_entry_t const& end_entry = (end_entry_t&) catalog [end_pos];
end_pos += file_pos;
// some idiotic zip compressors add data to end of zip without setting comment len
// check( arc().size() == end_pos + end_entry_size + get_le16( end_entry.comment_len ) );
// Find file offset of beginning of catalog
catalog_begin = get_le32( end_entry.dir_offset );
int catalog_size = end_pos - catalog_begin;
if ( catalog_size < 0 )
return blargg_err_file_corrupt;
catalog_size += end_entry_size;
// See if catalog is entirely contained in bytes already read
BOOST::uint64_t begin_offset = catalog_begin - file_pos;
if ( begin_offset >= 0 )
memmove( catalog.begin(), &catalog [begin_offset], catalog_size );
RETURN_ERR( catalog.resize( catalog_size ) );
if ( begin_offset < 0 )
{
// Catalog begins before bytes read, so it needs to be read
RETURN_ERR( arc().seek( catalog_begin ) );
RETURN_ERR( arc().read( catalog.begin(), catalog.size() ) );
}
// First entry in catalog should be a file or end of archive
if ( memcmp( catalog.begin(), "PK\1\2", 4 ) && memcmp( catalog.begin(), "PK\5\6", 4 ) )
return blargg_err_file_type;
reorder_entry_header( 0 );
return rewind_v();
}
void Zip_Extractor::close_v()
{
catalog.clear();
}
// Scanning
inline
static bool is_normal_file( entry_t const& e, unsigned len )
{
int last_char = (len ? e.filename [len - 1] : '/');
bool is_dir = (last_char == '/' || last_char == '\\');
if ( is_dir && get_le32( e.size ) == 0 )
return false;
check( !is_dir );
// Mac OS X puts meta-information in separate files with normal extensions,
// so they must be filtered out or caller will mistake them for normal files.
if ( e.made_by[1] == 3 )
{
const char* dir = strrchr( e.filename, '/' );
if ( dir )
dir++;
else
dir = e.filename;
if ( *dir == '.' )
return false;
if ( !strcmp( dir, "Icon\x0D" ) )
return false;
}
return true;
}
blargg_err_t Zip_Extractor::update_info( bool advance_first )
{
while ( 1 )
{
entry_t& e = (entry_t&) catalog [catalog_pos];
if ( memcmp( e.type, "\0K\1\2P", 5 ) && memcmp( e.type, "PK\1\2", 4 ) )
{
check( !memcmp( e.type, "\0K\5\6P", 5 ) );
break;
}
unsigned len = get_le16( e.filename_len );
int next_offset = catalog_pos + entry_size + len + get_le16( e.extra_len ) +
get_le16( e.comment_len );
if ( (unsigned) next_offset > catalog.size() - end_entry_size )
return blargg_err_file_corrupt;
if ( catalog [next_offset] == 'P' )
reorder_entry_header( next_offset );
if ( !advance_first )
{
e.filename [len] = 0; // terminate name
if ( is_normal_file( e, len ) )
{
set_name( e.filename );
set_info( get_le32( e.size ), get_le32( e.date ), get_le32( e.crc ) );
break;
}
}
catalog_pos = next_offset;
advance_first = false;
}
return blargg_ok;
}
blargg_err_t Zip_Extractor::next_v()
{
return update_info( true );
}
blargg_err_t Zip_Extractor::rewind_v()
{
return seek_arc_v( 0 );
}
fex_pos_t Zip_Extractor::tell_arc_v() const
{
return catalog_pos;
}
blargg_err_t Zip_Extractor::seek_arc_v( fex_pos_t pos )
{
assert( 0 <= pos && (size_t) pos <= catalog.size() - end_entry_size );
catalog_pos = pos;
return update_info( false );
}
// Reading
void Zip_Extractor::clear_file_v()
{
buf.end();
}
blargg_err_t Zip_Extractor::inflater_read( void* data, void* out, int* count )
{
Zip_Extractor& self = *STATIC_CAST(Zip_Extractor*,data);
if ( *count > self.raw_remain )
*count = self.raw_remain;
self.raw_remain -= *count;
return self.arc().read( out, *count );
}
blargg_err_t Zip_Extractor::fill_buf( int offset, int buf_size, int initial_read )
{
raw_remain = arc().size() - offset;
RETURN_ERR( arc().seek( offset ) );
return buf.begin( inflater_read, this, buf_size, initial_read );
}
blargg_err_t Zip_Extractor::first_read( int count )
{
entry_t const& e = (entry_t&) catalog [catalog_pos];
// Determine compression
{
int method = get_le16( e.method );
if ( (method && method != Z_DEFLATED) || get_le16( e.vers ) > 20 )
return BLARGG_ERR( BLARGG_ERR_FILE_FEATURE, "compression method" );
file_deflated = (method != 0);
}
int raw_size = get_le32( e.raw_size );
int file_offset = get_le32( e.file_offset );
int align = file_offset % disk_block_size;
{
// read header
int buf_size = 3 * disk_block_size - 1 + raw_size; // space for all raw data
buf_size -= buf_size % disk_block_size;
int initial_read = buf_size;
if ( !file_deflated || count < size() )
{
buf_size = read_buf_size;
initial_read = disk_block_size * 2;
}
// TODO: avoid re-reading if buffer already has data we want?
RETURN_ERR( fill_buf( file_offset - align, buf_size, initial_read ) );
}
header_t const& h = (header_t&) buf.data() [align];
if ( buf.filled() < align + header_size || memcmp( h.type, "PK\3\4", 4 ) )
return blargg_err_file_corrupt;
// CRCs of header and file data
correct_crc = get_le32( h.crc );
if ( !correct_crc )
correct_crc = get_le32( e.crc );
check( correct_crc == get_le32( e.crc ) ); // catalog CRC should match
crc = ::crc32( 0, NULL, 0 );
// Data offset
int data_offset = file_offset + header_size +
get_le16( h.filename_len ) + get_le16( h.extra_len );
if ( data_offset + raw_size > catalog_begin )
return blargg_err_file_corrupt;
// Refill buffer if there's lots of extra data after header
int buf_offset = data_offset - file_offset + align;
if ( buf_offset > buf.filled() )
{
// TODO: this will almost never occur, making it a good place for bugs
buf_offset = data_offset % disk_block_size;
RETURN_ERR( fill_buf( data_offset - buf_offset, read_buf_size, disk_block_size ) );
}
raw_remain = raw_size - (buf.filled() - buf_offset);
return buf.set_mode( (file_deflated ? buf.mode_raw_deflate : buf.mode_copy), buf_offset );
}
blargg_err_t Zip_Extractor::extract_v( void* out, int count )
{
if ( tell() == 0 )
RETURN_ERR( first_read( count ) );
int actual = count;
RETURN_ERR( buf.read( out, &actual ) );
if ( actual < count )
return blargg_err_file_corrupt;
crc = ::crc32( crc, (byte const*) out, count );
if ( count == reader().remain() && crc != correct_crc )
return blargg_err_file_corrupt;
return blargg_ok;
}

View File

@ -0,0 +1,45 @@
// ZIP archive extractor. Only supports deflation and store (no compression).
// File_Extractor 1.0.0
#ifndef ZIP_EXTRACTOR_H
#define ZIP_EXTRACTOR_H
#include "File_Extractor.h"
#include "Zlib_Inflater.h"
class Zip_Extractor : public File_Extractor {
public:
Zip_Extractor();
virtual ~Zip_Extractor();
protected:
virtual blargg_err_t open_path_v();
virtual blargg_err_t open_v();
virtual void close_v();
virtual void clear_file_v();
virtual blargg_err_t next_v();
virtual blargg_err_t rewind_v();
virtual fex_pos_t tell_arc_v() const;
virtual blargg_err_t seek_arc_v( fex_pos_t );
virtual blargg_err_t extract_v( void*, int );
private:
blargg_vector<char> catalog;
int catalog_begin; // offset of first catalog entry in file (to detect corruption)
int catalog_pos; // position of current entry in catalog
BOOST::uint64_t raw_remain; // bytes remaining to be read from zip file for current file
unsigned crc; // ongoing CRC of extracted bytes
unsigned correct_crc;
bool file_deflated;
Zlib_Inflater buf;
blargg_err_t fill_buf( int offset, int buf_size, int initial_read );
blargg_err_t update_info( bool advance_first );
blargg_err_t first_read( int count );
void reorder_entry_header( int offset );
static blargg_err_t inflater_read( void* data, void* out, int* count );
};
#endif

View File

@ -0,0 +1,257 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Zlib_Inflater.h"
/* Copyright (C) 2006-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
int const block_size = 4096;
static const char* get_zlib_err( int code )
{
assert( code != Z_OK );
switch ( code )
{
case Z_MEM_ERROR: return blargg_err_memory;
case Z_DATA_ERROR: return blargg_err_file_corrupt;
// TODO: handle more error codes
}
const char* str = zError( code );
if ( !str )
str = BLARGG_ERR( BLARGG_ERR_GENERIC, "problem unzipping data" );
return str;
}
void Zlib_Inflater::end()
{
if ( deflated_ )
{
deflated_ = false;
if ( inflateEnd( &zbuf ) )
check( false );
}
buf.clear();
static z_stream const empty = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
memcpy( &zbuf, &empty, sizeof zbuf );
}
Zlib_Inflater::Zlib_Inflater()
{
deflated_ = false;
end(); // initialize things
}
Zlib_Inflater::~Zlib_Inflater()
{
end();
}
blargg_err_t Zlib_Inflater::fill_buf( int count )
{
byte* out = buf.end() - count;
RETURN_ERR( callback( user_data, out, &count ) );
zbuf.avail_in = count;
zbuf.next_in = out;
return blargg_ok;
}
blargg_err_t Zlib_Inflater::begin( callback_t new_callback, void* new_user_data,
int new_buf_size, int initial_read )
{
callback = new_callback;
user_data = new_user_data;
end();
// TODO: decide whether using different size on alloc failure is a good idea
//RETURN_ERR( buf.resize( new_buf_size ? new_buf_size : 4 * block_size ) );
if ( new_buf_size && buf.resize( new_buf_size ) )
{
ACK_FAILURE();
new_buf_size = 0;
}
if ( !new_buf_size )
{
RETURN_ERR( buf.resize( 4 * block_size ) );
initial_read = 0;
}
// Fill buffer with some data, less than normal buffer size since caller might
// just be examining beginning of file.
return fill_buf( initial_read ? initial_read : block_size );
}
blargg_err_t Zlib_Inflater::set_mode( mode_t mode, int data_offset )
{
zbuf.next_in += data_offset;
zbuf.avail_in -= data_offset;
if ( mode == mode_auto )
{
// examine buffer for gzip header
mode = mode_copy;
unsigned const min_gzip_size = 2 + 8 + 8;
if ( zbuf.avail_in >= min_gzip_size &&
zbuf.next_in [0] == 0x1F && zbuf.next_in [1] == 0x8B )
mode = mode_ungz;
}
if ( mode != mode_copy )
{
int wb = MAX_WBITS + 16; // have zlib handle gzip header
if ( mode == mode_raw_deflate )
wb = -MAX_WBITS;
int zerr = inflateInit2( &zbuf, wb );
if ( zerr )
{
zbuf.next_in = NULL;
return get_zlib_err( zerr );
}
deflated_ = true;
}
return blargg_ok;
}
/*
// Reads/inflates entire stream. All input must be in buffer, and count must be total
// of all output.
blargg_err_t read_all( void* out, int count );
// zlib automatically applies this optimization (uses inflateFast)
// TODO: remove
blargg_err_t Zlib_Inflater::read_all( void* out, int count )
{
if ( deflated_ )
{
zbuf.next_out = (Bytef*) out;
zbuf.avail_out = count;
int err = inflate( &zbuf, Z_FINISH );
if ( zbuf.avail_out || err != Z_STREAM_END )
return blargg_err_file_corrupt;
}
else
{
if ( zbuf.avail_in < count )
return blargg_err_file_corrupt;
memcpy( out, zbuf.next_in, count );
zbuf.next_in += count;
zbuf.avail_in -= count;
}
return blargg_ok;
}
*/
blargg_err_t Zlib_Inflater::read( void* out, int* count_io )
{
int remain = *count_io;
if ( remain && zbuf.next_in )
{
if ( deflated_ )
{
zbuf.next_out = (Bytef*) out;
zbuf.avail_out = remain;
while ( 1 )
{
uInt old_avail_in = zbuf.avail_in;
int err = inflate( &zbuf, Z_NO_FLUSH );
if ( err == Z_STREAM_END )
{
remain = zbuf.avail_out;
end();
break; // no more data to inflate
}
if ( err && (err != Z_BUF_ERROR || old_avail_in) )
return get_zlib_err( err );
if ( !zbuf.avail_out )
{
remain = 0;
break; // requested number of bytes inflated
}
if ( zbuf.avail_in )
{
// inflate() should never leave input if there's still space for output
check( false );
return blargg_err_file_corrupt;
}
RETURN_ERR( fill_buf( buf.size() ) );
if ( !zbuf.avail_in )
return blargg_err_file_corrupt; // stream didn't end but there's no more data
}
}
else
{
while ( 1 )
{
// copy buffered data
if ( zbuf.avail_in )
{
long count = zbuf.avail_in;
if ( count > remain )
count = remain;
memcpy( out, zbuf.next_in, count );
zbuf.total_out += count;
out = (char*) out + count;
remain -= count;
zbuf.next_in += count;
zbuf.avail_in -= count;
}
if ( !zbuf.avail_in && zbuf.next_in < buf.end() )
{
end();
break;
}
// read large request directly
if ( remain + zbuf.total_out % block_size >= buf.size() )
{
int count = remain;
RETURN_ERR( callback( user_data, out, &count ) );
zbuf.total_out += count;
out = (char*) out + count;
remain -= count;
if ( remain )
{
end();
break;
}
}
if ( !remain )
break;
RETURN_ERR( fill_buf( buf.size() - zbuf.total_out % block_size ) );
}
}
}
*count_io -= remain;
return blargg_ok;
}

View File

@ -0,0 +1,70 @@
// Simplifies use of zlib for inflating data
// File_Extractor 1.0.0
#ifndef ZLIB_INFLATER_H
#define ZLIB_INFLATER_H
#include "blargg_common.h"
#include "Data_Reader.h"
#include <zlib.h>
class Zlib_Inflater {
public:
// Reads at most min(*count,bytes_until_eof()) bytes into *out and set *count
// to that number, or returns error if that many can't be read.
typedef blargg_err_t (*callback_t)( void* user_data, void* out, int* count );
// Begins by setting callback and filling buffer. Default buffer is 16K and
// filled to 4K, or specify buf_size and initial_read for custom buffer size
// and how much to read initially.
blargg_err_t begin( callback_t, void* user_data,
int buf_size = 0, int initial_read = 0 );
// Data read into buffer by begin()
const unsigned char* data() const { return zbuf.next_in; }
int filled() const { return zbuf.avail_in; }
// Begins inflation using specified mode. Using mode_auto selects between
// mode_copy and mode_ungz by examining first two bytes of buffer. Use
// buf_offset to specify where data begins in buffer, in case there is
// header data that should be skipped.
enum mode_t { mode_copy, mode_ungz, mode_raw_deflate, mode_auto };
blargg_err_t set_mode( mode_t, int buf_offset = 0 );
// True if set_mode() has been called with mode_ungz or mode_raw_deflate
bool deflated() const { return deflated_; }
// Reads/inflates at most *count_io bytes into *out and sets *count_io to actual
// number of bytes read (less than requested if end of data was reached).
// Buffers source data internally, even in copy mode, so input file can be
// unbuffered without sacrificing performance.
blargg_err_t read( void* out, int* count_io );
// Total number of bytes read since begin()
int tell() const { return zbuf.total_out; }
// Ends inflation and frees memory
void end();
private:
// noncopyable
Zlib_Inflater( const Zlib_Inflater& );
Zlib_Inflater& operator = ( const Zlib_Inflater& );
// Implementation
public:
Zlib_Inflater();
~Zlib_Inflater();
private:
z_stream_s zbuf;
blargg_vector<unsigned char> buf;
bool deflated_;
callback_t callback;
void* user_data;
blargg_err_t fill_buf( int count );
};
#endif

View File

@ -0,0 +1,51 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "blargg_common.h"
/* Copyright (C) 2008-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
void blargg_vector_::init()
{
begin_ = NULL;
size_ = 0;
}
void blargg_vector_::clear()
{
void* p = begin_;
begin_ = NULL;
size_ = 0;
free( p );
}
blargg_err_t blargg_vector_::resize_( size_t n, size_t elem_size )
{
if ( n != size_ )
{
if ( n == 0 )
{
// Simpler to handle explicitly. Realloc will handle a size of 0,
// but then we have to avoid raising an error for a NULL return.
clear();
}
else
{
void* p = realloc( begin_, n * elem_size );
CHECK_ALLOC( p );
begin_ = p;
size_ = n;
}
}
return blargg_ok;
}

View File

@ -0,0 +1,217 @@
// Sets up common environment for Shay Green's libraries.
// To change configuration options, modify blargg_config.h, not this file.
// File_Extractor 1.0.0
#ifndef BLARGG_COMMON_H
#define BLARGG_COMMON_H
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <limits.h>
typedef const char* blargg_err_t; // 0 on success, otherwise error string
#ifdef _WIN32
typedef wchar_t blargg_wchar_t;
#else
typedef uint16_t blargg_wchar_t;
#endif
inline size_t blargg_wcslen( const blargg_wchar_t* str )
{
size_t length = 0;
while ( *str++ ) length++;
return length;
}
// Success; no error
blargg_err_t const blargg_ok = 0;
// BLARGG_RESTRICT: equivalent to C99's restrict, where supported
#if __GNUC__ >= 3 || _MSC_VER >= 1100
#define BLARGG_RESTRICT __restrict
#else
#define BLARGG_RESTRICT
#endif
#if __cplusplus >= 199711
#define BLARGG_MUTABLE mutable
#else
#define BLARGG_MUTABLE
#endif
/* BLARGG_4CHAR('a','b','c','d') = 'abcd' (four character integer constant).
I don't just use 'abcd' because that's implementation-dependent. */
#define BLARGG_4CHAR( a, b, c, d ) \
((a&0xFF)*0x1000000 + (b&0xFF)*0x10000 + (c&0xFF)*0x100 + (d&0xFF))
/* BLARGG_STATIC_ASSERT( expr ): Generates compile error if expr is 0.
Can be used at file, function, or class scope. */
#ifdef _MSC_VER
// MSVC6 (_MSC_VER < 1300) __LINE__ fails when /Zl is specified
#define BLARGG_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / (int) !!(expr) - 1] )
#else
// Others fail when declaring same function multiple times in class,
// so differentiate them by line
#define BLARGG_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / !!(expr) - 1] [__LINE__] )
#endif
/* Pure virtual functions cause a vtable entry to a "called pure virtual"
error handler, requiring linkage to the C++ runtime library. This macro is
used in place of the "= 0", and simply expands to its argument. During
development, it expands to "= 0", allowing detection of missing overrides. */
#define BLARGG_PURE( def ) def
/* My code depends on ASCII anywhere a character or string constant is
compared with data read from a file, and anywhere file data is read and
treated as a string. */
#if '\n'!=0x0A || ' '!=0x20 || '0'!=0x30 || 'A'!=0x41 || 'a'!=0x61
#error "ASCII character set required"
#endif
/* My code depends on int being at least 32 bits. Almost everything these days
uses at least 32-bit ints, so it's hard to even find a system with 16-bit ints
to test with. The issue can't be gotten around by using a suitable blargg_int
everywhere either, because int is often converted to implicitly when doing
arithmetic on smaller types. */
#if UINT_MAX < 0xFFFFFFFF
#error "int must be at least 32 bits"
#endif
// In case compiler doesn't support these properly. Used rarely.
#define STATIC_CAST(T,expr) static_cast<T> (expr)
#define CONST_CAST( T,expr) const_cast<T> (expr)
// User configuration can override the above macros if necessary
#include "blargg_config.h"
/* BLARGG_DEPRECATED [_TEXT] for any declarations/text to be removed in a
future version. In GCC, we can let the compiler warn. In other compilers,
we strip it out unless BLARGG_LEGACY is true. */
#if BLARGG_LEGACY
// Allow old client code to work without warnings
#define BLARGG_DEPRECATED_TEXT( text ) text
#define BLARGG_DEPRECATED( text ) text
#elif __GNUC__ >= 4
// In GCC, we can mark declarations and let the compiler warn
#define BLARGG_DEPRECATED_TEXT( text ) text
#define BLARGG_DEPRECATED( text ) __attribute__ ((deprecated)) text
#else
// By default, deprecated items are removed, to avoid use in new code
#define BLARGG_DEPRECATED_TEXT( text )
#define BLARGG_DEPRECATED( text )
#endif
/* BOOST::int8_t, BOOST::int32_t, etc.
I used BOOST since I originally was going to allow use of the boost library
for prividing the definitions. If I'm defining them, they must be scoped or
else they could conflict with the standard ones at global scope. Even if
HAVE_STDINT_H isn't defined, I can't assume the typedefs won't exist at
global scope already. */
#if defined (HAVE_STDINT_H) || \
UCHAR_MAX != 0xFF || USHRT_MAX != 0xFFFF || UINT_MAX != 0xFFFFFFFF
#include <stdint.h>
#define BOOST
#else
struct BOOST
{
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t;
typedef unsigned short uint16_t;
typedef int int32_t;
typedef unsigned int uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
};
#endif
/* My code is not written with exceptions in mind, so either uses new (nothrow)
OR overrides operator new in my classes. The former is best since clients
creating objects will get standard exceptions on failure, but that causes it
to require the standard C++ library. So, when the client is using the C
interface, I override operator new to use malloc. */
// BLARGG_DISABLE_NOTHROW is put inside classes
#ifndef BLARGG_DISABLE_NOTHROW
// throw spec mandatory in ISO C++ if NULL can be returned
#if __cplusplus >= 199711 || __GNUC__ >= 3 || _MSC_VER >= 1300
#define BLARGG_THROWS_NOTHING throw ()
#else
#define BLARGG_THROWS_NOTHING
#endif
#define BLARGG_DISABLE_NOTHROW \
void* operator new ( size_t s ) BLARGG_THROWS_NOTHING { return malloc( s ); }\
void operator delete( void* p ) BLARGG_THROWS_NOTHING { free( p ); }
#define BLARGG_NEW new
#else
// BLARGG_NEW is used in place of new in library code
#include <new>
#define BLARGG_NEW new (std::nothrow)
#endif
class blargg_vector_ {
protected:
void* begin_;
size_t size_;
void init();
blargg_err_t resize_( size_t n, size_t elem_size );
public:
size_t size() const { return size_; }
void clear();
};
// Very lightweight vector for POD types (no constructor/destructor)
template<class T>
class blargg_vector : public blargg_vector_ {
union T_must_be_pod { T t; }; // fails if T is not POD
public:
blargg_vector() { init(); }
~blargg_vector() { clear(); }
blargg_err_t resize( size_t n ) { return resize_( n, sizeof (T) ); }
T* begin() { return static_cast<T*> (begin_); }
const T* begin() const { return static_cast<T*> (begin_); }
T* end() { return static_cast<T*> (begin_) + size_; }
const T* end() const { return static_cast<T*> (begin_) + size_; }
T& operator [] ( size_t n )
{
assert( n < size_ );
return static_cast<T*> (begin_) [n];
}
const T& operator [] ( size_t n ) const
{
assert( n < size_ );
return static_cast<T*> (begin_) [n];
}
};
// Callback function with user data.
// blargg_callback<T> set_callback; // for user, this acts like...
// void set_callback( T func, void* user_data = NULL ); // ...this
// To call function, do set_callback.f( .. set_callback.data ... );
template<class T>
struct blargg_callback
{
T f;
void* data;
blargg_callback() { f = NULL; }
void operator () ( T callback, void* user_data = NULL ) { f = callback; data = user_data; }
};
BLARGG_DEPRECATED( typedef signed int blargg_long; )
BLARGG_DEPRECATED( typedef unsigned int blargg_ulong; )
#if BLARGG_LEGACY
#define BOOST_STATIC_ASSERT BLARGG_STATIC_ASSERT
#endif
#endif

View File

@ -0,0 +1,37 @@
// Library configuration. Modify this file as necessary.
// File_Extractor 1.0.0
#ifndef BLARGG_CONFIG_H
#define BLARGG_CONFIG_H
// Uncomment a #define line below to have effect described.
// #define HAVE_ZLIB_H
// Enable RAR archive support. Doing so adds extra licensing restrictions
// to this library (see unrar/readme.txt for more information).
#define FEX_ENABLE_RAR 1
// Accept file paths encoded as UTF-8. Currently only affects Windows,
// as Unix/Linux/Mac OS X already use UTF-8 paths.
#define BLARGG_UTF8_PATHS 1
// Enable support for as building DLL on Windows.
//#define BLARGG_BUILD_DLL 1
// Support only the listed archive types. Remove any you don't need.
/*
#define FEX_TYPE_LIST \
fex_7z_type,\
fex_gz_type,\
fex_rar_type,\
fex_zip_type,
*/
#define HAVE_STDINT_H
// Use standard config.h if present
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#endif

View File

@ -0,0 +1,185 @@
// CPU Byte Order Utilities
// File_Extractor 1.0.0
#ifndef BLARGG_ENDIAN_H
#define BLARGG_ENDIAN_H
#include "blargg_common.h"
// BLARGG_CPU_CISC: Defined if CPU has very few general-purpose registers (< 16)
#if defined (__i386__) || defined (__x86_64__) || defined (_M_IX86) || defined (_M_X64)
#define BLARGG_CPU_X86 1
#define BLARGG_CPU_CISC 1
#endif
#if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__) || \
defined (__POWERPC__) || defined (__powerc)
#define BLARGG_CPU_POWERPC 1
#define BLARGG_CPU_RISC 1
#endif
// BLARGG_BIG_ENDIAN, BLARGG_LITTLE_ENDIAN: Determined automatically, otherwise only
// one may be #defined to 1. Only needed if something actually depends on byte order.
#if !defined (BLARGG_BIG_ENDIAN) && !defined (BLARGG_LITTLE_ENDIAN)
#ifdef __GLIBC__
// GCC handles this for us
#include <endian.h>
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define BLARGG_LITTLE_ENDIAN 1
#elif __BYTE_ORDER == __BIG_ENDIAN
#define BLARGG_BIG_ENDIAN 1
#endif
#else
#if defined (LSB_FIRST) || defined (__LITTLE_ENDIAN__) || BLARGG_CPU_X86 || \
(defined (LITTLE_ENDIAN) && LITTLE_ENDIAN+0 != 1234)
#define BLARGG_LITTLE_ENDIAN 1
#endif
#if defined (MSB_FIRST) || defined (__BIG_ENDIAN__) || defined (WORDS_BIGENDIAN) || \
defined (__sparc__) || BLARGG_CPU_POWERPC || \
(defined (BIG_ENDIAN) && BIG_ENDIAN+0 != 4321)
#define BLARGG_BIG_ENDIAN 1
#elif !defined (__mips__)
// No endian specified; assume little-endian, since it's most common
#define BLARGG_LITTLE_ENDIAN 1
#endif
#endif
#endif
#if BLARGG_LITTLE_ENDIAN && BLARGG_BIG_ENDIAN
#undef BLARGG_LITTLE_ENDIAN
#undef BLARGG_BIG_ENDIAN
#endif
inline void blargg_verify_byte_order()
{
#ifndef NDEBUG
#if BLARGG_BIG_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i == 0 );
#elif BLARGG_LITTLE_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i != 0 );
#endif
#endif
}
inline unsigned get_le16( void const* p )
{
return (unsigned) ((unsigned char const*) p) [1] << 8 |
(unsigned) ((unsigned char const*) p) [0];
}
inline unsigned get_be16( void const* p )
{
return (unsigned) ((unsigned char const*) p) [0] << 8 |
(unsigned) ((unsigned char const*) p) [1];
}
inline unsigned get_le32( void const* p )
{
return (unsigned) ((unsigned char const*) p) [3] << 24 |
(unsigned) ((unsigned char const*) p) [2] << 16 |
(unsigned) ((unsigned char const*) p) [1] << 8 |
(unsigned) ((unsigned char const*) p) [0];
}
inline unsigned get_be32( void const* p )
{
return (unsigned) ((unsigned char const*) p) [0] << 24 |
(unsigned) ((unsigned char const*) p) [1] << 16 |
(unsigned) ((unsigned char const*) p) [2] << 8 |
(unsigned) ((unsigned char const*) p) [3];
}
inline void set_le16( void* p, unsigned n )
{
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [0] = (unsigned char) n;
}
inline void set_be16( void* p, unsigned n )
{
((unsigned char*) p) [0] = (unsigned char) (n >> 8);
((unsigned char*) p) [1] = (unsigned char) n;
}
inline void set_le32( void* p, unsigned n )
{
((unsigned char*) p) [0] = (unsigned char) n;
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [2] = (unsigned char) (n >> 16);
((unsigned char*) p) [3] = (unsigned char) (n >> 24);
}
inline void set_be32( void* p, unsigned n )
{
((unsigned char*) p) [3] = (unsigned char) n;
((unsigned char*) p) [2] = (unsigned char) (n >> 8);
((unsigned char*) p) [1] = (unsigned char) (n >> 16);
((unsigned char*) p) [0] = (unsigned char) (n >> 24);
}
#if BLARGG_NONPORTABLE
// Optimized implementation if byte order is known
#if BLARGG_LITTLE_ENDIAN
#define GET_LE16( addr ) (*(BOOST::uint16_t const*) (addr))
#define GET_LE32( addr ) (*(BOOST::uint32_t const*) (addr))
#define SET_LE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_LE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#elif BLARGG_BIG_ENDIAN
#define GET_BE16( addr ) (*(BOOST::uint16_t const*) (addr))
#define GET_BE32( addr ) (*(BOOST::uint32_t const*) (addr))
#define SET_BE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_BE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#if BLARGG_CPU_POWERPC
// PowerPC has special byte-reversed instructions
#if defined (__MWERKS__)
#define GET_LE16( addr ) (__lhbrx( addr, 0 ))
#define GET_LE32( addr ) (__lwbrx( addr, 0 ))
#define SET_LE16( addr, in ) (__sthbrx( in, addr, 0 ))
#define SET_LE32( addr, in ) (__stwbrx( in, addr, 0 ))
#elif defined (__GNUC__)
#define GET_LE16( addr ) ({unsigned short ppc_lhbrx_; __asm__ volatile( "lhbrx %0,0,%1" : "=r" (ppc_lhbrx_) : "r" (addr) : "memory" ); ppc_lhbrx_;})
#define GET_LE32( addr ) ({unsigned short ppc_lwbrx_; __asm__ volatile( "lwbrx %0,0,%1" : "=r" (ppc_lwbrx_) : "r" (addr) : "memory" ); ppc_lwbrx_;})
#define SET_LE16( addr, in ) ({__asm__ volatile( "sthbrx %0,0,%1" : : "r" (in), "r" (addr) : "memory" );})
#define SET_LE32( addr, in ) ({__asm__ volatile( "stwbrx %0,0,%1" : : "r" (in), "r" (addr) : "memory" );})
#endif
#endif
#endif
#endif
#ifndef GET_LE16
#define GET_LE16( addr ) get_le16( addr )
#define SET_LE16( addr, data ) set_le16( addr, data )
#endif
#ifndef GET_LE32
#define GET_LE32( addr ) get_le32( addr )
#define SET_LE32( addr, data ) set_le32( addr, data )
#endif
#ifndef GET_BE16
#define GET_BE16( addr ) get_be16( addr )
#define SET_BE16( addr, data ) set_be16( addr, data )
#endif
#ifndef GET_BE32
#define GET_BE32( addr ) get_be32( addr )
#define SET_BE32( addr, data ) set_be32( addr, data )
#endif
// auto-selecting versions
inline void set_le( BOOST::uint16_t* p, unsigned n ) { SET_LE16( p, n ); }
inline void set_le( BOOST::uint32_t* p, unsigned n ) { SET_LE32( p, n ); }
inline void set_be( BOOST::uint16_t* p, unsigned n ) { SET_BE16( p, n ); }
inline void set_be( BOOST::uint32_t* p, unsigned n ) { SET_BE32( p, n ); }
inline unsigned get_le( BOOST::uint16_t const* p ) { return GET_LE16( p ); }
inline unsigned get_le( BOOST::uint32_t const* p ) { return GET_LE32( p ); }
inline unsigned get_be( BOOST::uint16_t const* p ) { return GET_BE16( p ); }
inline unsigned get_be( BOOST::uint32_t const* p ) { return GET_BE32( p ); }
#endif

View File

@ -0,0 +1,113 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "blargg_errors.h"
/* Copyright (C) 2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
blargg_err_def_t blargg_err_generic = BLARGG_ERR_GENERIC;
blargg_err_def_t blargg_err_memory = BLARGG_ERR_MEMORY;
blargg_err_def_t blargg_err_caller = BLARGG_ERR_CALLER;
blargg_err_def_t blargg_err_internal = BLARGG_ERR_INTERNAL;
blargg_err_def_t blargg_err_limitation = BLARGG_ERR_LIMITATION;
blargg_err_def_t blargg_err_file_missing = BLARGG_ERR_FILE_MISSING;
blargg_err_def_t blargg_err_file_read = BLARGG_ERR_FILE_READ;
blargg_err_def_t blargg_err_file_write = BLARGG_ERR_FILE_WRITE;
blargg_err_def_t blargg_err_file_io = BLARGG_ERR_FILE_IO;
blargg_err_def_t blargg_err_file_full = BLARGG_ERR_FILE_FULL;
blargg_err_def_t blargg_err_file_eof = BLARGG_ERR_FILE_EOF;
blargg_err_def_t blargg_err_file_type = BLARGG_ERR_FILE_TYPE;
blargg_err_def_t blargg_err_file_feature = BLARGG_ERR_FILE_FEATURE;
blargg_err_def_t blargg_err_file_corrupt = BLARGG_ERR_FILE_CORRUPT;
const char* blargg_err_str( blargg_err_t err )
{
if ( !err )
return "";
if ( *err == BLARGG_ERR_TYPE("")[0] )
return err + 1;
return err;
}
bool blargg_is_err_type( blargg_err_t err, const char type [] )
{
if ( err )
{
// True if first strlen(type) characters of err match type
char const* p = err;
while ( *type && *type == *p )
{
type++;
p++;
}
if ( !*type )
return true;
}
return false;
}
const char* blargg_err_details( blargg_err_t err )
{
const char* p = err;
if ( !p )
{
p = "";
}
else if ( *p == BLARGG_ERR_TYPE("")[0] )
{
while ( *p && *p != ';' )
p++;
// Skip ; and space after it
if ( *p )
{
p++;
check( *p == ' ' );
if ( *p )
p++;
}
}
return p;
}
int blargg_err_to_code( blargg_err_t err, blargg_err_to_code_t const codes [] )
{
if ( !err )
return 0;
while ( codes->str && !blargg_is_err_type( err, codes->str ) )
codes++;
return codes->code;
}
blargg_err_t blargg_code_to_err( int code, blargg_err_to_code_t const codes [] )
{
if ( !code )
return blargg_ok;
while ( codes->str && codes->code != code )
codes++;
if ( !codes->str )
return blargg_err_generic;
return codes->str;
}

View File

@ -0,0 +1,80 @@
// Error strings and conversion functions
// File_Extractor 1.0.0
#ifndef BLARGG_ERRORS_H
#define BLARGG_ERRORS_H
#ifndef BLARGG_COMMON_H
#include "blargg_common.h"
#endif
typedef const char blargg_err_def_t [];
// Basic errors
extern blargg_err_def_t blargg_err_generic;
extern blargg_err_def_t blargg_err_memory;
extern blargg_err_def_t blargg_err_caller;
extern blargg_err_def_t blargg_err_internal;
extern blargg_err_def_t blargg_err_limitation;
// File low-level
extern blargg_err_def_t blargg_err_file_missing; // not found
extern blargg_err_def_t blargg_err_file_read;
extern blargg_err_def_t blargg_err_file_write;
extern blargg_err_def_t blargg_err_file_io;
extern blargg_err_def_t blargg_err_file_full;
extern blargg_err_def_t blargg_err_file_eof;
// File high-level
extern blargg_err_def_t blargg_err_file_type; // wrong file type
extern blargg_err_def_t blargg_err_file_feature;
extern blargg_err_def_t blargg_err_file_corrupt;
// C string describing error, or "" if err == NULL
const char* blargg_err_str( blargg_err_t err );
// True iff error is of given type, or false if err == NULL
bool blargg_is_err_type( blargg_err_t, const char type [] );
// Details of error without describing main cause, or "" if err == NULL
const char* blargg_err_details( blargg_err_t err );
// Converts error string to integer code using mapping table. Calls blargg_is_err_type()
// for each str and returns code on first match. Returns 0 if err == NULL.
struct blargg_err_to_code_t {
const char* str;
int code;
};
int blargg_err_to_code( blargg_err_t err, blargg_err_to_code_t const [] );
// Converts error code back to string. If code == 0, returns NULL. If not in table,
// returns blargg_err_generic.
blargg_err_t blargg_code_to_err( int code, blargg_err_to_code_t const [] );
// Generates error string literal with details of cause
#define BLARGG_ERR( type, str ) (type "; " str)
// Extra space to make it clear when blargg_err_str() isn't called to get
// printable version of error. At some point, I might prefix error strings
// with a code, to speed conversion to a code.
#define BLARGG_ERR_TYPE( str ) " " str
// Error types to pass to BLARGG_ERR macro
#define BLARGG_ERR_GENERIC BLARGG_ERR_TYPE( "operation failed" )
#define BLARGG_ERR_MEMORY BLARGG_ERR_TYPE( "out of memory" )
#define BLARGG_ERR_CALLER BLARGG_ERR_TYPE( "internal usage bug" )
#define BLARGG_ERR_INTERNAL BLARGG_ERR_TYPE( "internal bug" )
#define BLARGG_ERR_LIMITATION BLARGG_ERR_TYPE( "exceeded limitation" )
#define BLARGG_ERR_FILE_MISSING BLARGG_ERR_TYPE( "file not found" )
#define BLARGG_ERR_FILE_READ BLARGG_ERR_TYPE( "couldn't open file" )
#define BLARGG_ERR_FILE_WRITE BLARGG_ERR_TYPE( "couldn't modify file" )
#define BLARGG_ERR_FILE_IO BLARGG_ERR_TYPE( "read/write error" )
#define BLARGG_ERR_FILE_FULL BLARGG_ERR_TYPE( "disk full" )
#define BLARGG_ERR_FILE_EOF BLARGG_ERR_TYPE( "truncated file" )
#define BLARGG_ERR_FILE_TYPE BLARGG_ERR_TYPE( "wrong file type" )
#define BLARGG_ERR_FILE_FEATURE BLARGG_ERR_TYPE( "unsupported file feature" )
#define BLARGG_ERR_FILE_CORRUPT BLARGG_ERR_TYPE( "corrupt file" )
#endif

View File

@ -0,0 +1,121 @@
/* Included at the beginning of library source files, AFTER all other #include
lines. Sets up helpful macros and services used in my source code. Since this
is only "active" in my source code, I don't have to worry about polluting the
global namespace with unprefixed names. */
// File_Extractor 1.0.0
#ifndef BLARGG_SOURCE_H
#define BLARGG_SOURCE_H
#ifndef BLARGG_COMMON_H // optimization only
#include "blargg_common.h"
#endif
#include "blargg_errors.h"
#include <string.h> /* memcpy(), memset(), memmove() */
#include <stddef.h> /* offsetof() */
/* The following four macros are for debugging only. Some or all might be
defined to do nothing, depending on the circumstances. Described is what
happens when a particular macro is defined to do something. When defined to
do nothing, the macros do NOT evaluate their argument(s). */
/* If expr is false, prints file and line number, then aborts program. Meant
for checking internal state and consistency. A failed assertion indicates a bug
in MY code.
void assert( bool expr ); */
#include <assert.h>
/* If expr is false, prints file and line number, then aborts program. Meant
for checking caller-supplied parameters and operations that are outside the
control of the module. A failed requirement probably indicates a bug in YOUR
code.
void require( bool expr ); */
#undef require
#define require( expr ) assert( expr )
/* Like printf() except output goes to debugging console/file.
void dprintf( const char format [], ... ); */
static inline void blargg_dprintf_( const char [], ... ) { }
#undef dprintf
#define dprintf (1) ? (void) 0 : blargg_dprintf_
/* If expr is false, prints file and line number to debug console/log, then
continues execution normally. Meant for flagging potential problems or things
that should be looked into, but that aren't serious problems.
void check( bool expr ); */
#undef check
#define check( expr ) ((void) 0)
/* If expr yields non-NULL error string, returns it from current function,
otherwise continues normally. */
#undef RETURN_ERR
#define RETURN_ERR( expr ) \
do {\
blargg_err_t blargg_return_err_ = (expr);\
if ( blargg_return_err_ )\
return blargg_return_err_;\
} while ( 0 )
/* If ptr is NULL, returns out-of-memory error, otherwise continues normally. */
#undef CHECK_ALLOC
#define CHECK_ALLOC( ptr ) \
do {\
if ( !(ptr) )\
return blargg_err_memory;\
} while ( 0 )
/* The usual min/max functions for built-in types. */
template<typename T> T min( T x, T y ) { return x < y ? x : y; }
template<typename T> T max( T x, T y ) { return x > y ? x : y; }
#define BLARGG_DEF_MIN_MAX( type )
BLARGG_DEF_MIN_MAX( int )
BLARGG_DEF_MIN_MAX( unsigned )
BLARGG_DEF_MIN_MAX( long )
BLARGG_DEF_MIN_MAX( unsigned long )
BLARGG_DEF_MIN_MAX( float )
BLARGG_DEF_MIN_MAX( double )
#if __WORDSIZE != 64
BLARGG_DEF_MIN_MAX( BOOST::uint64_t )
#endif
// typedef unsigned char byte;
typedef unsigned char blargg_byte;
#undef byte
#define byte blargg_byte
#ifndef BLARGG_EXPORT
#if defined (_WIN32) && BLARGG_BUILD_DLL
#define BLARGG_EXPORT __declspec(dllexport)
#elif defined (__GNUC__)
// can always set visibility, even when not building DLL
#define BLARGG_EXPORT __attribute__ ((visibility ("default")))
#else
#define BLARGG_EXPORT
#endif
#endif
#if BLARGG_LEGACY
#define BLARGG_CHECK_ALLOC CHECK_ALLOC
#define BLARGG_RETURN_ERR RETURN_ERR
#endif
// Called after failed operation when overall operation may still complete OK.
// Only used by unit testing framework.
#undef ACK_FAILURE
#define ACK_FAILURE() ((void)0)
/* BLARGG_SOURCE_BEGIN: If defined, #included, allowing redefition of dprintf etc.
and check */
#ifdef BLARGG_SOURCE_BEGIN
#include BLARGG_SOURCE_BEGIN
#endif
#endif

321
quicknes/fex/fex.cpp Normal file
View File

@ -0,0 +1,321 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "fex.h"
#include "File_Extractor.h"
#include "blargg_endian.h"
#include <string.h>
#include <ctype.h>
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
//// Types
BLARGG_EXPORT const fex_type_t* fex_type_list( void )
{
static fex_type_t const fex_type_list_ [] =
{
#ifdef FEX_TYPE_LIST
FEX_TYPE_LIST
#else
// Modify blargg_config.h to change type list, NOT this file
fex_7z_type,
fex_gz_type,
#if FEX_ENABLE_RAR
fex_rar_type,
#endif
fex_zip_type,
#endif
fex_bin_type,
NULL
};
return fex_type_list_;
}
BLARGG_EXPORT fex_err_t fex_init( void )
{
static bool inited;
if ( !inited )
{
for ( fex_type_t const* t = fex_type_list(); *t != NULL; ++t )
{
if ( (*t)->init )
RETURN_ERR( (*t)->init() );
}
inited = true;
}
return blargg_ok;
}
BLARGG_EXPORT const char* fex_identify_header( void const* header )
{
unsigned four = get_be32( header );
switch ( four )
{
case 0x52457E5E:
case 0x52617221: return ".rar";
case 0x377ABCAF: return ".7z";
case 0x504B0304:
case 0x504B0506: return ".zip";
case 0x53495421: return ".sit";
case 0x41724301: return ".arc";
case 0x4D534346: return ".cab";
case 0x5A4F4F20: return ".zoo";
}
unsigned three = four >> 8;
switch ( three )
{
case 0x425A68: return ".bz2";
}
unsigned two = four >> 16;
switch ( two )
{
case 0x1F8B: return ".gz";
case 0x60EA: return ".arj";
}
unsigned skip_first_two = four & 0xFFFF;
if ( skip_first_two == 0x2D6C )
return ".lha";
return "";
}
static int fex_has_extension_( const char str [], const char suffix [], size_t str_len )
{
size_t suffix_len = strlen( suffix );
if ( str_len >= suffix_len )
{
str += str_len - suffix_len;
while ( *str && tolower( (unsigned char) *str ) == *suffix )
{
str++;
suffix++;
}
}
return *suffix == 0;
}
BLARGG_EXPORT int fex_has_extension( const char str [], const char suffix [] )
{
return fex_has_extension_( str, suffix, strlen( str ) );
}
static int is_archive_extension( const char str [] )
{
static const char exts [] [6] = {
".7z",
".arc",
".arj",
".bz2",
".cab",
".dmg",
".gz",
".lha",
".lz",
".lzh",
".lzma",
".lzo",
".lzx",
".pea",
".rar",
".sit",
".sitx",
".tgz",
".tlz",
".z",
".zip",
".zoo",
""
};
size_t str_len = strlen( str );
const char (*ext) [6] = exts;
for ( ; **ext; ext++ )
{
if ( fex_has_extension_( str, *ext, str_len ) )
return 1;
}
return 0;
}
BLARGG_EXPORT fex_type_t fex_identify_extension( const char str [] )
{
size_t str_len = strlen( str );
for ( fex_type_t const* types = fex_type_list(); *types; types++ )
{
if ( fex_has_extension_( str, (*types)->extension, str_len ) )
{
// Avoid treating known archive type as binary
if ( *(*types)->extension || !is_archive_extension( str ) )
return *types;
}
}
return NULL;
}
BLARGG_EXPORT fex_err_t fex_identify_file( fex_type_t* type_out, const char path [] )
{
*type_out = NULL;
fex_type_t type = fex_identify_extension( path );
// Unsupported extension?
if ( !type )
return blargg_ok; // reject
// Unknown/no extension?
if ( !*(type->extension) )
{
// Examine header
FEX_FILE_READER in;
RETURN_ERR( in.open( path ) );
if ( in.remain() >= fex_identify_header_size )
{
char h [fex_identify_header_size];
RETURN_ERR( in.read( h, sizeof h ) );
type = fex_identify_extension( fex_identify_header( h ) );
}
}
*type_out = type;
return blargg_ok;
}
BLARGG_EXPORT fex_err_t fex_open_type( fex_t** fe_out, const char path [], fex_type_t type )
{
*fe_out = NULL;
if ( !type )
return blargg_err_file_type;
fex_t* fe = type->new_fex();
CHECK_ALLOC( fe );
fex_err_t err = fe->open( path );
if ( err )
{
delete fe;
return err;
}
*fe_out = fe;
return blargg_ok;
}
BLARGG_EXPORT fex_err_t fex_open( fex_t** fe_out, const char path [] )
{
*fe_out = NULL;
fex_type_t type;
RETURN_ERR( fex_identify_file( &type, path ) );
return fex_open_type( fe_out, path, type );
}
//// Wide paths
char* fex_wide_to_path( const blargg_wchar_t* wide )
{
return blargg_to_utf8( wide );
}
void fex_free_path( char* path )
{
free( path );
}
//// Errors
#define ENTRY( name ) { blargg_err_##name, fex_err_##name }
static blargg_err_to_code_t const fex_codes [] =
{
ENTRY( generic ),
ENTRY( memory ),
ENTRY( caller ),
ENTRY( internal ),
ENTRY( limitation ),
ENTRY( file_missing ),
ENTRY( file_read ),
ENTRY( file_io ),
ENTRY( file_eof ),
ENTRY( file_type ),
ENTRY( file_feature ),
ENTRY( file_corrupt ),
{ 0, -1 }
};
#undef ENTRY
static int err_code( fex_err_t err )
{
return blargg_err_to_code( err, fex_codes );
}
BLARGG_EXPORT int fex_err_code( fex_err_t err )
{
int code = err_code( err );
return (code >= 0 ? code : fex_err_generic);
}
BLARGG_EXPORT fex_err_t fex_code_to_err( int code )
{
return blargg_code_to_err( code, fex_codes );
}
BLARGG_EXPORT const char* fex_err_details( fex_err_t err )
{
// If we don't have error code assigned, return entire string
return (err_code( err ) >= 0 ? blargg_err_details( err ) : blargg_err_str( err ));
}
//// Wrappers
BLARGG_EXPORT fex_err_t fex_read( fex_t* fe, void* out, int count )
{
RETURN_ERR( fe->stat() );
return fe->reader().read( out, count );
}
BLARGG_EXPORT void fex_close ( fex_t* fe ) { delete fe; }
BLARGG_EXPORT fex_type_t fex_type ( const fex_t* fe ) { return fe->type(); }
BLARGG_EXPORT int fex_done ( const fex_t* fe ) { return fe->done(); }
BLARGG_EXPORT const char* fex_name ( const fex_t* fe ) { return fe->name(); }
BLARGG_EXPORT const blargg_wchar_t* fex_wname ( const fex_t* fe ) { return fe->wname(); }
BLARGG_EXPORT uint64_t fex_size ( const fex_t* fe ) { return fe->size(); }
BLARGG_EXPORT unsigned fex_dos_date ( const fex_t* fe ) { return fe->dos_date(); }
BLARGG_EXPORT unsigned fex_crc32 ( const fex_t* fe ) { return fe->crc32(); }
BLARGG_EXPORT fex_err_t fex_stat ( fex_t* fe ) { return fe->stat(); }
BLARGG_EXPORT fex_err_t fex_next ( fex_t* fe ) { return fe->next(); }
BLARGG_EXPORT fex_err_t fex_rewind ( fex_t* fe ) { return fe->rewind(); }
BLARGG_EXPORT uint64_t fex_tell ( const fex_t* fe ) { return fe->tell(); }
BLARGG_EXPORT fex_pos_t fex_tell_arc ( const fex_t* fe ) { return fe->tell_arc(); }
BLARGG_EXPORT fex_err_t fex_seek_arc ( fex_t* fe, fex_pos_t pos ) { return fe->seek_arc( pos ); }
BLARGG_EXPORT const char* fex_type_extension ( fex_type_t t ) { return t->extension; }
BLARGG_EXPORT const char* fex_type_name ( fex_type_t t ) { return t->name; }
BLARGG_EXPORT fex_err_t fex_data ( fex_t* fe, const void** data_out ) { return fe->data( data_out ); }
BLARGG_EXPORT const char* fex_err_str ( fex_err_t err ) { return blargg_err_str( err ); }

206
quicknes/fex/fex.h Normal file
View File

@ -0,0 +1,206 @@
/** Uniform access to zip, gzip, 7-zip, and RAR compressed archives \file */
/* File_Extractor 1.0.0 */
#ifndef FEX_H
#define FEX_H
#include <stddef.h>
#include <stdint.h>
#include "blargg_common.h"
#ifdef __cplusplus
extern "C" {
#endif
/** First parameter of most functions is fex_t*, or const fex_t* if nothing is
changed. Once one of these functions returns an error, the archive should not
be used any further, other than to close it. One exception is
fex_error_file_eof; the archive may still be used after this. */
typedef struct fex_t fex_t;
/** Pointer to error, or NULL if function was successful. See error functions
below. */
#ifndef fex_err_t /* (#ifndef allows better testing of library) */
typedef const char* fex_err_t;
#endif
/**** File types ****/
/** Archive file type identifier. Can also hold NULL. */
typedef const struct fex_type_t_* fex_type_t;
/** Array of supported types, with NULL at end */
const fex_type_t* fex_type_list( void );
/** Name of this archive type, e.g. "ZIP archive", "file" */
const char* fex_type_name( fex_type_t );
/** Usual file extension for type, e.g. ".zip", ".7z". For binary file type,
returns "", since it can open any file. */
const char* fex_type_extension( fex_type_t );
/**** Wide-character file paths ****/
/** Converts wide-character path to form suitable for use with fex functions. */
char* fex_wide_to_path( const blargg_wchar_t* wide );
/** Frees converted path. OK to pass NULL. */
void fex_free_path( char* );
/**** Identification ****/
/** True if str ends in extension. If extension is "", always returns true.
Converts str to lowercase before comparison, so extension should ALREADY be
lowercase (i.e. pass ".zip", NOT ".ZIP"). */
int fex_has_extension( const char str [], const char extension [] );
/** Determines type based on first fex_identify_header_size bytes of file.
Returns usual file extension this should have (e.g. ".zip", ".gz", etc.).
Returns "" if file header is not recognized. */
const char* fex_identify_header( const void* header );
enum { fex_identify_header_size = 16 };
/** Determines type based on extension of a file path, or just a lone extension
(must include '.', e.g. ".zip", NOT just "zip"). Returns NULL if extension is
for an unsupported type (e.g. ".lzh"). */
fex_type_t fex_identify_extension( const char path_or_extension [] );
/** Determines type based on filename extension and/or file header. Sets *out
to determined type, or NULL if type is not supported. */
fex_err_t fex_identify_file( fex_type_t* out, const char path [] );
/** Type of an already-opened archive */
fex_type_t fex_type( const fex_t* );
/**** Open/close ****/
/** Initializes static tables used by library. Automatically called by
fex_open(). OK to call more than once. */
fex_err_t fex_init( void );
/** Opens archive and points *out at it. If error, sets *out to NULL. */
fex_err_t fex_open( fex_t** out, const char path [] );
/** Opens archive of specified type and sets *out. Returns error if file is not
of that archive type. If error, sets *out to NULL. */
fex_err_t fex_open_type( fex_t** out, const char path [], fex_type_t );
/** Closes archive and frees memory. OK to pass NULL. */
void fex_close( fex_t* );
/**** Scanning ****/
/** True if at end of archive. Must be called after fex_open() or fex_rewind(),
as an archive might contain no files. */
int fex_done( const fex_t* );
/** Goes to next file in archive. If there are no more files, fex_done() will
now return true. */
fex_err_t fex_next( fex_t* );
/** Goes back to first file in archive, as if it were just opened with
fex_open() */
fex_err_t fex_rewind( fex_t* );
/** Saved position in archive. Can also store zero. */
typedef uint64_t fex_pos_t;
/** Position of current file in archive. Never returns zero. */
fex_pos_t fex_tell_arc( const fex_t* );
/** Returns to file at previously-saved position */
fex_err_t fex_seek_arc( fex_t*, fex_pos_t );
/**** Info ****/
/** Name of current file */
const char* fex_name( const fex_t* );
/** Wide-character name of current file, or NULL if unavailable */
const blargg_wchar_t* fex_wname( const fex_t* );
/** Makes further information available for file */
fex_err_t fex_stat( fex_t* );
/** Size of current file. fex_stat() or fex_data() must have been called. */
uint64_t fex_size( const fex_t* );
/** Modification date of current file (MS-DOS format), or 0 if unavailable.
fex_stat() must have been called. */
unsigned int fex_dos_date( const fex_t* );
/** CRC-32 checksum of current file's contents, or 0 if unavailable. Doesn't
require calculation; simply gets it from file's header. fex_stat() must have
been called. */
unsigned int fex_crc32( const fex_t* );
/**** Extraction ****/
/** Reads n bytes from current file. Reading past end of file results in
fex_err_file_eof. */
fex_err_t fex_read( fex_t*, void* out, int n );
/** Number of bytes read from current file */
uint64_t fex_tell( const fex_t* );
/** Points *out at current file's data in memory. Pointer is valid until
fex_next(), fex_rewind(), fex_seek_arc(), or fex_close() is called. Pointer
must NOT be freed(); library frees it automatically. If error, sets *out to
NULL. */
fex_err_t fex_data( fex_t*, const void** out );
/**** Errors ****/
/** Error string associated with err. Returns "" if err is NULL. Returns err
unchanged if it isn't a fex_err_t returned by library. */
const char* fex_err_str( fex_err_t err );
/** Details of error beyond main cause, or "" if none or err is NULL. Returns
err unchanged if it isn't a fex_err_t returned by library. */
const char* fex_err_details( fex_err_t err );
/** Numeric code corresponding to err. Returns fex_ok if err is NULL. Returns
fex_err_generic if err isn't a fex_err_t returned by library. */
int fex_err_code( fex_err_t err );
enum {
fex_ok = 0,/**< Successful call. Guaranteed to be zero. */
fex_err_generic = 0x01,/**< Error of unspecified type */
fex_err_memory = 0x02,/**< Out of memory */
fex_err_caller = 0x03,/**< Caller called function with bad args */
fex_err_internal = 0x04,/**< Internal problem, bug, etc. */
fex_err_limitation = 0x05,/**< Exceeded program limit */
fex_err_file_missing = 0x20,/**< File not found at specified path */
fex_err_file_read = 0x21,/**< Couldn't open file for reading */
fex_err_file_io = 0x23,/**< Read/write error */
fex_err_file_eof = 0x25,/**< Tried to read past end of file */
fex_err_file_type = 0x30,/**< File is of wrong type */
fex_err_file_feature = 0x32,/**< File requires unsupported feature */
fex_err_file_corrupt = 0x33 /**< File is corrupt */
};
/** fex_err_t corresponding to numeric code. Note that this might not recover
the original fex_err_t before it was converted to a numeric code; in
particular, fex_err_details(fex_code_to_err(code)) will be "" in most cases. */
fex_err_t fex_code_to_err( int code );
/* Deprecated */
typedef fex_t File_Extractor;
#ifdef __cplusplus
}
#endif
#endif

View File

@ -0,0 +1,20 @@

Microsoft Visual Studio Solution File, Format Version 11.00
# Visual Studio 2010
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libquicknes", "libquicknes.vcxproj", "{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}"
EndProject
Global
GlobalSection(SolutionConfigurationPlatforms) = preSolution
Debug|Win32 = Debug|Win32
Release|Win32 = Release|Win32
EndGlobalSection
GlobalSection(ProjectConfigurationPlatforms) = postSolution
{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}.Debug|Win32.ActiveCfg = Debug|Win32
{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}.Debug|Win32.Build.0 = Debug|Win32
{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}.Release|Win32.ActiveCfg = Release|Win32
{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}.Release|Win32.Build.0 = Release|Win32
EndGlobalSection
GlobalSection(SolutionProperties) = preSolution
HideSolutionNode = FALSE
EndGlobalSection
EndGlobal

View File

@ -0,0 +1,113 @@
<?xml version="1.0" encoding="utf-8"?>
<Project DefaultTargets="Build" ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup Label="ProjectConfigurations">
<ProjectConfiguration Include="Debug|Win32">
<Configuration>Debug</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
<ProjectConfiguration Include="Release|Win32">
<Configuration>Release</Configuration>
<Platform>Win32</Platform>
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\fex\blargg_common.cpp" />
<ClCompile Include="..\fex\blargg_errors.cpp" />
<ClCompile Include="..\fex\Data_Reader.cpp" />
<ClCompile Include="..\nes_emu\abstract_file.cpp" />
<ClCompile Include="..\nes_emu\apu_state.cpp" />
<ClCompile Include="..\nes_emu\Blip_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Effects_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Fme7.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Mmc5.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Namco106.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Vrc6.cpp" />
<ClCompile Include="..\nes_emu\misc_mappers.cpp" />
<ClCompile Include="..\nes_emu\Multi_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Cart.cpp" />
<ClCompile Include="..\nes_emu\Nes_Core.cpp" />
<ClCompile Include="..\nes_emu\Nes_Cpu.cpp" />
<ClCompile Include="..\nes_emu\nes_data.cpp" />
<ClCompile Include="..\nes_emu\Nes_Effects_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Emu.cpp" />
<ClCompile Include="..\nes_emu\Nes_File.cpp" />
<ClCompile Include="..\nes_emu\Nes_Film.cpp" />
<ClCompile Include="..\nes_emu\Nes_Film_Data.cpp" />
<ClCompile Include="..\nes_emu\Nes_Film_Packer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Fme7_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mapper.cpp" />
<ClCompile Include="..\nes_emu\nes_mappers.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mmc1.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mmc3.cpp" />
<ClCompile Include="..\nes_emu\Nes_Namco_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Oscs.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu_Impl.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu_Rendering.cpp" />
<ClCompile Include="..\nes_emu\Nes_Recorder.cpp" />
<ClCompile Include="..\nes_emu\Nes_State.cpp" />
<ClCompile Include="..\nes_emu\nes_util.cpp" />
<ClCompile Include="..\nes_emu\Nes_Vrc6_Apu.cpp" />
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}</ProjectGuid>
<RootNamespace>libquicknes</RootNamespace>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>MultiByte</CharacterSet>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>MultiByte</CharacterSet>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" />
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);BLARGG_SOURCE_BEGIN="blargg_common.h";BLARGG_ENABLE_OPTIMIZER="blargg_common.h"</PreprocessorDefinitions>
<DisableSpecificWarnings>4244;4800;4804;4996</DisableSpecificWarnings>
<AdditionalIncludeDirectories>$(ProjectDir)\..</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
</Link>
</ItemDefinitionGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>MaxSpeed</Optimization>
<FunctionLevelLinking>true</FunctionLevelLinking>
<IntrinsicFunctions>true</IntrinsicFunctions>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);BLARGG_SOURCE_BEGIN="blargg_common.h";BLARGG_ENABLE_OPTIMIZER="blargg_common.h"</PreprocessorDefinitions>
<DisableSpecificWarnings>4244;4800;4804;4996</DisableSpecificWarnings>
<AdditionalIncludeDirectories>$(ProjectDir)\..</AdditionalIncludeDirectories>
</ClCompile>
<Link>
<GenerateDebugInformation>true</GenerateDebugInformation>
<EnableCOMDATFolding>true</EnableCOMDATFolding>
<OptimizeReferences>true</OptimizeReferences>
</Link>
</ItemDefinitionGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
<ImportGroup Label="ExtensionTargets">
</ImportGroup>
</Project>

View File

@ -0,0 +1,148 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
<Filter Include="Header Files\fex">
<UniqueIdentifier>{ba7f113f-5234-44b7-a84c-35ad9dd39db2}</UniqueIdentifier>
</Filter>
<Filter Include="Source Files\nes_emu">
<UniqueIdentifier>{704585a9-2165-422f-8457-b6c5ffe9179d}</UniqueIdentifier>
</Filter>
<Filter Include="Source Files\fex">
<UniqueIdentifier>{109f60b9-f5f8-4f85-807d-b0c977848674}</UniqueIdentifier>
</Filter>
<Filter Include="Header Files\nes_emu">
<UniqueIdentifier>{278454e6-01bf-4140-8707-bc2a4512c2ac}</UniqueIdentifier>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\nes_emu\abstract_file.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\apu_state.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Blip_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Effects_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Fme7.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Mmc5.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Namco106.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Vrc6.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\misc_mappers.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Multi_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Cart.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Core.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Cpu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_data.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Effects_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Emu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_File.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Film.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Film_Data.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Film_Packer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Fme7_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mapper.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_mappers.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mmc1.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mmc3.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Namco_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Oscs.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu_Impl.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu_Rendering.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Recorder.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_State.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_util.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Vrc6_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\fex\blargg_common.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
<ClCompile Include="..\fex\blargg_errors.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
<ClCompile Include="..\fex\Data_Reader.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
</ItemGroup>
</Project>

216
quicknes/libretro/Makefile Normal file
View File

@ -0,0 +1,216 @@
DEBUG = 0
ifeq ($(platform),)
platform = unix
ifeq ($(shell uname -a),)
platform = win
else ifneq ($(findstring MINGW,$(shell uname -a)),)
platform = win
else ifneq ($(findstring Darwin,$(shell uname -a)),)
platform = osx
else ifneq ($(findstring win,$(shell uname -a)),)
platform = win
endif
endif
# system platform
system_platform = unix
ifeq ($(shell uname -a),)
EXE_EXT = .exe
system_platform = win
else ifneq ($(findstring Darwin,$(shell uname -a)),)
system_platform = osx
else ifneq ($(findstring MINGW,$(shell uname -a)),)
system_platform = win
endif
LIBRETRO_DIR := libretro
TARGET_NAME := quicknes
ifeq ($(platform), unix)
TARGET := $(TARGET_NAME)_libretro.so
fpic := -fPIC
SHARED := -shared -Wl,-version-script=link.T -Wl,-no-undefined
else ifeq ($(platform), osx)
TARGET := $(TARGET_NAME)_libretro.dylib
fpic := -fPIC
SHARED := -dynamiclib
else ifeq ($(platform), ios)
TARGET := $(TARGET_NAME)_libretro_ios.dylib
fpic := -fPIC
SHARED := -dynamiclib
CC = clang -arch armv7 -isysroot $(IOSSDK) -miphoneos-version-min=5.0
CXX = clang++ -arch armv7 -isysroot $(IOSSDK) -miphoneos-version-min=5.0
PLATFORM_DEFINES += -DIOS -miphoneos-version-min=5.0
else ifeq ($(platform), qnx)
TARGET := $(TARGET_NAME)_libretro_qnx.so
fpic := -fPIC
SHARED := -shared -Wl,--version-script=link.T
CC = qcc -Vgcc_ntoarmv7le
CXX = QCC -Vgcc_ntoarmv7le
AR = QCC -Vgcc_ntoarmv7le
PLATFORM_DEFINES += -D__BLACKBERRY_QNX__
else ifeq ($(platform), ps3)
TARGET := $(TARGET_NAME)_libretro_ps3.a
CXX = $(CELL_SDK)/host-win32/ppu/bin/ppu-lv2-g++.exe
AR = $(CELL_SDK)/host-win32/ppu/bin/ppu-lv2-ar.exe
PLATFORM_DEFINES := -D__CELLOS_LV2__
STATIC_LINKING = 1
else ifeq ($(platform), sncps3)
TARGET := $(TARGET_NAME)_libretro_ps3.a
CC = $(CELL_SDK)/host-win32/sn/bin/ps3ppusnc.exe
CXX = $(CELL_SDK)/host-win32/sn/bin/ps3ppusnc.exe
AR = $(CELL_SDK)/host-win32/sn/bin/ps3snarl.exe
PLATFORM_DEFINES := -D__CELLOS_LV2__
STATIC_LINKING = 1
else ifeq ($(platform), psl1ght)
TARGET := $(TARGET_NAME)_libretro_psl1ght.a
CC = $(PS3DEV)/ppu/bin/ppu-gcc$(EXE_EXT)
CXX = $(PS3DEV)/ppu/bin/ppu-g++$(EXE_EXT)
AR = $(PS3DEV)/ppu/bin/ppu-ar$(EXE_EXT)
PLATFORM_DEFINES := -D__CELLOS_LV2__
STATIC_LINKING = 1
else ifeq ($(platform), xenon)
TARGET := $(TARGET_NAME)_libretro_xenon360.a
CC = xenon-gcc$(EXE_EXT)
CXX = xenon-g++$(EXE_EXT)
AR = xenon-ar$(EXE_EXT)
PLATFORM_DEFINES := -D__LIBXENON__
STATIC_LINKING = 1
else ifeq ($(platform), ngc)
TARGET := $(TARGET_NAME)_libretro_ngc.a
CC = $(DEVKITPPC)/bin/powerpc-eabi-gcc$(EXE_EXT)
CXX = $(DEVKITPPC)/bin/powerpc-eabi-g++$(EXE_EXT)
AR = $(DEVKITPPC)/bin/powerpc-eabi-ar$(EXE_EXT)
PLATFORM_DEFINES += -DGEKKO -DHW_DOL -mrvl -mcpu=750 -meabi -mhard-float
STATIC_LINKING = 1
else ifeq ($(platform), wii)
TARGET := $(TARGET_NAME)_libretro_wii.a
CC = $(DEVKITPPC)/bin/powerpc-eabi-gcc$(EXE_EXT)
CXX = $(DEVKITPPC)/bin/powerpc-eabi-g++$(EXE_EXT)
AR = $(DEVKITPPC)/bin/powerpc-eabi-ar$(EXE_EXT)
PLATFORM_DEFINES += -DGEKKO -DHW_RVL -mrvl -mcpu=750 -meabi -mhard-float
STATIC_LINKING = 1
else ifneq (,$(findstring armv,$(platform)))
TARGET := $(TARGET_NAME)_libretro.so
fpic := -fPIC
SHARED := -shared -Wl,-version-script=link.T -Wl,-no-undefined
CC = gcc
ifneq (,$(findstring cortexa8,$(platform)))
PLATFORM_DEFINES += -marm -mcpu=cortex-a8
else ifneq (,$(findstring cortexa9,$(platform)))
PLATFORM_DEFINES += -marm -mcpu=cortex-a9
endif
PLATFORM_DEFINES += -marm
ifneq (,$(findstring neon,$(platform)))
PLATFORM_DEFINES += -mfpu=neon
HAVE_NEON = 1
endif
ifneq (,$(findstring softfloat,$(platform)))
PLATFORM_DEFINES += -mfloat-abi=softfp
else ifneq (,$(findstring hardfloat,$(platform)))
PLATFORM_DEFINES += -mfloat-abi=hard
endif
PLATFORM_DEFINES += -DARM
else
TARGET := $(TARGET_NAME)_libretro.dll
CC = gcc
CXX = g++
SHARED := -shared -static-libgcc -static-libstdc++ -Wl,-no-undefined -Wl,-version-script=link.T
endif
all: $(TARGET)
ifeq ($(DEBUG), 1)
CFLAGS += -O0 -g
CXXFLAGS += -O0 -g
else
CFLAGS += -O3
CXXFLAGS += -O3
endif
EMU_DIR := ../nes_emu
CXXSRCS := \
$(EMU_DIR)/abstract_file.cpp \
$(EMU_DIR)/apu_state.cpp \
$(EMU_DIR)/Blip_Buffer.cpp \
$(EMU_DIR)/Effects_Buffer.cpp \
$(EMU_DIR)/Mapper_Fme7.cpp \
$(EMU_DIR)/Mapper_Mmc5.cpp \
$(EMU_DIR)/Mapper_Namco106.cpp \
$(EMU_DIR)/Mapper_Vrc6.cpp \
$(EMU_DIR)/misc_mappers.cpp \
$(EMU_DIR)/Multi_Buffer.cpp \
$(EMU_DIR)/Nes_Apu.cpp \
$(EMU_DIR)/Nes_Buffer.cpp \
$(EMU_DIR)/Nes_Cart.cpp \
$(EMU_DIR)/Nes_Core.cpp \
$(EMU_DIR)/Nes_Cpu.cpp \
$(EMU_DIR)/nes_data.cpp \
$(EMU_DIR)/Nes_Effects_Buffer.cpp \
$(EMU_DIR)/Nes_Emu.cpp \
$(EMU_DIR)/Nes_File.cpp \
$(EMU_DIR)/Nes_Film.cpp \
$(EMU_DIR)/Nes_Film_Data.cpp \
$(EMU_DIR)/Nes_Film_Packer.cpp \
$(EMU_DIR)/Nes_Fme7_Apu.cpp \
$(EMU_DIR)/Nes_Mapper.cpp \
$(EMU_DIR)/nes_mappers.cpp \
$(EMU_DIR)/Nes_Mmc1.cpp \
$(EMU_DIR)/Nes_Mmc3.cpp \
$(EMU_DIR)/Nes_Namco_Apu.cpp \
$(EMU_DIR)/Nes_Oscs.cpp \
$(EMU_DIR)/Nes_Ppu.cpp \
$(EMU_DIR)/Nes_Ppu_Impl.cpp \
$(EMU_DIR)/Nes_Ppu_Rendering.cpp \
$(EMU_DIR)/Nes_Recorder.cpp \
$(EMU_DIR)/Nes_State.cpp \
$(EMU_DIR)/nes_util.cpp \
$(EMU_DIR)/Nes_Vrc6_Apu.cpp \
libretro.cpp
LIBSRCS := \
../fex/Data_Reader.cpp \
../fex/blargg_errors.cpp \
../fex/blargg_common.cpp
CXXOBJ := $(CXXSRCS:.cpp=.o) $(LIBSRCS:.cpp=.o)
OBJS := $(CXXOBJ)
DEFINES := -D__LIBRETRO__ $(PLATFORM_DEFINES) -Wall -Wno-multichar -Wno-unused-variable -Wno-sign-compare -DNDEBUG \
-DSTD_AUTO_FILE_WRITER=Std_File_Writer \
-DSTD_AUTO_FILE_READER=Std_File_Reader \
-DSTD_AUTO_FILE_COMP_READER=Std_File_Reader \
-DSTD_AUTO_FILE_COMP_WRITER=Std_File_Writer
CFLAGS += $(fpic) $(DEFINES) -std=gnu99
CXXFLAGS += $(fpic) $(DEFINES)
INCDIRS := -I$(EMU_DIR) -I. -I..
$(TARGET): $(OBJS)
ifeq ($(STATIC_LINKING), 1)
$(AR) rcs $@ $(OBJS)
else
$(CXX) -o $@ $(SHARED) $(OBJS) $(LDFLAGS) $(LIBS)
endif
%.o: %.cpp
$(CXX) -c -o $@ $< $(CXXFLAGS) $(INCDIRS)
%.o: %.c
$(CXX) -c -o $@ $< $(CXXFLAGS) $(INCDIRS)
clean-objs:
rm -f $(OBJS)
clean:
rm -f $(OBJS)
rm -f $(TARGET)
.PHONY: clean clean-objs

View File

@ -0,0 +1,75 @@
LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
ifeq ($(TARGET_ARCH),arm)
LOCAL_CFLAGS += -DANDROID_ARM
LOCAL_ARM_MODE := arm
endif
ifeq ($(TARGET_ARCH),x86)
LOCAL_CFLAGS += -DANDROID_X86
endif
ifeq ($(TARGET_ARCH),mips)
LOCAL_CFLAGS += -DANDROID_MIPS
endif
LOCAL_MODULE := libretro
EMU_DIR := ../../nes_emu
LIBRETRO_DIR := ../
CXXSRCS := \
$(EMU_DIR)/abstract_file.cpp \
$(EMU_DIR)/apu_state.cpp \
$(EMU_DIR)/Blip_Buffer.cpp \
$(EMU_DIR)/Effects_Buffer.cpp \
$(EMU_DIR)/Mapper_Fme7.cpp \
$(EMU_DIR)/Mapper_Mmc5.cpp \
$(EMU_DIR)/Mapper_Namco106.cpp \
$(EMU_DIR)/Mapper_Vrc6.cpp \
$(EMU_DIR)/misc_mappers.cpp \
$(EMU_DIR)/Multi_Buffer.cpp \
$(EMU_DIR)/Nes_Apu.cpp \
$(EMU_DIR)/Nes_Buffer.cpp \
$(EMU_DIR)/Nes_Cart.cpp \
$(EMU_DIR)/Nes_Core.cpp \
$(EMU_DIR)/Nes_Cpu.cpp \
$(EMU_DIR)/nes_data.cpp \
$(EMU_DIR)/Nes_Effects_Buffer.cpp \
$(EMU_DIR)/Nes_Emu.cpp \
$(EMU_DIR)/Nes_File.cpp \
$(EMU_DIR)/Nes_Film.cpp \
$(EMU_DIR)/Nes_Film_Data.cpp \
$(EMU_DIR)/Nes_Film_Packer.cpp \
$(EMU_DIR)/Nes_Fme7_Apu.cpp \
$(EMU_DIR)/Nes_Mapper.cpp \
$(EMU_DIR)/nes_mappers.cpp \
$(EMU_DIR)/Nes_Mmc1.cpp \
$(EMU_DIR)/Nes_Mmc3.cpp \
$(EMU_DIR)/Nes_Namco_Apu.cpp \
$(EMU_DIR)/Nes_Oscs.cpp \
$(EMU_DIR)/Nes_Ppu.cpp \
$(EMU_DIR)/Nes_Ppu_Impl.cpp \
$(EMU_DIR)/Nes_Ppu_Rendering.cpp \
$(EMU_DIR)/Nes_Recorder.cpp \
$(EMU_DIR)/Nes_State.cpp \
$(EMU_DIR)/nes_util.cpp \
$(EMU_DIR)/Nes_Vrc6_Apu.cpp \
$(LIBRETRO_DIR)/libretro.cpp
LIBSRCS := \
$(LIBRETRO_DIR)/../fex/Data_Reader.cpp \
$(LIBRETRO_DIR)/../fex/blargg_errors.cpp \
$(LIBRETRO_DIR)/../fex/blargg_common.cpp
LOCAL_SRC_FILES = $(CXXSRCS) $(LIBSRCS)
LOCAL_CXXFLAGS = -DANDROID -D__LIBRETRO__ -Wall -Wno-multichar -Wno-unused-variable -Wno-sign-compare -DNDEBUG \
-DSTD_AUTO_FILE_WRITER=Std_File_Writer \
-DSTD_AUTO_FILE_READER=Std_File_Reader \
-DSTD_AUTO_FILE_COMP_READER=Std_File_Reader \
-DSTD_AUTO_FILE_COMP_WRITER=Std_File_Writer
LOCAL_C_INCLUDES = $(LIBRETRO_DIR) $(EMU_DIR) $(EMU_DIR)/..
include $(BUILD_SHARED_LIBRARY)

View File

@ -0,0 +1,2 @@
APP_STL := gnustl_static
APP_ABI := all

View File

@ -0,0 +1,267 @@
#include "libretro.h"
#include <stdint.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "Nes_Emu.h"
#include "fex/Data_Reader.h"
#include "abstract_file.h"
static Nes_Emu *emu;
void retro_init(void)
{
delete emu;
emu = new Nes_Emu;
}
void retro_deinit(void)
{
delete emu;
emu = 0;
}
unsigned retro_api_version(void)
{
return RETRO_API_VERSION;
}
void retro_set_controller_port_device(unsigned, unsigned)
{
}
void retro_get_system_info(struct retro_system_info *info)
{
memset(info, 0, sizeof(*info));
info->library_name = "QuickNES";
info->library_version = "v1";
info->need_fullpath = false;
info->valid_extensions = "nes"; // Anything is fine, we don't care.
}
void retro_get_system_av_info(struct retro_system_av_info *info)
{
const retro_system_timing timing = { Nes_Emu::frame_rate, 44100.0 };
info->timing = timing;
const retro_game_geometry geom = {
Nes_Emu::image_width,
Nes_Emu::image_height,
Nes_Emu::image_width,
Nes_Emu::image_height,
4.0 / 3.0,
};
info->geometry = geom;
}
static retro_video_refresh_t video_cb;
static retro_audio_sample_t audio_cb;
static retro_audio_sample_batch_t audio_batch_cb;
static retro_environment_t environ_cb;
static retro_input_poll_t input_poll_cb;
static retro_input_state_t input_state_cb;
void retro_set_environment(retro_environment_t cb)
{
environ_cb = cb;
}
void retro_set_audio_sample(retro_audio_sample_t cb)
{
audio_cb = cb;
}
void retro_set_audio_sample_batch(retro_audio_sample_batch_t cb)
{
audio_batch_cb = cb;
}
void retro_set_input_poll(retro_input_poll_t cb)
{
input_poll_cb = cb;
}
void retro_set_input_state(retro_input_state_t cb)
{
input_state_cb = cb;
}
void retro_set_video_refresh(retro_video_refresh_t cb)
{
video_cb = cb;
}
void retro_reset(void)
{
if (emu)
emu->reset();
}
#define JOY_A 1
#define JOY_B 2
#define JOY_SELECT 4
#define JOY_START 8
#define JOY_UP 0x10
#define JOY_DOWN 0x20
#define JOY_LEFT 0x40
#define JOY_RIGHT 0x80
typedef struct
{
unsigned retro;
unsigned nes;
} keymap;
static const keymap bindmap[] = {
{ RETRO_DEVICE_ID_JOYPAD_A, JOY_A },
{ RETRO_DEVICE_ID_JOYPAD_B, JOY_B },
{ RETRO_DEVICE_ID_JOYPAD_SELECT, JOY_SELECT },
{ RETRO_DEVICE_ID_JOYPAD_START, JOY_START },
{ RETRO_DEVICE_ID_JOYPAD_UP, JOY_UP },
{ RETRO_DEVICE_ID_JOYPAD_DOWN, JOY_DOWN },
{ RETRO_DEVICE_ID_JOYPAD_LEFT, JOY_LEFT },
{ RETRO_DEVICE_ID_JOYPAD_RIGHT, JOY_RIGHT },
};
static void update_input(int pads[2])
{
pads[0] = pads[1] = 0;
input_poll_cb();
for (unsigned p = 0; p < 2; p++)
for (unsigned bind = 0; bind < sizeof(bindmap) / sizeof(bindmap[0]); bind++)
pads[p] |= input_state_cb(p, RETRO_DEVICE_JOYPAD, 0, bindmap[bind].retro) ? bindmap[bind].nes : 0;
}
void retro_run(void)
{
int pads[2] = {0};
update_input(pads);
emu->emulate_frame(pads[0], pads[1]);
const Nes_Emu::frame_t &frame = emu->frame();
static uint32_t video_buffer[Nes_Emu::image_width * Nes_Emu::image_height];
const uint8_t *in_pixels = frame.pixels;
uint32_t *out_pixels = video_buffer;
for (unsigned h = 0; h < Nes_Emu::image_height;
h++, in_pixels += frame.pitch, out_pixels += Nes_Emu::image_width)
{
for (unsigned w = 0; w < Nes_Emu::image_width; w++)
{
unsigned col = frame.palette[in_pixels[w]];
const Nes_Emu::rgb_t& rgb = emu->nes_colors[col];
unsigned r = rgb.red;
unsigned g = rgb.green;
unsigned b = rgb.blue;
out_pixels[w] = (r << 16) | (g << 8) | (b << 0);
}
}
video_cb(video_buffer, Nes_Emu::image_width, Nes_Emu::image_height,
Nes_Emu::image_width * sizeof(uint32_t));
// Mono -> Stereo.
int16_t samples[2048];
long read_samples = emu->read_samples(samples, 2048);
int16_t out_samples[4096];
for (long i = 0; i < read_samples; i++)
out_samples[(i << 1)] = out_samples[(i << 1) + 1] = samples[i];
audio_batch_cb(out_samples, read_samples);
}
bool retro_load_game(const struct retro_game_info *info)
{
if (!emu)
return false;
enum retro_pixel_format fmt = RETRO_PIXEL_FORMAT_XRGB8888;
if (!environ_cb(RETRO_ENVIRONMENT_SET_PIXEL_FORMAT, &fmt))
{
fprintf(stderr, "XRGB8888 is not supported.\n");
return false;
}
emu->set_sample_rate(44100);
emu->set_equalizer(Nes_Emu::nes_eq);
emu->set_palette_range(0);
static uint8_t video_buffer[Nes_Emu::image_width * Nes_Emu::image_height];
emu->set_pixels(video_buffer, Nes_Emu::image_width);
Mem_File_Reader reader(info->data, info->size);
return !emu->load_ines(reader);
}
void retro_unload_game(void)
{
emu->close();
}
unsigned retro_get_region(void)
{
return RETRO_REGION_NTSC;
}
bool retro_load_game_special(unsigned, const struct retro_game_info *, size_t)
{
return false;
}
size_t retro_serialize_size(void)
{
Mem_Writer writer;
if (emu->save_state(writer))
return 0;
return writer.size();
}
bool retro_serialize(void *data, size_t size)
{
Mem_Writer writer(data, size);
return !emu->save_state(writer);
}
bool retro_unserialize(const void *data, size_t size)
{
Mem_File_Reader reader(data, size);
return !emu->load_state(reader);
}
void *retro_get_memory_data(unsigned id)
{
switch (id)
{
case RETRO_MEMORY_SAVE_RAM:
return emu->high_mem();
case RETRO_MEMORY_SYSTEM_RAM:
return emu->low_mem();
default:
return 0;
}
}
size_t retro_get_memory_size(unsigned id)
{
switch (id)
{
case RETRO_MEMORY_SAVE_RAM:
return Nes_Emu::high_mem_size;
case RETRO_MEMORY_SYSTEM_RAM:
return Nes_Emu::low_mem_size;
default:
return 0;
}
}
void retro_cheat_reset(void)
{}
void retro_cheat_set(unsigned, bool, const char *)
{}

View File

@ -0,0 +1,758 @@
#ifndef LIBRETRO_H__
#define LIBRETRO_H__
#include <stdint.h>
#include <stddef.h>
#include <limits.h>
// Hack applied for MSVC when compiling in C89 mode as it isn't C99 compliant.
#ifdef __cplusplus
extern "C" {
#else
#if defined(_MSC_VER) && !defined(SN_TARGET_PS3) && !defined(__cplusplus)
#define bool unsigned char
#define true 1
#define false 0
#else
#include <stdbool.h>
#endif
#endif
// Used for checking API/ABI mismatches that can break libretro implementations.
// It is not incremented for compatible changes to the API.
#define RETRO_API_VERSION 1
// Libretro's fundamental device abstractions.
#define RETRO_DEVICE_MASK 0xff
#define RETRO_DEVICE_NONE 0
// The JOYPAD is called RetroPad. It is essentially a Super Nintendo controller,
// but with additional L2/R2/L3/R3 buttons, similar to a PS1 DualShock.
#define RETRO_DEVICE_JOYPAD 1
// The mouse is a simple mouse, similar to Super Nintendo's mouse.
// X and Y coordinates are reported relatively to last poll (poll callback).
// It is up to the libretro implementation to keep track of where the mouse pointer is supposed to be on the screen.
// The frontend must make sure not to interfere with its own hardware mouse pointer.
#define RETRO_DEVICE_MOUSE 2
// KEYBOARD device lets one poll for raw key pressed.
// It is poll based, so input callback will return with the current pressed state.
#define RETRO_DEVICE_KEYBOARD 3
// Lightgun X/Y coordinates are reported relatively to last poll, similar to mouse.
#define RETRO_DEVICE_LIGHTGUN 4
// The ANALOG device is an extension to JOYPAD (RetroPad).
// Similar to DualShock it adds two analog sticks.
// This is treated as a separate device type as it returns values in the full analog range
// of [-0x8000, 0x7fff]. Positive X axis is right. Positive Y axis is down.
// Only use ANALOG type when polling for analog values of the axes.
#define RETRO_DEVICE_ANALOG 5
// Abstracts the concept of a pointing mechanism, e.g. touch.
// This allows libretro to query in absolute coordinates where on the screen a mouse (or something similar) is being placed.
// For a touch centric device, coordinates reported are the coordinates of the press.
//
// Coordinates in X and Y are reported as:
// [-0x7fff, 0x7fff]: -0x7fff corresponds to the far left/top of the screen,
// and 0x7fff corresponds to the far right/bottom of the screen.
// The "screen" is here defined as area that is passed to the frontend and later displayed on the monitor.
// The frontend is free to scale/resize this screen as it sees fit, however,
// (X, Y) = (-0x7fff, -0x7fff) will correspond to the top-left pixel of the game image, etc.
//
// To check if the pointer coordinates are valid (e.g. a touch display actually being touched),
// PRESSED returns 1 or 0.
// If using a mouse, PRESSED will usually correspond to the left mouse button.
// PRESSED will only return 1 if the pointer is inside the game screen.
//
// For multi-touch, the index variable can be used to successively query more presses.
// If index = 0 returns true for _PRESSED, coordinates can be extracted
// with _X, _Y for index = 0. One can then query _PRESSED, _X, _Y with index = 1, and so on.
// Eventually _PRESSED will return false for an index. No further presses are registered at this point.
#define RETRO_DEVICE_POINTER 6
// These device types are specializations of the base types above.
// They should only be used in retro_set_controller_type() to inform libretro implementations
// about use of a very specific device type.
//
// In input state callback, however, only the base type should be used in the 'device' field.
#define RETRO_DEVICE_JOYPAD_MULTITAP ((1 << 8) | RETRO_DEVICE_JOYPAD)
#define RETRO_DEVICE_LIGHTGUN_SUPER_SCOPE ((1 << 8) | RETRO_DEVICE_LIGHTGUN)
#define RETRO_DEVICE_LIGHTGUN_JUSTIFIER ((2 << 8) | RETRO_DEVICE_LIGHTGUN)
#define RETRO_DEVICE_LIGHTGUN_JUSTIFIERS ((3 << 8) | RETRO_DEVICE_LIGHTGUN)
// Buttons for the RetroPad (JOYPAD).
// The placement of these is equivalent to placements on the Super Nintendo controller.
// L2/R2/L3/R3 buttons correspond to the PS1 DualShock.
#define RETRO_DEVICE_ID_JOYPAD_B 0
#define RETRO_DEVICE_ID_JOYPAD_Y 1
#define RETRO_DEVICE_ID_JOYPAD_SELECT 2
#define RETRO_DEVICE_ID_JOYPAD_START 3
#define RETRO_DEVICE_ID_JOYPAD_UP 4
#define RETRO_DEVICE_ID_JOYPAD_DOWN 5
#define RETRO_DEVICE_ID_JOYPAD_LEFT 6
#define RETRO_DEVICE_ID_JOYPAD_RIGHT 7
#define RETRO_DEVICE_ID_JOYPAD_A 8
#define RETRO_DEVICE_ID_JOYPAD_X 9
#define RETRO_DEVICE_ID_JOYPAD_L 10
#define RETRO_DEVICE_ID_JOYPAD_R 11
#define RETRO_DEVICE_ID_JOYPAD_L2 12
#define RETRO_DEVICE_ID_JOYPAD_R2 13
#define RETRO_DEVICE_ID_JOYPAD_L3 14
#define RETRO_DEVICE_ID_JOYPAD_R3 15
// Index / Id values for ANALOG device.
#define RETRO_DEVICE_INDEX_ANALOG_LEFT 0
#define RETRO_DEVICE_INDEX_ANALOG_RIGHT 1
#define RETRO_DEVICE_ID_ANALOG_X 0
#define RETRO_DEVICE_ID_ANALOG_Y 1
// Id values for MOUSE.
#define RETRO_DEVICE_ID_MOUSE_X 0
#define RETRO_DEVICE_ID_MOUSE_Y 1
#define RETRO_DEVICE_ID_MOUSE_LEFT 2
#define RETRO_DEVICE_ID_MOUSE_RIGHT 3
// Id values for LIGHTGUN types.
#define RETRO_DEVICE_ID_LIGHTGUN_X 0
#define RETRO_DEVICE_ID_LIGHTGUN_Y 1
#define RETRO_DEVICE_ID_LIGHTGUN_TRIGGER 2
#define RETRO_DEVICE_ID_LIGHTGUN_CURSOR 3
#define RETRO_DEVICE_ID_LIGHTGUN_TURBO 4
#define RETRO_DEVICE_ID_LIGHTGUN_PAUSE 5
#define RETRO_DEVICE_ID_LIGHTGUN_START 6
// Id values for POINTER.
#define RETRO_DEVICE_ID_POINTER_X 0
#define RETRO_DEVICE_ID_POINTER_Y 1
#define RETRO_DEVICE_ID_POINTER_PRESSED 2
// Returned from retro_get_region().
#define RETRO_REGION_NTSC 0
#define RETRO_REGION_PAL 1
// Passed to retro_get_memory_data/size().
// If the memory type doesn't apply to the implementation NULL/0 can be returned.
#define RETRO_MEMORY_MASK 0xff
// Regular save ram. This ram is usually found on a game cartridge, backed up by a battery.
// If save game data is too complex for a single memory buffer,
// the SYSTEM_DIRECTORY environment callback can be used.
#define RETRO_MEMORY_SAVE_RAM 0
// Some games have a built-in clock to keep track of time.
// This memory is usually just a couple of bytes to keep track of time.
#define RETRO_MEMORY_RTC 1
// System ram lets a frontend peek into a game systems main RAM.
#define RETRO_MEMORY_SYSTEM_RAM 2
// Video ram lets a frontend peek into a game systems video RAM (VRAM).
#define RETRO_MEMORY_VIDEO_RAM 3
// Special memory types.
#define RETRO_MEMORY_SNES_BSX_RAM ((1 << 8) | RETRO_MEMORY_SAVE_RAM)
#define RETRO_MEMORY_SNES_BSX_PRAM ((2 << 8) | RETRO_MEMORY_SAVE_RAM)
#define RETRO_MEMORY_SNES_SUFAMI_TURBO_A_RAM ((3 << 8) | RETRO_MEMORY_SAVE_RAM)
#define RETRO_MEMORY_SNES_SUFAMI_TURBO_B_RAM ((4 << 8) | RETRO_MEMORY_SAVE_RAM)
#define RETRO_MEMORY_SNES_GAME_BOY_RAM ((5 << 8) | RETRO_MEMORY_SAVE_RAM)
#define RETRO_MEMORY_SNES_GAME_BOY_RTC ((6 << 8) | RETRO_MEMORY_RTC)
// Special game types passed into retro_load_game_special().
// Only used when multiple ROMs are required.
#define RETRO_GAME_TYPE_BSX 0x101
#define RETRO_GAME_TYPE_BSX_SLOTTED 0x102
#define RETRO_GAME_TYPE_SUFAMI_TURBO 0x103
#define RETRO_GAME_TYPE_SUPER_GAME_BOY 0x104
// Keysyms used for ID in input state callback when polling RETRO_KEYBOARD.
enum retro_key
{
RETROK_UNKNOWN = 0,
RETROK_FIRST = 0,
RETROK_BACKSPACE = 8,
RETROK_TAB = 9,
RETROK_CLEAR = 12,
RETROK_RETURN = 13,
RETROK_PAUSE = 19,
RETROK_ESCAPE = 27,
RETROK_SPACE = 32,
RETROK_EXCLAIM = 33,
RETROK_QUOTEDBL = 34,
RETROK_HASH = 35,
RETROK_DOLLAR = 36,
RETROK_AMPERSAND = 38,
RETROK_QUOTE = 39,
RETROK_LEFTPAREN = 40,
RETROK_RIGHTPAREN = 41,
RETROK_ASTERISK = 42,
RETROK_PLUS = 43,
RETROK_COMMA = 44,
RETROK_MINUS = 45,
RETROK_PERIOD = 46,
RETROK_SLASH = 47,
RETROK_0 = 48,
RETROK_1 = 49,
RETROK_2 = 50,
RETROK_3 = 51,
RETROK_4 = 52,
RETROK_5 = 53,
RETROK_6 = 54,
RETROK_7 = 55,
RETROK_8 = 56,
RETROK_9 = 57,
RETROK_COLON = 58,
RETROK_SEMICOLON = 59,
RETROK_LESS = 60,
RETROK_EQUALS = 61,
RETROK_GREATER = 62,
RETROK_QUESTION = 63,
RETROK_AT = 64,
RETROK_LEFTBRACKET = 91,
RETROK_BACKSLASH = 92,
RETROK_RIGHTBRACKET = 93,
RETROK_CARET = 94,
RETROK_UNDERSCORE = 95,
RETROK_BACKQUOTE = 96,
RETROK_a = 97,
RETROK_b = 98,
RETROK_c = 99,
RETROK_d = 100,
RETROK_e = 101,
RETROK_f = 102,
RETROK_g = 103,
RETROK_h = 104,
RETROK_i = 105,
RETROK_j = 106,
RETROK_k = 107,
RETROK_l = 108,
RETROK_m = 109,
RETROK_n = 110,
RETROK_o = 111,
RETROK_p = 112,
RETROK_q = 113,
RETROK_r = 114,
RETROK_s = 115,
RETROK_t = 116,
RETROK_u = 117,
RETROK_v = 118,
RETROK_w = 119,
RETROK_x = 120,
RETROK_y = 121,
RETROK_z = 122,
RETROK_DELETE = 127,
RETROK_KP0 = 256,
RETROK_KP1 = 257,
RETROK_KP2 = 258,
RETROK_KP3 = 259,
RETROK_KP4 = 260,
RETROK_KP5 = 261,
RETROK_KP6 = 262,
RETROK_KP7 = 263,
RETROK_KP8 = 264,
RETROK_KP9 = 265,
RETROK_KP_PERIOD = 266,
RETROK_KP_DIVIDE = 267,
RETROK_KP_MULTIPLY = 268,
RETROK_KP_MINUS = 269,
RETROK_KP_PLUS = 270,
RETROK_KP_ENTER = 271,
RETROK_KP_EQUALS = 272,
RETROK_UP = 273,
RETROK_DOWN = 274,
RETROK_RIGHT = 275,
RETROK_LEFT = 276,
RETROK_INSERT = 277,
RETROK_HOME = 278,
RETROK_END = 279,
RETROK_PAGEUP = 280,
RETROK_PAGEDOWN = 281,
RETROK_F1 = 282,
RETROK_F2 = 283,
RETROK_F3 = 284,
RETROK_F4 = 285,
RETROK_F5 = 286,
RETROK_F6 = 287,
RETROK_F7 = 288,
RETROK_F8 = 289,
RETROK_F9 = 290,
RETROK_F10 = 291,
RETROK_F11 = 292,
RETROK_F12 = 293,
RETROK_F13 = 294,
RETROK_F14 = 295,
RETROK_F15 = 296,
RETROK_NUMLOCK = 300,
RETROK_CAPSLOCK = 301,
RETROK_SCROLLOCK = 302,
RETROK_RSHIFT = 303,
RETROK_LSHIFT = 304,
RETROK_RCTRL = 305,
RETROK_LCTRL = 306,
RETROK_RALT = 307,
RETROK_LALT = 308,
RETROK_RMETA = 309,
RETROK_LMETA = 310,
RETROK_LSUPER = 311,
RETROK_RSUPER = 312,
RETROK_MODE = 313,
RETROK_COMPOSE = 314,
RETROK_HELP = 315,
RETROK_PRINT = 316,
RETROK_SYSREQ = 317,
RETROK_BREAK = 318,
RETROK_MENU = 319,
RETROK_POWER = 320,
RETROK_EURO = 321,
RETROK_UNDO = 322,
RETROK_LAST,
RETROK_DUMMY = INT_MAX // Ensure sizeof(enum) == sizeof(int)
};
enum retro_mod
{
RETROKMOD_NONE = 0x0000,
RETROKMOD_SHIFT = 0x01,
RETROKMOD_CTRL = 0x02,
RETROKMOD_ALT = 0x04,
RETROKMOD_META = 0x08,
RETROKMOD_NUMLOCK = 0x10,
RETROKMOD_CAPSLOCK = 0x20,
RETROKMOD_SCROLLOCK = 0x40,
RETROKMOD_DUMMY = INT_MAX // Ensure sizeof(enum) == sizeof(int)
};
// If set, this call is not part of the public libretro API yet. It can change or be removed at any time.
#define RETRO_ENVIRONMENT_EXPERIMENTAL 0x10000
// Environment commands.
#define RETRO_ENVIRONMENT_SET_ROTATION 1 // const unsigned * --
// Sets screen rotation of graphics.
// Is only implemented if rotation can be accelerated by hardware.
// Valid values are 0, 1, 2, 3, which rotates screen by 0, 90, 180, 270 degrees
// counter-clockwise respectively.
//
#define RETRO_ENVIRONMENT_GET_OVERSCAN 2 // bool * --
// Boolean value whether or not the implementation should use overscan, or crop away overscan.
//
#define RETRO_ENVIRONMENT_GET_CAN_DUPE 3 // bool * --
// Boolean value whether or not frontend supports frame duping,
// passing NULL to video frame callback.
//
// Environ 4, 5 are no longer supported (GET_VARIABLE / SET_VARIABLES), and reserved to avoid possible ABI clash.
#define RETRO_ENVIRONMENT_SET_MESSAGE 6 // const struct retro_message * --
// Sets a message to be displayed in implementation-specific manner for a certain amount of 'frames'.
// Should not be used for trivial messages, which should simply be logged to stderr.
#define RETRO_ENVIRONMENT_SHUTDOWN 7 // N/A (NULL) --
// Requests the frontend to shutdown.
// Should only be used if game has a specific
// way to shutdown the game from a menu item or similar.
//
#define RETRO_ENVIRONMENT_SET_PERFORMANCE_LEVEL 8
// const unsigned * --
// Gives a hint to the frontend how demanding this implementation
// is on a system. E.g. reporting a level of 2 means
// this implementation should run decently on all frontends
// of level 2 and up.
//
// It can be used by the frontend to potentially warn
// about too demanding implementations.
//
// The levels are "floating", but roughly defined as:
// 0: Low-powered embedded devices such as Raspberry Pi
// 1: 6th generation consoles, such as Wii/Xbox 1, and phones, tablets, etc.
// 2: 7th generation consoles, such as PS3/360, with sub-par CPUs.
// 3: Modern desktop/laptops with reasonably powerful CPUs.
// 4: High-end desktops with very powerful CPUs.
//
// This function can be called on a per-game basis,
// as certain games an implementation can play might be
// particularily demanding.
// If called, it should be called in retro_load_game().
//
#define RETRO_ENVIRONMENT_GET_SYSTEM_DIRECTORY 9
// const char ** --
// Returns the "system" directory of the frontend.
// This directory can be used to store system specific ROMs such as BIOSes, configuration data, etc.
// The returned value can be NULL.
// If so, no such directory is defined,
// and it's up to the implementation to find a suitable directory.
//
#define RETRO_ENVIRONMENT_SET_PIXEL_FORMAT 10
// const enum retro_pixel_format * --
// Sets the internal pixel format used by the implementation.
// The default pixel format is RETRO_PIXEL_FORMAT_0RGB1555.
// This pixel format however, is deprecated (see enum retro_pixel_format).
// If the call returns false, the frontend does not support this pixel format.
// This function should be called inside retro_load_game() or retro_get_system_av_info().
//
#define RETRO_ENVIRONMENT_SET_INPUT_DESCRIPTORS 11
// const struct retro_input_descriptor * --
// Sets an array of retro_input_descriptors.
// It is up to the frontend to present this in a usable way.
// The array is terminated by retro_input_descriptor::description being set to NULL.
// This function can be called at any time, but it is recommended to call it as early as possible.
#define RETRO_ENVIRONMENT_SET_KEYBOARD_CALLBACK 12
// const struct retro_keyboard_callback * --
// Sets a callback function used to notify core about keyboard events.
//
#define RETRO_ENVIRONMENT_SET_DISK_CONTROL_INTERFACE 13
// const struct retro_disk_control_callback * --
// Sets an interface which frontend can use to eject and insert disk images.
// This is used for games which consist of multiple images and must be manually
// swapped out by the user (e.g. PSX).
#define RETRO_ENVIRONMENT_SET_HW_RENDER (14 | RETRO_ENVIRONMENT_EXPERIMENTAL)
// struct retro_hw_render_callback * --
// NOTE: This call is currently very experimental, and should not be considered part of the public API.
// The interface could be changed or removed at any time.
// Sets an interface to let a libretro core render with hardware acceleration.
// Should be called in retro_load_game().
// If successful, libretro cores will be able to render to a frontend-provided framebuffer.
// The size of this framebuffer will be at least as large as max_width/max_height provided in get_av_info().
// If HW rendering is used, pass only RETRO_HW_FRAME_BUFFER_VALID or NULL to retro_video_refresh_t.
#define RETRO_ENVIRONMENT_GET_VARIABLE 15
// struct retro_variable * --
// Interface to aquire user-defined information from environment
// that cannot feasibly be supported in a multi-system way.
// 'key' should be set to a key which has already been set by SET_VARIABLES.
// 'data' will be set to a value or NULL.
//
#define RETRO_ENVIRONMENT_SET_VARIABLES 16
// const struct retro_variable * --
// Allows an implementation to signal the environment
// which variables it might want to check for later using GET_VARIABLE.
// This allows the frontend to present these variables to a user dynamically.
// This should be called as early as possible (ideally in retro_set_environment).
//
// 'data' points to an array of retro_variable structs terminated by a { NULL, NULL } element.
// retro_variable::key should be namespaced to not collide with other implementations' keys. E.g. A core called 'foo' should use keys named as 'foo_option'.
// retro_variable::value should contain a human readable description of the key as well as a '|' delimited list of expected values.
// The number of possible options should be very limited, i.e. it should be feasible to cycle through options without a keyboard.
// First entry should be treated as a default.
//
// Example entry:
// { "foo_option", "Speed hack coprocessor X; false|true" }
//
// Text before first ';' is description. This ';' must be followed by a space, and followed by a list of possible values split up with '|'.
// Only strings are operated on. The possible values will generally be displayed and stored as-is by the frontend.
//
#define RETRO_ENVIRONMENT_GET_VARIABLE_UPDATE 17
// bool * --
// Result is set to true if some variables are updated by
// frontend since last call to RETRO_ENVIRONMENT_GET_VARIABLE.
// Variables should be queried with GET_VARIABLE.
// Pass this to retro_video_refresh_t if rendering to hardware.
// Passing NULL to retro_video_refresh_t is still a frame dupe as normal.
#define RETRO_HW_FRAME_BUFFER_VALID ((void*)-1)
// Invalidates the current HW context.
// If called, all GPU resources must be reinitialized.
// Usually called when frontend reinits video driver.
// Also called first time video driver is initialized, allowing libretro core to init resources.
typedef void (*retro_hw_context_reset_t)(void);
// Gets current framebuffer which is to be rendered to. Could change every frame potentially.
typedef uintptr_t (*retro_hw_get_current_framebuffer_t)(void);
// Get a symbol from HW context.
typedef void (*retro_proc_address_t)(void);
typedef retro_proc_address_t (*retro_hw_get_proc_address_t)(const char *sym);
enum retro_hw_context_type
{
RETRO_HW_CONTEXT_NONE = 0,
RETRO_HW_CONTEXT_OPENGL, // OpenGL 2.x. Latest version available before 3.x+.
RETRO_HW_CONTEXT_OPENGLES2, // GLES 2.0
RETRO_HW_CONTEXT_DUMMY = INT_MAX
};
struct retro_hw_render_callback
{
enum retro_hw_context_type context_type; // Which API to use. Set by libretro core.
retro_hw_context_reset_t context_reset; // Set by libretro core.
retro_hw_get_current_framebuffer_t get_current_framebuffer; // Set by frontend.
retro_hw_get_proc_address_t get_proc_address; // Set by frontend.
bool depth; // Set if render buffers should have depth component attached.
};
// Callback type passed in RETRO_ENVIRONMENT_SET_KEYBOARD_CALLBACK. Called by the frontend in response to keyboard events.
// down is set if the key is being pressed, or false if it is being released.
// keycode is the RETROK value of the char.
// character is the text character of the pressed key. (UTF-32).
// key_modifiers is a set of RETROKMOD values or'ed together.
typedef void (*retro_keyboard_event_t)(bool down, unsigned keycode, uint32_t character, uint16_t key_modifiers);
struct retro_keyboard_callback
{
retro_keyboard_event_t callback;
};
// Callbacks for RETRO_ENVIRONMENT_SET_DISK_CONTROL_INTERFACE.
// Should be set for implementations which can swap out multiple disk images in runtime.
// If the implementation can do this automatically, it should strive to do so.
// However, there are cases where the user must manually do so.
//
// Overview: To swap a disk image, eject the disk image with set_eject_state(true).
// Set the disk index with set_image_index(index). Insert the disk again with set_eject_state(false).
// If ejected is true, "ejects" the virtual disk tray.
// When ejected, the disk image index can be set.
typedef bool (*retro_set_eject_state_t)(bool ejected);
// Gets current eject state. The initial state is 'not ejected'.
typedef bool (*retro_get_eject_state_t)(void);
// Gets current disk index. First disk is index 0.
// If return value is >= get_num_images(), no disk is currently inserted.
typedef unsigned (*retro_get_image_index_t)(void);
// Sets image index. Can only be called when disk is ejected.
// The implementation supports setting "no disk" by using an index >= get_num_images().
typedef bool (*retro_set_image_index_t)(unsigned index);
// Gets total number of images which are available to use.
typedef unsigned (*retro_get_num_images_t)(void);
//
// Replaces the disk image associated with index.
// Arguments to pass in info have same requirements as retro_load_game().
// Virtual disk tray must be ejected when calling this.
// Replacing a disk image with info = NULL will remove the disk image from the internal list.
// As a result, calls to get_image_index() can change.
//
// E.g. replace_image_index(1, NULL), and previous get_image_index() returned 4 before.
// Index 1 will be removed, and the new index is 3.
struct retro_game_info;
typedef bool (*retro_replace_image_index_t)(unsigned index, const struct retro_game_info *info);
// Adds a new valid index (get_num_images()) to the internal disk list.
// This will increment subsequent return values from get_num_images() by 1.
// This image index cannot be used until a disk image has been set with replace_image_index.
typedef bool (*retro_add_image_index_t)(void);
struct retro_disk_control_callback
{
retro_set_eject_state_t set_eject_state;
retro_get_eject_state_t get_eject_state;
retro_get_image_index_t get_image_index;
retro_set_image_index_t set_image_index;
retro_get_num_images_t get_num_images;
retro_replace_image_index_t replace_image_index;
retro_add_image_index_t add_image_index;
};
enum retro_pixel_format
{
// 0RGB1555, native endian. 0 bit must be set to 0.
// This pixel format is default for compatibility concerns only.
// If a 15/16-bit pixel format is desired, consider using RGB565.
RETRO_PIXEL_FORMAT_0RGB1555 = 0,
// XRGB8888, native endian. X bits are ignored.
RETRO_PIXEL_FORMAT_XRGB8888 = 1,
// RGB565, native endian. This pixel format is the recommended format to use if a 15/16-bit format is desired
// as it is the pixel format that is typically available on a wide range of low-power devices.
// It is also natively supported in APIs like OpenGL ES.
RETRO_PIXEL_FORMAT_RGB565 = 2,
// Ensure sizeof() == sizeof(int).
RETRO_PIXEL_FORMAT_UNKNOWN = INT_MAX
};
struct retro_message
{
const char *msg; // Message to be displayed.
unsigned frames; // Duration in frames of message.
};
// Describes how the libretro implementation maps a libretro input bind
// to its internal input system through a human readable string.
// This string can be used to better let a user configure input.
struct retro_input_descriptor
{
// Associates given parameters with a description.
unsigned port;
unsigned device;
unsigned index;
unsigned id;
const char *description; // Human readable description for parameters.
// The pointer must remain valid until retro_unload_game() is called.
};
struct retro_system_info
{
// All pointers are owned by libretro implementation, and pointers must remain valid until retro_deinit() is called.
const char *library_name; // Descriptive name of library. Should not contain any version numbers, etc.
const char *library_version; // Descriptive version of core.
const char *valid_extensions; // A string listing probably rom extensions the core will be able to load, separated with pipe.
// I.e. "bin|rom|iso".
// Typically used for a GUI to filter out extensions.
bool need_fullpath; // If true, retro_load_game() is guaranteed to provide a valid pathname in retro_game_info::path.
// ::data and ::size are both invalid.
// If false, ::data and ::size are guaranteed to be valid, but ::path might not be valid.
// This is typically set to true for libretro implementations that must load from file.
// Implementations should strive for setting this to false, as it allows the frontend to perform patching, etc.
bool block_extract; // If true, the frontend is not allowed to extract any archives before loading the real ROM.
// Necessary for certain libretro implementations that load games from zipped archives.
};
struct retro_game_geometry
{
unsigned base_width; // Nominal video width of game.
unsigned base_height; // Nominal video height of game.
unsigned max_width; // Maximum possible width of game.
unsigned max_height; // Maximum possible height of game.
float aspect_ratio; // Nominal aspect ratio of game. If aspect_ratio is <= 0.0,
// an aspect ratio of base_width / base_height is assumed.
// A frontend could override this setting if desired.
};
struct retro_system_timing
{
double fps; // FPS of video content.
double sample_rate; // Sampling rate of audio.
};
struct retro_system_av_info
{
struct retro_game_geometry geometry;
struct retro_system_timing timing;
};
struct retro_variable
{
const char *key; // Variable to query in RETRO_ENVIRONMENT_GET_VARIABLE.
// If NULL, obtains the complete environment string if more complex parsing is necessary.
// The environment string is formatted as key-value pairs delimited by semicolons as so:
// "key1=value1;key2=value2;..."
const char *value; // Value to be obtained. If key does not exist, it is set to NULL.
};
struct retro_game_info
{
const char *path; // Path to game, UTF-8 encoded. Usually used as a reference.
// May be NULL if rom was loaded from stdin or similar.
// retro_system_info::need_fullpath guaranteed that this path is valid.
const void *data; // Memory buffer of loaded game. Will be NULL if need_fullpath was set.
size_t size; // Size of memory buffer.
const char *meta; // String of implementation specific meta-data.
};
// Callbacks
//
// Environment callback. Gives implementations a way of performing uncommon tasks. Extensible.
typedef bool (*retro_environment_t)(unsigned cmd, void *data);
// Render a frame. Pixel format is 15-bit 0RGB1555 native endian unless changed (see RETRO_ENVIRONMENT_SET_PIXEL_FORMAT).
// Width and height specify dimensions of buffer.
// Pitch specifices length in bytes between two lines in buffer.
// For performance reasons, it is highly recommended to have a frame that is packed in memory, i.e. pitch == width * byte_per_pixel.
// Certain graphic APIs, such as OpenGL ES, do not like textures that are not packed in memory.
typedef void (*retro_video_refresh_t)(const void *data, unsigned width, unsigned height, size_t pitch);
// Renders a single audio frame. Should only be used if implementation generates a single sample at a time.
// Format is signed 16-bit native endian.
typedef void (*retro_audio_sample_t)(int16_t left, int16_t right);
// Renders multiple audio frames in one go. One frame is defined as a sample of left and right channels, interleaved.
// I.e. int16_t buf[4] = { l, r, l, r }; would be 2 frames.
// Only one of the audio callbacks must ever be used.
typedef size_t (*retro_audio_sample_batch_t)(const int16_t *data, size_t frames);
// Polls input.
typedef void (*retro_input_poll_t)(void);
// Queries for input for player 'port'. device will be masked with RETRO_DEVICE_MASK.
// Specialization of devices such as RETRO_DEVICE_JOYPAD_MULTITAP that have been set with retro_set_controller_port_device()
// will still use the higher level RETRO_DEVICE_JOYPAD to request input.
typedef int16_t (*retro_input_state_t)(unsigned port, unsigned device, unsigned index, unsigned id);
// Sets callbacks. retro_set_environment() is guaranteed to be called before retro_init().
// The rest of the set_* functions are guaranteed to have been called before the first call to retro_run() is made.
void retro_set_environment(retro_environment_t);
void retro_set_video_refresh(retro_video_refresh_t);
void retro_set_audio_sample(retro_audio_sample_t);
void retro_set_audio_sample_batch(retro_audio_sample_batch_t);
void retro_set_input_poll(retro_input_poll_t);
void retro_set_input_state(retro_input_state_t);
// Library global initialization/deinitialization.
void retro_init(void);
void retro_deinit(void);
// Must return RETRO_API_VERSION. Used to validate ABI compatibility when the API is revised.
unsigned retro_api_version(void);
// Gets statically known system info. Pointers provided in *info must be statically allocated.
// Can be called at any time, even before retro_init().
void retro_get_system_info(struct retro_system_info *info);
// Gets information about system audio/video timings and geometry.
// Can be called only after retro_load_game() has successfully completed.
// NOTE: The implementation of this function might not initialize every variable if needed.
// E.g. geom.aspect_ratio might not be initialized if core doesn't desire a particular aspect ratio.
void retro_get_system_av_info(struct retro_system_av_info *info);
// Sets device to be used for player 'port'.
void retro_set_controller_port_device(unsigned port, unsigned device);
// Resets the current game.
void retro_reset(void);
// Runs the game for one video frame.
// During retro_run(), input_poll callback must be called at least once.
//
// If a frame is not rendered for reasons where a game "dropped" a frame,
// this still counts as a frame, and retro_run() should explicitly dupe a frame if GET_CAN_DUPE returns true.
// In this case, the video callback can take a NULL argument for data.
void retro_run(void);
// Returns the amount of data the implementation requires to serialize internal state (save states).
// Beetween calls to retro_load_game() and retro_unload_game(), the returned size is never allowed to be larger than a previous returned value, to
// ensure that the frontend can allocate a save state buffer once.
size_t retro_serialize_size(void);
// Serializes internal state. If failed, or size is lower than retro_serialize_size(), it should return false, true otherwise.
bool retro_serialize(void *data, size_t size);
bool retro_unserialize(const void *data, size_t size);
void retro_cheat_reset(void);
void retro_cheat_set(unsigned index, bool enabled, const char *code);
// Loads a game.
bool retro_load_game(const struct retro_game_info *game);
// Loads a "special" kind of game. Should not be used except in extreme cases.
bool retro_load_game_special(
unsigned game_type,
const struct retro_game_info *info, size_t num_info
);
// Unloads a currently loaded game.
void retro_unload_game(void);
// Gets region of game.
unsigned retro_get_region(void);
// Gets region of memory.
void *retro_get_memory_data(unsigned id);
size_t retro_get_memory_size(unsigned id);
#ifdef __cplusplus
}
#endif
#endif

5
quicknes/libretro/link.T Normal file
View File

@ -0,0 +1,5 @@
{
global: retro_*;
local: *;
};

View File

@ -0,0 +1,412 @@
// Blip_Buffer 0.4.0. http://www.slack.net/~ant/
#include "Blip_Buffer.h"
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
int const buffer_extra = blip_widest_impulse_ + 2;
Blip_Buffer::Blip_Buffer()
{
factor_ = LONG_MAX;
offset_ = 0;
buffer_ = 0;
buffer_size_ = 0;
sample_rate_ = 0;
reader_accum = 0;
bass_shift = 0;
clock_rate_ = 0;
bass_freq_ = 16;
length_ = 0;
// assumptions code makes about implementation-defined features
#ifndef NDEBUG
// right shift of negative value preserves sign
buf_t_ i = -0x7FFFFFFE;
assert( (i >> 1) == -0x3FFFFFFF );
// casting to short truncates to 16 bits and sign-extends
i = 0x18000;
assert( (short) i == -0x8000 );
#endif
}
Blip_Buffer::~Blip_Buffer()
{
free( buffer_ );
}
void Blip_Buffer::clear( int entire_buffer )
{
offset_ = 0;
reader_accum = 0;
if ( buffer_ )
{
long count = (entire_buffer ? buffer_size_ : samples_avail());
memset( buffer_, 0, (count + buffer_extra) * sizeof (buf_t_) );
}
}
Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec )
{
// start with maximum length that resampled time can represent
long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - buffer_extra - 64;
if ( msec != blip_max_length )
{
long s = (new_rate * (msec + 1) + 999) / 1000;
if ( s < new_size )
new_size = s;
else
assert( 0 ); // fails if requested buffer length exceeds limit
}
if ( buffer_size_ != new_size )
{
void* p = realloc( buffer_, (new_size + buffer_extra) * sizeof *buffer_ );
if ( !p )
return "Out of memory";
buffer_ = (buf_t_*) p;
}
buffer_size_ = new_size;
// update things based on the sample rate
sample_rate_ = new_rate;
length_ = new_size * 1000 / new_rate - 1;
if ( msec )
assert( length_ == msec ); // ensure length is same as that passed in
if ( clock_rate_ )
clock_rate( clock_rate_ );
bass_freq( bass_freq_ );
clear();
return 0; // success
}
blip_resampled_time_t Blip_Buffer::clock_rate_factor( long clock_rate ) const
{
double ratio = (double) sample_rate_ / clock_rate;
long factor = (long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 );
assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large
return (blip_resampled_time_t) factor;
}
void Blip_Buffer::bass_freq( int freq )
{
bass_freq_ = freq;
int shift = 31;
if ( freq > 0 )
{
shift = 13;
long f = (freq << 16) / sample_rate_;
while ( (f >>= 1) && --shift ) { }
}
bass_shift = shift;
}
void Blip_Buffer::end_frame( blip_time_t t )
{
offset_ += t * factor_;
assert( samples_avail() <= (long) buffer_size_ ); // time outside buffer length
}
void Blip_Buffer::remove_silence( long count )
{
assert( count <= samples_avail() ); // tried to remove more samples than available
offset_ -= (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
}
long Blip_Buffer::count_samples( blip_time_t t ) const
{
unsigned long last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY;
unsigned long first_sample = offset_ >> BLIP_BUFFER_ACCURACY;
return (long) (last_sample - first_sample);
}
blip_time_t Blip_Buffer::count_clocks( long count ) const
{
if ( count > buffer_size_ )
count = buffer_size_;
blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_);
}
void Blip_Buffer::remove_samples( long count )
{
if ( count )
{
remove_silence( count );
// copy remaining samples to beginning and clear old samples
long remain = samples_avail() + buffer_extra;
memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ );
memset( buffer_ + remain, 0, count * sizeof *buffer_ );
}
}
// Blip_Synth_
Blip_Synth_::Blip_Synth_( short* p, int w ) :
impulses( p ),
width( w )
{
volume_unit_ = 0.0;
kernel_unit = 0;
buf = 0;
last_amp = 0;
delta_factor = 0;
}
// TODO: apparently this is defined elsewhere too
#define pi my_pi
static double const pi = 3.1415926535897932384626433832795029;
static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff )
{
if ( cutoff >= 0.999 )
cutoff = 0.999;
if ( treble < -300.0 )
treble = -300.0;
if ( treble > 5.0 )
treble = 5.0;
double const maxh = 4096.0;
double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) );
double const pow_a_n = pow( rolloff, maxh - maxh * cutoff );
double const to_angle = pi / 2 / maxh / oversample;
for ( int i = 0; i < count; i++ )
{
double angle = ((i - count) * 2 + 1) * to_angle;
double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle );
double cos_nc_angle = cos( maxh * cutoff * angle );
double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle );
double cos_angle = cos( angle );
c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle;
double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle);
double b = 2.0 - cos_angle - cos_angle;
double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d
}
}
void blip_eq_t::generate( float* out, int count ) const
{
// lower cutoff freq for narrow kernels with their wider transition band
// (8 points->1.49, 16 points->1.15)
double oversample = blip_res * 2.25 / count + 0.85;
double half_rate = sample_rate * 0.5;
if ( cutoff_freq )
oversample = half_rate / cutoff_freq;
double cutoff = rolloff_freq * oversample / half_rate;
gen_sinc( out, count, blip_res * oversample, treble, cutoff );
// apply (half of) hamming window
double to_fraction = pi / (count - 1);
for ( int i = count; i--; )
out [i] *= 0.54 - 0.46 * cos( i * to_fraction );
}
void Blip_Synth_::adjust_impulse()
{
// sum pairs for each phase and add error correction to end of first half
int const size = impulses_size();
for ( int p = blip_res; p-- >= blip_res / 2; )
{
int p2 = blip_res - 2 - p;
long error = kernel_unit;
for ( int i = 1; i < size; i += blip_res )
{
error -= impulses [i + p ];
error -= impulses [i + p2];
}
if ( p == p2 )
error /= 2; // phase = 0.5 impulse uses same half for both sides
impulses [size - blip_res + p] += error;
//printf( "error: %ld\n", error );
}
//for ( int i = blip_res; i--; printf( "\n" ) )
// for ( int j = 0; j < width / 2; j++ )
// printf( "%5ld,", impulses [j * blip_res + i + 1] );
}
void Blip_Synth_::treble_eq( blip_eq_t const& eq )
{
float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2];
int const half_size = blip_res / 2 * (width - 1);
eq.generate( &fimpulse [blip_res], half_size );
int i;
// need mirror slightly past center for calculation
for ( i = blip_res; i--; )
fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i];
// starts at 0
for ( i = 0; i < blip_res; i++ )
fimpulse [i] = 0.0f;
// find rescale factor
double total = 0.0;
for ( i = 0; i < half_size; i++ )
total += fimpulse [blip_res + i];
//double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB
//double const base_unit = 37888.0; // allows treble to +5 dB
double const base_unit = 32768.0; // necessary for blip_unscaled to work
double rescale = base_unit / 2 / total;
kernel_unit = (long) base_unit;
// integrate, first difference, rescale, convert to int
double sum = 0.0;
double next = 0.0;
int const impulses_size = this->impulses_size();
for ( i = 0; i < impulses_size; i++ )
{
impulses [i] = (short) floor( (next - sum) * rescale + 0.5 );
sum += fimpulse [i];
next += fimpulse [i + blip_res];
}
adjust_impulse();
// volume might require rescaling
double vol = volume_unit_;
if ( vol )
{
volume_unit_ = 0.0;
volume_unit( vol );
}
}
void Blip_Synth_::volume_unit( double new_unit )
{
if ( new_unit != volume_unit_ )
{
// use default eq if it hasn't been set yet
if ( !kernel_unit )
treble_eq( -8.0 );
volume_unit_ = new_unit;
double factor = new_unit * (1L << blip_sample_bits) / kernel_unit;
if ( factor > 0.0 )
{
int shift = 0;
// if unit is really small, might need to attenuate kernel
while ( factor < 2.0 )
{
shift++;
factor *= 2.0;
}
if ( shift )
{
kernel_unit >>= shift;
assert( kernel_unit > 0 ); // fails if volume unit is too low
// keep values positive to avoid round-towards-zero of sign-preserving
// right shift for negative values
long offset = 0x8000 + (1 << (shift - 1));
long offset2 = 0x8000 >> shift;
for ( int i = impulses_size(); i--; )
impulses [i] = (short) (((impulses [i] + offset) >> shift) - offset2);
adjust_impulse();
}
}
delta_factor = (int) floor( factor + 0.5 );
//printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit );
}
}
long Blip_Buffer::read_samples( blip_sample_t* out, long max_samples, int stereo )
{
long count = samples_avail();
if ( count > max_samples )
count = max_samples;
if ( count )
{
int const sample_shift = blip_sample_bits - 16;
int const bass_shift = this->bass_shift;
long accum = reader_accum;
buf_t_* in = buffer_;
if ( !stereo )
{
for ( long n = count; n--; )
{
long s = accum >> sample_shift;
accum -= accum >> bass_shift;
accum += *in++;
*out++ = (blip_sample_t) s;
// clamp sample
if ( (blip_sample_t) s != s )
out [-1] = (blip_sample_t) (0x7FFF - (s >> 24));
}
}
else
{
for ( long n = count; n--; )
{
long s = accum >> sample_shift;
accum -= accum >> bass_shift;
accum += *in++;
*out = (blip_sample_t) s;
out += 2;
// clamp sample
if ( (blip_sample_t) s != s )
out [-2] = (blip_sample_t) (0x7FFF - (s >> 24));
}
}
reader_accum = accum;
remove_samples( count );
}
return count;
}
void Blip_Buffer::mix_samples( blip_sample_t const* in, long count )
{
buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2;
int const sample_shift = blip_sample_bits - 16;
int prev = 0;
while ( count-- )
{
long s = (long) *in++ << sample_shift;
*out += s - prev;
prev = s;
++out;
}
*out -= prev;
}

View File

@ -0,0 +1,354 @@
// Band-limited sound synthesis and buffering
// Blip_Buffer 0.4.0
#ifndef BLIP_BUFFER_H
#define BLIP_BUFFER_H
// Time unit at source clock rate
typedef long blip_time_t;
// Output samples are 16-bit signed, with a range of -32768 to 32767
typedef short blip_sample_t;
enum { blip_sample_max = 32767 };
class Blip_Buffer {
public:
typedef const char* blargg_err_t;
// Set output sample rate and buffer length in milliseconds (1/1000 sec, defaults
// to 1/4 second), then clear buffer. Returns NULL on success, otherwise if there
// isn't enough memory, returns error without affecting current buffer setup.
blargg_err_t set_sample_rate( long samples_per_sec, int msec_length = 1000 / 4 );
// Set number of source time units per second
void clock_rate( long );
// End current time frame of specified duration and make its samples available
// (along with any still-unread samples) for reading with read_samples(). Begins
// a new time frame at the end of the current frame.
void end_frame( blip_time_t time );
// Read at most 'max_samples' out of buffer into 'dest', removing them from from
// the buffer. Returns number of samples actually read and removed. If stereo is
// true, increments 'dest' one extra time after writing each sample, to allow
// easy interleving of two channels into a stereo output buffer.
long read_samples( blip_sample_t* dest, long max_samples, int stereo = 0 );
// Additional optional features
// Current output sample rate
long sample_rate() const;
// Length of buffer, in milliseconds
int length() const;
// Number of source time units per second
long clock_rate() const;
// Set frequency high-pass filter frequency, where higher values reduce bass more
void bass_freq( int frequency );
// Number of samples delay from synthesis to samples read out
int output_latency() const;
// Remove all available samples and clear buffer to silence. If 'entire_buffer' is
// false, just clears out any samples waiting rather than the entire buffer.
void clear( int entire_buffer = 1 );
// Number of samples available for reading with read_samples()
long samples_avail() const;
// Remove 'count' samples from those waiting to be read
void remove_samples( long count );
// Experimental features
// Number of raw samples that can be mixed within frame of specified duration.
long count_samples( blip_time_t duration ) const;
// Mix 'count' samples from 'buf' into buffer.
void mix_samples( blip_sample_t const* buf, long count );
// Count number of clocks needed until 'count' samples will be available.
// If buffer can't even hold 'count' samples, returns number of clocks until
// buffer becomes full.
blip_time_t count_clocks( long count ) const;
// not documented yet
typedef unsigned long blip_resampled_time_t;
void remove_silence( long count );
blip_resampled_time_t resampled_duration( int t ) const { return t * factor_; }
blip_resampled_time_t resampled_time( blip_time_t t ) const { return t * factor_ + offset_; }
blip_resampled_time_t clock_rate_factor( long clock_rate ) const;
public:
Blip_Buffer();
~Blip_Buffer();
// Deprecated
typedef blip_resampled_time_t resampled_time_t;
blargg_err_t sample_rate( long r ) { return set_sample_rate( r ); }
blargg_err_t sample_rate( long r, int msec ) { return set_sample_rate( r, msec ); }
private:
// noncopyable
Blip_Buffer( const Blip_Buffer& );
Blip_Buffer& operator = ( const Blip_Buffer& );
public:
typedef long buf_t_;
unsigned long factor_;
blip_resampled_time_t offset_;
buf_t_* buffer_;
long buffer_size_;
private:
long reader_accum;
int bass_shift;
long sample_rate_;
long clock_rate_;
int bass_freq_;
int length_;
friend class Blip_Reader;
};
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
// Number of bits in resample ratio fraction. Higher values give a more accurate ratio
// but reduce maximum buffer size.
#ifndef BLIP_BUFFER_ACCURACY
#define BLIP_BUFFER_ACCURACY 16
#endif
// Number bits in phase offset. Fewer than 6 bits (64 phase offsets) results in
// noticeable broadband noise when synthesizing high frequency square waves.
// Affects size of Blip_Synth objects since they store the waveform directly.
#ifndef BLIP_PHASE_BITS
#define BLIP_PHASE_BITS 6
#endif
// Internal
typedef unsigned long blip_resampled_time_t;
int const blip_widest_impulse_ = 16;
int const blip_res = 1 << BLIP_PHASE_BITS;
class blip_eq_t;
class Blip_Synth_ {
double volume_unit_;
short* const impulses;
int const width;
long kernel_unit;
int impulses_size() const { return blip_res / 2 * width + 1; }
void adjust_impulse();
public:
Blip_Buffer* buf;
int last_amp;
int delta_factor;
Blip_Synth_( short* impulses, int width );
void treble_eq( blip_eq_t const& );
void volume_unit( double );
};
// Quality level. Start with blip_good_quality.
const int blip_med_quality = 8;
const int blip_good_quality = 12;
const int blip_high_quality = 16;
// Range specifies the greatest expected change in amplitude. Calculate it
// by finding the difference between the maximum and minimum expected
// amplitudes (max - min).
template<int quality,int range>
class Blip_Synth {
public:
// Set overall volume of waveform
void volume( double v ) { impl.volume_unit( v * (1.0 / (range < 0 ? -range : range)) ); }
// Configure low-pass filter (see notes.txt)
void treble_eq( blip_eq_t const& eq ) { impl.treble_eq( eq ); }
// Get/set Blip_Buffer used for output
Blip_Buffer* output() const { return impl.buf; }
void output( Blip_Buffer* b ) { impl.buf = b; impl.last_amp = 0; }
// Update amplitude of waveform at given time. Using this requires a separate
// Blip_Synth for each waveform.
void update( blip_time_t time, int amplitude );
// Low-level interface
// Add an amplitude transition of specified delta, optionally into specified buffer
// rather than the one set with output(). Delta can be positive or negative.
// The actual change in amplitude is delta * (volume / range)
void offset( blip_time_t, int delta, Blip_Buffer* ) const;
void offset( blip_time_t t, int delta ) const { offset( t, delta, impl.buf ); }
// Works directly in terms of fractional output samples. Contact author for more.
void offset_resampled( blip_resampled_time_t, int delta, Blip_Buffer* ) const;
// Same as offset(), except code is inlined for higher performance
void offset_inline( blip_time_t t, int delta, Blip_Buffer* buf ) const {
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
void offset_inline( blip_time_t t, int delta ) const {
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
public:
Blip_Synth() : impl( impulses, quality ) { }
private:
typedef short imp_t;
imp_t impulses [blip_res * (quality / 2) + 1];
Blip_Synth_ impl;
};
// Low-pass equalization parameters
class blip_eq_t {
public:
// Logarithmic rolloff to treble dB at half sampling rate. Negative values reduce
// treble, small positive values (0 to 5.0) increase treble.
blip_eq_t( double treble_db = 0 );
// See notes.txt
blip_eq_t( double treble, long rolloff_freq, long sample_rate, long cutoff_freq = 0 );
private:
double treble;
long rolloff_freq;
long sample_rate;
long cutoff_freq;
void generate( float* out, int count ) const;
friend class Blip_Synth_;
};
int const blip_sample_bits = 30;
// Optimized inline sample reader for custom sample formats and mixing of Blip_Buffer samples
class Blip_Reader {
public:
// Begin reading samples from buffer. Returns value to pass to next() (can
// be ignored if default bass_freq is acceptable).
int begin( Blip_Buffer& );
// Current sample
long read() const { return accum >> (blip_sample_bits - 16); }
// Current raw sample in full internal resolution
long read_raw() const { return accum; }
// Advance to next sample
void next( int bass_shift = 9 ) { accum += *buf++ - (accum >> bass_shift); }
// End reading samples from buffer. The number of samples read must now be removed
// using Blip_Buffer::remove_samples().
void end( Blip_Buffer& b ) { b.reader_accum = accum; }
private:
const Blip_Buffer::buf_t_* buf;
long accum;
};
// End of public interface
#include <assert.h>
// Compatibility with older version
const long blip_unscaled = 65535;
const int blip_low_quality = blip_med_quality;
const int blip_best_quality = blip_high_quality;
#define BLIP_FWD( i ) { \
long t0 = i0 * delta + buf [fwd + i]; \
long t1 = imp [blip_res * (i + 1)] * delta + buf [fwd + 1 + i]; \
i0 = imp [blip_res * (i + 2)]; \
buf [fwd + i] = t0; \
buf [fwd + 1 + i] = t1; }
#define BLIP_REV( r ) { \
long t0 = i0 * delta + buf [rev - r]; \
long t1 = imp [blip_res * r] * delta + buf [rev + 1 - r]; \
i0 = imp [blip_res * (r - 1)]; \
buf [rev - r] = t0; \
buf [rev + 1 - r] = t1; }
template<int quality,int range>
inline void Blip_Synth<quality,range>::offset_resampled( blip_resampled_time_t time,
int delta, Blip_Buffer* blip_buf ) const
{
// Fails if time is beyond end of Blip_Buffer, due to a bug in caller code or the
// need for a longer buffer as set by set_sample_rate().
assert( (long) (time >> BLIP_BUFFER_ACCURACY) < blip_buf->buffer_size_ );
delta *= impl.delta_factor;
int phase = (int) (time >> (BLIP_BUFFER_ACCURACY - BLIP_PHASE_BITS) & (blip_res - 1));
imp_t const* imp = impulses + blip_res - phase;
long* buf = blip_buf->buffer_ + (time >> BLIP_BUFFER_ACCURACY);
long i0 = *imp;
int const fwd = (blip_widest_impulse_ - quality) / 2;
int const rev = fwd + quality - 2;
BLIP_FWD( 0 )
if ( quality > 8 ) BLIP_FWD( 2 )
if ( quality > 12 ) BLIP_FWD( 4 )
{
int const mid = quality / 2 - 1;
long t0 = i0 * delta + buf [fwd + mid - 1];
long t1 = imp [blip_res * mid] * delta + buf [fwd + mid];
imp = impulses + phase;
i0 = imp [blip_res * mid];
buf [fwd + mid - 1] = t0;
buf [fwd + mid] = t1;
}
if ( quality > 12 ) BLIP_REV( 6 )
if ( quality > 8 ) BLIP_REV( 4 )
BLIP_REV( 2 )
long t0 = i0 * delta + buf [rev];
long t1 = *imp * delta + buf [rev + 1];
buf [rev] = t0;
buf [rev + 1] = t1;
}
#undef BLIP_FWD
#undef BLIP_REV
template<int quality,int range>
void Blip_Synth<quality,range>::offset( blip_time_t t, int delta, Blip_Buffer* buf ) const
{
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
template<int quality,int range>
void Blip_Synth<quality,range>::update( blip_time_t t, int amp )
{
int delta = amp - impl.last_amp;
impl.last_amp = amp;
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
inline blip_eq_t::blip_eq_t( double t ) :
treble( t ), rolloff_freq( 0 ), sample_rate( 44100 ), cutoff_freq( 0 ) { }
inline blip_eq_t::blip_eq_t( double t, long rf, long sr, long cf ) :
treble( t ), rolloff_freq( rf ), sample_rate( sr ), cutoff_freq( cf ) { }
inline int Blip_Buffer::length() const { return length_; }
inline long Blip_Buffer::samples_avail() const { return (long) (offset_ >> BLIP_BUFFER_ACCURACY); }
inline long Blip_Buffer::sample_rate() const { return sample_rate_; }
inline int Blip_Buffer::output_latency() const { return blip_widest_impulse_ / 2; }
inline long Blip_Buffer::clock_rate() const { return clock_rate_; }
inline void Blip_Buffer::clock_rate( long cps ) { factor_ = clock_rate_factor( clock_rate_ = cps ); }
inline int Blip_Reader::begin( Blip_Buffer& blip_buf )
{
buf = blip_buf.buffer_;
accum = blip_buf.reader_accum;
return blip_buf.bass_shift;
}
int const blip_max_length = 0;
int const blip_default_length = 250;
#endif

View File

@ -0,0 +1,208 @@
// Blip_Synth and Blip_Wave are waveform transition synthesizers for adding
// waveforms to a Blip_Buffer.
// Blip_Buffer 0.3.4. Copyright (C) 2003-2005 Shay Green. GNU LGPL license.
#ifndef BLIP_SYNTH_H
#define BLIP_SYNTH_H
#ifndef BLIP_BUFFER_H
#include "Blip_Buffer.h"
#endif
// Quality level. Higher levels are slower, and worse in a few cases.
// Use blip_good_quality as a starting point.
const int blip_low_quality = 1;
const int blip_med_quality = 2;
const int blip_good_quality = 3;
const int blip_high_quality = 4;
// Blip_Synth is a transition waveform synthesizer which adds band-limited
// offsets (transitions) into a Blip_Buffer. For a simpler interface, use
// Blip_Wave (below).
//
// Range specifies the greatest expected offset that will occur. For a
// waveform that goes between +amp and -amp, range should be amp * 2 (half
// that if it only goes between +amp and 0). When range is large, a higher
// accuracy scheme is used; to force this even when range is small, pass
// the negative of range (i.e. -range).
template<int quality,int range>
class Blip_Synth {
BOOST_STATIC_ASSERT( 1 <= quality && quality <= 5 );
BOOST_STATIC_ASSERT( -32768 <= range && range <= 32767 );
enum {
abs_range = (range < 0) ? -range : range,
fine_mode = (range > 512 || range < 0),
width = (quality < 5 ? quality * 4 : Blip_Buffer::widest_impulse_),
res = 1 << blip_res_bits_,
impulse_size = width / 2 * (fine_mode + 1),
base_impulses_size = width / 2 * (res / 2 + 1),
fine_bits = (fine_mode ? (abs_range <= 64 ? 2 : abs_range <= 128 ? 3 :
abs_range <= 256 ? 4 : abs_range <= 512 ? 5 : abs_range <= 1024 ? 6 :
abs_range <= 2048 ? 7 : 8) : 0)
};
blip_pair_t_ impulses [impulse_size * res * 2 + base_impulses_size];
Blip_Impulse_ impulse;
void init() { impulse.init( impulses, width, res, fine_bits ); }
public:
Blip_Synth() { init(); }
Blip_Synth( double volume ) { init(); this->volume( volume ); }
// Configure low-pass filter (see notes.txt). Not optimized for real-time control
void treble_eq( const blip_eq_t& eq ) { impulse.treble_eq( eq ); }
// Set volume of a transition at amplitude 'range' by setting volume_unit
// to v / range
void volume( double v ) { impulse.volume_unit( v * (1.0 / abs_range) ); }
// Set base volume unit of transitions, where 1.0 is a full swing between the
// positive and negative extremes. Not optimized for real-time control.
void volume_unit( double unit ) { impulse.volume_unit( unit ); }
// Default Blip_Buffer used for output when none is specified for a given call
Blip_Buffer* output() const { return impulse.buf; }
void output( Blip_Buffer* b ) { impulse.buf = b; }
// Add an amplitude offset (transition) with a magnitude of delta * volume_unit
// into the specified buffer (default buffer if none specified) at the
// specified source time. Delta can be positive or negative. To increase
// performance by inlining code at the call site, use offset_inline().
void offset( blip_time_t, int delta, Blip_Buffer* ) const;
void offset_resampled( blip_resampled_time_t, int delta, Blip_Buffer* ) const;
void offset_resampled( blip_resampled_time_t t, int o ) const {
offset_resampled( t, o, impulse.buf );
}
void offset( blip_time_t t, int delta ) const {
offset( t, delta, impulse.buf );
}
void offset_inline( blip_time_t time, int delta, Blip_Buffer* buf ) const {
offset_resampled( time * buf->factor_ + buf->offset_, delta, buf );
}
void offset_inline( blip_time_t time, int delta ) const {
offset_inline( time, delta, impulse.buf );
}
};
// Blip_Wave is a synthesizer for adding a *single* waveform to a Blip_Buffer.
// A wave is built from a series of delays and new amplitudes. This provides a
// simpler interface than Blip_Synth, nothing more.
template<int quality,int range>
class Blip_Wave {
Blip_Synth<quality,range> synth;
blip_time_t time_;
int last_amp;
void init() { time_ = 0; last_amp = 0; }
public:
// Start wave at time 0 and amplitude 0
Blip_Wave() { init(); }
Blip_Wave( double volume ) { init(); this->volume( volume ); }
// See Blip_Synth for description
void volume( double v ) { synth.volume( v ); }
void volume_unit( double v ) { synth.volume_unit( v ); }
void treble_eq( const blip_eq_t& eq){ synth.treble_eq( eq ); }
Blip_Buffer* output() const { return synth.output(); }
void output( Blip_Buffer* b ) { synth.output( b ); if ( !b ) time_ = last_amp = 0; }
// Current time in frame
blip_time_t time() const { return time_; }
void time( blip_time_t t ) { time_ = t; }
// Current amplitude of wave
int amplitude() const { return last_amp; }
void amplitude( int );
// Move forward by 't' time units
void delay( blip_time_t t ) { time_ += t; }
// End time frame of specified duration. Localize time to new frame.
// If wave hadn't been run to end of frame, start it at beginning of new frame.
void end_frame( blip_time_t duration )
{
time_ -= duration;
if ( time_ < 0 )
time_ = 0;
}
};
// End of public interface
template<int quality,int range>
void Blip_Wave<quality,range>::amplitude( int amp ) {
int delta = amp - last_amp;
last_amp = amp;
synth.offset_inline( time_, delta );
}
template<int quality,int range>
inline void Blip_Synth<quality,range>::offset_resampled( blip_resampled_time_t time,
int delta, Blip_Buffer* blip_buf ) const
{
typedef blip_pair_t_ pair_t;
unsigned sample_index = (time >> BLIP_BUFFER_ACCURACY) & ~1;
assert(( "Blip_Synth/Blip_wave: Went past end of buffer",
sample_index < blip_buf->buffer_size_ ));
enum { const_offset = Blip_Buffer::widest_impulse_ / 2 - width / 2 };
pair_t* buf = (pair_t*) &blip_buf->buffer_ [const_offset + sample_index];
enum { shift = BLIP_BUFFER_ACCURACY - blip_res_bits_ };
enum { mask = res * 2 - 1 };
const pair_t* imp = &impulses [((time >> shift) & mask) * impulse_size];
pair_t offset = impulse.offset * delta;
if ( !fine_bits )
{
// normal mode
for ( int n = width / 4; n; --n )
{
pair_t t0 = buf [0] - offset;
pair_t t1 = buf [1] - offset;
t0 += imp [0] * delta;
t1 += imp [1] * delta;
imp += 2;
buf [0] = t0;
buf [1] = t1;
buf += 2;
}
}
else
{
// fine mode
enum { sub_range = 1 << fine_bits };
delta += sub_range / 2;
int delta2 = (delta & (sub_range - 1)) - sub_range / 2;
delta >>= fine_bits;
for ( int n = width / 4; n; --n )
{
pair_t t0 = buf [0] - offset;
pair_t t1 = buf [1] - offset;
t0 += imp [0] * delta2;
t0 += imp [1] * delta;
t1 += imp [2] * delta2;
t1 += imp [3] * delta;
imp += 4;
buf [0] = t0;
buf [1] = t1;
buf += 2;
}
}
}
template<int quality,int range>
void Blip_Synth<quality,range>::offset( blip_time_t time, int delta, Blip_Buffer* buf ) const {
offset_resampled( time * buf->factor_ + buf->offset_, delta, buf );
}
#endif

View File

@ -0,0 +1,518 @@
// Game_Music_Emu 0.3.0. http://www.slack.net/~ant/
#include "Effects_Buffer.h"
#include <string.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
typedef long fixed_t;
#define TO_FIXED( f ) fixed_t ((f) * (1L << 15) + 0.5)
#define FMUL( x, y ) (((x) * (y)) >> 15)
const unsigned echo_size = 4096;
const unsigned echo_mask = echo_size - 1;
BOOST_STATIC_ASSERT( (echo_size & echo_mask) == 0 ); // must be power of 2
const unsigned reverb_size = 8192 * 2;
const unsigned reverb_mask = reverb_size - 1;
BOOST_STATIC_ASSERT( (reverb_size & reverb_mask) == 0 ); // must be power of 2
Effects_Buffer::config_t::config_t()
{
pan_1 = -0.15f;
pan_2 = 0.15f;
reverb_delay = 88.0f;
reverb_level = 0.12f;
echo_delay = 61.0f;
echo_level = 0.10f;
delay_variance = 18.0f;
effects_enabled = false;
}
void Effects_Buffer::set_depth( double d )
{
float f = (float) d;
config_t c;
c.pan_1 = -0.6f * f;
c.pan_2 = 0.6f * f;
c.reverb_delay = 880 * 0.1f;
c.echo_delay = 610 * 0.1f;
if ( f > 0.5 )
f = 0.5; // TODO: more linear reduction of extreme reverb/echo
c.reverb_level = 0.5f * f;
c.echo_level = 0.30f * f;
c.delay_variance = 180 * 0.1f;
c.effects_enabled = (d > 0.0f);
config( c );
}
Effects_Buffer::Effects_Buffer( bool center_only ) : Multi_Buffer( 2 )
{
buf_count = center_only ? max_buf_count - 4 : max_buf_count;
echo_buf = NULL;
echo_pos = 0;
reverb_buf = NULL;
reverb_pos = 0;
stereo_remain = 0;
effect_remain = 0;
effects_enabled = false;
set_depth( 0 );
}
Effects_Buffer::~Effects_Buffer()
{
delete [] echo_buf;
delete [] reverb_buf;
}
blargg_err_t Effects_Buffer::set_sample_rate( long rate, int msec )
{
if ( !echo_buf )
{
echo_buf = BLARGG_NEW blip_sample_t [echo_size];
CHECK_ALLOC( echo_buf );
}
if ( !reverb_buf )
{
reverb_buf = BLARGG_NEW blip_sample_t [reverb_size];
CHECK_ALLOC( reverb_buf );
}
for ( int i = 0; i < buf_count; i++ )
RETURN_ERR( bufs [i].set_sample_rate( rate, msec ) );
config( config_ );
clear();
return Multi_Buffer::set_sample_rate( bufs [0].sample_rate(), bufs [0].length() );
}
void Effects_Buffer::clock_rate( long rate )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].clock_rate( rate );
}
void Effects_Buffer::bass_freq( int freq )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].bass_freq( freq );
}
void Effects_Buffer::clear()
{
stereo_remain = 0;
effect_remain = 0;
if ( echo_buf )
memset( echo_buf, 0, echo_size * sizeof *echo_buf );
if ( reverb_buf )
memset( reverb_buf, 0, reverb_size * sizeof *reverb_buf );
for ( int i = 0; i < buf_count; i++ )
bufs [i].clear();
}
inline int pin_range( int n, int max, int min = 0 )
{
if ( n < min )
return min;
if ( n > max )
return max;
return n;
}
void Effects_Buffer::config( const config_t& cfg )
{
channels_changed();
// clear echo and reverb buffers
if ( !config_.effects_enabled && cfg.effects_enabled && echo_buf )
{
memset( echo_buf, 0, echo_size * sizeof (blip_sample_t) );
memset( reverb_buf, 0, reverb_size * sizeof (blip_sample_t) );
}
config_ = cfg;
if ( config_.effects_enabled )
{
// convert to internal format
chans.pan_1_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_1 );
chans.pan_1_levels [1] = TO_FIXED( 2 ) - chans.pan_1_levels [0];
chans.pan_2_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_2 );
chans.pan_2_levels [1] = TO_FIXED( 2 ) - chans.pan_2_levels [0];
chans.reverb_level = TO_FIXED( config_.reverb_level );
chans.echo_level = TO_FIXED( config_.echo_level );
int delay_offset = int (1.0 / 2000 * config_.delay_variance * sample_rate());
int reverb_sample_delay = int (1.0 / 1000 * config_.reverb_delay * sample_rate());
chans.reverb_delay_l = pin_range( reverb_size -
(reverb_sample_delay - delay_offset) * 2, reverb_size - 2, 0 );
chans.reverb_delay_r = pin_range( reverb_size + 1 -
(reverb_sample_delay + delay_offset) * 2, reverb_size - 1, 1 );
int echo_sample_delay = int (1.0 / 1000 * config_.echo_delay * sample_rate());
chans.echo_delay_l = pin_range( echo_size - 1 - (echo_sample_delay - delay_offset),
echo_size - 1 );
chans.echo_delay_r = pin_range( echo_size - 1 - (echo_sample_delay + delay_offset),
echo_size - 1 );
// set up outputs
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
if ( i < 2 )
{
o.center = &bufs [i];
o.left = &bufs [3];
o.right = &bufs [4];
}
else
{
o.center = &bufs [2];
o.left = &bufs [5];
o.right = &bufs [6];
}
}
}
else
{
// set up outputs
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
o.center = &bufs [0];
o.left = &bufs [1];
o.right = &bufs [2];
}
}
if ( buf_count < max_buf_count )
{
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
o.left = o.center;
o.right = o.center;
}
}
}
void Effects_Buffer::end_frame( blip_time_t clock_count, bool stereo )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].end_frame( clock_count );
if ( stereo && buf_count == max_buf_count )
stereo_remain = bufs [0].samples_avail() + bufs [0].output_latency();
if ( effects_enabled || config_.effects_enabled )
effect_remain = bufs [0].samples_avail() + bufs [0].output_latency();
effects_enabled = config_.effects_enabled;
}
long Effects_Buffer::samples_avail() const
{
return bufs [0].samples_avail() * 2;
}
long Effects_Buffer::read_samples( blip_sample_t* out, long total_samples )
{
require( total_samples % 2 == 0 ); // count must be even
long remain = bufs [0].samples_avail();
if ( remain > (total_samples >> 1) )
remain = (total_samples >> 1);
total_samples = remain;
while ( remain )
{
int active_bufs = buf_count;
long count = remain;
// optimizing mixing to skip any channels which had nothing added
if ( effect_remain )
{
if ( count > effect_remain )
count = effect_remain;
if ( stereo_remain )
{
mix_enhanced( out, count );
}
else
{
mix_mono_enhanced( out, count );
active_bufs = 3;
}
}
else if ( stereo_remain )
{
mix_stereo( out, count );
active_bufs = 3;
}
else
{
mix_mono( out, count );
active_bufs = 1;
}
out += count * 2;
remain -= count;
stereo_remain -= count;
if ( stereo_remain < 0 )
stereo_remain = 0;
effect_remain -= count;
if ( effect_remain < 0 )
effect_remain = 0;
for ( int i = 0; i < buf_count; i++ )
{
if ( i < active_bufs )
bufs [i].remove_samples( count );
else
bufs [i].remove_silence( count ); // keep time synchronized
}
}
return total_samples * 2;
}
void Effects_Buffer::mix_mono( blip_sample_t* out, long count )
{
Blip_Reader c;
int shift = c.begin( bufs [0] );
// unrolled loop
for ( long n = count >> 1; n--; )
{
long cs0 = c.read();
c.next( shift );
long cs1 = c.read();
c.next( shift );
if ( (BOOST::int16_t) cs0 != cs0 )
cs0 = 0x7FFF - (cs0 >> 24);
((BOOST::uint32_t*) out) [0] = ((BOOST::uint16_t) cs0) | (cs0 << 16);
if ( (BOOST::int16_t) cs1 != cs1 )
cs1 = 0x7FFF - (cs1 >> 24);
((BOOST::uint32_t*) out) [1] = ((BOOST::uint16_t) cs1) | (cs1 << 16);
out += 4;
}
if ( count & 1 )
{
int s = c.read();
c.next( shift );
out [0] = s;
out [1] = s;
if ( (BOOST::int16_t) s != s )
{
s = 0x7FFF - (s >> 24);
out [0] = s;
out [1] = s;
}
}
c.end( bufs [0] );
}
void Effects_Buffer::mix_stereo( blip_sample_t* out, long count )
{
Blip_Reader l; l.begin( bufs [1] );
Blip_Reader r; r.begin( bufs [2] );
Blip_Reader c;
int shift = c.begin( bufs [0] );
while ( count-- )
{
int cs = c.read();
c.next( shift );
int left = cs + l.read();
int right = cs + r.read();
l.next( shift );
r.next( shift );
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
c.end( bufs [0] );
r.end( bufs [2] );
l.end( bufs [1] );
}
void Effects_Buffer::mix_mono_enhanced( blip_sample_t* out, long count )
{
Blip_Reader sq1; sq1.begin( bufs [0] );
Blip_Reader sq2; sq2.begin( bufs [1] );
Blip_Reader center;
int shift = center.begin( bufs [2] );
int echo_pos = this->echo_pos;
int reverb_pos = this->reverb_pos;
while ( count-- )
{
int sum1_s = sq1.read();
int sum2_s = sq2.read();
sq1.next( shift );
sq2.next( shift );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = center.read();
center.next( shift );
int left = new_reverb_l + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
this->reverb_pos = reverb_pos;
this->echo_pos = echo_pos;
sq1.end( bufs [0] );
sq2.end( bufs [1] );
center.end( bufs [2] );
}
void Effects_Buffer::mix_enhanced( blip_sample_t* out, long count )
{
Blip_Reader l1; l1.begin( bufs [3] );
Blip_Reader r1; r1.begin( bufs [4] );
Blip_Reader l2; l2.begin( bufs [5] );
Blip_Reader r2; r2.begin( bufs [6] );
Blip_Reader sq1; sq1.begin( bufs [0] );
Blip_Reader sq2; sq2.begin( bufs [1] );
Blip_Reader center;
int shift = center.begin( bufs [2] );
int echo_pos = this->echo_pos;
int reverb_pos = this->reverb_pos;
while ( count-- )
{
int sum1_s = sq1.read();
int sum2_s = sq2.read();
sq1.next( shift );
sq2.next( shift );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) + l1.read() +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) + r1.read() +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
l1.next( shift );
r1.next( shift );
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = center.read();
center.next( shift );
int left = new_reverb_l + sum3_s + l2.read() + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + r2.read() + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
l2.next( shift );
r2.next( shift );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
this->reverb_pos = reverb_pos;
this->echo_pos = echo_pos;
sq1.end( bufs [0] );
sq2.end( bufs [1] );
center.end( bufs [2] );
l1.end( bufs [3] );
r1.end( bufs [4] );
l2.end( bufs [5] );
r2.end( bufs [6] );
}

View File

@ -0,0 +1,93 @@
// Multi-channel effects buffer with panning, echo and reverb
// Game_Music_Emu 0.3.0
#ifndef EFFECTS_BUFFER_H
#define EFFECTS_BUFFER_H
#include "Multi_Buffer.h"
// Effects_Buffer uses several buffers and outputs stereo sample pairs.
class Effects_Buffer : public Multi_Buffer {
public:
// If center_only is true, only center buffers are created and
// less memory is used.
Effects_Buffer( bool center_only = false );
// Channel Effect Center Pan
// ---------------------------------
// 0,5 reverb pan_1
// 1,6 reverb pan_2
// 2,7 echo -
// 3 echo -
// 4 echo -
// Channel configuration
struct config_t {
double pan_1; // -1.0 = left, 0.0 = center, 1.0 = right
double pan_2;
double echo_delay; // msec
double echo_level; // 0.0 to 1.0
double reverb_delay; // msec
double delay_variance; // difference between left/right delays (msec)
double reverb_level; // 0.0 to 1.0
bool effects_enabled; // if false, use optimized simple mixer
config_t();
};
// Set configuration of buffer
virtual void config( const config_t& );
void set_depth( double );
public:
~Effects_Buffer();
blargg_err_t set_sample_rate( long samples_per_sec, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool was_stereo = true );
long read_samples( blip_sample_t*, long );
long samples_avail() const;
private:
typedef long fixed_t;
enum { max_buf_count = 7 };
Blip_Buffer bufs [max_buf_count];
enum { chan_count = 5 };
channel_t channels [chan_count];
config_t config_;
long stereo_remain;
long effect_remain;
int buf_count;
bool effects_enabled;
blip_sample_t* reverb_buf;
blip_sample_t* echo_buf;
int reverb_pos;
int echo_pos;
struct {
fixed_t pan_1_levels [2];
fixed_t pan_2_levels [2];
int echo_delay_l;
int echo_delay_r;
fixed_t echo_level;
int reverb_delay_l;
int reverb_delay_r;
fixed_t reverb_level;
} chans;
void mix_mono( blip_sample_t*, long );
void mix_stereo( blip_sample_t*, long );
void mix_enhanced( blip_sample_t*, long );
void mix_mono_enhanced( blip_sample_t*, long );
};
inline Effects_Buffer::channel_t Effects_Buffer::channel( int i ) {
return channels [i % chan_count];
}
#endif

View File

@ -0,0 +1,215 @@
// Sunsoft FME-07 mapper
// Nes_Emu 0.5.6. http://www.slack.net/~ant/libs/
#include "Nes_Mapper.h"
#include "blargg_endian.h"
#include "Nes_Fme07_Apu.h"
/* Copyright (C) 2005 Chris Moeller */
/* Copyright (C) 2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
struct fme07_state_t
{
// first 16 bytes in register order
BOOST::uint8_t regs [13];
BOOST::uint8_t irq_mode;
BOOST::uint16_t irq_count;
BOOST::uint8_t command;
BOOST::uint8_t irq_pending;
fme07_snapshot_t sound_state; // only used when saving/restoring state
void swap();
};
BOOST_STATIC_ASSERT( sizeof (fme07_state_t) == 18 + sizeof (fme07_snapshot_t) );
void fme07_state_t::swap()
{
set_le16( &irq_count, irq_count );
for ( int i = 0; i < sizeof sound_state.delays / sizeof sound_state.delays [0]; i++ )
set_le16( &sound_state.delays [i], sound_state.delays [i] );
}
class Mapper_Fme07 : public Nes_Mapper, fme07_state_t {
nes_time_t last_time;
Nes_Fme07_Apu sound;
public:
Mapper_Fme07()
{
fme07_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
virtual void reset_state()
{
regs [8] = 0x40; // wram disabled
irq_count = 0xFFFF;
sound.reset();
}
virtual void save_state( mapper_state_t& out )
{
sound.save_snapshot( &sound_state );
fme07_state_t::swap();
Nes_Mapper::save_state( out );
fme07_state_t::swap(); // to do: kind of hacky to swap in place
}
virtual void read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
fme07_state_t::swap();
sound.load_snapshot( sound_state );
}
void write_register( int index, int data );
virtual void apply_mapping()
{
last_time = 0;
for ( int i = 0; i < sizeof regs; i++ )
write_register( i, regs [i] );
}
virtual void run_until( nes_time_t end_time )
{
int new_count = irq_count - (end_time - last_time);
last_time = end_time;
if ( new_count <= 0 && (irq_mode & 0x81) == 0x81 )
irq_pending = true;
if ( irq_mode & 0x01 )
irq_count = new_count & 0xFFFF;
}
virtual nes_time_t next_irq( nes_time_t present )
{
if ( irq_pending )
return 0;
if ( (irq_mode & 0x81) == 0x81 )
return last_time + irq_count + 1;
return no_irq;
}
virtual void end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
sound.end_frame( end_time );
}
void write_irq( nes_time_t, int index, int data );
virtual void write( nes_time_t time, nes_addr_t addr, int data )
{
switch ( addr & 0xE000 )
{
case 0x8000:
command = data & 0x0F;
break;
case 0xA000:
if ( command < 0x0D )
write_register( command, data );
else
write_irq( time, command, data );
break;
case 0xC000:
sound.write_latch( data );
break;
case 0xE000:
sound.write_data( time, data );
break;
}
}
};
void Mapper_Fme07::write_irq( nes_time_t time, int index, int data )
{
run_until( time );
switch ( index )
{
case 0x0D:
irq_mode = data;
if ( (irq_mode & 0x81) != 0x81 )
irq_pending = false;
break;
case 0x0E:
irq_count = (irq_count & 0xFF00) | data;
break;
case 0x0F:
irq_count = data << 8 | (irq_count & 0xFF);
break;
}
if ( (irq_mode & 0x81) == 0x81 )
irq_changed();
}
void Mapper_Fme07::write_register( int index, int data )
{
regs [index] = data;
int prg_bank = index - 0x09;
if ( (unsigned) prg_bank < 3 ) // most common
{
set_prg_bank( 0x8000 | (prg_bank << bank_8k), bank_8k, data );
}
else if ( index == 0x08 )
{
enable_sram( (data & 0xC0) == 0xC0 );
if ( !(data & 0xC0) )
set_prg_bank( 0x6000, bank_8k, data & 0x3F );
}
else if ( index < 0x08 )
{
set_chr_bank( index * 0x400, bank_1k, data );
}
else
{
assert( index == 0x0C );
if ( data & 2 )
mirror_single( data & 1 );
else if ( data & 1 )
mirror_horiz();
else
mirror_vert();
}
}
void register_fme07_mapper();
void register_fme07_mapper()
{
register_mapper<Mapper_Fme07>( 69 );
}

View File

@ -0,0 +1,215 @@
// Sunsoft FME-7 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Mapper.h"
#include "blargg_endian.h"
#include "Nes_Fme7_Apu.h"
/* Copyright (C) 2005 Chris Moeller */
/* Copyright (C) 2005-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct fme7_state_t
{
// first 16 bytes in register order
BOOST::uint8_t regs [13];
BOOST::uint8_t irq_mode;
BOOST::uint16_t irq_count;
BOOST::uint8_t command;
BOOST::uint8_t irq_pending;
fme7_apu_state_t sound_state; // only used when saving/restoring state
void swap();
};
BOOST_STATIC_ASSERT( sizeof (fme7_state_t) == 18 + sizeof (fme7_apu_state_t) );
void fme7_state_t::swap()
{
set_le16( &irq_count, irq_count );
for ( unsigned i = 0; i < sizeof sound_state.delays / sizeof sound_state.delays [0]; i++ )
set_le16( &sound_state.delays [i], sound_state.delays [i] );
}
class Mapper_Fme7 : public Nes_Mapper, fme7_state_t {
nes_time_t last_time;
Nes_Fme7_Apu sound;
public:
Mapper_Fme7()
{
fme7_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
virtual void reset_state()
{
regs [8] = 0x40; // wram disabled
irq_count = 0xFFFF;
sound.reset();
}
virtual void save_state( mapper_state_t& out )
{
sound.save_state( &sound_state );
fme7_state_t::swap();
Nes_Mapper::save_state( out );
fme7_state_t::swap(); // to do: kind of hacky to swap in place
}
virtual void read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
fme7_state_t::swap();
sound.load_state( sound_state );
}
void write_register( int index, int data );
virtual void apply_mapping()
{
last_time = 0;
for ( int i = 0; i < (int) sizeof regs; i++ )
write_register( i, regs [i] );
}
virtual void run_until( nes_time_t end_time )
{
int new_count = irq_count - (end_time - last_time);
last_time = end_time;
if ( new_count <= 0 && (irq_mode & 0x81) == 0x81 )
irq_pending = true;
if ( irq_mode & 0x01 )
irq_count = new_count & 0xFFFF;
}
virtual nes_time_t next_irq( nes_time_t )
{
if ( irq_pending )
return 0;
if ( (irq_mode & 0x81) == 0x81 )
return last_time + irq_count + 1;
return no_irq;
}
virtual void end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
sound.end_frame( end_time );
}
void write_irq( nes_time_t, int index, int data );
virtual void write( nes_time_t time, nes_addr_t addr, int data )
{
switch ( addr & 0xE000 )
{
case 0x8000:
command = data & 0x0F;
break;
case 0xA000:
if ( command < 0x0D )
write_register( command, data );
else
write_irq( time, command, data );
break;
case 0xC000:
sound.write_latch( data );
break;
case 0xE000:
sound.write_data( time, data );
break;
}
}
};
void Mapper_Fme7::write_irq( nes_time_t time, int index, int data )
{
run_until( time );
switch ( index )
{
case 0x0D:
irq_mode = data;
if ( (irq_mode & 0x81) != 0x81 )
irq_pending = false;
break;
case 0x0E:
irq_count = (irq_count & 0xFF00) | data;
break;
case 0x0F:
irq_count = data << 8 | (irq_count & 0xFF);
break;
}
if ( (irq_mode & 0x81) == 0x81 )
irq_changed();
}
void Mapper_Fme7::write_register( int index, int data )
{
regs [index] = data;
int prg_bank = index - 0x09;
if ( (unsigned) prg_bank < 3 ) // most common
{
set_prg_bank( 0x8000 | (prg_bank << bank_8k), bank_8k, data );
}
else if ( index == 0x08 )
{
enable_sram( (data & 0xC0) == 0xC0 );
if ( !(data & 0xC0) )
set_prg_bank( 0x6000, bank_8k, data & 0x3F );
}
else if ( index < 0x08 )
{
set_chr_bank( index * 0x400, bank_1k, data );
}
else
{
assert( index == 0x0C );
if ( data & 2 )
mirror_single( data & 1 );
else if ( data & 1 )
mirror_horiz();
else
mirror_vert();
}
}
void register_fme7_mapper();
void register_fme7_mapper()
{
register_mapper<Mapper_Fme7>( 69 );
}

View File

@ -0,0 +1,155 @@
// NES MMC5 mapper, currently only tailored for Castlevania 3 (U)
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include "Nes_Core.h"
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct mmc5_state_t
{
enum { reg_count = 0x30 };
byte regs [0x30];
byte irq_enabled;
};
// to do: finalize state format
BOOST_STATIC_ASSERT( sizeof (mmc5_state_t) == 0x31 );
class Mapper_Mmc5 : public Nes_Mapper, mmc5_state_t {
nes_time_t irq_time;
public:
Mapper_Mmc5()
{
mmc5_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
irq_time = no_irq;
regs [0x00] = 2;
regs [0x01] = 3;
regs [0x14] = 0x7f;
regs [0x15] = 0x7f;
regs [0x16] = 0x7f;
regs [0x17] = 0x7f;
}
virtual void read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
irq_time = no_irq;
}
enum { regs_addr = 0x5100 };
virtual void apply_mapping();
virtual nes_time_t next_irq( nes_time_t )
{
if ( irq_enabled & 0x80 )
return irq_time;
return no_irq;
}
virtual bool write_intercepted( nes_time_t time, nes_addr_t addr, int data )
{
int reg = addr - regs_addr;
if ( (unsigned) reg < reg_count )
{
regs [reg] = data;
switch ( reg )
{
case 0x05:
mirror_manual( data & 3, data >> 2 & 3,
data >> 4 & 3, data >> 6 & 3 );
break;
case 0x15:
set_prg_bank( 0x8000, bank_16k, data >> 1 & 0x3f );
break;
case 0x16:
set_prg_bank( 0xC000, bank_8k, data & 0x7f );
break;
case 0x17:
set_prg_bank( 0xE000, bank_8k, data & 0x7f );
break;
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
set_chr_bank( ((reg >> 1 & 4) + (reg & 3)) * 0x400, bank_1k, data );
break;
}
check( (regs [0x00] & 3) == 2 );
check( (regs [0x01] & 3) == 3 );
}
else if ( addr == 0x5203 )
{
irq_time = no_irq;
if ( data && data < 240 )
{
irq_time = (341 * 21 + 128 + (data * 341)) / 3;
if ( irq_time < time )
irq_time = no_irq;
}
irq_changed();
}
else if ( addr == 0x5204 )
{
irq_enabled = data;
irq_changed();
}
else
{
return false;
}
return true;
}
virtual void write( nes_time_t, nes_addr_t, int ) { }
};
void Mapper_Mmc5::apply_mapping()
{
static unsigned char list [] = {
0x05, 0x15, 0x16, 0x17,
0x20, 0x21, 0x22, 0x23,
0x28, 0x29, 0x2a, 0x2b
};
for ( int i = 0; i < (int) sizeof list; i++ )
write_intercepted( 0, regs_addr + list [i], regs [list [i]] );
intercept_writes( 0x5100, 0x200 );
}
void register_mmc5_mapper();
void register_mmc5_mapper()
{
register_mapper<Mapper_Mmc5>( 5 );
}

View File

@ -0,0 +1,213 @@
// Namco 106 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include "Nes_Namco_Apu.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// to do: CHR mapping and nametable handling needs work
struct namco106_state_t
{
BOOST::uint8_t regs [16];
BOOST::uint16_t irq_ctr;
BOOST::uint8_t irq_pending;
BOOST::uint8_t unused1 [1];
};
BOOST_STATIC_ASSERT( sizeof (namco106_state_t) == 20 );
class Mapper_Namco106 : public Nes_Mapper, namco106_state_t {
Nes_Namco_Apu sound;
nes_time_t last_time;
public:
Mapper_Namco106()
{
namco106_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
void reset_state()
{
regs [12] = 0;
regs [13] = 1;
regs [14] = last_bank - 1;
sound.reset();
}
virtual void apply_mapping()
{
last_time = 0;
enable_sram();
intercept_writes( 0x4800, 1 );
intercept_reads ( 0x4800, 1 );
intercept_writes( 0x5000, 0x1000 );
intercept_reads ( 0x5000, 0x1000 );
for ( int i = 0; i < (int) sizeof regs; i++ )
write( 0, 0x8000 + i * 0x800, regs [i] );
}
virtual nes_time_t next_irq( nes_time_t time )
{
if ( irq_pending )
return time;
if ( !(irq_ctr & 0x8000) )
return no_irq;
return 0x10000 - irq_ctr + last_time;
}
virtual void run_until( nes_time_t end_time )
{
long count = irq_ctr + (end_time - last_time);
if ( irq_ctr & 0x8000 )
{
if ( count > 0xffff )
{
count = 0xffff;
irq_pending = true;
}
}
else if ( count > 0x7fff )
{
count = 0x7fff;
}
irq_ctr = count;
last_time = end_time;
}
virtual void end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
sound.end_frame( end_time );
}
void write_bank( nes_addr_t, int data );
void write_irq( nes_time_t, nes_addr_t, int data );
virtual int read( nes_time_t time, nes_addr_t addr )
{
if ( addr == 0x4800 )
return sound.read_data();
if ( addr == 0x5000 )
{
irq_pending = false;
return irq_ctr & 0xff;
}
if ( addr == 0x5800 )
{
irq_pending = false;
return irq_ctr >> 8;
}
return Nes_Mapper::read( time, addr );
}
virtual bool write_intercepted( nes_time_t time, nes_addr_t addr, int data )
{
if ( addr == 0x4800 )
{
sound.write_data( time, data );
}
else if ( addr == 0x5000 )
{
irq_ctr = (irq_ctr & 0xff00) | data;
irq_pending = false;
irq_changed();
}
else if ( addr == 0x5800 )
{
irq_ctr = (data << 8) | (irq_ctr & 0xff);
irq_pending = false;
irq_changed();
}
else
{
return false;
}
return true;
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
int reg = addr >> 11 & 0x0F;
regs [reg] = data;
int prg_bank = reg - 0x0c;
if ( (unsigned) prg_bank < 3 )
{
if ( prg_bank == 0 && (data & 0x40) )
mirror_vert();
set_prg_bank( 0x8000 | (prg_bank << bank_8k), bank_8k, data & 0x3F );
}
else if ( reg < 8 )
{
set_chr_bank( reg * 0x400, bank_1k, data );
}
else if ( reg < 0x0c )
{
mirror_manual( regs [8] & 1, regs [9] & 1, regs [10] & 1, regs [11] & 1 );
}
else
{
sound.write_addr( data );
}
}
};
void register_namco106_mapper();
void register_namco106_mapper()
{
register_mapper<Mapper_Namco106>( 19 );
}
// in the most obscure place in case crappy linker is used
void register_optional_mappers();
void register_optional_mappers()
{
extern void register_misc_mappers();
register_misc_mappers();
extern void register_vrc6_mapper();
register_vrc6_mapper();
extern void register_mmc5_mapper();
register_mmc5_mapper();
extern void register_fme7_mapper();
register_fme7_mapper();
extern void register_namco106_mapper();
register_namco106_mapper();
}

View File

@ -0,0 +1,262 @@
// Konami VRC6 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Vrc6_Apu.h"
#include "blargg_endian.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct vrc6_state_t
{
// written registers
byte prg_16k_bank;
// could move sound regs int and out of vrc6_apu_state_t for state saving,
// allowing them to be stored here
byte old_sound_regs [3] [3]; // to do: eliminate this duplicate
byte mirroring;
byte prg_8k_bank;
byte chr_banks [8];
byte irq_reload;
byte irq_mode;
// internal state
BOOST::uint16_t next_time;
byte irq_pending;
byte unused;
vrc6_apu_state_t sound_state;
void swap();
};
BOOST_STATIC_ASSERT( sizeof (vrc6_state_t) == 26 + sizeof (vrc6_apu_state_t) );
void vrc6_state_t::swap()
{
set_le16( &next_time, next_time );
for ( unsigned i = 0; i < sizeof sound_state.delays / sizeof sound_state.delays [0]; i++ )
set_le16( &sound_state.delays [i], sound_state.delays [i] );
}
class Mapper_Vrc6 : public Nes_Mapper, vrc6_state_t {
int swap_mask;
Nes_Vrc6_Apu sound;
enum { timer_period = 113 * 4 + 3 };
public:
Mapper_Vrc6( int sm )
{
swap_mask = sm;
vrc6_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
virtual void reset_state()
{
prg_8k_bank = last_bank - 1;
sound.reset();
}
virtual void save_state( mapper_state_t& out )
{
sound.save_state( &sound_state );
vrc6_state_t::swap();
Nes_Mapper::save_state( out );
vrc6_state_t::swap(); // to do: kind of hacky to swap in place
}
virtual void read_state( mapper_state_t const& in );
virtual void apply_mapping()
{
enable_sram();
set_prg_bank( 0x8000, bank_16k, prg_16k_bank );
set_prg_bank( 0xC000, bank_8k, prg_8k_bank );
for ( int i = 0; i < (int) sizeof chr_banks; i++ )
set_chr_bank( i * 0x400, bank_1k, chr_banks [i] );
write_bank( 0xb003, mirroring );
}
void reset_timer( nes_time_t present )
{
next_time = present + unsigned ((0x100 - irq_reload) * timer_period) / 4;
}
virtual void run_until( nes_time_t end_time )
{
if ( irq_mode & 2 )
{
while ( next_time < end_time )
{
//dprintf( "%d timer expired\n", next_time );
irq_pending = true;
reset_timer( next_time );
}
}
}
virtual void end_frame( nes_time_t end_time )
{
run_until( end_time );
// to do: next_time might go negative if IRQ is disabled
next_time -= end_time;
sound.end_frame( end_time );
}
virtual nes_time_t next_irq( nes_time_t present )
{
if ( irq_pending )
return present;
if ( irq_mode & 2 )
return next_time + 1;
return no_irq;
}
void write_bank( nes_addr_t, int data );
void write_irq( nes_time_t, nes_addr_t, int data );
virtual void write( nes_time_t time, nes_addr_t addr, int data )
{
int osc = unsigned (addr - sound.base_addr) / sound.addr_step;
if ( (addr + 1) & 2 ) // optionally swap 1 and 2
addr ^= swap_mask;
int reg = addr & 3;
if ( (unsigned) osc < sound.osc_count && reg < sound.reg_count )
sound.write_osc( time, osc, reg, data );
else if ( addr < 0xf000 )
write_bank( addr, data );
else
write_irq( time, addr, data );
}
};
void Mapper_Vrc6::read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
vrc6_state_t::swap();
// to do: eliminate when format is updated
// old-style registers
static char zero [sizeof old_sound_regs] = { 0 };
if ( 0 != memcmp( old_sound_regs, zero, sizeof zero ) )
{
dprintf( "Using old VRC6 sound register format\n" );
memcpy( sound_state.regs, old_sound_regs, sizeof sound_state.regs );
memset( old_sound_regs, 0, sizeof old_sound_regs );
}
sound.load_state( sound_state );
}
void Mapper_Vrc6::write_irq( nes_time_t time, nes_addr_t addr, int data )
{
// IRQ
run_until( time );
//dprintf( "%d VRC6 IRQ [%d] = %02X\n", time, addr & 3, data );
switch ( addr & 3 )
{
case 0:
irq_reload = data;
break;
case 1:
irq_pending = false;
irq_mode = data;
if ( data & 2 )
reset_timer( time );
break;
case 2:
irq_pending = false;
irq_mode = (irq_mode & ~2) | ((irq_mode << 1) & 2);
break;
}
irq_changed();
}
void Mapper_Vrc6::write_bank( nes_addr_t addr, int data )
{
switch ( addr & 0xf003 )
{
case 0x8000:
prg_16k_bank = data;
set_prg_bank( 0x8000, bank_16k, data );
break;
case 0xb003: {
mirroring = data;
//dprintf( "Change mirroring %d\n", data );
// emu()->enable_sram( data & 0x80 ); // to do: needed?
int page = data >> 5 & 1;
if ( data & 8 )
mirror_single( ((data >> 2) ^ page) & 1 );
else if ( data & 4 )
mirror_horiz( page );
else
mirror_vert( page );
break;
}
case 0xc000:
prg_8k_bank = data;
set_prg_bank( 0xC000, bank_8k, data );
break;
default:
int bank = (addr >> 11 & 4) | (addr & 3);
if ( addr >= 0xd000 )
{
//dprintf( "change chr bank %d\n", bank );
chr_banks [bank] = data;
set_chr_bank( bank * 0x400, bank_1k, data );
}
break;
}
}
static Nes_Mapper* make_vrc6a()
{
return BLARGG_NEW Mapper_Vrc6( 0 );
}
static Nes_Mapper* make_vrc6b()
{
return BLARGG_NEW Mapper_Vrc6( 3 );
}
void register_vrc6_mapper();
void register_vrc6_mapper()
{
Nes_Mapper::register_mapper( 24, make_vrc6a );
Nes_Mapper::register_mapper( 26, make_vrc6b );
}

View File

@ -0,0 +1,213 @@
// Blip_Buffer 0.4.0. http://www.slack.net/~ant/
#include "Multi_Buffer.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Multi_Buffer::Multi_Buffer( int spf ) : samples_per_frame_( spf )
{
length_ = 0;
sample_rate_ = 0;
channels_changed_count_ = 1;
}
blargg_err_t Multi_Buffer::set_channel_count( int )
{
return 0;
}
Mono_Buffer::Mono_Buffer() : Multi_Buffer( 1 )
{
}
Mono_Buffer::~Mono_Buffer()
{
}
blargg_err_t Mono_Buffer::set_sample_rate( long rate, int msec )
{
RETURN_ERR( buf.set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( buf.sample_rate(), buf.length() );
}
// Silent_Buffer
Silent_Buffer::Silent_Buffer() : Multi_Buffer( 1 ) // 0 channels would probably confuse
{
chan.left = NULL;
chan.center = NULL;
chan.right = NULL;
}
// Mono_Buffer
Mono_Buffer::channel_t Mono_Buffer::channel( int )
{
channel_t ch;
ch.center = &buf;
ch.left = &buf;
ch.right = &buf;
return ch;
}
void Mono_Buffer::end_frame( blip_time_t t, bool )
{
buf.end_frame( t );
}
// Stereo_Buffer
Stereo_Buffer::Stereo_Buffer() : Multi_Buffer( 2 )
{
chan.center = &bufs [0];
chan.left = &bufs [1];
chan.right = &bufs [2];
}
Stereo_Buffer::~Stereo_Buffer()
{
}
blargg_err_t Stereo_Buffer::set_sample_rate( long rate, int msec )
{
for ( int i = 0; i < buf_count; i++ )
RETURN_ERR( bufs [i].set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( bufs [0].sample_rate(), bufs [0].length() );
}
void Stereo_Buffer::clock_rate( long rate )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].clock_rate( rate );
}
void Stereo_Buffer::bass_freq( int bass )
{
for ( unsigned i = 0; i < buf_count; i++ )
bufs [i].bass_freq( bass );
}
void Stereo_Buffer::clear()
{
stereo_added = false;
was_stereo = false;
for ( int i = 0; i < buf_count; i++ )
bufs [i].clear();
}
void Stereo_Buffer::end_frame( blip_time_t clock_count, bool stereo )
{
for ( unsigned i = 0; i < buf_count; i++ )
bufs [i].end_frame( clock_count );
stereo_added |= stereo;
}
long Stereo_Buffer::read_samples( blip_sample_t* out, long count )
{
require( !(count & 1) ); // count must be even
count = (unsigned) count / 2;
long avail = bufs [0].samples_avail();
if ( count > avail )
count = avail;
if ( count )
{
if ( stereo_added || was_stereo )
{
mix_stereo( out, count );
bufs [0].remove_samples( count );
bufs [1].remove_samples( count );
bufs [2].remove_samples( count );
}
else
{
mix_mono( out, count );
bufs [0].remove_samples( count );
bufs [1].remove_silence( count );
bufs [2].remove_silence( count );
}
// to do: this might miss opportunities for optimization
if ( !bufs [0].samples_avail() ) {
was_stereo = stereo_added;
stereo_added = false;
}
}
return count * 2;
}
void Stereo_Buffer::mix_stereo( blip_sample_t* out, long count )
{
Blip_Reader left;
Blip_Reader right;
Blip_Reader center;
left.begin( bufs [1] );
right.begin( bufs [2] );
int bass = center.begin( bufs [0] );
while ( count-- )
{
int c = center.read();
long l = c + left.read();
long r = c + right.read();
center.next( bass );
out [0] = l;
out [1] = r;
out += 2;
if ( (BOOST::int16_t) l != l )
out [-2] = 0x7FFF - (l >> 24);
left.next( bass );
right.next( bass );
if ( (BOOST::int16_t) r != r )
out [-1] = 0x7FFF - (r >> 24);
}
center.end( bufs [0] );
right.end( bufs [2] );
left.end( bufs [1] );
}
void Stereo_Buffer::mix_mono( blip_sample_t* out, long count )
{
Blip_Reader in;
int bass = in.begin( bufs [0] );
while ( count-- )
{
long s = in.read();
in.next( bass );
out [0] = s;
out [1] = s;
out += 2;
if ( (BOOST::int16_t) s != s ) {
s = 0x7FFF - (s >> 24);
out [-2] = s;
out [-1] = s;
}
}
in.end( bufs [0] );
}

View File

@ -0,0 +1,175 @@
// Multi-channel sound buffer interface, and basic mono and stereo buffers
// Blip_Buffer 0.4.0
#ifndef MULTI_BUFFER_H
#define MULTI_BUFFER_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
// Interface to one or more Blip_Buffers mapped to one or more channels
// consisting of left, center, and right buffers.
class Multi_Buffer {
public:
Multi_Buffer( int samples_per_frame );
virtual ~Multi_Buffer() { }
// Set the number of channels available
virtual blargg_err_t set_channel_count( int );
// Get indexed channel, from 0 to channel count - 1
struct channel_t {
Blip_Buffer* center;
Blip_Buffer* left;
Blip_Buffer* right;
};
virtual channel_t channel( int index ) = 0;
// See Blip_Buffer.h
virtual blargg_err_t set_sample_rate( long rate, int msec = blip_default_length ) = 0;
virtual void clock_rate( long ) = 0;
virtual void bass_freq( int ) = 0;
virtual void clear() = 0;
long sample_rate() const;
// Length of buffer, in milliseconds
int length() const;
// See Blip_Buffer.h. For optimal operation, pass false for 'added_stereo'
// if nothing was added to the left and right buffers of any channel for
// this time frame.
virtual void end_frame( blip_time_t, bool added_stereo = true ) = 0;
// Number of samples per output frame (1 = mono, 2 = stereo)
int samples_per_frame() const;
// Count of changes to channel configuration. Incremented whenever
// a change is made to any of the Blip_Buffers for any channel.
unsigned channels_changed_count() { return channels_changed_count_; }
// See Blip_Buffer.h
virtual long read_samples( blip_sample_t*, long ) = 0;
virtual long samples_avail() const = 0;
protected:
void channels_changed() { channels_changed_count_++; }
private:
// noncopyable
Multi_Buffer( const Multi_Buffer& );
Multi_Buffer& operator = ( const Multi_Buffer& );
unsigned channels_changed_count_;
long sample_rate_;
int length_;
int const samples_per_frame_;
};
// Uses a single buffer and outputs mono samples.
class Mono_Buffer : public Multi_Buffer {
Blip_Buffer buf;
public:
Mono_Buffer();
~Mono_Buffer();
// Buffer used for all channels
Blip_Buffer* center() { return &buf; }
// See Multi_Buffer
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool unused = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
};
// Uses three buffers (one for center) and outputs stereo sample pairs.
class Stereo_Buffer : public Multi_Buffer {
public:
Stereo_Buffer();
~Stereo_Buffer();
// Buffers used for all channels
Blip_Buffer* center() { return &bufs [0]; }
Blip_Buffer* left() { return &bufs [1]; }
Blip_Buffer* right() { return &bufs [2]; }
// See Multi_Buffer
blargg_err_t set_sample_rate( long, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int index );
void end_frame( blip_time_t, bool added_stereo = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
private:
enum { buf_count = 3 };
Blip_Buffer bufs [buf_count];
channel_t chan;
bool stereo_added;
bool was_stereo;
void mix_stereo( blip_sample_t*, long );
void mix_mono( blip_sample_t*, long );
};
// Silent_Buffer generates no samples, useful where no sound is wanted
class Silent_Buffer : public Multi_Buffer {
channel_t chan;
public:
Silent_Buffer();
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void clock_rate( long ) { }
void bass_freq( int ) { }
void clear() { }
channel_t channel( int ) { return chan; }
void end_frame( blip_time_t, bool unused = true ) { }
long samples_avail() const { return 0; }
long read_samples( blip_sample_t*, long ) { return 0; }
};
// End of public interface
inline blargg_err_t Multi_Buffer::set_sample_rate( long rate, int msec )
{
sample_rate_ = rate;
length_ = msec;
return 0;
}
inline blargg_err_t Silent_Buffer::set_sample_rate( long rate, int msec )
{
return Multi_Buffer::set_sample_rate( rate, msec );
}
inline int Multi_Buffer::samples_per_frame() const { return samples_per_frame_; }
inline long Stereo_Buffer::samples_avail() const { return bufs [0].samples_avail() * 2; }
inline Stereo_Buffer::channel_t Stereo_Buffer::channel( int ) { return chan; }
inline long Multi_Buffer::sample_rate() const { return sample_rate_; }
inline int Multi_Buffer::length() const { return length_; }
inline void Mono_Buffer::clock_rate( long rate ) { buf.clock_rate( rate ); }
inline void Mono_Buffer::clear() { buf.clear(); }
inline void Mono_Buffer::bass_freq( int freq ) { buf.bass_freq( freq ); }
inline long Mono_Buffer::read_samples( blip_sample_t* p, long s ) { return buf.read_samples( p, s ); }
inline long Mono_Buffer::samples_avail() const { return buf.samples_avail(); }
#endif

View File

@ -0,0 +1,380 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const amp_range = 15;
Nes_Apu::Nes_Apu() :
square1( &square_synth ),
square2( &square_synth )
{
dmc.apu = this;
dmc.prg_reader = NULL;
irq_notifier_ = NULL;
oscs [0] = &square1;
oscs [1] = &square2;
oscs [2] = &triangle;
oscs [3] = &noise;
oscs [4] = &dmc;
output( NULL );
volume( 1.0 );
reset( false );
}
Nes_Apu::~Nes_Apu()
{
}
void Nes_Apu::treble_eq( const blip_eq_t& eq )
{
square_synth.treble_eq( eq );
triangle.synth.treble_eq( eq );
noise.synth.treble_eq( eq );
dmc.synth.treble_eq( eq );
}
void Nes_Apu::enable_nonlinear( double v )
{
dmc.nonlinear = true;
square_synth.volume( 1.3 * 0.25751258 / 0.742467605 * 0.25 / amp_range * v );
const double tnd = 0.48 / 202 * nonlinear_tnd_gain();
triangle.synth.volume( 3.0 * tnd );
noise.synth.volume( 2.0 * tnd );
dmc.synth.volume( tnd );
square1 .last_amp = 0;
square2 .last_amp = 0;
triangle.last_amp = 0;
noise .last_amp = 0;
dmc .last_amp = 0;
}
void Nes_Apu::volume( double v )
{
dmc.nonlinear = false;
square_synth.volume( 0.1128 / amp_range * v );
triangle.synth.volume( 0.12765 / amp_range * v );
noise.synth.volume( 0.0741 / amp_range * v );
dmc.synth.volume( 0.42545 / 127 * v );
}
void Nes_Apu::output( Blip_Buffer* buffer )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buffer );
}
void Nes_Apu::reset( bool pal_mode, int initial_dmc_dac )
{
// to do: time pal frame periods exactly
frame_period = pal_mode ? 8314 : 7458;
dmc.pal_mode = pal_mode;
square1.reset();
square2.reset();
triangle.reset();
noise.reset();
dmc.reset();
last_time = 0;
last_dmc_time = 0;
osc_enables = 0;
irq_flag = false;
earliest_irq_ = no_irq;
frame_delay = 1;
write_register( 0, 0x4017, 0x00 );
write_register( 0, 0x4015, 0x00 );
for ( nes_addr_t addr = start_addr; addr <= 0x4013; addr++ )
write_register( 0, addr, (addr & 3) ? 0x00 : 0x10 );
dmc.dac = initial_dmc_dac;
if ( !dmc.nonlinear )
triangle.last_amp = 15;
//if ( !dmc.nonlinear ) // to do: remove?
// dmc.last_amp = initial_dmc_dac; // prevent output transition
}
void Nes_Apu::irq_changed()
{
nes_time_t new_irq = dmc.next_irq;
if ( dmc.irq_flag | irq_flag ) {
new_irq = 0;
}
else if ( new_irq > next_irq ) {
new_irq = next_irq;
}
if ( new_irq != earliest_irq_ ) {
earliest_irq_ = new_irq;
if ( irq_notifier_ )
irq_notifier_( irq_data );
}
}
// frames
void Nes_Apu::run_until( nes_time_t end_time )
{
require( end_time >= last_dmc_time );
if ( end_time > next_dmc_read_time() )
{
nes_time_t start = last_dmc_time;
last_dmc_time = end_time;
dmc.run( start, end_time );
}
}
void Nes_Apu::run_until_( nes_time_t end_time )
{
require( end_time >= last_time );
if ( end_time == last_time )
return;
if ( last_dmc_time < end_time )
{
nes_time_t start = last_dmc_time;
last_dmc_time = end_time;
dmc.run( start, end_time );
}
while ( true )
{
// earlier of next frame time or end time
nes_time_t time = last_time + frame_delay;
if ( time > end_time )
time = end_time;
frame_delay -= time - last_time;
// run oscs to present
square1.run( last_time, time );
square2.run( last_time, time );
triangle.run( last_time, time );
noise.run( last_time, time );
last_time = time;
if ( time == end_time )
break; // no more frames to run
// take frame-specific actions
frame_delay = frame_period;
switch ( frame++ )
{
case 0:
if ( !(frame_mode & 0xc0) ) {
next_irq = time + frame_period * 4 + 1;
irq_flag = true;
}
// fall through
case 2:
// clock length and sweep on frames 0 and 2
square1.clock_length( 0x20 );
square2.clock_length( 0x20 );
noise.clock_length( 0x20 );
triangle.clock_length( 0x80 ); // different bit for halt flag on triangle
square1.clock_sweep( -1 );
square2.clock_sweep( 0 );
break;
case 1:
// frame 1 is slightly shorter
frame_delay -= 2;
break;
case 3:
frame = 0;
// frame 3 is almost twice as long in mode 1
if ( frame_mode & 0x80 )
frame_delay += frame_period - 6;
break;
}
// clock envelopes and linear counter every frame
triangle.clock_linear_counter();
square1.clock_envelope();
square2.clock_envelope();
noise.clock_envelope();
}
}
template<class T>
inline void zero_apu_osc( T* osc, nes_time_t time )
{
Blip_Buffer* output = osc->output;
int last_amp = osc->last_amp;
osc->last_amp = 0;
if ( output && last_amp )
osc->synth.offset( time, -last_amp, output );
}
void Nes_Apu::end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until_( end_time );
if ( dmc.nonlinear )
{
zero_apu_osc( &square1, last_time );
zero_apu_osc( &square2, last_time );
zero_apu_osc( &triangle, last_time );
zero_apu_osc( &noise, last_time );
zero_apu_osc( &dmc, last_time );
}
// make times relative to new frame
last_time -= end_time;
require( last_time >= 0 );
last_dmc_time -= end_time;
require( last_dmc_time >= 0 );
if ( next_irq != no_irq ) {
next_irq -= end_time;
assert( next_irq >= 0 );
}
if ( dmc.next_irq != no_irq ) {
dmc.next_irq -= end_time;
assert( dmc.next_irq >= 0 );
}
if ( earliest_irq_ != no_irq ) {
earliest_irq_ -= end_time;
if ( earliest_irq_ < 0 )
earliest_irq_ = 0;
}
}
// registers
static const unsigned char length_table [0x20] = {
0x0A, 0xFE, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06,
0xA0, 0x08, 0x3C, 0x0A, 0x0E, 0x0C, 0x1A, 0x0E,
0x0C, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16,
0xC0, 0x18, 0x48, 0x1A, 0x10, 0x1C, 0x20, 0x1E
};
void Nes_Apu::write_register( nes_time_t time, nes_addr_t addr, int data )
{
require( addr > 0x20 ); // addr must be actual address (i.e. 0x40xx)
require( (unsigned) data <= 0xff );
// Ignore addresses outside range
if ( addr < start_addr || end_addr < addr )
return;
run_until_( time );
if ( addr < 0x4014 )
{
// Write to channel
int osc_index = (addr - start_addr) >> 2;
Nes_Osc* osc = oscs [osc_index];
int reg = addr & 3;
osc->regs [reg] = data;
osc->reg_written [reg] = true;
if ( osc_index == 4 )
{
// handle DMC specially
dmc.write_register( reg, data );
}
else if ( reg == 3 )
{
// load length counter
if ( (osc_enables >> osc_index) & 1 )
osc->length_counter = length_table [(data >> 3) & 0x1f];
// reset square phase
if ( osc_index < 2 )
((Nes_Square*) osc)->phase = Nes_Square::phase_range - 1;
}
}
else if ( addr == 0x4015 )
{
// Channel enables
for ( int i = osc_count; i--; )
if ( !((data >> i) & 1) )
oscs [i]->length_counter = 0;
bool recalc_irq = dmc.irq_flag;
dmc.irq_flag = false;
int old_enables = osc_enables;
osc_enables = data;
if ( !(data & 0x10) ) {
dmc.next_irq = no_irq;
recalc_irq = true;
}
else if ( !(old_enables & 0x10) ) {
dmc.start(); // dmc just enabled
}
if ( recalc_irq )
irq_changed();
}
else if ( addr == 0x4017 )
{
// Frame mode
frame_mode = data;
bool irq_enabled = !(data & 0x40);
irq_flag &= irq_enabled;
next_irq = no_irq;
// mode 1
frame_delay = (frame_delay & 1);
frame = 0;
if ( !(data & 0x80) )
{
// mode 0
frame = 1;
frame_delay += frame_period;
if ( irq_enabled )
next_irq = time + frame_delay + frame_period * 3;
}
irq_changed();
}
}
int Nes_Apu::read_status( nes_time_t time )
{
run_until_( time - 1 );
int result = (dmc.irq_flag << 7) | (irq_flag << 6);
for ( int i = 0; i < osc_count; i++ )
if ( oscs [i]->length_counter )
result |= 1 << i;
run_until_( time );
if ( irq_flag ) {
irq_flag = false;
irq_changed();
}
return result;
}

177
quicknes/nes_emu/Nes_Apu.h Normal file
View File

@ -0,0 +1,177 @@
// NES 2A03 APU sound chip emulator
// Nes_Snd_Emu 0.1.7
#ifndef NES_APU_H
#define NES_APU_H
typedef long nes_time_t; // CPU clock cycle count
typedef unsigned nes_addr_t; // 16-bit memory address
#include "Nes_Oscs.h"
struct apu_state_t;
class Nes_Buffer;
class Nes_Apu {
public:
Nes_Apu();
~Nes_Apu();
// Set buffer to generate all sound into, or disable sound if NULL
void output( Blip_Buffer* );
// Set memory reader callback used by DMC oscillator to fetch samples.
// When callback is invoked, 'user_data' is passed unchanged as the
// first parameter.
void dmc_reader( int (*callback)( void* user_data, nes_addr_t ), void* user_data = NULL );
// All time values are the number of CPU clock cycles relative to the
// beginning of the current time frame. Before resetting the CPU clock
// count, call end_frame( last_cpu_time ).
// Write to register (0x4000-0x4017, except 0x4014 and 0x4016)
enum { start_addr = 0x4000 };
enum { end_addr = 0x4017 };
void write_register( nes_time_t, nes_addr_t, int data );
// Read from status register at 0x4015
enum { status_addr = 0x4015 };
int read_status( nes_time_t );
// Run all oscillators up to specified time, end current time frame, then
// start a new time frame at time 0. Time frames have no effect on emulation
// and each can be whatever length is convenient.
void end_frame( nes_time_t );
// Additional optional features (can be ignored without any problem)
// Reset internal frame counter, registers, and all oscillators.
// Use PAL timing if pal_timing is true, otherwise use NTSC timing.
// Set the DMC oscillator's initial DAC value to initial_dmc_dac without
// any audible click.
void reset( bool pal_timing = false, int initial_dmc_dac = 0 );
// Save/load exact emulation state
void save_state( apu_state_t* out ) const;
void load_state( apu_state_t const& );
// Set overall volume (default is 1.0)
void volume( double );
// Set treble equalization (see notes.txt)
void treble_eq( const blip_eq_t& );
// Set sound output of specific oscillator to buffer. If buffer is NULL,
// the specified oscillator is muted and emulation accuracy is reduced.
// The oscillators are indexed as follows: 0) Square 1, 1) Square 2,
// 2) Triangle, 3) Noise, 4) DMC.
enum { osc_count = 5 };
void osc_output( int index, Blip_Buffer* buffer );
// Set IRQ time callback that is invoked when the time of earliest IRQ
// may have changed, or NULL to disable. When callback is invoked,
// 'user_data' is passed unchanged as the first parameter.
void irq_notifier( void (*callback)( void* user_data ), void* user_data = NULL );
// Get time that APU-generated IRQ will occur if no further register reads
// or writes occur. If IRQ is already pending, returns irq_waiting. If no
// IRQ will occur, returns no_irq.
enum { no_irq = LONG_MAX / 2 + 1 };
enum { irq_waiting = 0 };
nes_time_t earliest_irq( nes_time_t ) const;
// Count number of DMC reads that would occur if 'run_until( t )' were executed.
// If last_read is not NULL, set *last_read to the earliest time that
// 'count_dmc_reads( time )' would result in the same result.
int count_dmc_reads( nes_time_t t, nes_time_t* last_read = NULL ) const;
// Time when next DMC memory read will occur
nes_time_t next_dmc_read_time() const;
// Run DMC until specified time, so that any DMC memory reads can be
// accounted for (i.e. inserting CPU wait states).
void run_until( nes_time_t );
// End of public interface.
private:
friend class Nes_Nonlinearizer;
void enable_nonlinear( double volume );
static double nonlinear_tnd_gain() { return 0.75; }
private:
friend struct Nes_Dmc;
// noncopyable
Nes_Apu( const Nes_Apu& );
Nes_Apu& operator = ( const Nes_Apu& );
Nes_Osc* oscs [osc_count];
Nes_Square square1;
Nes_Square square2;
Nes_Noise noise;
Nes_Triangle triangle;
Nes_Dmc dmc;
nes_time_t last_time; // has been run until this time in current frame
nes_time_t last_dmc_time;
nes_time_t earliest_irq_;
nes_time_t next_irq;
int frame_period;
int frame_delay; // cycles until frame counter runs next
int frame; // current frame (0-3)
int osc_enables;
int frame_mode;
bool irq_flag;
void (*irq_notifier_)( void* user_data );
void* irq_data;
Nes_Square::Synth square_synth; // shared by squares
void irq_changed();
void state_restored();
void run_until_( nes_time_t );
// TODO: remove
friend class Nes_Core;
};
inline void Nes_Apu::osc_output( int osc, Blip_Buffer* buf )
{
assert( (unsigned) osc < osc_count );
oscs [osc]->output = buf;
}
inline nes_time_t Nes_Apu::earliest_irq( nes_time_t ) const
{
return earliest_irq_;
}
inline void Nes_Apu::dmc_reader( int (*func)( void*, nes_addr_t ), void* user_data )
{
dmc.prg_reader_data = user_data;
dmc.prg_reader = func;
}
inline void Nes_Apu::irq_notifier( void (*func)( void* user_data ), void* user_data )
{
irq_notifier_ = func;
irq_data = user_data;
}
inline int Nes_Apu::count_dmc_reads( nes_time_t time, nes_time_t* last_read ) const
{
return dmc.count_reads( time, last_read );
}
inline nes_time_t Nes_Dmc::next_read_time() const
{
if ( length_counter == 0 )
return Nes_Apu::no_irq; // not reading
return apu->last_dmc_time + delay + long (bits_remain - 1) * period;
}
inline nes_time_t Nes_Apu::next_dmc_read_time() const { return dmc.next_read_time(); }
#endif

View File

@ -0,0 +1,125 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/libs/
#include "Nes_Apu.h"
#include "Nes_State.h"
/* Copyright (C) 2003-2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
template<int mode>
struct apu_reflection
{
#define REFLECT( apu, state ) (mode ? void (apu = state) : void (state = apu))
static void reflect_env( apu_state_t::env_t& state, Nes_Envelope& osc )
{
REFLECT( state [0], osc.env_delay );
REFLECT( state [1], osc.envelope );
REFLECT( state [2], osc.reg_written [3] );
}
static void reflect_square( apu_state_t::square_t& state, Nes_Square& osc )
{
reflect_env( state.env, osc );
REFLECT( state.delay, osc.delay );
REFLECT( state.length, osc.length_counter );
REFLECT( state.phase, osc.phase );
REFLECT( state.swp_delay, osc.sweep_delay );
REFLECT( state.swp_reset, osc.reg_written [1] );
}
static void reflect_triangle( apu_state_t::triangle_t& state, Nes_Triangle& osc )
{
REFLECT( state.delay, osc.delay );
REFLECT( state.length, osc.length_counter );
REFLECT( state.linear_counter, osc.linear_counter );
REFLECT( state.linear_mode, osc.reg_written [3] );
}
static void reflect_noise( apu_state_t::noise_t& state, Nes_Noise& osc )
{
reflect_env( state.env, osc );
REFLECT( state.delay, osc.delay );
REFLECT( state.length, osc.length_counter );
REFLECT( state.shift_reg, osc.noise );
}
static void reflect_dmc( apu_state_t::dmc_t& state, Nes_Dmc& osc )
{
REFLECT( state.delay, osc.delay );
REFLECT( state.remain, osc.length_counter );
REFLECT( state.buf, osc.buf );
REFLECT( state.bits_remain, osc.bits_remain );
REFLECT( state.bits, osc.bits );
REFLECT( state.buf_empty, osc.buf_empty );
REFLECT( state.silence, osc.silence );
REFLECT( state.irq_flag, osc.irq_flag );
if ( mode )
state.addr = osc.address | 0x8000;
else
osc.address = state.addr & 0x7fff;
}
};
void Nes_Apu::get_state( apu_state_t* state ) const
{
for ( int i = 0; i < osc_count * 4; i++ )
state->w40xx [i] = oscs [i >> 2]->regs [i & 3];
state->w40xx [0x11] = dmc.dac;
state->w4015 = osc_enables;
state->w4017 = frame_mode;
state->delay = frame_delay;
state->step = frame;
state->irq_flag = irq_flag;
typedef apu_reflection<1> refl;
Nes_Apu& apu = *(Nes_Apu*) this; // const_cast
refl::reflect_square ( state->square1, apu.square1 );
refl::reflect_square ( state->square2, apu.square2 );
refl::reflect_triangle( state->triangle, apu.triangle );
refl::reflect_noise ( state->noise, apu.noise );
refl::reflect_dmc ( state->dmc, apu.dmc );
}
void Nes_Apu::set_state( apu_state_t const& state )
{
reset();
write_register( 0, 0x4017, state.w4017 );
write_register( 0, 0x4015, state.w4015 );
for ( int i = 0; i < osc_count * 4; i++ )
{
int n = state.w40xx [i];
oscs [i >> 2]->regs [i & 3] = n;
write_register( 0, 0x4000 + i, n );
}
frame_delay = state.delay;
frame = state.step;
irq_flag = state.irq_flag;
typedef apu_reflection<0> refl;
apu_state_t& st = (apu_state_t&) state; // const_cast
refl::reflect_square ( st.square1, square1 );
refl::reflect_square ( st.square2, square2 );
refl::reflect_triangle( st.triangle, triangle );
refl::reflect_noise ( st.noise, noise );
refl::reflect_dmc ( st.dmc, dmc );
dmc.recalc_irq();
dmc.last_amp = dmc.dac;
}

View File

@ -0,0 +1,113 @@
#include "Nes_Blitter.h"
#include "blargg_endian.h"
#include "blargg_source.h"
#ifndef NES_BLITTER_OUT_DEPTH
#define NES_BLITTER_OUT_DEPTH 16
#endif
Nes_Blitter::Nes_Blitter() { ntsc = 0; }
Nes_Blitter::~Nes_Blitter() { free( ntsc ); }
blargg_err_t Nes_Blitter::init()
{
assert( !ntsc );
CHECK_ALLOC( ntsc = (nes_ntsc_emph_t*) malloc( sizeof *ntsc ) );
static setup_t const s = { };
setup_ = s;
setup_.ntsc = nes_ntsc_composite;
return setup( setup_ );
}
blargg_err_t Nes_Blitter::setup( setup_t const& s )
{
setup_ = s;
chunk_count = ((Nes_Emu::image_width - setup_.crop.left - setup_.crop.right) + 5) / 6;
height = Nes_Emu::image_height - setup_.crop.top - setup_.crop.bottom;
nes_ntsc_init_emph( ntsc, &setup_.ntsc );
return 0;
}
void Nes_Blitter::blit( Nes_Emu& emu, void* out, long out_pitch )
{
short const* palette = emu.frame().palette;
int burst_phase = (setup_.ntsc.merge_fields ? 0 : emu.frame().burst_phase);
long in_pitch = emu.frame().pitch;
unsigned char* in = emu.frame().pixels + setup_.crop.top * in_pitch + setup_.crop.left;
for ( int n = height; n; --n )
{
unsigned char* line_in = in;
in += in_pitch;
BOOST::uint32_t* line_out = (BOOST::uint32_t*) out;
out = (char*) out + out_pitch;
NES_NTSC_BEGIN_ROW( ntsc, burst_phase,
nes_ntsc_black, nes_ntsc_black, palette [*line_in] );
line_in [256] = 252; // loop reads 3 extra pixels, so set them to black
line_in [257] = 252;
line_in [258] = 252;
line_in++;
burst_phase = (burst_phase + 1) % nes_ntsc_burst_count;
// assemble two 16-bit pixels into a 32-bit int for better performance
#if BLARGG_BIG_ENDIAN
#define COMBINE_PIXELS right |= left << 16;
#else
#define COMBINE_PIXELS right <<= 16; right |= left;
#endif
#define OUT_PIXEL( i ) \
if ( !(i & 1) ) {\
NES_NTSC_RGB_OUT( (i % 7), left, NES_BLITTER_OUT_DEPTH );\
if ( i > 1 ) line_out [(i/2)-1] = right;\
}\
else {\
NES_NTSC_RGB_OUT( (i % 7), right, NES_BLITTER_OUT_DEPTH );\
COMBINE_PIXELS;\
}
for ( int n = chunk_count; n; --n )
{
unsigned long left, right;
NES_NTSC_COLOR_IN( 0, palette [line_in [0]] );
OUT_PIXEL( 0 );
OUT_PIXEL( 1 );
NES_NTSC_COLOR_IN( 1, palette [line_in [1]] );
OUT_PIXEL( 2 );
OUT_PIXEL( 3 );
NES_NTSC_COLOR_IN( 2, palette [line_in [2]] );
OUT_PIXEL( 4 );
OUT_PIXEL( 5 );
OUT_PIXEL( 6 );
NES_NTSC_COLOR_IN( 0, palette [line_in [3]] );
OUT_PIXEL( 7 );
OUT_PIXEL( 8 );
NES_NTSC_COLOR_IN( 1, palette [line_in [4]] );
OUT_PIXEL( 9 );
OUT_PIXEL( 10);
NES_NTSC_COLOR_IN( 2, palette [line_in [5]] );
line_in += 6;
OUT_PIXEL( 11 );
OUT_PIXEL( 12 );
OUT_PIXEL( 13 );
line_out [6] = right;
line_out += 7;
}
}
}

View File

@ -0,0 +1,45 @@
// NTSC filter for use with Nes_Emu
#ifndef NES_BLITTER_H
#define NES_BLITTER_H
#include "nes_emu/Nes_Emu.h"
#include "nes_emu/nes_ntsc.h"
class Nes_Blitter {
public:
Nes_Blitter();
~Nes_Blitter();
blargg_err_t init();
struct setup_t
{
nes_ntsc_setup_t ntsc;
struct {
// Number of NES source pixels to remove from each border.
// Resulting width will be rounded to multiple of 6 pixels due
// to internal limitations.
int left, top, right, bottom;
} crop;
};
setup_t const& setup() const { return setup_; }
blargg_err_t setup( setup_t const& );
// size of output image generated by blit()
int out_width() const { return chunk_count * 14; }
int out_height() const { return height; }
// Generate NTSC filtered image to 16-bit 565 RGB output pixels
void blit( Nes_Emu&, void* out, long pitch );
private:
setup_t setup_;
nes_ntsc_emph_t* ntsc;
int chunk_count;
int height;
};
#endif

View File

@ -0,0 +1,201 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Buffer.h"
#include "Nes_Apu.h"
/* Library Copyright (C) 2003-2006 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
// Nes_Buffer
Nes_Buffer::Nes_Buffer() : Multi_Buffer( 1 ) { }
Nes_Buffer::~Nes_Buffer() { }
Multi_Buffer* set_apu( Nes_Buffer* buf, Nes_Apu* apu )
{
buf->set_apu( apu );
return buf;
}
void Nes_Buffer::enable_nonlinearity( bool b )
{
if ( b )
clear();
Nes_Apu* apu = nonlin.enable( b, &tnd );
apu->osc_output( 0, &buf );
apu->osc_output( 1, &buf );
}
blargg_err_t Nes_Buffer::set_sample_rate( long rate, int msec )
{
enable_nonlinearity( nonlin.enabled ); // reapply
RETURN_ERR( buf.set_sample_rate( rate, msec ) );
RETURN_ERR( tnd.set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( buf.sample_rate(), buf.length() );
}
void Nes_Buffer::clock_rate( long rate )
{
buf.clock_rate( rate );
tnd.clock_rate( rate );
}
void Nes_Buffer::bass_freq( int freq )
{
buf.bass_freq( freq );
tnd.bass_freq( freq );
}
void Nes_Buffer::clear()
{
nonlin.clear();
buf.clear();
tnd.clear();
}
Nes_Buffer::channel_t Nes_Buffer::channel( int i )
{
channel_t c;
c.center = &buf;
if ( 2 <= i && i <= 4 )
c.center = &tnd; // only use for triangle, noise, and dmc
c.left = c.center;
c.right = c.center;
return c;
}
void Nes_Buffer::end_frame( blip_time_t length, bool )
{
buf.end_frame( length );
tnd.end_frame( length );
}
long Nes_Buffer::samples_avail() const
{
return buf.samples_avail();
}
long Nes_Buffer::read_samples( blip_sample_t* out, long count )
{
count = nonlin.make_nonlinear( tnd, count );
if ( count )
{
Blip_Reader lin;
Blip_Reader nonlin;
int lin_bass = lin.begin( buf );
int nonlin_bass = nonlin.begin( tnd );
for ( int n = count; n--; )
{
int s = lin.read() + nonlin.read();
lin.next( lin_bass );
nonlin.next( nonlin_bass );
*out++ = s;
if ( (BOOST::int16_t) s != s )
out [-1] = 0x7FFF - (s >> 24);
}
lin.end( buf );
nonlin.end( tnd );
buf.remove_samples( count );
tnd.remove_samples( count );
}
return count;
}
// Nes_Nonlinearizer
Nes_Nonlinearizer::Nes_Nonlinearizer()
{
apu = NULL;
enabled = true;
float const gain = 0x7fff * 1.3f;
// don't use entire range, so any overflow will stay within table
int const range = (int) (table_size * Nes_Apu::nonlinear_tnd_gain());
for ( int i = 0; i < table_size; i++ )
{
int const offset = table_size - range;
int j = i - offset;
float n = 202.0f / (range - 1) * j;
float d = gain * 163.67f / (24329.0f / n + 100.0f);
int out = (int) d;
//out = j << (15 - table_bits); // make table linear for testing
assert( out < 0x8000 );
table [j & (table_size - 1)] = out;
}
}
Nes_Apu* Nes_Nonlinearizer::enable( bool b, Blip_Buffer* buf )
{
require( apu );
apu->osc_output( 2, buf );
apu->osc_output( 3, buf );
apu->osc_output( 4, buf );
enabled = b;
if ( b )
apu->enable_nonlinear( 1.0 );
else
apu->volume( 1.0 );
return apu;
}
#define ENTRY( s ) table [(s) >> (blip_sample_bits - table_bits - 1) & (table_size - 1)]
long Nes_Nonlinearizer::make_nonlinear( Blip_Buffer& buf, long count )
{
require( apu );
long avail = buf.samples_avail();
if ( count > avail )
count = avail;
if ( count && enabled )
{
Blip_Buffer::buf_t_* p = buf.buffer_;
long accum = this->accum;
long prev = this->prev;
for ( unsigned n = count; n; --n )
{
long entry = ENTRY( accum );
check( (entry >= 0) == (accum >= 0) );
accum += *p;
*p++ = (entry - prev) << (blip_sample_bits - 16);
prev = entry;
}
this->prev = prev;
this->accum = accum;
}
return count;
}
void Nes_Nonlinearizer::clear()
{
accum = 0;
prev = ENTRY( 86016000 ); // avoid thump due to APU's triangle dc bias
// TODO: still results in slight clicks and thumps
}

View File

@ -0,0 +1,68 @@
// NES non-linear audio buffer
// Nes_Emu 0.7.0
#ifndef NES_BUFFER_H
#define NES_BUFFER_H
#include "Multi_Buffer.h"
class Nes_Apu;
class Nes_Nonlinearizer {
private:
enum { table_bits = 11 };
enum { table_size = 1 << table_bits };
BOOST::int16_t table [table_size];
Nes_Apu* apu;
long accum;
long prev;
public:
Nes_Nonlinearizer();
bool enabled;
void clear();
void set_apu( Nes_Apu* a ) { apu = a; }
Nes_Apu* enable( bool, Blip_Buffer* tnd );
long make_nonlinear( Blip_Buffer& buf, long count );
};
class Nes_Buffer : public Multi_Buffer {
public:
Nes_Buffer();
~Nes_Buffer();
// Setup APU for use with buffer, including setting its output to this buffer.
// If you're using Nes_Emu, this is automatically called for you.
void set_apu( Nes_Apu* apu ) { nonlin.set_apu( apu ); }
// Enable/disable non-linear output
void enable_nonlinearity( bool = true );
// Blip_Buffer to output other sound chips to
Blip_Buffer* buffer() { return &buf; }
// See Multi_Buffer.h
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
#if 0 // What is this?
Multi_Buffer::sample_rate;
#endif
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool unused = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
private:
Blip_Buffer buf;
Blip_Buffer tnd;
Nes_Nonlinearizer nonlin;
friend Multi_Buffer* set_apu( Nes_Buffer*, Nes_Apu* );
};
#endif

View File

@ -0,0 +1,268 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Cart.h"
#include <stdlib.h>
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
char const Nes_Cart::not_ines_file [] = "Not an iNES file";
Nes_Cart::Nes_Cart()
{
prg_ = NULL;
chr_ = NULL;
clear();
}
Nes_Cart::~Nes_Cart()
{
clear();
}
void Nes_Cart::clear()
{
free( prg_ );
prg_ = NULL;
free( chr_ );
chr_ = NULL;
prg_size_ = 0;
chr_size_ = 0;
mapper = 0;
}
long Nes_Cart::round_to_bank_size( long n )
{
n += bank_size - 1;
return n - n % bank_size;
}
blargg_err_t Nes_Cart::resize_prg( long size )
{
if ( size != prg_size_ )
{
// padding allows CPU to always read operands of instruction, which
// might go past end of data
void* p = realloc( prg_, round_to_bank_size( size ) + 2 );
CHECK_ALLOC( p || !size );
prg_ = (byte*) p;
prg_size_ = size;
}
return 0;
}
blargg_err_t Nes_Cart::resize_chr( long size )
{
if ( size != chr_size_ )
{
void* p = realloc( chr_, round_to_bank_size( size ) );
CHECK_ALLOC( p || !size );
chr_ = (byte*) p;
chr_size_ = size;
}
return 0;
}
// iNES reading
struct ines_header_t {
BOOST::uint8_t signature [4];
BOOST::uint8_t prg_count; // number of 16K PRG banks
BOOST::uint8_t chr_count; // number of 8K CHR banks
BOOST::uint8_t flags; // MMMM FTBV Mapper low, Four-screen, Trainer, Battery, V mirror
BOOST::uint8_t flags2; // MMMM --XX Mapper high 4 bits
BOOST::uint8_t zero [8]; // if zero [7] is non-zero, treat flags2 as zero
};
BOOST_STATIC_ASSERT( sizeof (ines_header_t) == 16 );
blargg_err_t Nes_Cart::load_ines( Auto_File_Reader in )
{
RETURN_ERR( in.open() );
ines_header_t h;
RETURN_ERR( in->read( &h, sizeof h ) );
if ( 0 != memcmp( h.signature, "NES\x1A", 4 ) )
return not_ines_file;
if ( h.zero [7] ) // handle header defaced by a fucking idiot's handle
h.flags2 = 0;
set_mapper( h.flags, h.flags2 );
if ( h.flags & 0x04 ) // skip trainer
RETURN_ERR( in->skip( 512 ) );
RETURN_ERR( resize_prg( h.prg_count * 16 * 1024L ) );
RETURN_ERR( resize_chr( h.chr_count * 8 * 1024L ) );
RETURN_ERR( in->read( prg(), prg_size() ) );
RETURN_ERR( in->read( chr(), chr_size() ) );
return 0;
}
// IPS patching
// IPS patch file format (integers are big-endian):
// 5 "PATCH"
// n blocks
//
// normal block:
// 3 offset
// 2 size
// n data
//
// repeated byte block:
// 3 offset
// 2 0
// 2 size
// 1 fill value
//
// end block (optional):
// 3 "EOF"
//
// A block can append data to the file by specifying an offset at the end of
// the current file data.
typedef BOOST::uint8_t byte;
static blargg_err_t apply_ips_patch( Data_Reader& patch, byte** file, long* file_size )
{
byte signature [5];
RETURN_ERR( patch.read( signature, sizeof signature ) );
if ( memcmp( signature, "PATCH", sizeof signature ) )
return "Not an IPS patch file";
while ( patch.remain() )
{
// read offset
byte buf [6];
RETURN_ERR( patch.read( buf, 3 ) );
long offset = buf [0] * 0x10000 + buf [1] * 0x100 + buf [2];
if ( offset == 0x454F46 ) // 'EOF'
break;
// read size
RETURN_ERR( patch.read( buf, 2 ) );
long size = buf [0] * 0x100 + buf [1];
// size = 0 signals a run of identical bytes
int fill = -1;
if ( size == 0 )
{
RETURN_ERR( patch.read( buf, 3 ) );
size = buf [0] * 0x100 + buf [1];
fill = buf [2];
}
// expand file if new data is at exact end of file
if ( offset == *file_size )
{
*file_size = offset + size;
void* p = realloc( *file, *file_size );
CHECK_ALLOC( p );
*file = (byte*) p;
}
//dprintf( "Patch offset: 0x%04X, size: 0x%04X\n", (int) offset, (int) size );
if ( offset < 0 || *file_size < offset + size )
return "IPS tried to patch past end of file";
// read/fill data
if ( fill < 0 )
RETURN_ERR( patch.read( *file + offset, size ) );
else
memset( *file + offset, fill, size );
}
return 0;
}
blargg_err_t Nes_Cart::load_patched_ines( Auto_File_Reader in, Auto_File_Reader patch )
{
RETURN_ERR( in.open() );
RETURN_ERR( patch.open() );
// read file into memory
long size = in->remain();
byte* ines = (byte*) malloc( size );
CHECK_ALLOC( ines );
const char* err = in->read( ines, size );
// apply patch
if ( !err )
err = apply_ips_patch( *patch, &ines, &size );
// load patched file
if ( !err )
{
Mem_File_Reader patched( ines, size );
err = load_ines( patched );
}
free( ines );
return err;
}
blargg_err_t Nes_Cart::apply_ips_to_prg( Auto_File_Reader patch )
{
RETURN_ERR( patch.open() );
long size = prg_size();
byte* prg_copy = (byte*) malloc( size );
CHECK_ALLOC( prg_copy );
memcpy( prg_copy, prg(), size );
const char* err = apply_ips_patch( *patch, &prg_copy, &size );
if ( !err )
{
resize_prg( size );
memcpy( prg(), prg_copy, size );
}
free( prg_copy );
return err;
}
blargg_err_t Nes_Cart::apply_ips_to_chr( Auto_File_Reader patch )
{
RETURN_ERR( patch.open() );
long size = chr_size();
byte* chr_copy = (byte*) malloc( size );
CHECK_ALLOC( chr_copy );
memcpy( chr_copy, chr(), size );
const char* err = apply_ips_patch( *patch, &chr_copy, &size );
if ( !err )
{
resize_chr( size );
memcpy( chr(), chr_copy, size );
}
free( chr_copy );
return err;
}

View File

@ -0,0 +1,93 @@
// NES cartridge data (PRG, CHR, mapper)
// Nes_Emu 0.7.0
#ifndef NES_CART_H
#define NES_CART_H
#include "blargg_common.h"
#include "abstract_file.h"
class Nes_Cart {
typedef BOOST::uint8_t byte;
public:
Nes_Cart();
~Nes_Cart();
// Load iNES file
blargg_err_t load_ines( Auto_File_Reader );
static const char not_ines_file [];
// Load iNES file and apply IPS patch
blargg_err_t load_patched_ines( Auto_File_Reader, Auto_File_Reader ips_patch );
// Apply IPS patches to specific parts
blargg_err_t apply_ips_to_prg( Auto_File_Reader ips_patch );
blargg_err_t apply_ips_to_chr( Auto_File_Reader ips_patch );
// to do: support UNIF?
// True if data is currently loaded
bool loaded() const { return prg_ != NULL; }
// Free data
void clear();
// True if cartridge claims to have battery-backed memory
bool has_battery_ram() const;
// Size of PRG data
long prg_size() const { return prg_size_; }
// Size of CHR data
long chr_size() const { return chr_size_; }
// Change size of PRG (code) data
blargg_err_t resize_prg( long );
// Change size of CHR (graphics) data
blargg_err_t resize_chr( long );
// Set mapper and information bytes. LSB and MSB are the standard iNES header
// bytes at offsets 6 and 7.
void set_mapper( int mapper_lsb, int mapper_msb );
unsigned mapper_data() const { return mapper; }
// Initial mirroring setup
int mirroring() const { return mapper & 0x09; }
// iNES mapper code
int mapper_code() const;
// Pointer to beginning of PRG data
byte * prg() { return prg_; }
byte const* prg() const { return prg_; }
// Pointer to beginning of CHR data
byte * chr() { return chr_; }
byte const* chr() const { return chr_; }
// End of public interface
private:
enum { bank_size = 8 * 1024L }; // bank sizes must be a multiple of this
byte* prg_;
byte* chr_;
long prg_size_;
long chr_size_;
unsigned mapper;
long round_to_bank_size( long n );
};
inline bool Nes_Cart::has_battery_ram() const { return mapper & 0x02; }
inline void Nes_Cart::set_mapper( int mapper_lsb, int mapper_msb )
{
mapper = mapper_msb * 0x100 + mapper_lsb;
}
inline int Nes_Cart::mapper_code() const { return ((mapper >> 8) & 0xf0) | ((mapper >> 4) & 0x0f); }
#endif

View File

@ -0,0 +1,570 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Core.h"
#include <string.h>
#include "Nes_Mapper.h"
#include "Nes_State.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
extern const char unsupported_mapper [] = "Unsupported mapper";
bool const wait_states_enabled = true;
bool const single_instruction_mode = false; // for debugging irq/nmi timing issues
const int unmapped_fill = Nes_Cpu::page_wrap_opcode;
unsigned const low_ram_size = 0x800;
unsigned const low_ram_end = 0x2000;
unsigned const sram_end = 0x8000;
Nes_Core::Nes_Core() : ppu( this )
{
cart = NULL;
impl = NULL;
mapper = NULL;
memset( &nes, 0, sizeof nes );
memset( &joypad, 0, sizeof joypad );
}
blargg_err_t Nes_Core::init()
{
if ( !impl )
{
CHECK_ALLOC( impl = BLARGG_NEW impl_t );
impl->apu.dmc_reader( read_dmc, this );
impl->apu.irq_notifier( apu_irq_changed, this );
}
return 0;
}
void Nes_Core::close()
{
// check that nothing modified unmapped page
#ifndef NDEBUG
//if ( cart && mem_differs( impl->unmapped_page, unmapped_fill, sizeof impl->unmapped_page ) )
// dprintf( "Unmapped code page was written to\n" );
#endif
cart = NULL;
delete mapper;
mapper = NULL;
ppu.close_chr();
disable_rendering();
}
blargg_err_t Nes_Core::open( Nes_Cart const* new_cart )
{
close();
RETURN_ERR( init() );
mapper = Nes_Mapper::create( new_cart, this );
if ( !mapper )
return unsupported_mapper;
RETURN_ERR( ppu.open_chr( new_cart->chr(), new_cart->chr_size() ) );
cart = new_cart;
memset( impl->unmapped_page, unmapped_fill, sizeof impl->unmapped_page );
reset( true, true );
return 0;
}
Nes_Core::~Nes_Core()
{
close();
delete impl;
}
void Nes_Core::save_state( Nes_State_* out ) const
{
out->clear();
out->nes = nes;
out->nes_valid = true;
*out->cpu = cpu::r;
out->cpu_valid = true;
*out->joypad = joypad;
out->joypad_valid = true;
impl->apu.save_state( out->apu );
out->apu_valid = true;
ppu.save_state( out );
memcpy( out->ram, cpu::low_mem, out->ram_size );
out->ram_valid = true;
out->sram_size = 0;
if ( sram_present )
{
out->sram_size = sizeof impl->sram;
memcpy( out->sram, impl->sram, out->sram_size );
}
out->mapper->size = 0;
mapper->save_state( *out->mapper );
out->mapper_valid = true;
}
void Nes_Core::save_state( Nes_State* out ) const
{
save_state( reinterpret_cast<Nes_State_*>(out) );
}
void Nes_Core::load_state( Nes_State_ const& in )
{
require( cart );
disable_rendering();
error_count = 0;
if ( in.nes_valid )
nes = in.nes;
// always use frame count
ppu.burst_phase = 0; // avoids shimmer when seeking to same time over and over
nes.frame_count = in.nes.frame_count;
if ( (frame_count_t) nes.frame_count == invalid_frame_count )
nes.frame_count = 0;
if ( in.cpu_valid )
cpu::r = *in.cpu;
if ( in.joypad_valid )
joypad = *in.joypad;
if ( in.apu_valid )
{
impl->apu.load_state( *in.apu );
// prevent apu from running extra at beginning of frame
impl->apu.end_frame( -(int) nes.timestamp / ppu_overclock );
}
else
{
impl->apu.reset();
}
ppu.load_state( in );
if ( in.ram_valid )
memcpy( cpu::low_mem, in.ram, in.ram_size );
sram_present = false;
if ( in.sram_size )
{
sram_present = true;
memcpy( impl->sram, in.sram, min( (int) in.sram_size, (int) sizeof impl->sram ) );
enable_sram( true ); // mapper can override (read-only, unmapped, etc.)
}
if ( in.mapper_valid ) // restore last since it might reconfigure things
mapper->load_state( *in.mapper );
}
void Nes_Core::enable_prg_6000()
{
sram_writable = 0;
sram_readable = 0;
lrom_readable = 0x8000;
}
void Nes_Core::enable_sram( bool b, bool read_only )
{
sram_writable = 0;
if ( b )
{
if ( !sram_present )
{
sram_present = true;
memset( impl->sram, 0xFF, impl->sram_size );
}
sram_readable = sram_end;
if ( !read_only )
sram_writable = sram_end;
cpu::map_code( 0x6000, impl->sram_size, impl->sram );
}
else
{
sram_readable = 0;
for ( int i = 0; i < impl->sram_size; i += cpu::page_size )
cpu::map_code( 0x6000 + i, cpu::page_size, impl->unmapped_page );
}
}
// Unmapped memory
static nes_addr_t last_unmapped_addr;
void Nes_Core::log_unmapped( nes_addr_t addr, int data )
{
#if !defined (NDEBUG) && 0
if ( last_unmapped_addr != addr )
{
last_unmapped_addr = addr;
if ( data < 0 )
dprintf( "Read unmapped %04X\n", addr );
else
dprintf( "Write unmapped %04X <- %02X\n", addr, data );
}
#endif
}
inline void Nes_Core::cpu_adjust_time( int n )
{
ppu_2002_time -= n;
cpu_time_offset += n;
cpu::reduce_limit( n );
}
// I/O and sound
int Nes_Core::read_dmc( void* data, nes_addr_t addr )
{
Nes_Core* emu = (Nes_Core*) data;
int result = *emu->cpu::get_code( addr );
if ( wait_states_enabled )
emu->cpu_adjust_time( 4 );
return result;
}
void Nes_Core::apu_irq_changed( void* emu )
{
((Nes_Core*) emu)->irq_changed();
}
void Nes_Core::write_io( nes_addr_t addr, int data )
{
// sprite dma
if ( addr == 0x4014 )
{
ppu.dma_sprites( clock(), cpu::get_code( data * 0x100 ) );
cpu_adjust_time( 513 );
return;
}
// joypad strobe
if ( addr == 0x4016 )
{
// if strobe goes low, latch data
if ( joypad.w4016 & 1 & ~data )
{
joypad_read_count++;
joypad.joypad_latches [0] = current_joypad [0];
joypad.joypad_latches [1] = current_joypad [1];
}
joypad.w4016 = data;
return;
}
// apu
if ( unsigned (addr - impl->apu.start_addr) <= impl->apu.end_addr - impl->apu.start_addr )
{
impl->apu.write_register( clock(), addr, data );
if ( wait_states_enabled )
{
if ( addr == 0x4010 || (addr == 0x4015 && (data & 0x10)) )
{
impl->apu.run_until( clock() + 1 );
event_changed();
}
}
return;
}
#ifndef NDEBUG
log_unmapped( addr, data );
#endif
}
int Nes_Core::read_io( nes_addr_t addr )
{
if ( (addr & 0xFFFE) == 0x4016 )
{
// to do: to aid with recording, doesn't emulate transparent latch,
// so a game that held strobe at 1 and read $4016 or $4017 would not get
// the current A status as occurs on a NES
unsigned long result = joypad.joypad_latches [addr & 1];
if ( !(joypad.w4016 & 1) )
joypad.joypad_latches [addr & 1] = (result >> 1) | 0x80000000;
return result & 1;
}
if ( addr == Nes_Apu::status_addr )
return impl->apu.read_status( clock() );
#ifndef NDEBUG
log_unmapped( addr );
#endif
return addr >> 8; // simulate open bus
}
// CPU
const int irq_inhibit_mask = 0x04;
nes_addr_t Nes_Core::read_vector( nes_addr_t addr )
{
byte const* p = cpu::get_code( addr );
return p [1] * 0x100 + p [0];
}
void Nes_Core::reset( bool full_reset, bool erase_battery_ram )
{
require( cart );
if ( full_reset )
{
cpu::reset( impl->unmapped_page );
cpu_time_offset = -1;
clock_ = 0;
// Low RAM
memset( cpu::low_mem, 0xFF, low_ram_size );
cpu::low_mem [8] = 0xf7;
cpu::low_mem [9] = 0xef;
cpu::low_mem [10] = 0xdf;
cpu::low_mem [15] = 0xbf;
// SRAM
lrom_readable = 0;
sram_present = false;
enable_sram( false );
if ( !cart->has_battery_ram() || erase_battery_ram )
memset( impl->sram, 0xFF, impl->sram_size );
joypad.joypad_latches [0] = 0;
joypad.joypad_latches [1] = 0;
nes.frame_count = 0;
}
// to do: emulate partial reset
ppu.reset( full_reset );
impl->apu.reset();
mapper->reset();
cpu::r.pc = read_vector( 0xFFFC );
cpu::r.sp = 0xfd;
cpu::r.a = 0;
cpu::r.x = 0;
cpu::r.y = 0;
cpu::r.status = irq_inhibit_mask;
nes.timestamp = 0;
error_count = 0;
}
void Nes_Core::vector_interrupt( nes_addr_t vector )
{
cpu::push_byte( cpu::r.pc >> 8 );
cpu::push_byte( cpu::r.pc & 0xFF );
cpu::push_byte( cpu::r.status | 0x20 ); // reserved bit is set
cpu_adjust_time( 7 );
cpu::r.status |= irq_inhibit_mask;
cpu::r.pc = read_vector( vector );
}
inline nes_time_t Nes_Core::earliest_irq( nes_time_t present )
{
return min( impl->apu.earliest_irq( present ), mapper->next_irq( present ) );
}
void Nes_Core::irq_changed()
{
cpu_set_irq_time( earliest_irq( cpu_time() ) );
}
inline nes_time_t Nes_Core::ppu_frame_length( nes_time_t present )
{
nes_time_t t = ppu.frame_length();
if ( t > present )
return t;
ppu.render_bg_until( clock() ); // to do: why this call to clock() rather than using present?
return ppu.frame_length();
}
inline nes_time_t Nes_Core::earliest_event( nes_time_t present )
{
// PPU frame
nes_time_t t = ppu_frame_length( present );
// DMC
if ( wait_states_enabled )
t = min( t, impl->apu.next_dmc_read_time() + 1 );
// NMI
t = min( t, ppu.nmi_time() );
if ( single_instruction_mode )
t = min( t, present + 1 );
return t;
}
void Nes_Core::event_changed()
{
cpu_set_end_time( earliest_event( cpu_time() ) );
}
#undef NES_EMU_CPU_HOOK
#ifndef NES_EMU_CPU_HOOK
#define NES_EMU_CPU_HOOK( cpu, end_time ) cpu::run( end_time )
#endif
nes_time_t Nes_Core::emulate_frame_()
{
Nes_Cpu::result_t last_result = cpu::result_cycles;
int extra_instructions = 0;
while ( true )
{
// Add DMC wait-states to CPU time
if ( wait_states_enabled )
{
impl->apu.run_until( cpu_time() );
clock_ = cpu_time_offset;
}
nes_time_t present = cpu_time();
if ( present >= ppu_frame_length( present ) )
{
if ( ppu.nmi_time() <= present )
{
// NMI will occur next, so delayed CLI and SEI don't need to be handled.
// If NMI will occur normally ($2000.7 and $2002.7 set), let it occur
// next frame, otherwise vector it now.
if ( !(ppu.w2000 & 0x80 & ppu.r2002) )
{
dprintf( "vectored NMI at end of frame\n" );
vector_interrupt( 0xFFFA );
present += 7;
}
return present;
}
if ( extra_instructions > 2 )
{
check( last_result != cpu::result_sei && last_result != cpu::result_cli );
check( ppu.nmi_time() >= 0x10000 || (ppu.w2000 & 0x80 & ppu.r2002) );
return present;
}
if ( last_result != cpu::result_cli && last_result != cpu::result_sei &&
(ppu.nmi_time() >= 0x10000 || (ppu.w2000 & 0x80 & ppu.r2002)) )
return present;
dprintf( "Executing extra instructions for frame\n" );
extra_instructions++; // execute one more instruction
}
// NMI
if ( present >= ppu.nmi_time() )
{
ppu.acknowledge_nmi();
vector_interrupt( 0xFFFA );
last_result = cpu::result_cycles; // most recent sei/cli won't be delayed now
}
// IRQ
nes_time_t irq_time = earliest_irq( present );
cpu_set_irq_time( irq_time );
if ( present >= irq_time && (!(cpu::r.status & irq_inhibit_mask) ||
last_result == cpu::result_sei) )
{
if ( last_result != cpu::result_cli )
{
//dprintf( "%6d IRQ vectored\n", present );
mapper->run_until( present );
vector_interrupt( 0xFFFE );
}
else
{
// CLI delays IRQ
cpu_set_irq_time( present + 1 );
check( false ); // rare event
}
}
// CPU
nes_time_t end_time = earliest_event( present );
if ( extra_instructions )
end_time = present + 1;
unsigned long cpu_error_count = cpu::error_count();
last_result = NES_EMU_CPU_HOOK( cpu, end_time - cpu_time_offset - 1 );
cpu_adjust_time( cpu::time() );
clock_ = cpu_time_offset;
error_count += cpu::error_count() - cpu_error_count;
}
}
nes_time_t Nes_Core::emulate_frame()
{
require( cart );
joypad_read_count = 0;
cpu_time_offset = ppu.begin_frame( nes.timestamp ) - 1;
ppu_2002_time = 0;
clock_ = cpu_time_offset;
check( cpu_time() == (int) nes.timestamp / ppu_overclock );
check( 1 && impl->apu.last_time == cpu_time() );
// TODO: clean this fucking mess up
impl->apu.run_until_( emulate_frame_() );
clock_ = cpu_time_offset;
impl->apu.run_until_( cpu_time() );
check( 2 && clock_ == cpu_time_offset );
check( 3 && impl->apu.last_time == cpu_time() );
nes_time_t ppu_frame_length = ppu.frame_length();
nes_time_t length = cpu_time();
nes.timestamp = ppu.end_frame( length );
mapper->end_frame( length );
impl->apu.end_frame( ppu_frame_length );
check( 4 && cpu_time() == length );
check( 5 && impl->apu.last_time == length - ppu_frame_length );
disable_rendering();
nes.frame_count++;
return ppu_frame_length;
}
void Nes_Core::add_mapper_intercept( nes_addr_t addr, unsigned size, bool read, bool write )
{
require( addr >= 0x4000 );
require( addr + size <= 0x10000 );
int end = (addr + size + (page_size - 1)) >> page_bits;
for ( int page = addr >> page_bits; page < end; page++ )
{
data_reader_mapped [page] |= read;
data_writer_mapped [page] |= write;
}
}

117
quicknes/nes_emu/Nes_Core.h Normal file
View File

@ -0,0 +1,117 @@
// Internal NES emulator
// Nes_Emu 0.7.0
#ifndef NES_CORE_H
#define NES_CORE_H
#include "blargg_common.h"
#include "Nes_Apu.h"
#include "Nes_Cpu.h"
#include "Nes_Ppu.h"
class Nes_Mapper;
class Nes_Cart;
class Nes_State;
class Nes_Core : private Nes_Cpu {
typedef Nes_Cpu cpu;
public:
Nes_Core();
~Nes_Core();
blargg_err_t init();
blargg_err_t open( Nes_Cart const* );
void reset( bool full_reset = true, bool erase_battery_ram = false );
blip_time_t emulate_frame();
void close();
void save_state( Nes_State* ) const;
void save_state( Nes_State_* ) const;
void load_state( Nes_State_ const& );
void irq_changed();
void event_changed();
public: private: friend class Nes_Emu;
struct impl_t
{
enum { sram_size = 0x2000 };
BOOST::uint8_t sram [sram_size];
Nes_Apu apu;
// extra byte allows CPU to always read operand of instruction, which
// might go past end of data
BOOST::uint8_t unmapped_page [::Nes_Cpu::page_size + 1];
};
impl_t* impl; // keep large arrays separate
unsigned long error_count;
bool sram_present;
public:
unsigned long current_joypad [2];
int joypad_read_count;
Nes_Cart const* cart;
Nes_Mapper* mapper;
nes_state_t nes;
Nes_Ppu ppu;
private:
// noncopyable
Nes_Core( const Nes_Core& );
Nes_Core& operator = ( const Nes_Core& );
// Timing
nes_time_t ppu_2002_time;
void disable_rendering() { clock_ = 0; }
nes_time_t earliest_irq( nes_time_t present );
nes_time_t ppu_frame_length( nes_time_t present );
nes_time_t earliest_event( nes_time_t present );
// APU and Joypad
joypad_state_t joypad;
int read_io( nes_addr_t );
void write_io( nes_addr_t, int data );
static int read_dmc( void* emu, nes_addr_t );
static void apu_irq_changed( void* emu );
// CPU
unsigned sram_readable;
unsigned sram_writable;
unsigned lrom_readable;
nes_time_t clock_;
nes_time_t cpu_time_offset;
nes_time_t emulate_frame_();
nes_addr_t read_vector( nes_addr_t );
void vector_interrupt( nes_addr_t );
static void log_unmapped( nes_addr_t addr, int data = -1 );
void cpu_set_irq_time( nes_time_t t ) { cpu::set_irq_time_( t - 1 - cpu_time_offset ); }
void cpu_set_end_time( nes_time_t t ) { cpu::set_end_time_( t - 1 - cpu_time_offset ); }
nes_time_t cpu_time() const { return clock_ + 1; }
void cpu_adjust_time( int offset );
public: private: friend class Nes_Ppu;
void set_ppu_2002_time( nes_time_t t ) { ppu_2002_time = t - 1 - cpu_time_offset; }
public: private: friend class Nes_Mapper;
void enable_prg_6000();
void enable_sram( bool enabled, bool read_only = false );
nes_time_t clock() const { return clock_; }
void add_mapper_intercept( nes_addr_t start, unsigned size, bool read, bool write );
public: private: friend class Nes_Cpu;
int cpu_read_ppu( nes_addr_t, nes_time_t );
int cpu_read( nes_addr_t, nes_time_t );
void cpu_write( nes_addr_t, int data, nes_time_t );
void cpu_write_2007( int data );
private:
unsigned char data_reader_mapped [page_count + 1]; // extra entry for overflow
unsigned char data_writer_mapped [page_count + 1];
};
int mem_differs( void const* p, int cmp, unsigned long s );
#endif

1250
quicknes/nes_emu/Nes_Cpu.cpp Normal file

File diff suppressed because it is too large Load Diff

128
quicknes/nes_emu/Nes_Cpu.h Normal file
View File

@ -0,0 +1,128 @@
// NES 6502 CPU emulator
// Nes_Emu 0.7.0
#ifndef NES_CPU_H
#define NES_CPU_H
#include "blargg_common.h"
typedef long nes_time_t; // clock cycle count
typedef unsigned nes_addr_t; // 16-bit address
class Nes_Cpu {
public:
typedef BOOST::uint8_t uint8_t;
// Clear registers, unmap memory, and map code pages to unmapped_page.
void reset( void const* unmapped_page = 0 );
// Map code memory (memory accessed via the program counter). Start and size
// must be multiple of page_size.
enum { page_bits = 11 };
enum { page_count = 0x10000 >> page_bits };
enum { page_size = 1L << page_bits };
void map_code( nes_addr_t start, unsigned size, void const* code );
// Access memory as the emulated CPU does.
int read( nes_addr_t );
void write( nes_addr_t, int data );
uint8_t* get_code( nes_addr_t ); // non-const to allow debugger to modify code
// Push a byte on the stack
void push_byte( int );
// NES 6502 registers. *Not* kept updated during a call to run().
struct registers_t {
long pc; // more than 16 bits to allow overflow detection
BOOST::uint8_t a;
BOOST::uint8_t x;
BOOST::uint8_t y;
BOOST::uint8_t status;
BOOST::uint8_t sp;
};
//registers_t r;
// Reasons that run() returns
enum result_t {
result_cycles, // Requested number of cycles (or more) were executed
result_sei, // I flag just set and IRQ time would generate IRQ now
result_cli, // I flag just cleared but IRQ should occur *after* next instr
result_badop // unimplemented/illegal instruction
};
result_t run( nes_time_t end_time );
nes_time_t time() const { return clock_count; }
void reduce_limit( int offset );
void set_end_time_( nes_time_t t );
void set_irq_time_( nes_time_t t );
unsigned long error_count() const { return error_count_; }
// If PC exceeds 0xFFFF and encounters page_wrap_opcode, it will be silently wrapped.
enum { page_wrap_opcode = 0xF2 };
// One of the many opcodes that are undefined and stop CPU emulation.
enum { bad_opcode = 0xD2 };
private:
uint8_t const* code_map [page_count + 1];
nes_time_t clock_limit;
nes_time_t clock_count;
nes_time_t irq_time_;
nes_time_t end_time_;
unsigned long error_count_;
enum { irq_inhibit = 0x04 };
void set_code_page( int, uint8_t const* );
void update_clock_limit();
public:
registers_t r;
// low_mem is a full page size so it can be mapped with code_map
uint8_t low_mem [page_size > 0x800 ? page_size : 0x800];
};
inline BOOST::uint8_t* Nes_Cpu::get_code( nes_addr_t addr )
{
return (uint8_t*) code_map [addr >> page_bits] + addr;
}
inline void Nes_Cpu::update_clock_limit()
{
nes_time_t t = end_time_;
if ( t > irq_time_ && !(r.status & irq_inhibit) )
t = irq_time_;
clock_limit = t;
}
inline void Nes_Cpu::set_end_time_( nes_time_t t )
{
end_time_ = t;
update_clock_limit();
}
inline void Nes_Cpu::set_irq_time_( nes_time_t t )
{
irq_time_ = t;
update_clock_limit();
}
inline void Nes_Cpu::reduce_limit( int offset )
{
clock_limit -= offset;
end_time_ -= offset;
irq_time_ -= offset;
}
inline void Nes_Cpu::push_byte( int data )
{
int sp = r.sp;
r.sp = (sp - 1) & 0xFF;
low_mem [0x100 + sp] = data;
}
#endif

View File

@ -0,0 +1,84 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Effects_Buffer.h"
#include "Nes_Apu.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Effects_Buffer::Nes_Effects_Buffer() :
Effects_Buffer( true ) // nes never uses stereo channels
{
config_t c;
c.effects_enabled = false;
config( c );
}
Nes_Effects_Buffer::~Nes_Effects_Buffer() { }
Multi_Buffer* set_apu( Nes_Effects_Buffer* buf, Nes_Apu* apu )
{
buf->set_apu( apu );
return buf;
}
void Nes_Effects_Buffer::enable_nonlinearity( bool b )
{
if ( b )
clear();
Nes_Apu* apu = nonlin.enable( b, channel( 2 ).center );
apu->osc_output( 0, channel( 0 ).center );
apu->osc_output( 1, channel( 1 ).center );
}
void Nes_Effects_Buffer::config( const config_t& in )
{
config_t c = in;
if ( !c.effects_enabled )
{
// effects must always be enabled to keep separate buffers, so
// set parameters to be equivalent to disabled
c.pan_1 = 0;
c.pan_2 = 0;
c.echo_level = 0;
c.reverb_level = 0;
c.effects_enabled = true;
}
Effects_Buffer::config( c );
}
blargg_err_t Nes_Effects_Buffer::set_sample_rate( long rate, int msec )
{
enable_nonlinearity( nonlin.enabled ); // reapply
return Effects_Buffer::set_sample_rate( rate, msec );
}
void Nes_Effects_Buffer::clear()
{
nonlin.clear();
Effects_Buffer::clear();
}
Nes_Effects_Buffer::channel_t Nes_Effects_Buffer::channel( int i )
{
return Effects_Buffer::channel( (2 <= i && i <= 4) ? 2 : i & 1 );
}
long Nes_Effects_Buffer::read_samples( blip_sample_t* out, long count )
{
count = 2 * nonlin.make_nonlinear( *channel( 2 ).center, count / 2 );
return Effects_Buffer::read_samples( out, count );
}

View File

@ -0,0 +1,38 @@
// Effects_Buffer with non-linear sound
// Nes_Emu 0.7.0
#ifndef NES_EFFECTS_BUFFER_H
#define NES_EFFECTS_BUFFER_H
#include "Nes_Buffer.h"
#include "Effects_Buffer.h"
// Effects_Buffer uses several buffers and outputs stereo sample pairs.
class Nes_Effects_Buffer : public Effects_Buffer {
public:
Nes_Effects_Buffer();
~Nes_Effects_Buffer();
// Setup APU for use with buffer, including setting its output to this buffer.
// If you're using Nes_Emu, this is automatically called for you.
void set_apu( Nes_Apu* apu ) { nonlin.set_apu( apu ); }
// Enable/disable non-linear output
void enable_nonlinearity( bool = true );
// See Effects_Buffer.h for reference
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void config( const config_t& );
void clear();
channel_t channel( int );
long read_samples( blip_sample_t*, long );
private:
Nes_Nonlinearizer nonlin;
friend Multi_Buffer* set_apu( Nes_Effects_Buffer*, Nes_Apu* );
};
#endif

View File

@ -0,0 +1,494 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Emu.h"
#include <string.h>
#include "Nes_State.h"
#include "Nes_Mapper.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const sound_fade_size = 384;
// Constants are manually duplicated in Nes_Emu so their value can be seen
// directly, rather than having to look in Nes_Ppu.h. "0 +" converts to int.
BOOST_STATIC_ASSERT( Nes_Emu::image_width == 0 + Nes_Ppu::image_width );
BOOST_STATIC_ASSERT( Nes_Emu::image_height == 0 + Nes_Ppu::image_height );
Nes_Emu::equalizer_t const Nes_Emu::nes_eq = { -1.0, 80 };
Nes_Emu::equalizer_t const Nes_Emu::famicom_eq = { -15.0, 80 };
Nes_Emu::equalizer_t const Nes_Emu::tv_eq = { -12.0, 180 };
Nes_Emu::Nes_Emu()
{
frame_ = &single_frame;
buffer_height_ = Nes_Ppu::buffer_height + 2;
default_sound_buf = NULL;
sound_buf = &silent_buffer;
sound_buf_changed_count = 0;
equalizer_ = nes_eq;
channel_count_ = 0;
sound_enabled = false;
host_pixels = NULL;
single_frame.pixels = 0;
single_frame.top = 0;
init_called = false;
set_palette_range( 0 );
memset( single_frame.palette, 0, sizeof single_frame.palette );
}
Nes_Emu::~Nes_Emu()
{
delete default_sound_buf;
}
blargg_err_t Nes_Emu::init_()
{
return emu.init();
}
inline blargg_err_t Nes_Emu::auto_init()
{
if ( !init_called )
{
RETURN_ERR( init_() );
init_called = true;
}
return 0;
}
inline void Nes_Emu::clear_sound_buf()
{
fade_sound_out = false;
fade_sound_in = true;
sound_buf->clear();
}
// Emulation
void Nes_Emu::close()
{
if ( cart() )
{
emu.close();
private_cart.clear();
}
}
blargg_err_t Nes_Emu::set_cart( Nes_Cart const* new_cart )
{
close();
RETURN_ERR( auto_init() );
RETURN_ERR( emu.open( new_cart ) );
channel_count_ = Nes_Apu::osc_count + emu.mapper->channel_count();
RETURN_ERR( sound_buf->set_channel_count( channel_count() ) );
set_equalizer( equalizer_ );
enable_sound( true );
reset();
return 0;
}
void Nes_Emu::reset( bool full_reset, bool erase_battery_ram )
{
require( cart() );
clear_sound_buf();
set_timestamp( 0 );
emu.reset( full_reset, erase_battery_ram );
}
void Nes_Emu::set_palette_range( int begin, int end )
{
require( (unsigned) end <= 0x100 );
// round up to alignment
emu.ppu.palette_begin = (begin + palette_alignment - 1) & ~(palette_alignment - 1);
host_palette_size = end - emu.ppu.palette_begin;
require( host_palette_size >= palette_alignment );
}
blargg_err_t Nes_Emu::emulate_frame( int joypad1, int joypad2 )
{
emu.current_joypad [0] = (joypad1 |= ~0xFF);
emu.current_joypad [1] = (joypad2 |= ~0xFF);
emu.ppu.host_pixels = NULL;
unsigned changed_count = sound_buf->channels_changed_count();
bool new_enabled = (frame_ != NULL);
if ( sound_buf_changed_count != changed_count || sound_enabled != new_enabled )
{
sound_buf_changed_count = changed_count;
sound_enabled = new_enabled;
enable_sound( sound_enabled );
}
frame_t* f = frame_;
if ( f )
{
emu.ppu.max_palette_size = host_palette_size;
emu.ppu.host_palette = f->palette + emu.ppu.palette_begin;
// add black and white for emulator to use (unless emulator uses entire
// palette for frame)
f->palette [252] = 0x0F;
f->palette [254] = 0x30;
f->palette [255] = 0x0F;
if ( host_pixels )
emu.ppu.host_pixels = (BOOST::uint8_t*) host_pixels +
emu.ppu.host_row_bytes * f->top;
if ( sound_buf->samples_avail() )
clear_sound_buf();
nes_time_t frame_len = emu.emulate_frame();
sound_buf->end_frame( frame_len, false );
f = frame_;
f->sample_count = sound_buf->samples_avail();
f->chan_count = sound_buf->samples_per_frame();
f->palette_begin = emu.ppu.palette_begin;
f->palette_size = emu.ppu.palette_size;
f->joypad_read_count = emu.joypad_read_count;
f->burst_phase = emu.ppu.burst_phase;
f->pitch = emu.ppu.host_row_bytes;
f->pixels = emu.ppu.host_pixels + f->left;
}
else
{
emu.ppu.max_palette_size = 0;
emu.emulate_frame();
}
return 0;
}
// Extras
blargg_err_t Nes_Emu::load_ines( Auto_File_Reader in )
{
close();
RETURN_ERR( private_cart.load_ines( in ) );
return set_cart( &private_cart );
}
blargg_err_t Nes_Emu::save_battery_ram( Auto_File_Writer out )
{
RETURN_ERR( out.open() );
return out->write( emu.impl->sram, emu.impl->sram_size );
}
blargg_err_t Nes_Emu::load_battery_ram( Auto_File_Reader in )
{
RETURN_ERR( in.open() );
emu.sram_present = true;
return in->read( emu.impl->sram, emu.impl->sram_size );
}
void Nes_Emu::load_state( Nes_State_ const& in )
{
clear_sound_buf();
emu.load_state( in );
}
void Nes_Emu::load_state( Nes_State const& in )
{
loading_state( in );
load_state( STATIC_CAST(Nes_State_ const&,in) );
}
blargg_err_t Nes_Emu::load_state( Auto_File_Reader in )
{
Nes_State* state = BLARGG_NEW Nes_State;
CHECK_ALLOC( state );
blargg_err_t err = state->read( in );
if ( !err )
load_state( *state );
delete state;
return err;
}
blargg_err_t Nes_Emu::save_state( Auto_File_Writer out ) const
{
Nes_State* state = BLARGG_NEW Nes_State;
CHECK_ALLOC( state );
save_state( state );
blargg_err_t err = state->write( out );
delete state;
return err;
}
void Nes_Emu::write_chr( void const* p, long count, long offset )
{
require( (unsigned long) offset <= (unsigned long) chr_size() );
long end = offset + count;
require( (unsigned long) end <= (unsigned long) chr_size() );
memcpy( (byte*) chr_mem() + offset, p, count );
emu.ppu.rebuild_chr( offset, end );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, class Nes_Buffer* buf )
{
extern Multi_Buffer* set_apu( class Nes_Buffer*, Nes_Apu* );
RETURN_ERR( auto_init() );
return set_sample_rate( rate, set_apu( buf, &emu.impl->apu ) );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, class Nes_Effects_Buffer* buf )
{
extern Multi_Buffer* set_apu( class Nes_Effects_Buffer*, Nes_Apu* );
RETURN_ERR( auto_init() );
return set_sample_rate( rate, set_apu( buf, &emu.impl->apu ) );
}
// Sound
void Nes_Emu::set_frame_rate( double rate )
{
sound_buf->clock_rate( (long) (1789773 / 60.0 * rate) );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, Multi_Buffer* new_buf )
{
require( new_buf );
RETURN_ERR( auto_init() );
emu.impl->apu.volume( 1.0 ); // cancel any previous non-linearity
RETURN_ERR( new_buf->set_sample_rate( rate, 1200 / frame_rate ) );
sound_buf = new_buf;
sound_buf_changed_count = 0;
if ( new_buf != default_sound_buf )
{
delete default_sound_buf;
default_sound_buf = NULL;
}
set_frame_rate( frame_rate );
return 0;
}
blargg_err_t Nes_Emu::set_sample_rate( long rate )
{
if ( !default_sound_buf )
CHECK_ALLOC( default_sound_buf = BLARGG_NEW Mono_Buffer );
return set_sample_rate( rate, default_sound_buf );
}
void Nes_Emu::set_equalizer( equalizer_t const& eq )
{
equalizer_ = eq;
if ( cart() )
{
blip_eq_t blip_eq( eq.treble, 0, sound_buf->sample_rate() );
emu.impl->apu.treble_eq( blip_eq );
emu.mapper->set_treble( blip_eq );
sound_buf->bass_freq( equalizer_.bass );
}
}
void Nes_Emu::enable_sound( bool enabled )
{
if ( enabled )
{
for ( int i = channel_count(); i-- > 0; )
{
Blip_Buffer* buf = sound_buf->channel( i ).center;
int mapper_index = i - Nes_Apu::osc_count;
if ( mapper_index < 0 )
emu.impl->apu.osc_output( i, buf );
else
emu.mapper->set_channel_buf( mapper_index, buf );
}
}
else
{
emu.impl->apu.output( NULL );
for ( int i = channel_count() - Nes_Apu::osc_count; i-- > 0; )
emu.mapper->set_channel_buf( i, NULL );
}
}
void Nes_Emu::fade_samples( blip_sample_t* p, int size, int step )
{
if ( size >= sound_fade_size )
{
if ( step < 0 )
p += size - sound_fade_size;
int const shift = 15;
int mul = (1 - step) << (shift - 1);
step *= (1 << shift) / sound_fade_size;
for ( int n = sound_fade_size; n--; )
{
*p = (*p * mul) >> 15;
++p;
mul += step;
}
}
}
long Nes_Emu::read_samples( short* out, long out_size )
{
require( out_size >= sound_buf->samples_avail() );
long count = sound_buf->read_samples( out, out_size );
if ( fade_sound_in )
{
fade_sound_in = false;
fade_samples( out, count, 1 );
}
if ( fade_sound_out )
{
fade_sound_out = false;
fade_sound_in = true; // next buffer should be faded in
fade_samples( out, count, -1 );
}
return count;
}
Nes_Emu::rgb_t const Nes_Emu::nes_colors [color_table_size] =
{
// generated with nes_ntsc default settings
{102,102,102},{ 0, 42,136},{ 20, 18,168},{ 59, 0,164},
{ 92, 0,126},{110, 0, 64},{108, 7, 0},{ 87, 29, 0},
{ 52, 53, 0},{ 12, 73, 0},{ 0, 82, 0},{ 0, 79, 8},
{ 0, 64, 78},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{174,174,174},{ 21, 95,218},{ 66, 64,254},{118, 39,255},
{161, 27,205},{184, 30,124},{181, 50, 32},{153, 79, 0},
{108,110, 0},{ 56,135, 0},{ 13,148, 0},{ 0,144, 50},
{ 0,124,142},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{254,254,254},{100,176,254},{147,144,254},{199,119,254},
{243,106,254},{254,110,205},{254,130,112},{235,159, 35},
{189,191, 0},{137,217, 0},{ 93,229, 48},{ 69,225,130},
{ 72,206,223},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{254,254,254},{193,224,254},{212,211,254},{233,200,254},
{251,195,254},{254,197,235},{254,205,198},{247,217,166},
{229,230,149},{208,240,151},{190,245,171},{180,243,205},
{181,236,243},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{114, 83, 79},{ 0, 23,113},{ 32, 0,145},{ 71, 0,141},
{104, 0,103},{122, 0, 41},{120, 0, 0},{ 99, 10, 0},
{ 64, 34, 0},{ 24, 54, 0},{ 0, 63, 0},{ 0, 60, 0},
{ 0, 45, 54},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{190,148,143},{ 37, 69,187},{ 83, 38,228},{134, 13,224},
{177, 1,174},{200, 4, 92},{198, 24, 1},{170, 53, 0},
{124, 84, 0},{ 73,109, 0},{ 30,122, 0},{ 6,118, 19},
{ 9, 98,110},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{254,222,215},{122,142,254},{168,110,254},{220, 85,254},
{254, 72,247},{254, 76,164},{254, 96, 71},{254,125, 0},
{210,157, 0},{158,183, 0},{114,195, 7},{ 90,191, 89},
{ 93,172,182},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{254,222,215},{214,190,233},{233,177,250},{254,166,248},
{254,161,228},{254,163,194},{254,171,157},{254,183,125},
{250,196,108},{229,206,110},{211,211,130},{201,210,164},
{203,202,202},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 75,106, 64},{ 0, 46, 98},{ 0, 22,130},{ 32, 3,126},
{ 65, 0, 88},{ 82, 0, 26},{ 80, 11, 0},{ 59, 34, 0},
{ 24, 58, 0},{ 0, 77, 0},{ 0, 86, 0},{ 0, 83, 0},
{ 0, 68, 39},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{136,180,122},{ 0,101,166},{ 29, 69,208},{ 80, 44,203},
{123, 32,153},{146, 36, 72},{144, 55, 0},{116, 84, 0},
{ 70,116, 0},{ 19,141, 0},{ 0,153, 0},{ 0,149, 0},
{ 0,130, 90},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{207,254,188},{ 51,183,233},{ 98,151,254},{150,126,254},
{193,113,220},{217,117,137},{214,137, 45},{186,166, 0},
{140,198, 0},{ 88,224, 0},{ 44,236, 0},{ 20,232, 63},
{ 23,213,155},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{207,254,188},{144,231,207},{163,218,224},{184,207,222},
{201,202,201},{211,204,168},{210,212,130},{198,224, 99},
{180,237, 81},{159,247, 83},{141,252,104},{131,251,137},
{132,243,175},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 83, 83, 55},{ 0, 23, 89},{ 0, 0,121},{ 40, 0,117},
{ 73, 0, 79},{ 90, 0, 17},{ 88, 0, 0},{ 67, 10, 0},
{ 32, 34, 0},{ 0, 53, 0},{ 0, 63, 0},{ 0, 60, 0},
{ 0, 45, 30},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{147,148,110},{ 0, 69,154},{ 40, 38,196},{ 91, 12,191},
{134, 0,141},{157, 4, 60},{155, 23, 0},{127, 52, 0},
{ 81, 84, 0},{ 30,109, 0},{ 0,121, 0},{ 0,117, 0},
{ 0, 98, 78},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{221,222,173},{ 65,142,217},{112,110,254},{164, 84,255},
{208, 72,204},{231, 76,122},{229, 95, 29},{200,125, 0},
{154,157, 0},{102,182, 0},{ 58,195, 0},{ 34,191, 47},
{ 37,171,140},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{221,222,173},{158,189,191},{177,176,208},{198,166,206},
{216,161,185},{225,163,152},{224,171,114},{213,183, 83},
{194,195, 66},{173,206, 68},{155,211, 88},{145,209,122},
{146,201,159},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 87, 87,133},{ 0, 26,167},{ 5, 2,198},{ 44, 0,195},
{ 77, 0,157},{ 95, 0, 94},{ 93, 0, 25},{ 71, 14, 0},
{ 36, 38, 0},{ 0, 57, 0},{ 0, 66, 0},{ 0, 63, 38},
{ 0, 49,108},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{153,153,216},{ 0, 74,254},{ 46, 43,254},{ 97, 17,254},
{140, 5,247},{164, 9,165},{161, 28, 74},{133, 57, 0},
{ 87, 89, 0},{ 36,114, 0},{ 0,126, 10},{ 0,122, 92},
{ 0,103,183},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{229,228,254},{ 74,148,254},{120,116,254},{172, 91,254},
{216, 78,254},{239, 82,254},{237,102,166},{208,131, 89},
{162,163, 46},{110,189, 51},{ 66,201,102},{ 42,197,184},
{ 45,178,254},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{229,228,254},{166,196,254},{185,183,254},{206,172,254},
{224,167,254},{233,169,254},{232,177,252},{221,189,220},
{202,202,203},{181,212,205},{163,217,226},{153,216,254},
{154,208,254},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 90, 71, 97},{ 0, 11,130},{ 8, 0,162},{ 47, 0,158},
{ 80, 0,120},{ 98, 0, 58},{ 96, 0, 0},{ 74, 0, 0},
{ 39, 22, 0},{ 0, 42, 0},{ 0, 51, 0},{ 0, 48, 2},
{ 0, 33, 72},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{158,132,166},{ 4, 53,210},{ 50, 22,252},{101, 0,247},
{144, 0,197},{168, 0,116},{165, 7, 25},{137, 36, 0},
{ 91, 68, 0},{ 40, 93, 0},{ 0,105, 0},{ 0,101, 42},
{ 0, 82,134},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{234,201,246},{ 79,121,254},{125, 89,254},{177, 63,254},
{221, 51,254},{245, 55,195},{242, 74,102},{214,104, 24},
{167,136, 0},{115,161, 0},{ 71,174, 37},{ 48,170,120},
{ 50,150,213},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{234,201,246},{171,168,254},{190,155,254},{211,145,254},
{229,140,254},{239,142,225},{237,150,187},{226,162,156},
{207,174,139},{186,185,141},{168,190,161},{159,188,195},
{160,180,232},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 66, 85, 88},{ 0, 25,121},{ 0, 1,153},{ 23, 0,149},
{ 56, 0,111},{ 74, 0, 49},{ 72, 0, 0},{ 51, 12, 0},
{ 16, 36, 0},{ 0, 55, 0},{ 0, 65, 0},{ 0, 62, 0},
{ 0, 47, 63},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{125,151,154},{ 0, 72,198},{ 17, 40,240},{ 69, 15,235},
{112, 3,185},{135, 7,104},{132, 26, 12},{104, 55, 0},
{ 59, 87, 0},{ 7,112, 0},{ 0,124, 0},{ 0,120, 30},
{ 0,101,121},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{192,225,230},{ 37,145,254},{ 83,114,254},{135, 88,254},
{179, 76,254},{202, 80,179},{200, 99, 86},{171,129, 8},
{125,160, 0},{ 73,186, 0},{ 29,198, 21},{ 5,194,104},
{ 8,175,197},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{192,225,230},{129,193,248},{148,180,254},{169,170,254},
{187,165,242},{196,166,209},{195,174,171},{184,186,140},
{165,199,123},{144,209,125},{126,214,145},{116,213,179},
{118,205,216},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 69, 69, 69},{ 0, 16,110},{ 0, 0,142},{ 33, 0,138},
{ 66, 0,100},{ 84, 0, 38},{ 82, 0, 0},{ 60, 3, 0},
{ 25, 27, 0},{ 0, 46, 0},{ 0, 56, 0},{ 0, 53, 0},
{ 0, 38, 51},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{134,134,134},{ 0, 64,187},{ 35, 32,228},{ 86, 7,223},
{129, 0,174},{153, 0, 92},{150, 18, 1},{122, 47, 0},
{ 76, 79, 0},{ 25,104, 0},{ 0,116, 0},{ 0,112, 19},
{ 0, 93,110},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{207,207,207},{ 60,136,254},{107,104,254},{159, 79,254},
{203, 66,248},{226, 70,165},{224, 90, 72},{195,119, 0},
{149,151, 0},{ 97,177, 0},{ 53,189, 8},{ 29,185, 91},
{ 32,166,183},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{207,207,207},{148,178,229},{166,165,246},{188,155,244},
{205,150,224},{215,152,190},{214,159,152},{202,171,121},
{183,184,104},{162,195,106},{145,200,126},{135,198,160},
{136,190,197},{184,184,184},{ 0, 0, 0},{ 0, 0, 0}
};

266
quicknes/nes_emu/Nes_Emu.h Normal file
View File

@ -0,0 +1,266 @@
// NES video game console emulator with snapshot support
// Nes_Emu 0.7.0
#ifndef NES_EMU_H
#define NES_EMU_H
#include "blargg_common.h"
#include "Multi_Buffer.h"
#include "Nes_Cart.h"
#include "Nes_Core.h"
class Nes_State;
// Register optional mappers included with Nes_Emu
void register_optional_mappers();
extern const char unsupported_mapper []; // returned when cartridge uses unsupported mapper
class Nes_Emu {
public:
Nes_Emu();
virtual ~Nes_Emu();
// Basic setup
// Load iNES file into emulator and clear recording
blargg_err_t load_ines( Auto_File_Reader );
// Set sample rate for sound generation
blargg_err_t set_sample_rate( long );
// Size and depth of graphics buffer required for rendering. Note that this
// is larger than the actual image, with a temporary area around the edge
// that gets filled with junk. Its height is many times larger in Nes_Recorder
// to allow caching of multiple images.
enum { buffer_width = Nes_Ppu::buffer_width };
int buffer_height() const { return buffer_height_; }
enum { bits_per_pixel = 8 };
// Set graphics buffer to render pixels to. Pixels points to top-left pixel and
// row_bytes is the number of bytes to get to the next line (positive or negative).
void set_pixels( void* pixels, long row_bytes );
// Size of image generated in graphics buffer
enum { image_width = 256 };
enum { image_height = 240 };
// Basic emulation
// Emulate one video frame using joypad1 and joypad2 as input. Afterwards, image
// and sound are available for output using the accessors below.
virtual blargg_err_t emulate_frame( int joypad1, int joypad2 = 0 );
// Maximum size of palette that can be generated
enum { max_palette_size = 256 };
// Result of current frame
struct frame_t
{
int joypad_read_count; // number of times joypads were strobed (read)
int burst_phase; // NTSC burst phase for frame (0, 1, or 2)
int sample_count; // number of samples (always a multiple of chan_count)
int chan_count; // 1: mono, 2: stereo
int top; // top-left position of image in graphics buffer
enum { left = 8 };
unsigned char* pixels; // pointer to top-left pixel of image
long pitch; // number of bytes to get to next row of image
int palette_begin; // first host palette entry, as set by set_palette_range()
int palette_size; // number of entries used for current frame
short palette [max_palette_size]; // [palette_begin to palette_begin+palette_size-1]
};
frame_t const& frame() const { return *frame_; }
// Read samples for the current frame. Returns number of samples read into buffer.
// Currently all samples must be read in one call.
virtual long read_samples( short* out, long max_samples );
// Additional features
// Use already-loaded cartridge. Retains pointer, so it must be kept around until
// closed. A cartridge can be shared among multiple emulators. After opening,
// cartridge's CHR data shouldn't be modified since a copy is cached internally.
blargg_err_t set_cart( Nes_Cart const* );
// Pointer to current cartridge, or NULL if none is loaded
Nes_Cart const* cart() const { return emu.cart; }
// Free any memory and close cartridge, if one was currently open. A new cartridge
// must be opened before further emulation can take place.
void close();
// Emulate powering NES off and then back on. If full_reset is false, emulates
// pressing the reset button only, which doesn't affect memory, otherwise
// emulates powering system off then on.
virtual void reset( bool full_reset = true, bool erase_battery_ram = false );
// Number of undefined CPU instructions encountered. Cleared after reset() and
// load_state(). A non-zero value indicates that cartridge is probably
// incompatible.
unsigned long error_count() const { return emu.error_count; }
// Sound
// Set sample rate and use a custom sound buffer instead of the default
// mono buffer, i.e. Nes_Buffer, Effects_Buffer, etc..
blargg_err_t set_sample_rate( long rate, Multi_Buffer* );
// Adjust effective frame rate by changing how many samples are generated each frame.
// Allows fine tuning of frame rate to improve synchronization.
void set_frame_rate( double rate );
// Number of sound channels for current cartridge
int channel_count() const { return channel_count_; }
// Frequency equalizer parameters
struct equalizer_t {
double treble; // 5.0 = extra-crisp, -200.0 = muffled
long bass; // 0 = deep, 20000 = tinny
};
// Current frequency equalization
equalizer_t const& equalizer() const { return equalizer_; }
// Change frequency equalization
void set_equalizer( equalizer_t const& );
// Equalizer presets
static equalizer_t const nes_eq; // NES
static equalizer_t const famicom_eq; // Famicom
static equalizer_t const tv_eq; // TV speaker
// File save/load
// Save emulator state
void save_state( Nes_State* s ) const { emu.save_state( s ); }
blargg_err_t save_state( Auto_File_Writer ) const;
// Load state into emulator
void load_state( Nes_State const& );
blargg_err_t load_state( Auto_File_Reader );
// True if current cartridge claims it uses battery-backed memory
bool has_battery_ram() const { return cart()->has_battery_ram(); }
// Save current battery RAM
blargg_err_t save_battery_ram( Auto_File_Writer );
// Load battery RAM from file. Best called just after reset() or loading cartridge.
blargg_err_t load_battery_ram( Auto_File_Reader );
// Graphics
// Number of frames generated per second
enum { frame_rate = 60 };
// Size of fixed NES color table (including the 8 color emphasis modes)
enum { color_table_size = 8 * 64 };
// NES color lookup table based on standard NTSC TV decoder. Use nes_ntsc.h to
// generate a palette with custom parameters.
struct rgb_t { unsigned char red, green, blue; };
static rgb_t const nes_colors [color_table_size];
// Hide/show/enhance sprites. Sprite mode does not affect emulation accuracy.
enum sprite_mode_t {
sprites_hidden = 0,
sprites_visible = 8, // limit of 8 sprites per scanline as on NES (default)
sprites_enhanced = 64 // unlimited sprites per scanline (no flickering)
};
void set_sprite_mode( sprite_mode_t n ) { emu.ppu.sprite_limit = n; }
// Set range of host palette entries to use in graphics buffer; default uses
// all of them. Begin will be rounded up to next multiple of palette_alignment.
// Use frame().palette_begin to find the adjusted beginning entry used.
enum { palette_alignment = 64 };
void set_palette_range( int begin, int end = 256 );
// Access to emulated memory, for viewer/cheater/debugger
// CHR
byte const* chr_mem();
long chr_size() const;
void write_chr( void const*, long count, long offset );
// Nametable
byte* nametable_mem() { return emu.ppu.impl->nt_ram; }
long nametable_size() const { return 0x1000; }
// Built-in 2K memory
enum { low_mem_size = 0x800 };
byte* low_mem() { return emu.low_mem; }
// Optional 8K memory
enum { high_mem_size = 0x2000 };
byte* high_mem() { return emu.impl->sram; }
// End of public interface
public:
blargg_err_t set_sample_rate( long rate, class Nes_Buffer* );
blargg_err_t set_sample_rate( long rate, class Nes_Effects_Buffer* );
void irq_changed() { emu.irq_changed(); }
private:
friend class Nes_Recorder;
frame_t* frame_;
int buffer_height_;
bool fade_sound_in;
bool fade_sound_out;
virtual blargg_err_t init_();
virtual void loading_state( Nes_State const& ) { }
void load_state( Nes_State_ const& );
void save_state( Nes_State_* s ) const { emu.save_state( s ); }
int joypad_read_count() const { return emu.joypad_read_count; }
long timestamp() const { return emu.nes.frame_count; }
void set_timestamp( long t ) { emu.nes.frame_count = t; }
private:
// noncopyable
Nes_Emu( const Nes_Emu& );
Nes_Emu& operator = ( const Nes_Emu& );
// sound
Multi_Buffer* default_sound_buf;
Multi_Buffer* sound_buf;
unsigned sound_buf_changed_count;
Silent_Buffer silent_buffer;
equalizer_t equalizer_;
int channel_count_;
bool sound_enabled;
void enable_sound( bool );
void clear_sound_buf();
void fade_samples( blip_sample_t*, int size, int step );
char* host_pixels;
int host_palette_size;
frame_t single_frame;
Nes_Cart private_cart;
Nes_Core emu; // large; keep at end
bool init_called;
blargg_err_t auto_init();
};
inline void Nes_Emu::set_pixels( void* p, long n )
{
host_pixels = (char*) p + n;
emu.ppu.host_row_bytes = n;
}
inline byte const* Nes_Emu::chr_mem()
{
return cart()->chr_size() ? (byte*) cart()->chr() : emu.ppu.impl->chr_ram;
}
inline long Nes_Emu::chr_size() const
{
return cart()->chr_size() ? cart()->chr_size() : emu.ppu.chr_addr_size;
}
#endif

View File

@ -0,0 +1,226 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_File.h"
#include "blargg_endian.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// Nes_File_Writer
Nes_File_Writer::Nes_File_Writer()
{
write_remain = 0;
depth_ = 0;
}
Nes_File_Writer::~Nes_File_Writer()
{
}
blargg_err_t Nes_File_Writer::begin( Auto_File_Writer dw, nes_tag_t tag )
{
require( !out );
out = dw;
RETURN_ERR( out.open_comp() );
return begin_group( tag );
}
blargg_err_t Nes_File_Writer::begin_group( nes_tag_t tag )
{
depth_++;
return write_header( tag, group_begin_size );
}
blargg_err_t Nes_File_Writer::write_header( nes_tag_t tag, long size )
{
nes_block_t h;
h.tag = tag;
h.size = size;
h.swap();
return out->write( &h, sizeof h );
}
blargg_err_t Nes_File_Writer::write_block( nes_tag_t tag, void const* data, long size )
{
RETURN_ERR( write_block_header( tag, size ) );
return write( data, size );
}
blargg_err_t Nes_File_Writer::write_block_header( nes_tag_t tag, long size )
{
require( !write_remain );
write_remain = size;
return write_header( tag, size );
}
Nes_File_Writer::error_t Nes_File_Writer::write( void const* p, long s )
{
write_remain -= s;
require( write_remain >= 0 );
return out->write( p, s );
}
blargg_err_t Nes_File_Writer::end()
{
require( depth_ == 1 );
return end_group();
}
blargg_err_t Nes_File_Writer::end_group()
{
require( depth_ > 0 );
depth_--;
return write_header( group_end_tag, 0 );
}
// Nes_File_Reader
Nes_File_Reader::Nes_File_Reader()
{
h.tag = 0;
h.size = 0;
block_type_ = invalid;
depth_ = -1;
}
Nes_File_Reader::~Nes_File_Reader()
{
}
blargg_err_t Nes_File_Reader::read_block_data( void* p, long s )
{
long extra = remain();
if ( s > extra )
s = extra;
extra -= s;
RETURN_ERR( read( p, s ) );
if ( extra )
RETURN_ERR( skip( extra ) );
return 0;
}
blargg_err_t Nes_File_Reader::begin( Auto_File_Reader dr )
{
require( !in );
RETURN_ERR( dr.open() );
in = dr;
RETURN_ERR( read_header() );
if ( block_type() != group_begin )
return "File is wrong type";
return enter_group();
}
blargg_err_t Nes_File_Reader::read_header()
{
RETURN_ERR( in->read( &h, sizeof h ) );
h.swap();
block_type_ = data_block;
if ( h.size == group_begin_size )
{
block_type_ = group_begin;
h.size = 0;
}
if ( (long) h.tag == group_end_tag )
{
block_type_ = group_end;
h.tag = 0;
}
set_remain( h.size );
return 0;
}
blargg_err_t Nes_File_Reader::next_block()
{
require( depth() >= 0 );
switch ( block_type() )
{
case group_end:
require( false );
return "Tried to go past end of blocks";
case group_begin: {
int d = 1;
do
{
RETURN_ERR( skip( h.size ) );
RETURN_ERR( read_header() );
if ( block_type() == group_begin )
d++;
if ( block_type() == group_end )
d--;
}
while ( d > 0);
break;
}
case data_block:
RETURN_ERR( skip( h.size ) );
break;
case invalid:
break;
}
return read_header();
}
blargg_err_t Nes_File_Reader::enter_group()
{
require( block_type() == group_begin );
block_type_ = invalid; // cause next_block() not to skip group
depth_++;
return 0;
}
blargg_err_t Nes_File_Reader::exit_group()
{
require( depth() > 0 );
int d = 1;
while ( true )
{
if ( block_type() == group_end )
d--;
if ( block_type() == group_begin )
d++;
if ( d == 0 )
break;
RETURN_ERR( skip( h.size ) );
RETURN_ERR( read_header() );
}
block_type_ = invalid; // cause next_block() to read past end block
depth_--;
return 0;
}
blargg_err_t Nes_File_Reader::skip_v( int s )
{
require( block_type() == data_block );
if ( (unsigned long) s > h.size )
return "Tried to skip past end of data";
h.size -= s;
set_remain( h.size );
return in->skip( s );
}
blargg_err_t Nes_File_Reader::read_v( void* p, int n )
{
require( block_type() == data_block );
if ( (unsigned long) n > h.size )
n = h.size;
h.size -= n;
set_remain( h.size );
return in->read( p, n );
}

128
quicknes/nes_emu/Nes_File.h Normal file
View File

@ -0,0 +1,128 @@
// NES block-oriented file access
// Nes_Emu 0.7.0
#ifndef NES_FILE_H
#define NES_FILE_H
#include "blargg_common.h"
#include "abstract_file.h"
#include "nes_data.h"
// Writes a structured file
class Nes_File_Writer : public Data_Writer {
public:
Nes_File_Writer();
~Nes_File_Writer();
// Begin writing file with specified signature tag
blargg_err_t begin( Auto_File_Writer, nes_tag_t );
// Begin tagged group
blargg_err_t begin_group( nes_tag_t );
// Write tagged block
blargg_err_t write_block( nes_tag_t, void const*, long size );
// Write tagged block header. 'Size' bytes must be written before next block.
blargg_err_t write_block_header( nes_tag_t, long size );
// Write data to current block
error_t write( void const*, long );
// End tagged group
blargg_err_t end_group();
// End file
blargg_err_t end();
private:
Auto_File_Writer out;
long write_remain;
int depth_;
blargg_err_t write_header( nes_tag_t tag, long size );
};
// Reads a structured file
class Nes_File_Reader : public Data_Reader {
public:
Nes_File_Reader();
~Nes_File_Reader();
// If true, verify checksums of any blocks that have them
void enable_checksums( bool = true );
// Begin reading file. Until next_block() is called, block_tag() yields tag for file.
blargg_err_t begin( Auto_File_Reader );
// Read header of next block in current group
blargg_err_t next_block();
// Type of current block
enum block_type_t {
data_block,
group_begin,
group_end,
invalid
};
block_type_t block_type() const { return block_type_; }
// Tag of current block
nes_tag_t block_tag() const { return h.tag; }
// Read at most s bytes from block and skip any remaining bytes
blargg_err_t read_block_data( void*, long s );
// Read at most 's' bytes from current block and return number of bytes actually read
virtual blargg_err_t read_v( void*, int n );
// Skip 's' bytes in current block
virtual blargg_err_t skip_v( int s );
// Read first sub-block of current group block
blargg_err_t enter_group();
// Skip past current group
blargg_err_t exit_group();
// Current depth, where 0 is top-level in file and higher is deeper
int depth() const { return depth_; }
// True if all data has been read
bool done() const { return depth() == 0 && block_type() == group_end; }
private:
Auto_File_Reader in;
nes_block_t h;
block_type_t block_type_;
int depth_;
blargg_err_t read_header();
};
template<class T>
inline blargg_err_t read_nes_state( Nes_File_Reader& in, T* out )
{
blargg_err_t err = in.read_block_data( out, sizeof *out );
out->swap();
return err;
}
template<class T>
inline blargg_err_t write_nes_state( Nes_File_Writer& out, T& in )
{
in.swap();
blargg_err_t err = out.write_block( in.tag, &in, sizeof in );
in.swap();
return err;
}
template<class T>
inline blargg_err_t write_nes_state( Nes_File_Writer& out, const T& in )
{
T copy = in;
copy.swap();
return out.write_block( copy.tag, &copy, sizeof copy );
}
#endif

View File

@ -0,0 +1,531 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Film.h"
#include <string.h>
#include <stdlib.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
nes_tag_t const joypad_data_tag = FOUR_CHAR('JOYP');
Nes_Film::Nes_Film() { clear( 60 * 60 ); }
Nes_Film::~Nes_Film() { }
void Nes_Film::clear( frame_count_t new_period )
{
period_ = new_period;
end_ = begin_ = -invalid_frame_count;
time_offset = 0;
has_joypad_sync_ = true;
has_second_joypad = false;
data.clear( new_period );
}
inline int Nes_Film::calc_block_count( frame_count_t new_end ) const
{
// usually one block extra than absolutely needed
return (new_end - time_offset) / data.period() + 2;
}
blargg_err_t Nes_Film::resize( frame_count_t new_end )
{
blargg_err_t err = data.resize( calc_block_count( new_end ) );
if ( !err )
end_ = new_end;
return err;
}
inline int Nes_Film::calc_block( frame_count_t time, int* index_out ) const
{
assert( time_offset <= time && time <= end() );
frame_count_t rel = time - time_offset;
int block = rel / data.period();
*index_out = rel - block * data.period();
return block;
}
Nes_Film::joypad_t Nes_Film::get_joypad( frame_count_t time ) const
{
int index;
block_t const& b = data.read( calc_block( time, &index ) );
joypad_t result = b.joypad0 [index];
if ( b.joypads [1] )
result |= b.joypads [1] [index] << 8;
return result;
}
blargg_err_t Nes_Film::set_joypad( frame_count_t time, joypad_t joypad )
{
int index;
int block = calc_block( time, &index );
block_t* b = data.write( block );
CHECK_ALLOC( b );
b->joypad0 [index] = joypad & 0xFF;
int joypad2 = joypad >> 8 & 0xFF;
if ( joypad2 && !b->joypads [1] )
CHECK_ALLOC( b = data.alloc_joypad2( block ) );
if ( b->joypads [1] )
{
b->joypads [1] [index] = joypad2;
has_second_joypad = true;
}
return 0;
}
blargg_err_t Nes_Film::record_frame( frame_count_t time, joypad_t joypad, Nes_State_** out )
{
if ( out )
*out = 0;
if ( !contains( time ) )
{
require( blank() );
clear();
begin_ = end_ = time;
time_offset = time - time % period_;
}
RETURN_ERR( resize( time + 1 ) );
RETURN_ERR( set_joypad( time, joypad ) );
// first check detects stale snapshot left after trimming film
if ( read_snapshot( time ).timestamp() > time || time == begin_ || time % period_ == 0 )
{
Nes_State_* ss = modify_snapshot( time );
CHECK_ALLOC( ss );
if ( out )
*out = ss;
if ( time != begin_ )
ss->set_timestamp( invalid_frame_count ); // caller might not take snapshot
}
return 0;
}
Nes_State_ const* Nes_Film::nearest_snapshot( frame_count_t time ) const
{
require( contains( time ) );
if ( time > end() )
time = end();
for ( int i = snapshot_index( time ); i >= 0; i-- )
{
Nes_State_ const& ss = snapshots( i );
if ( ss.timestamp() <= time ) // invalid timestamp will always be greater
return &ss;
}
return 0;
}
frame_count_t Nes_Film::constrain( frame_count_t t ) const
{
if ( t != invalid_frame_count && !blank() )
{
if ( t < begin_ ) t = begin_;
if ( t > end_ ) t = end_;
}
return t;
}
inline bool Nes_Film::contains_range( frame_count_t first, frame_count_t last ) const
{
return begin_ <= first && first <= last && last <= end_;
}
void Nes_Film::trim( frame_count_t first, frame_count_t last )
{
check( begin() <= first && first <= last && last <= end() );
// TODO: this routine was broken; check thoroughly
if ( first > begin_ )
begin_ = first;
// preserve first snapshot, which might be before beginning
int first_block = (begin_ - time_offset) / data.period();
if ( first_block > 0 )
{
// TODO: pathological thrashing still possible
Nes_State_ const* ss = nearest_snapshot( begin_ );
if ( ss )
first_block = (ss->timestamp() - time_offset) / data.period();
time_offset += first_block * data.period();
}
if ( begin_ <= last && last < end_ )
end_ = last;
data.trim( first_block, calc_block_count( end_ ) );
// be sure snapshot for beginning was preserved
assert( nearest_snapshot( begin_ ) );
}
// Nes_Film_Joypad_Scanner
// Simplifies scanning joypad data
class Nes_Film_Joypad_Scanner {
public:
// Begin scanning range and set public members for first block
Nes_Film_Joypad_Scanner( frame_count_t first, frame_count_t last, Nes_Film const& );
int block; // block index
int offset; // offset in data
int count; // number of bytes
frame_count_t remain; // number of bytes remaining to scan
// Pointer to temporary buffer of 'block_period' bytes. Cleared
// to zero before first use.
unsigned char* buf();
// Go to next block. False if no more blocks.
bool next();
~Nes_Film_Joypad_Scanner();
private:
Nes_Film& film;
unsigned char* buf_;
void recalc_count();
};
inline unsigned char* Nes_Film_Joypad_Scanner::buf()
{
if ( !buf_ )
buf_ = (unsigned char*) calloc( 1, film.data.period() );
return buf_;
}
inline void Nes_Film_Joypad_Scanner::recalc_count()
{
count = film.data.period() - offset;
if ( count > remain )
count = remain;
}
Nes_Film_Joypad_Scanner::Nes_Film_Joypad_Scanner( frame_count_t first, frame_count_t last,
Nes_Film const& f ) : film( *(Nes_Film*) &f )
{
buf_ = 0;
remain = last - first;
block = film.calc_block( first, &offset );
recalc_count();
film.data.joypad_only( true );
}
Nes_Film_Joypad_Scanner::~Nes_Film_Joypad_Scanner()
{
film.data.joypad_only( false );
free( buf_ );
}
bool Nes_Film_Joypad_Scanner::next()
{
block++;
offset = 0;
remain -= count;
if ( remain <= 0 )
return false;
recalc_count();
return true;
}
// Nes_Film_Writer
blargg_err_t Nes_Film_Writer::end( Nes_Film const& film, frame_count_t first,
frame_count_t last, frame_count_t period )
{
RETURN_ERR( film.write_blocks( *this, first, last, period ) );
return Nes_File_Writer::end();
}
blargg_err_t Nes_Film::write( Auto_File_Writer out, frame_count_t first,
frame_count_t last, frame_count_t period ) const
{
Nes_Film_Writer writer;
RETURN_ERR( writer.begin( out ) );
return writer.end( *this, first, last, (period ? period : this->period()) );
}
static blargg_err_t write_state( Nes_State_ const& ss, Nes_File_Writer& out )
{
RETURN_ERR( out.begin_group( state_file_tag ) );
RETURN_ERR( ss.write_blocks( out ) );
return out.end_group();
}
blargg_err_t Nes_Film::write_blocks( Nes_File_Writer& out, frame_count_t first,
frame_count_t last, frame_count_t period ) const
{
require( contains_range( first, last ) );
require( nearest_snapshot( first ) );
frame_count_t first_snapshot = nearest_snapshot( first )->timestamp();
assert( first_snapshot <= first );
// write info block
movie_info_t info;
memset( &info, 0, sizeof info );
info.begin = first;
info.length = last - first;
info.extra = first - first_snapshot;
info.period = period;
info.has_joypad_sync = has_joypad_sync_;
info.joypad_count = 1;
if ( has_second_joypad )
{
// Scan second joypad data for any blocks containing non-zero data
Nes_Film_Joypad_Scanner joypad( first, last, *this );
do
{
block_t const& b = data.read( joypad.block );
if ( b.joypads [1] &&
mem_differs( &b.joypads [1] [joypad.offset], 0, joypad.count ) )
{
info.joypad_count = 2;
break;
}
}
while ( joypad.next() );
}
RETURN_ERR( write_nes_state( out, info ) );
// write joypad data
for ( int i = 0; i < info.joypad_count; i++ )
{
Nes_Film_Joypad_Scanner joypad( first_snapshot, last, *this );
RETURN_ERR( out.write_block_header( joypad_data_tag, joypad.remain ) );
do
{
block_t const& b = data.read( joypad.block );
byte const* data = b.joypads [i];
if ( !data )
CHECK_ALLOC( data = joypad.buf() );
RETURN_ERR( out.write( &data [joypad.offset], joypad.count ) );
}
while ( joypad.next() );
}
// write first state
int index = snapshot_index( first_snapshot );
assert( snapshots( index ).timestamp() == first_snapshot );
RETURN_ERR( write_state( snapshots( index ), out ) );
// write snapshots that fall within output periods
// TODO: thorougly verify this tricky algorithm
//dprintf( "last: %6d\n", last );
int last_index = snapshot_index( last );
frame_count_t time = first_snapshot + period;
for ( ; ++index <= last_index; )
{
Nes_State_ const& ss = snapshots( index );
frame_count_t t = ss.timestamp();
if ( t != invalid_frame_count )
{
while ( time + period <= t )
time += period;
if ( t >= time - period )
{
time += period;
//dprintf( "time: %6d\n", t );
RETURN_ERR( write_state( ss, out ) );
}
}
}
return 0;
}
// Nes_Film_Reader
blargg_err_t Nes_Film::read( Auto_File_Reader in )
{
Nes_Film_Reader reader;
RETURN_ERR( reader.begin( in, this ) );
while ( !reader.done() )
RETURN_ERR( reader.next_block() );
return 0;
}
Nes_Film_Reader::Nes_Film_Reader()
{
film = 0;
info_ptr = 0;
joypad_count = 0;
film_initialized = false;
memset( &info_, 0, sizeof info_ );
}
Nes_Film_Reader::~Nes_Film_Reader() { }
blargg_err_t Nes_Film_Reader::begin( Auto_File_Reader dr, Nes_Film* nf )
{
film = nf;
RETURN_ERR( Nes_File_Reader::begin( dr ) );
if ( block_tag() != movie_file_tag )
return "Not a movie file";
return 0;
}
blargg_err_t Nes_Film::begin_read( movie_info_t const& info )
{
begin_ = info.begin - info.extra;
end_ = info.begin + info.length;
time_offset = begin_ - begin_ % period_;
has_joypad_sync_ = info.has_joypad_sync;
assert( begin_ <= end_ );
return resize( end_ );
}
blargg_err_t Nes_Film_Reader::customize()
{
require( info_ptr );
if ( film_initialized )
return 0;
film_initialized = true;
film->clear();
return film->begin_read( info_ );
}
blargg_err_t Nes_Film_Reader::next_block()
{
blargg_err_t err = next_block_();
if ( err )
film->clear(); // don't leave film in inconsistent state when reading fails
return err;
}
blargg_err_t Nes_Film_Reader::next_block_()
{
for ( ; ; )
{
RETURN_ERR( Nes_File_Reader::next_block() );
switch ( depth() == 0 ? block_tag() : 0 )
{
case movie_info_t::tag:
check( !info_ptr );
RETURN_ERR( read_nes_state( *this, &info_ ) );
info_ptr = &info_;
return 0;
case joypad_data_tag:
RETURN_ERR( customize() );
RETURN_ERR( film->read_joypad( *this, joypad_count++ ) );
break;
case state_file_tag:
RETURN_ERR( customize() );
RETURN_ERR( film->read_snapshot( *this ) );
break;
default:
if ( done() )
{
// at least first snapshot must have been read
check( film->read_snapshot( film->begin_ ).timestamp() != invalid_frame_count );
film->begin_ += info_.extra; // bump back to claimed beginning
// todo: remove
#if !defined (NDEBUG) && 0
FILE* out = fopen( "raw_block", "wb" );
int block_count = (film->end() - film->time_offset) / film->data.period() + 1;
//for ( int i = 0; i < block_count; i++ )
int i = (block_count > 1);
fwrite( &film->data.read( i ), offsetof (Nes_Film_Data::block_t,joypad0 [film->data.period()]), 1, out );
fclose( out );
#endif
}
return 0;
}
}
}
blargg_err_t Nes_Film::read_joypad( Nes_File_Reader& in, int index )
{
check( index <= 1 );
if ( index <= 1 )
{
Nes_Film_Joypad_Scanner joypad( begin_, end_, *this );
do
{
block_t* b = data.write( joypad.block );
CHECK_ALLOC( b );
byte* p = b->joypads [index];
if ( !p )
CHECK_ALLOC( p = joypad.buf() );
p += joypad.offset;
RETURN_ERR( in.read( p, joypad.count ) );
if ( !b->joypads [index] && mem_differs( p, 0, joypad.count ) )
{
// non-zero joypad2 data
CHECK_ALLOC( b = data.alloc_joypad2( joypad.block ) );
memcpy( &b->joypads [index] [joypad.offset], p, joypad.count );
has_second_joypad = true;
}
}
while ( joypad.next() );
}
return 0;
}
blargg_err_t Nes_Film::read_snapshot( Nes_File_Reader& in )
{
RETURN_ERR( in.enter_group() );
// read snapshot's timestamp
nes_state_t info;
memset( &info, 0, sizeof info );
for ( ; ; )
{
RETURN_ERR( in.next_block() );
if ( in.block_tag() == info.tag )
{
RETURN_ERR( read_nes_state( in, &info ) );
break;
}
check( false ); // shouldn't encounter any unknown blocks
}
frame_count_t time = info.frame_count;
if ( !contains( time ) )
{
check( false );
}
else
{
// read snapshot only if it's earlier than any existing snapshot in same segment
Nes_State_* ss = modify_snapshot( time );
CHECK_ALLOC( ss );
// uninitialized snapshot's time is large positive value so always compares greater
if ( time < ss->timestamp() )
{
// read new snapshot
ss->clear();
ss->set_nes_state( info );
do
{
RETURN_ERR( ss->read_blocks( in ) );
}
while ( in.block_type() != in.group_end );
}
}
return in.exit_group();
}

214
quicknes/nes_emu/Nes_Film.h Normal file
View File

@ -0,0 +1,214 @@
// Film to record NES movies on using Nes_Recorder
// Nes_Emu 0.7.0
#ifndef NES_FILM_H
#define NES_FILM_H
#include "blargg_common.h"
#include "Nes_Film_Data.h"
// See below for custom reader and writer classes that allow user data in movie files
class Nes_Film_Writer;
class Nes_Film_Reader;
class Nes_Film {
public:
Nes_Film();
~Nes_Film();
// Clear film to blankness
void clear() { clear( period() ); }
// Time of first recorded snapshot
frame_count_t begin() const { return begin_; }
// Time of *end* of last recorded frame
frame_count_t end() const { return end_; }
// Number of frames in recording
frame_count_t length() const { return end() - begin(); }
// Trim to subset of recording. OK if new_begin == new_end, which does
// not make film blank, merely of zero length.
void trim( frame_count_t new_begin, frame_count_t new_end );
// Write entire recording to file
blargg_err_t write( Auto_File_Writer ) const;
// Read entire recording from file
blargg_err_t read( Auto_File_Reader );
// Additional features
// Write trimmed recording to file, with snapshots approximately every 'period' frames
blargg_err_t write( Auto_File_Writer, frame_count_t begin, frame_count_t end,
frame_count_t period = 0 ) const;
// Clear film and set how often snapshots are taken. One snapshot is kept for
// every 'period' frames of recording. A lower period makes seeking faster but
// uses more memory.
void clear( frame_count_t new_period );
// Average number of frames between snapshots
frame_count_t period() const { return period_; }
// True if film has just been cleared
bool blank() const { return end_ < 0; }
// True if timestamp is within recording. Always false if film is blank.
bool contains( frame_count_t t ) const { return begin() <= t && t <= end(); }
// True if recording contains frame beginning at timestamp
bool contains_frame( frame_count_t t ) const { return begin() <= t && t < end(); }
// Constrain timestamp to recorded range, or return unchanged if film is blank
frame_count_t constrain( frame_count_t ) const;
// Raw access for use by Nes_Recorder
// True if joypad entries are 0xFF on frames that the joypad isn't read
bool has_joypad_sync() const { return has_joypad_sync_; }
// Snapshot that might have current timestamp
Nes_State_ const& read_snapshot( frame_count_t ) const;
// Snapshot that current timestamp maps to. NULL if out of memory.
Nes_State_* modify_snapshot( frame_count_t );
// Pointer to nearest snapshot at or before timestamp, or NULL if none
Nes_State_ const* nearest_snapshot( frame_count_t ) const;
typedef unsigned long joypad_t;
// Get joypad data for frame beginning at timestamp
joypad_t get_joypad( frame_count_t ) const;
// Change joypad data for frame beginning at timestamp. Frame must already have
// been recorded normally.
blargg_err_t set_joypad( frame_count_t, joypad_t );
// Record new frame beginning at timestamp using joypad data. Returns
// pointer where snapshot should be saved to, or NULL if a snapshot isn't
// needed for this timestamp. Removes anything recorded after frame.
blargg_err_t record_frame( frame_count_t, joypad_t joypad, Nes_State_** out = 0 );
private:
// noncopyable
Nes_Film( Nes_Film const& );
Nes_Film& operator = ( Nes_Film const& );
typedef Nes_Film_Data::block_t block_t;
Nes_Film_Data data;
frame_count_t begin_;
frame_count_t end_;
frame_count_t period_;
frame_count_t time_offset;
bool has_joypad_sync_;
bool has_second_joypad;
int calc_block( frame_count_t time, int* index_out ) const;
int snapshot_index( frame_count_t ) const;
Nes_State_ const& snapshots( int ) const;
int calc_block_count( frame_count_t new_end ) const;
blargg_err_t resize( frame_count_t new_end );
bool contains_range( frame_count_t first, frame_count_t last ) const;
blargg_err_t write_blocks( Nes_File_Writer&, frame_count_t first,
frame_count_t last, frame_count_t period ) const;
blargg_err_t begin_read( movie_info_t const& );
blargg_err_t read_joypad( Nes_File_Reader&, int index );
blargg_err_t read_snapshot( Nes_File_Reader& );
friend class Nes_Film_Reader;
friend class Nes_Film_Writer;
friend class Nes_Film_Joypad_Scanner;
};
// Allows user data blocks to be written with film
class Nes_Film_Writer : public Nes_File_Writer {
public:
// Begin writing movie file
blargg_err_t begin( Auto_File_Writer );
// End writing movie file. Optionally specify custom period and subset of
// recording to write.
blargg_err_t end( Nes_Film const& );
blargg_err_t end( Nes_Film const&, frame_count_t first, frame_count_t last,
frame_count_t period );
};
// Allows film information to be checked before loading film, and for handling
// of user data blocks.
class Nes_Film_Reader : public Nes_File_Reader {
public:
Nes_Film_Reader();
~Nes_Film_Reader();
// Begin reading from movie file. Does not modify film until later (see below).
blargg_err_t begin( Auto_File_Reader, Nes_Film* out );
// Go to next custom block in file
blargg_err_t next_block();
// Information about film (see nes_state.h for fields). Returns zero
// until information is encountered in file. Once return value becomes
// non-zero, next call to next_block() will read movie into film.
// Until that time, film is not modified or examined at all.
movie_info_t const* info() const { return info_ptr; }
// to do: allow reading subset of recording from file (for example, last 5 minutes)
private:
Nes_Film* film;
bool film_initialized;
movie_info_t info_;
movie_info_t* info_ptr;
int joypad_count;
blargg_err_t customize();
blargg_err_t next_block_();
};
inline blargg_err_t Nes_Film_Writer::begin( Auto_File_Writer dw )
{
return Nes_File_Writer::begin( dw, movie_file_tag );
}
inline blargg_err_t Nes_Film::write( Auto_File_Writer out ) const
{
return write( out, begin(), end(), period() );
}
inline blargg_err_t Nes_Film_Writer::end( Nes_Film const& film )
{
return end( film, film.begin(), film.end(), film.period() );
}
inline int Nes_Film::snapshot_index( frame_count_t time ) const
{
return (time - time_offset) / period_;
}
inline Nes_State_ const& Nes_Film::snapshots( int i ) const
{
return data.read( (unsigned) i / data.block_size ).states [(unsigned) i % data.block_size];
}
inline Nes_State_ const& Nes_Film::read_snapshot( frame_count_t time ) const
{
return snapshots( snapshot_index( time ) );
}
inline Nes_State_* Nes_Film::modify_snapshot( frame_count_t time )
{
int i = snapshot_index( time );
block_t* b = data.write( (unsigned) i / data.block_size );
if ( b )
return &b->states [(unsigned) i % data.block_size];
return 0;
}
#endif

View File

@ -0,0 +1,273 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Film_Data.h"
#include <stdlib.h>
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Film_Data::Nes_Film_Data()
{
blocks = 0;
active = 0;
block_count = 0;
period_ = 0;
packer = 0;
BOOST_STATIC_ASSERT( sizeof active->cpu [0] % 4 == 0 );
BOOST_STATIC_ASSERT( sizeof active->joypad [0] % 4 == 0 );
BOOST_STATIC_ASSERT( sizeof active->apu [0] % 4 == 0 );
BOOST_STATIC_ASSERT( sizeof active->ppu [0] % 4 == 0 );
BOOST_STATIC_ASSERT( sizeof active->mapper [0] % 4 == 0 );
BOOST_STATIC_ASSERT( sizeof active->states [0] % 4 == 0 );
//BOOST_STATIC_ASSERT( offsetof (block_t,joypad0) % 4 == 0 ); // XXX
}
#ifndef NDEBUG
static void write_file( void const* in, long size, const char* path )
{
FILE* out = fopen( path, "wb" );
if ( out )
{
fwrite( in, size, 1, out );
fclose( out );
}
}
void Nes_Film_Data::debug_packer() const
{
comp_block_t* b = blocks [active_index];
static byte* temp = new byte [active_size() * 2];
for ( int i = 0; i < active_size() * 2; i++ )
temp [i] = i;
long vs = packer->unpack( b->data, b->size, temp );
if ( vs != active_size() - b->offset )
{
dprintf( "Unpacked size differs\n" );
write_file( (byte*) active + b->offset, vs, "original" );
write_file( temp, vs, "error" );
assert( false );
}
if ( memcmp( (byte*) active + b->offset, temp, vs ) )
{
dprintf( "Unpacked content differs\n" );
write_file( (byte*) active + b->offset, vs, "original" );
write_file( temp, vs, "error" );
assert( false );
}
if ( 0 )
{
long total = 0;
for ( int i = 0; i < block_count; i++ )
if ( blocks [i] )
total += blocks [i]->size;
//dprintf( "Compression: %ld%%\n", total * 100 / (block_count * (active_size() - period_)) );
dprintf( "Memory: %ld+%ldK\n", total / 1024, active_size() * 2 / 1024 + 16 );
//dprintf( "Memory: %ldK\n", (total + active_size() * 2) / 1024 + 16 );
}
}
#endif
void Nes_Film_Data::flush_active() const
{
if ( active_dirty )
{
assert( (unsigned) active_index < (unsigned) block_count );
active_dirty = false;
comp_block_t* b = blocks [active_index];
assert( b && !b->size ); // should have been reallocated in write()
check( b->offset == joypad_only_ );
b->size = packer->pack( (byte*) active + b->offset, active_size() - b->offset, b->data );
assert( b->size <= packer->worst_case( active_size() - b->offset ) );
// shrink allocation
void* mem = realloc( b, offsetof (comp_block_t, data) + b->size * sizeof(b->data[0]) );
if ( mem )
blocks [active_index] = (comp_block_t*) mem;
else
check( false ); // shrink shouldn't fail, but fine if it does
#ifndef NDEBUG
debug_packer();
#endif
}
active_index = -1;
}
void Nes_Film_Data::init_states() const
{
memset( active->states, 0, sizeof active->states );
block_t* b = active;
b->garbage0 = 1;
b->garbage1 = 2;
b->garbage2 = 3;
for ( int j = 0; j < block_size; j++ )
{
Nes_State_& s = b->states [j];
s.cpu = &b->cpu [j];
s.joypad = &b->joypad [j];
s.apu = &b->apu [j];
s.ppu = &b->ppu [j];
s.mapper = &b->mapper [j];
s.ram = b->ram [j];
s.sram = b->sram [j];
s.spr_ram = b->spr_ram [j];
s.nametable = b->nametable [j];
s.chr = b->chr [j];
s.set_timestamp( invalid_frame_count );
}
}
void Nes_Film_Data::access( index_t i ) const
{
assert( (unsigned) i < (unsigned) block_count );
if ( active_dirty )
flush_active();
active_index = i;
comp_block_t* b = blocks [i];
if ( b )
{
assert( b->size );
long size = packer->unpack( b->data, b->size, (byte*) active + b->offset );
assert( b->offset + size == active_size() );
if ( b->offset )
init_states();
}
else
{
active->joypads [0] = &active->joypad0 [0];
active->joypads [1] = &active->joypad0 [period_];
init_states();
memset( active->joypad0, 0, period_ * 2 );
}
}
Nes_Film_Data::block_t* Nes_Film_Data::write( int i )
{
require( (unsigned) i < (unsigned) block_count );
if ( i != active_index )
access( i );
if ( !active_dirty )
{
// preallocate now to avoid losing write when flushed later
long size = packer->worst_case( active_size() - joypad_only_ );
comp_block_t* new_mem = (comp_block_t*) realloc( blocks [i], size );
if ( !new_mem )
return 0;
new_mem->size = 0;
new_mem->offset = joypad_only_;
blocks [i] = new_mem;
active_dirty = true;
}
return active;
}
void Nes_Film_Data::joypad_only( bool b )
{
flush_active();
joypad_only_ = b * offsetof (block_t,joypad0);
}
blargg_err_t Nes_Film_Data::resize( int new_count )
{
if ( new_count < block_count )
{
assert( active );
if ( active_index >= new_count )
flush_active();
for ( int i = new_count; i < block_count; i++ )
free( blocks [i] );
block_count = new_count;
void* new_blocks = realloc( blocks, new_count * sizeof *blocks );
if ( new_blocks || !new_count )
blocks = (comp_block_t**) new_blocks;
else
check( false ); // shrink shouldn't fail, but fine if it does
}
else if ( new_count > block_count )
{
if ( !packer )
CHECK_ALLOC( packer = BLARGG_NEW Nes_Film_Packer );
if ( !active )
{
assert( period_ );
active = (block_t*) calloc( active_size(), 1 );
CHECK_ALLOC( active );
//init_active(); // TODO: unnecessary since it's called on first access anyway?
packer->prepare( active, active_size() );
}
void* new_blocks = realloc( blocks, new_count * sizeof *blocks );
CHECK_ALLOC( new_blocks );
blocks = (comp_block_t**) new_blocks;
for ( int i = block_count; i < new_count; i++ )
blocks [i] = 0;
block_count = new_count;
}
return 0;
}
void Nes_Film_Data::clear( frame_count_t period )
{
active_index = -1;
active_dirty = false;
if ( resize( 0 ) )
check( false ); // shrink should never fail
joypad_only_ = false;
period_ = period * block_size;
free( active );
active = 0;
}
void Nes_Film_Data::trim( int begin, int new_count )
{
require( 0 <= begin && begin + new_count <= block_count );
require( (unsigned) new_count <= (unsigned) block_count );
if ( (unsigned) new_count < (unsigned) block_count )
{
if ( begin || active_index >= new_count )
flush_active();
if ( begin )
{
for ( int i = 0; i < begin; i++ )
free( blocks [i] );
memmove( &blocks [0], &blocks [begin], (block_count - begin) * sizeof *blocks );
block_count -= begin;
}
if ( resize( new_count ) )
check( false ); // shrink should never fail
}
}
Nes_Film_Data::~Nes_Film_Data()
{
if ( resize( 0 ) )
check( false ); // shrink should never fail
free( active );
delete packer;
}

View File

@ -0,0 +1,86 @@
// Film data manager that keeps data compressed in memory
// Nes_Emu 0.7.0
#ifndef NES_FILM_DATA_H
#define NES_FILM_DATA_H
#include "Nes_State.h"
#include "Nes_Film_Packer.h"
class Nes_Film_Data {
public:
Nes_Film_Data();
~Nes_Film_Data();
void clear( frame_count_t period );
frame_count_t period() const { return period_; }
blargg_err_t resize( int new_count );
void trim( int begin, int end );
enum { block_size = 8 }; // 16 helps compression but doubles temp buffer size
typedef int index_t;
struct block_t
{
BOOST::uint8_t* joypads [2];
Nes_State_ states [block_size];
Nes_Cpu::registers_t cpu [block_size];
joypad_state_t joypad [block_size];
apu_state_t apu [block_size];
ppu_state_t ppu [block_size];
mapper_state_t mapper [block_size];
BOOST::uint8_t spr_ram [block_size] [Nes_State_::spr_ram_size];
BOOST::uint8_t ram [block_size] [Nes_State_::ram_size];
BOOST::uint8_t nametable [block_size] [Nes_State_::nametable_max];
BOOST::uint32_t garbage0;
BOOST::uint8_t chr [block_size] [Nes_State_::chr_max];
BOOST::uint32_t garbage1;
BOOST::uint8_t sram [block_size] [Nes_State_::sram_max];
BOOST::uint32_t garbage2;
// garbage values prevent matches in compressor from being longer than 256K
BOOST::uint8_t joypad0 [60 * 60L * 60L];
};
block_t const& read( index_t ) const;
block_t* write( index_t ); // NULL if out of memory
block_t* alloc_joypad2( index_t i ) { return write( i ); }
void joypad_only( bool );
private:
struct comp_block_t
{
long size;
long offset;
BOOST::uint8_t data [1024 * 1024L];
};
comp_block_t** blocks;
int block_count;
frame_count_t period_;
block_t* active;
mutable int active_index;
mutable bool active_dirty;
long joypad_only_;
Nes_Film_Packer* packer;
void debug_packer() const;
void flush_active() const;
void init_active() const;
void init_states() const;
void invalidate_active();
void access( index_t ) const;
// must be multiple of 4 for packer
long active_size() const { return (offsetof (block_t,joypad0) + 3) & ~3; }
};
inline Nes_Film_Data::block_t const& Nes_Film_Data::read( int i ) const
{
//assert( blocks [i] ); // catch reads of uninitialized blocks
if ( i != active_index )
access( i );
return *active;
}
#endif

View File

@ -0,0 +1,220 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Film_Packer.h"
#include <string.h>
/* Copyright (C) 2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
// - On my 400 MHz PowerPC G3, pack() = 230MB/sec, unpack() = 320MB/sec.
// - All 32-bit accessess are on 4-byte boundaries of the input/output buffers.
// - This would not make a good general-purpose compressor because the match
// offset is limited to a multiple of 4.
#ifdef __MWERKS__
static unsigned zero = 0; // helps CodeWarrior optimizer when added to constants
#else
const unsigned zero = 0; // compile-time constant on other compilers
#endif
void Nes_Film_Packer::prepare( void const* begin, long size )
{
uint32_t const* end = (uint32_t*) ((byte*) begin + size - 4);
uint32_t const** d = dict;
for ( int n = dict_size; n--; )
*d++ = end;
uint32_t temp = 0x80000000;
assert( (BOOST::int32_t) temp < 0 ); // be sure high bit is sign
}
long Nes_Film_Packer::pack( byte const* in_begin, long in_size, byte* out_begin )
{
//memcpy( out_begin, in_begin, in_size ); return in_size;
assert( (in_size & 3) == 0 );
uint32_t const* const in_end = (uint32_t*) (in_begin + in_size);
uint32_t const* const end = in_end - 2;
uint32_t const* in = (uint32_t*) in_begin;
uint32_t* out = (uint32_t*) out_begin;
unsigned long first = *in++;
unsigned long offset;
uint32_t const* match;
unsigned long const factor = 0x100801 + zero;
// spaghetti program flow gives better efficiency
goto begin;
// match loop
do
{
if ( match [-1] != first ) break;
offset <<= 14;
if ( *match != *in ) break;
match:
// count matching words beyond the first two
unsigned long n = (byte*) end - (byte*) in;
first = *++in;
unsigned long m = *++match;
uint32_t const* start = in;
for ( n >>= 2; n; --n )
{
if ( m != first ) break;
m = *++match;
first = *++in;
}
// encode match offset and length
unsigned long length = (byte*) in - (byte*) start;
assert( 0 <= length && length <= 0xFFFF << 2 );
assert( offset >> 16 <= 0x7FFF );
offset |= length >> 2;
// check for next match
unsigned long index = (first * factor) >> dict_shift & (dict_size - 1);
match = dict [index];
*out++ = offset; // interleved write of previous match
offset = (byte*) in - (byte*) match; assert( !(offset & 3) );
if ( in >= end ) goto match_end;
++in;
dict [index] = in;
}
while ( offset < 0x20000 );
begin:
// start writing next literal
out [1] = first;
uint32_t* literal;
literal = out;
out++;
// literal loop
literal:
first = *in;
do
{
// check for match
unsigned long index = (first * factor) >> dict_shift & (dict_size - 1);
*++out = first; // interleved write of current literal
match = dict [index];
dict [index] = in + 1;
if ( in >= end ) goto literal_end;
offset = (byte*) in - (byte*) match; assert( !(offset & 3) );
++in;
if ( match [-1] != first ) goto literal;
first = *in;
}
while ( offset >= 0x20000 || *match != first );
// set length of completed literal
offset <<= 14;
*literal = (((byte*) out - (byte*) literal) >> 2) | 0x80000000;
goto match;
match_end:
// start new literal for remaining data after final match
literal = out++;
literal_end:
--out;
// write remaining data to literal
assert( in < in_end );
do
{
*++out = *in++;
}
while ( in < in_end );
*literal = (((byte*) out - (byte*) literal) >> 2) + 0x80000001;
// mark end with zero word
*++out = 0x80000000;
++out;
long out_size = (byte*) out - out_begin;
assert( (out_size & 3) == 0 );
return out_size;
}
long Nes_Film_Packer::unpack( byte const* in_begin, long in_size, byte* out_begin )
{
//memcpy( out_begin, in_begin, in_size ); return in_size;
assert( (in_size & 3) == 0 );
uint32_t const* in = (uint32_t*) in_begin;
uint32_t* out = (uint32_t*) out_begin;
long const literal_offset = 0x7FFFFFFE + zero;
long count = (BOOST::int32_t) *in++;
uint32_t const* m;
assert( count < 0 ); // first item should be literal
goto literal;
do
{
// match
do
{
assert( m - 1 >= (void*) out_begin );
assert( m - 1 < out );
unsigned long data = m [-1];
*out++ = data;
data = *m;
if ( (count &= 0xFFFF) != 0 )
{
do
{
*out++ = data;
data = *++m;
}
while ( --count );
}
count = (BOOST::int32_t) *in++;
*out++ = data;
m = out - (count >> 16);
}
while ( count >= 0 );
literal:
unsigned long data = *in++;
*out++ = data;
data = *in++;
if ( (count += literal_offset) != 0 )
{
do
{
*out++ = data;
data = *in++;
}
while ( --count );
}
count = (BOOST::int32_t) data;
m = out - (data >> 16);
}
while ( count >= 0 );
assert( count == (BOOST::int32_t) 0x80000000 );
assert( (byte*) in == in_begin + in_size );
long out_size = (byte*) out - out_begin;
assert( (out_size & 3) == 0 );
return out_size;
}

View File

@ -0,0 +1,32 @@
// Fast save state compressor/decompressor for reducing Nes_Film memory usage
// Nes_Emu 0.7.0
#ifndef NES_FILM_PACKER_H
#define NES_FILM_PACKER_H
#include "blargg_common.h"
class Nes_Film_Packer {
public:
void prepare( void const* begin, long size );
// Worst-case output size for given input size
long worst_case( long in_size ) const { return in_size + 8; }
typedef unsigned char byte;
long pack( byte const* in, long size, byte* packed_out );
long unpack( byte const* packed_in, long packed_size, byte* out );
private:
enum { dict_bits = 12 };
enum { dict_size = 1 << dict_bits };
enum { dict_shift = 32 - dict_bits };
typedef BOOST::uint32_t uint32_t;
uint32_t const* dict [dict_size];
};
#endif

View File

@ -0,0 +1,122 @@
// Nes_Emu 0.5.6. http://www.slack.net/~ant/libs/
#include "Nes_Fme07_Apu.h"
#include <string.h>
/* Copyright (C) 2003-2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
void Nes_Fme07_Apu::reset()
{
last_time = 0;
for ( int i = 0; i < osc_count; i++ )
oscs [i].last_amp = 0;
fme07_snapshot_t* state = this;
memset( state, 0, sizeof *state );
}
#include BLARGG_ENABLE_OPTIMIZER
unsigned char Nes_Fme07_Apu::amp_table [16] =
{
#define ENTRY( n ) (n * amp_range) + 0.5
ENTRY(0.0000), ENTRY(0.0078), ENTRY(0.0110), ENTRY(0.0156),
ENTRY(0.0221), ENTRY(0.0312), ENTRY(0.0441), ENTRY(0.0624),
ENTRY(0.0883), ENTRY(0.1249), ENTRY(0.1766), ENTRY(0.2498),
ENTRY(0.3534), ENTRY(0.4998), ENTRY(0.7070), ENTRY(1.0000)
#undef ENTRY
};
void Nes_Fme07_Apu::run_until( blip_time_t end_time )
{
require( end_time >= last_time );
for ( int index = 0; index < osc_count; index++ )
{
int mode = regs [7] >> index;
int vol_mode = regs [010 + index];
int volume = amp_table [vol_mode & 0x0f];
if ( !oscs [index].output )
continue;
// check for unsupported mode
#ifndef NDEBUG
if ( (mode & 011) <= 001 && vol_mode & 0x1f )
dprintf( "FME07 used unimplemented sound mode: %02X, vol_mode: %02X\n",
mode, vol_mode & 0x1f );
#endif
if ( (mode & 001) | (vol_mode & 0x10) )
volume = 0; // noise and envelope aren't supported
// period
int const period_factor = 16;
unsigned period = (regs [index * 2 + 1] & 0x0f) * 0x100 * period_factor +
regs [index * 2] * period_factor;
if ( period < 50 ) // around 22 kHz
{
volume = 0;
if ( !period ) // on my AY-3-8910A, period doesn't have extra one added
period = period_factor;
}
// current amplitude
int amp = volume;
if ( !phases [index] )
amp = 0;
int delta = amp - oscs [index].last_amp;
if ( delta )
{
oscs [index].last_amp = amp;
synth.offset( last_time, delta, oscs [index].output );
}
blip_time_t time = last_time + delays [index];
if ( time < end_time )
{
Blip_Buffer* const osc_output = oscs [index].output;
int delta = amp * 2 - volume;
if ( volume )
{
do
{
delta = -delta;
synth.offset_inline( time, delta, osc_output );
time += period;
}
while ( time < end_time );
oscs [index].last_amp = (delta + volume) >> 1;
phases [index] = (delta > 0);
}
else
{
// maintain phase when silent
int count = (end_time - time + period - 1) / period;
phases [index] ^= count & 1;
time += (long) count * period;
}
}
delays [index] = time - end_time;
}
last_time = end_time;
}

View File

@ -0,0 +1,133 @@
// Sunsoft FME-07 sound emulator
// Nes_Emu 0.5.6. Copyright (C) 2003-2005 Shay Green. GNU LGPL license.
#ifndef NES_FME07_APU_H
#define NES_FME07_APU_H
#include "Blip_Buffer.h"
struct fme07_snapshot_t
{
enum { reg_count = 14 };
BOOST::uint8_t regs [reg_count];
BOOST::uint8_t phases [3]; // 0 or 1
BOOST::uint8_t latch;
BOOST::uint16_t delays [3]; // a, b, c
};
BOOST_STATIC_ASSERT( sizeof (fme07_snapshot_t) == 24 );
class Nes_Fme07_Apu : private fme07_snapshot_t {
public:
Nes_Fme07_Apu();
// See Nes_Apu.h for reference
void reset();
void volume( double );
void treble_eq( blip_eq_t const& );
void output( Blip_Buffer* );
enum { osc_count = 3 };
void osc_output( int index, Blip_Buffer* );
void end_frame( blip_time_t );
void save_snapshot( fme07_snapshot_t* ) const;
void load_snapshot( fme07_snapshot_t const& );
// Mask and addresses of registers
enum { addr_mask = 0xe000 };
enum { data_addr = 0xe000 };
enum { latch_addr = 0xc000 };
// (addr & addr_mask) == latch_addr
void write_latch( int );
// (addr & addr_mask) == data_addr
void write_data( blip_time_t, int data );
// End of public interface
private:
// noncopyable
Nes_Fme07_Apu( const Nes_Fme07_Apu& );
Nes_Fme07_Apu& operator = ( const Nes_Fme07_Apu& );
static unsigned char amp_table [16];
struct {
Blip_Buffer* output;
int last_amp;
} oscs [osc_count];
blip_time_t last_time;
enum { amp_range = 192 }; // can be any value; this gives best error/quality tradeoff
Blip_Synth<blip_good_quality,1> synth;
void run_until( blip_time_t );
};
inline void Nes_Fme07_Apu::volume( double v )
{
synth.volume_unit( 0.38 / amp_range * v ); // to do: fine-tune
}
inline void Nes_Fme07_Apu::treble_eq( blip_eq_t const& eq )
{
synth.treble_eq( eq );
}
inline void Nes_Fme07_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
inline void Nes_Fme07_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline Nes_Fme07_Apu::Nes_Fme07_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
inline void Nes_Fme07_Apu::write_latch( int data ) { latch = data; }
inline void Nes_Fme07_Apu::write_data( blip_time_t time, int data )
{
if ( (unsigned) latch >= reg_count )
{
#ifdef dprintf
dprintf( "FME07 write to %02X (past end of sound registers)\n", (int) latch );
#endif
return;
}
run_until( time );
regs [latch] = data;
}
inline void Nes_Fme07_Apu::end_frame( blip_time_t time )
{
if ( time > last_time )
run_until( time );
last_time -= time;
assert( last_time >= 0 );
}
inline void Nes_Fme07_Apu::save_snapshot( fme07_snapshot_t* out ) const
{
*out = *this;
}
inline void Nes_Fme07_Apu::load_snapshot( fme07_snapshot_t const& in )
{
reset();
fme07_snapshot_t* state = this;
*state = in;
}
#endif

View File

@ -0,0 +1,120 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Fme7_Apu.h"
#include <string.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
void Nes_Fme7_Apu::reset()
{
last_time = 0;
for ( int i = 0; i < osc_count; i++ )
oscs [i].last_amp = 0;
fme7_apu_state_t* state = this;
memset( state, 0, sizeof *state );
}
unsigned char Nes_Fme7_Apu::amp_table [16] =
{
#define ENTRY( n ) (unsigned char) (n * amp_range + 0.5)
ENTRY(0.0000), ENTRY(0.0078), ENTRY(0.0110), ENTRY(0.0156),
ENTRY(0.0221), ENTRY(0.0312), ENTRY(0.0441), ENTRY(0.0624),
ENTRY(0.0883), ENTRY(0.1249), ENTRY(0.1766), ENTRY(0.2498),
ENTRY(0.3534), ENTRY(0.4998), ENTRY(0.7070), ENTRY(1.0000)
#undef ENTRY
};
void Nes_Fme7_Apu::run_until( blip_time_t end_time )
{
require( end_time >= last_time );
for ( int index = 0; index < osc_count; index++ )
{
int mode = regs [7] >> index;
int vol_mode = regs [010 + index];
int volume = amp_table [vol_mode & 0x0f];
if ( !oscs [index].output )
continue;
// check for unsupported mode
#ifndef NDEBUG
if ( (mode & 011) <= 001 && vol_mode & 0x1f )
dprintf( "FME7 used unimplemented sound mode: %02X, vol_mode: %02X\n",
mode, vol_mode & 0x1f );
#endif
if ( (mode & 001) | (vol_mode & 0x10) )
volume = 0; // noise and envelope aren't supported
// period
int const period_factor = 16;
unsigned period = (regs [index * 2 + 1] & 0x0f) * 0x100 * period_factor +
regs [index * 2] * period_factor;
if ( period < 50 ) // around 22 kHz
{
volume = 0;
if ( !period ) // on my AY-3-8910A, period doesn't have extra one added
period = period_factor;
}
// current amplitude
int amp = volume;
if ( !phases [index] )
amp = 0;
int delta = amp - oscs [index].last_amp;
if ( delta )
{
oscs [index].last_amp = amp;
synth.offset( last_time, delta, oscs [index].output );
}
blip_time_t time = last_time + delays [index];
if ( time < end_time )
{
Blip_Buffer* const osc_output = oscs [index].output;
int delta = amp * 2 - volume;
if ( volume )
{
do
{
delta = -delta;
synth.offset_inline( time, delta, osc_output );
time += period;
}
while ( time < end_time );
oscs [index].last_amp = (delta + volume) >> 1;
phases [index] = (delta > 0);
}
else
{
// maintain phase when silent
int count = (end_time - time + period - 1) / period;
phases [index] ^= count & 1;
time += (long) count * period;
}
}
delays [index] = time - end_time;
}
last_time = end_time;
}

View File

@ -0,0 +1,135 @@
// Sunsoft FME-7 sound emulator
// Nes_Emu 0.7.0
#ifndef NES_FME7_APU_H
#define NES_FME7_APU_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
struct fme7_apu_state_t
{
enum { reg_count = 14 };
BOOST::uint8_t regs [reg_count];
BOOST::uint8_t phases [3]; // 0 or 1
BOOST::uint8_t latch;
BOOST::uint16_t delays [3]; // a, b, c
};
BOOST_STATIC_ASSERT( sizeof (fme7_apu_state_t) == 24 );
class Nes_Fme7_Apu : private fme7_apu_state_t {
public:
Nes_Fme7_Apu();
// See Nes_Apu.h for reference
void reset();
void volume( double );
void treble_eq( blip_eq_t const& );
void output( Blip_Buffer* );
enum { osc_count = 3 };
void osc_output( int index, Blip_Buffer* );
void end_frame( blip_time_t );
void save_state( fme7_apu_state_t* ) const;
void load_state( fme7_apu_state_t const& );
// Mask and addresses of registers
enum { addr_mask = 0xe000 };
enum { data_addr = 0xe000 };
enum { latch_addr = 0xc000 };
// (addr & addr_mask) == latch_addr
void write_latch( int );
// (addr & addr_mask) == data_addr
void write_data( blip_time_t, int data );
// End of public interface
private:
// noncopyable
Nes_Fme7_Apu( const Nes_Fme7_Apu& );
Nes_Fme7_Apu& operator = ( const Nes_Fme7_Apu& );
static unsigned char amp_table [16];
struct {
Blip_Buffer* output;
int last_amp;
} oscs [osc_count];
blip_time_t last_time;
enum { amp_range = 192 }; // can be any value; this gives best error/quality tradeoff
Blip_Synth<blip_good_quality,1> synth;
void run_until( blip_time_t );
};
inline void Nes_Fme7_Apu::volume( double v )
{
synth.volume( 0.38 / amp_range * v ); // to do: fine-tune
}
inline void Nes_Fme7_Apu::treble_eq( blip_eq_t const& eq )
{
synth.treble_eq( eq );
}
inline void Nes_Fme7_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline void Nes_Fme7_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
inline Nes_Fme7_Apu::Nes_Fme7_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
inline void Nes_Fme7_Apu::write_latch( int data ) { latch = data; }
inline void Nes_Fme7_Apu::write_data( blip_time_t time, int data )
{
if ( (unsigned) latch >= reg_count )
{
#ifdef dprintf
dprintf( "FME7 write to %02X (past end of sound registers)\n", (int) latch );
#endif
return;
}
run_until( time );
regs [latch] = data;
}
inline void Nes_Fme7_Apu::end_frame( blip_time_t time )
{
if ( time > last_time )
run_until( time );
assert( last_time >= time );
last_time -= time;
}
inline void Nes_Fme7_Apu::save_state( fme7_apu_state_t* out ) const
{
*out = *this;
}
inline void Nes_Fme7_Apu::load_state( fme7_apu_state_t const& in )
{
reset();
fme7_apu_state_t* state = this;
*state = in;
}
#endif

View File

@ -0,0 +1,216 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Mapper::Nes_Mapper()
{
emu_ = NULL;
static char c;
state = &c; // TODO: state must not be null?
state_size = 0;
}
Nes_Mapper::~Nes_Mapper()
{
}
// Sets mirroring, maps first 8K CHR in, first and last 16K of PRG,
// intercepts writes to upper half of memory, and clears registered state.
void Nes_Mapper::default_reset_state()
{
int mirroring = cart_->mirroring();
if ( mirroring & 8 )
mirror_full();
else if ( mirroring & 1 )
mirror_vert();
else
mirror_horiz();
set_chr_bank( 0, bank_8k, 0 );
set_prg_bank( 0x8000, bank_16k, 0 );
set_prg_bank( 0xC000, bank_16k, last_bank );
intercept_writes( 0x8000, 0x8000 );
memset( state, 0, state_size );
}
void Nes_Mapper::reset()
{
default_reset_state();
reset_state();
apply_mapping();
}
void mapper_state_t::write( const void* p, unsigned long s )
{
require( s <= max_mapper_state_size );
require( !size );
size = s;
memcpy( data, p, s );
}
int mapper_state_t::read( void* p, unsigned long s ) const
{
if ( (long) s > size )
s = size;
memcpy( p, data, s );
return s;
}
void Nes_Mapper::save_state( mapper_state_t& out )
{
out.write( state, state_size );
}
void Nes_Mapper::load_state( mapper_state_t const& in )
{
default_reset_state();
read_state( in );
apply_mapping();
}
void Nes_Mapper::read_state( mapper_state_t const& in )
{
memset( state, 0, state_size );
in.read( state, state_size );
apply_mapping();
}
// Timing
void Nes_Mapper::irq_changed() { emu_->irq_changed(); }
nes_time_t Nes_Mapper::next_irq( nes_time_t ) { return no_irq; }
void Nes_Mapper::a12_clocked() { }
void Nes_Mapper::run_until( nes_time_t ) { }
void Nes_Mapper::end_frame( nes_time_t ) { }
bool Nes_Mapper::ppu_enabled() const { return emu().ppu.w2001 & 0x08; }
// Sound
int Nes_Mapper::channel_count() const { return 0; }
void Nes_Mapper::set_channel_buf( int, Blip_Buffer* ) { require( false ); }
void Nes_Mapper::set_treble( blip_eq_t const& ) { }
// Memory mapping
void Nes_Mapper::set_prg_bank( nes_addr_t addr, bank_size_t bs, int bank )
{
require( addr >= 0x2000 ); // can't remap low-memory
int bank_size = 1 << bs;
require( addr % bank_size == 0 ); // must be aligned
int bank_count = cart_->prg_size() >> bs;
if ( bank < 0 )
bank += bank_count;
if ( bank >= bank_count )
{
check( !(cart_->prg_size() & (cart_->prg_size() - 1)) ); // ensure PRG size is power of 2
bank %= bank_count;
}
emu().map_code( addr, bank_size, cart_->prg() + (bank << bs) );
if ( unsigned (addr - 0x6000) < 0x2000 )
emu().enable_prg_6000();
}
void Nes_Mapper::set_chr_bank( nes_addr_t addr, bank_size_t bs, int bank )
{
emu().ppu.render_until( emu().clock() );
emu().ppu.set_chr_bank( addr, 1 << bs, bank << bs );
}
void Nes_Mapper::mirror_manual( int page0, int page1, int page2, int page3 )
{
emu().ppu.render_bg_until( emu().clock() );
emu().ppu.set_nt_banks( page0, page1, page2, page3 );
}
#ifndef NDEBUG
int Nes_Mapper::handle_bus_conflict( nes_addr_t addr, int data )
{
if ( emu().Nes_Cpu::get_code( addr ) [0] != data )
dprintf( "Mapper write had bus conflict\n" );
return data;
}
#endif
// Mapper registration
int const max_mappers = 32;
Nes_Mapper::mapping_t Nes_Mapper::mappers [max_mappers] =
{
{ 0, Nes_Mapper::make_nrom },
{ 1, Nes_Mapper::make_mmc1 },
{ 2, Nes_Mapper::make_unrom },
{ 3, Nes_Mapper::make_cnrom },
{ 4, Nes_Mapper::make_mmc3 },
{ 7, Nes_Mapper::make_aorom }
};
static int mapper_count = 6; // to do: keep synchronized with pre-supplied mappers above
Nes_Mapper::creator_func_t Nes_Mapper::get_mapper_creator( int code )
{
for ( int i = 0; i < mapper_count; i++ )
{
if ( mappers [i].code == code )
return mappers [i].func;
}
return NULL;
}
void Nes_Mapper::register_mapper( int code, creator_func_t func )
{
// Catch attempted registration of a different creation function for same mapper code
require( !get_mapper_creator( code ) || get_mapper_creator( code ) == func );
require( mapper_count < max_mappers ); // fixed liming on number of registered mappers
mapping_t& m = mappers [mapper_count++];
m.code = code;
m.func = func;
}
Nes_Mapper* Nes_Mapper::create( Nes_Cart const* cart, Nes_Core* emu )
{
Nes_Mapper::creator_func_t func = get_mapper_creator( cart->mapper_code() );
if ( !func )
return NULL;
// to do: out of memory will be reported as unsupported mapper
Nes_Mapper* mapper = func();
if ( mapper )
{
mapper->cart_ = cart;
mapper->emu_ = emu;
}
return mapper;
}

View File

@ -0,0 +1,234 @@
// NES mapper interface
// Nes_Emu 0.7.0
#ifndef NES_MAPPER
#define NES_MAPPER
#include "Nes_Cart.h"
#include "Nes_Cpu.h"
#include "nes_data.h"
#include "Nes_Core.h"
class Blip_Buffer;
class blip_eq_t;
class Nes_Core;
class Nes_Mapper {
public:
// Register function that creates mapper for given code.
typedef Nes_Mapper* (*creator_func_t)();
static void register_mapper( int code, creator_func_t );
// Register optional mappers included with Nes_Emu
void register_optional_mappers();
// Create mapper appropriate for cartridge. Returns NULL if it uses unsupported mapper.
static Nes_Mapper* create( Nes_Cart const*, Nes_Core* );
virtual ~Nes_Mapper();
// Reset mapper to power-up state.
virtual void reset();
// Save snapshot of mapper state. Default saves registered state.
virtual void save_state( mapper_state_t& );
// Resets mapper, loads state, then applies it
virtual void load_state( mapper_state_t const& );
// I/O
// Read from memory
virtual int read( nes_time_t, nes_addr_t );
// Write to memory
virtual void write( nes_time_t, nes_addr_t, int data ) = 0;
// Write to memory below 0x8000 (returns false if mapper didn't handle write)
virtual bool write_intercepted( nes_time_t, nes_addr_t, int data );
// Timing
// Time returned when current mapper state won't ever cause an IRQ
enum { no_irq = LONG_MAX / 2 };
// Time next IRQ will occur at
virtual nes_time_t next_irq( nes_time_t present );
// Run mapper until given time
virtual void run_until( nes_time_t );
// End video frame of given length
virtual void end_frame( nes_time_t length );
// Sound
// Number of sound channels
virtual int channel_count() const;
// Set sound buffer for channel to output to, or NULL to silence channel.
virtual void set_channel_buf( int index, Blip_Buffer* );
// Set treble equalization
virtual void set_treble( blip_eq_t const& );
// Misc
// Called when bit 12 of PPU's VRAM address changes from 0 to 1 due to
// $2006 and $2007 accesses (but not due to PPU scanline rendering).
virtual void a12_clocked();
protected:
// Services provided for derived mapper classes
Nes_Mapper();
// Register state data to automatically save and load. Be sure the binary
// layout is suitable for use in a file, including any byte-order issues.
// Automatically cleared to zero by default reset().
void register_state( void*, unsigned );
// Enable 8K of RAM at 0x6000-0x7FFF, optionally read-only.
void enable_sram( bool enabled = true, bool read_only = false );
// Cause CPU writes within given address range to call mapper's write() function.
// Might map a larger address range, which the mapper can ignore and pass to
// Nes_Mapper::write(). The range 0x8000-0xffff is always intercepted by the mapper.
void intercept_writes( nes_addr_t addr, unsigned size );
// Cause CPU reads within given address range to call mapper's read() function.
// Might map a larger address range, which the mapper can ignore and pass to
// Nes_Mapper::read(). CPU opcode/operand reads and low-memory reads always
// go directly to memory and cannot be intercepted.
void intercept_reads( nes_addr_t addr, unsigned size );
// Bank sizes for mapping
enum bank_size_t { // 1 << bank_Xk = X * 1024
bank_1k = 10,
bank_2k = 11,
bank_4k = 12,
bank_8k = 13,
bank_16k = 14,
bank_32k = 15
};
// Index of last PRG/CHR bank. Last_bank selects last bank, last_bank - 1
// selects next-to-last bank, etc.
enum { last_bank = -1 };
// Map 'size' bytes from 'PRG + bank * size' to CPU address space starting at 'addr'
void set_prg_bank( nes_addr_t addr, bank_size_t size, int bank );
// Map 'size' bytes from 'CHR + bank * size' to PPU address space starting at 'addr'
void set_chr_bank( nes_addr_t addr, bank_size_t size, int bank );
// Set PPU mirroring. All mappings implemented using mirror_manual().
void mirror_manual( int page0, int page1, int page2, int page3 );
void mirror_single( int page );
void mirror_horiz( int page = 0 );
void mirror_vert( int page = 0 );
void mirror_full();
// True if PPU rendering is enabled. Some mappers watch PPU memory accesses to determine
// when scanlines occur, and can only do this when rendering is enabled.
bool ppu_enabled() const;
// Cartridge being emulated
Nes_Cart const& cart() const { return *cart_; }
// Must be called when next_irq()'s return value is earlier than previous,
// current CPU run can be stopped earlier. Best to call whenever time may
// have changed (no performance impact if called even when time didn't change).
void irq_changed();
// Handle data written to mapper that doesn't handle bus conflict arising due to
// PRG also reading data. Returns data that mapper should act as if were
// written. Currently always returns 'data' and just checks that data written is
// the same as byte in PRG at same address and writes debug message if it doesn't.
int handle_bus_conflict( nes_addr_t addr, int data );
// Reference to emulator that uses this mapper.
Nes_Core& emu() const { return *emu_; }
protected:
// Services derived classes provide
// Read state from snapshot. Default reads data into registered state, then calls
// apply_mapping().
virtual void read_state( mapper_state_t const& );
// Apply current mapping state to hardware. Called after reading mapper state
// from a snapshot.
virtual void apply_mapping() = 0;
// Called by default reset() before apply_mapping() is called.
virtual void reset_state() { }
// End of general interface
private:
Nes_Core* emu_;
void* state;
unsigned state_size;
Nes_Cart const* cart_;
void default_reset_state();
struct mapping_t {
int code;
Nes_Mapper::creator_func_t func;
};
static mapping_t mappers [];
static creator_func_t get_mapper_creator( int code );
// built-in mappers
static Nes_Mapper* make_nrom();
static Nes_Mapper* make_unrom();
static Nes_Mapper* make_aorom();
static Nes_Mapper* make_cnrom();
static Nes_Mapper* make_mmc1();
static Nes_Mapper* make_mmc3();
};
template<class T>
struct register_mapper {
/*void*/ register_mapper( int code ) { Nes_Mapper::register_mapper( code, create ); }
static Nes_Mapper* create() { return BLARGG_NEW T; }
};
#ifdef NDEBUG
inline int Nes_Mapper::handle_bus_conflict( nes_addr_t addr, int data ) { return data; }
#endif
inline void Nes_Mapper::mirror_horiz( int p ) { mirror_manual( p, p, p ^ 1, p ^ 1 ); }
inline void Nes_Mapper::mirror_vert( int p ) { mirror_manual( p, p ^ 1, p, p ^ 1 ); }
inline void Nes_Mapper::mirror_single( int p ) { mirror_manual( p, p, p, p ); }
inline void Nes_Mapper::mirror_full() { mirror_manual( 0, 1, 2, 3 ); }
inline void Nes_Mapper::register_state( void* p, unsigned s )
{
assert( s <= max_mapper_state_size );
state = p;
state_size = s;
}
inline bool Nes_Mapper::write_intercepted( nes_time_t, nes_addr_t, int ) { return false; }
inline int Nes_Mapper::read( nes_time_t, nes_addr_t ) { return -1; } // signal to caller
inline void Nes_Mapper::intercept_reads( nes_addr_t addr, unsigned size )
{
emu().add_mapper_intercept( addr, size, true, false );
}
inline void Nes_Mapper::intercept_writes( nes_addr_t addr, unsigned size )
{
emu().add_mapper_intercept( addr, size, false, true );
}
inline void Nes_Mapper::enable_sram( bool enabled, bool read_only )
{
emu_->enable_sram( enabled, read_only );
}
#endif

View File

@ -0,0 +1,123 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
class Mapper_Mmc1 : public Nes_Mapper, mmc1_state_t {
public:
Mapper_Mmc1()
{
mmc1_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
regs [0] = 0x0f;
regs [1] = 0x00;
regs [2] = 0x01;
regs [3] = 0x00;
}
void register_changed( int );
virtual void apply_mapping()
{
enable_sram(); // early MMC1 always had SRAM enabled
register_changed( 0 );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
if ( !(data & 0x80) )
{
buf |= (data & 1) << bit;
bit++;
if ( bit >= 5 )
{
int reg = addr >> 13 & 3;
regs [reg] = buf & 0x1f;
bit = 0;
buf = 0;
register_changed( reg );
}
}
else
{
bit = 0;
buf = 0;
regs [0] |= 0x0c;
register_changed( 0 );
}
}
};
void Mapper_Mmc1::register_changed( int reg )
{
// Mirroring
if ( reg == 0 )
{
int mode = regs [0] & 3;
if ( mode < 2 )
mirror_single( mode & 1 );
else if ( mode == 2 )
mirror_vert();
else
mirror_horiz();
}
// CHR
if ( reg < 3 && cart().chr_size() > 0 )
{
if ( regs [0] & 0x10 )
{
set_chr_bank( 0x0000, bank_4k, regs [1] );
set_chr_bank( 0x1000, bank_4k, regs [2] );
}
else
{
set_chr_bank( 0, bank_8k, regs [1] >> 1 );
}
}
// PRG
int bank = (regs [1] & 0x10) | (regs [3] & 0x0f);
if ( !(regs [0] & 0x08) )
{
set_prg_bank( 0x8000, bank_32k, bank >> 1 );
}
else if ( regs [0] & 0x04 )
{
set_prg_bank( 0x8000, bank_16k, bank );
set_prg_bank( 0xC000, bank_16k, bank | 0x0f );
}
else
{
set_prg_bank( 0x8000, bank_16k, bank & ~0x0f );
set_prg_bank( 0xC000, bank_16k, bank );
}
}
Nes_Mapper* Nes_Mapper::make_mmc1()
{
return BLARGG_NEW Mapper_Mmc1;
}

View File

@ -0,0 +1,252 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// 264 or less breaks Gargoyle's Quest II
// 267 or less breaks Magician
int const irq_fine_tune = 268;
nes_time_t const first_scanline = 20 * Nes_Ppu::scanline_len + irq_fine_tune;
nes_time_t const last_scanline = first_scanline + 240 * Nes_Ppu::scanline_len;
class Mapper_Mmc3 : public Nes_Mapper, mmc3_state_t {
nes_time_t next_time;
int counter_just_clocked; // used only for debugging
public:
Mapper_Mmc3()
{
mmc3_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
memcpy( banks, "\0\2\4\5\6\7\0\1", sizeof banks );
counter_just_clocked = 0;
next_time = 0;
mirror = 1;
if ( cart().mirroring() & 1 )
{
mirror = 0;
//dprintf( "cart specified vertical mirroring\n" );
}
}
void update_chr_banks();
void update_prg_banks();
void write_irq( nes_addr_t addr, int data );
void write( nes_time_t, nes_addr_t, int );
void start_frame() { next_time = first_scanline; }
virtual void apply_mapping()
{
write( 0, 0xA000, mirror );
write( 0, 0xA001, sram_mode );
update_chr_banks();
update_prg_banks();
start_frame();
}
void clock_counter()
{
if ( counter_just_clocked )
counter_just_clocked--;
if ( !irq_ctr-- )
{
irq_ctr = irq_latch;
//if ( !irq_latch )
//dprintf( "MMC3 IRQ counter reloaded with 0\n" );
}
//dprintf( "%6d MMC3 IRQ clocked\n", time / ppu_overclock );
if ( irq_ctr == 0 )
{
//if ( irq_enabled && !irq_flag )
//dprintf( "%6d MMC3 IRQ triggered: %f\n", time / ppu_overclock, time / scanline_len.0 - 20 );
irq_flag = irq_enabled;
}
}
virtual void run_until( nes_time_t );
virtual void a12_clocked()
{
clock_counter();
if ( irq_enabled )
irq_changed();
}
virtual void end_frame( nes_time_t end_time )
{
run_until( end_time );
start_frame();
}
virtual nes_time_t next_irq( nes_time_t present )
{
run_until( present );
if ( !irq_enabled )
return no_irq;
if ( irq_flag )
return 0;
if ( !ppu_enabled() )
return no_irq;
int remain = irq_ctr - 1;
if ( remain < 0 )
remain = irq_latch;
assert( remain >= 0 );
long time = remain * 341L + next_time;
if ( time > last_scanline )
return no_irq;
return time / ppu_overclock + 1;
}
};
void Mapper_Mmc3::run_until( nes_time_t end_time )
{
bool bg_enabled = ppu_enabled();
end_time *= ppu_overclock;
while ( next_time < end_time && next_time <= last_scanline )
{
if ( bg_enabled )
clock_counter();
next_time += Nes_Ppu::scanline_len;
}
}
void Mapper_Mmc3::update_chr_banks()
{
int chr_xor = (mode >> 7 & 1) * 0x1000;
set_chr_bank( 0x0000 ^ chr_xor, bank_2k, banks [0] >> 1 );
set_chr_bank( 0x0800 ^ chr_xor, bank_2k, banks [1] >> 1 );
set_chr_bank( 0x1000 ^ chr_xor, bank_1k, banks [2] );
set_chr_bank( 0x1400 ^ chr_xor, bank_1k, banks [3] );
set_chr_bank( 0x1800 ^ chr_xor, bank_1k, banks [4] );
set_chr_bank( 0x1c00 ^ chr_xor, bank_1k, banks [5] );
}
void Mapper_Mmc3::update_prg_banks()
{
set_prg_bank( 0xA000, bank_8k, banks [7] );
nes_addr_t addr = 0x8000 + 0x4000 * (mode >> 6 & 1);
set_prg_bank( addr, bank_8k, banks [6] );
set_prg_bank( addr ^ 0x4000, bank_8k, last_bank - 1 );
}
void Mapper_Mmc3::write_irq( nes_addr_t addr, int data )
{
switch ( addr & 0xE001 )
{
case 0xC000:
irq_latch = data;
break;
case 0xC001:
if ( counter_just_clocked == 1 )
dprintf( "MMC3 IRQ counter pathological behavior triggered\n" );
counter_just_clocked = 2;
irq_ctr = 0;
break;
case 0xE000:
irq_flag = false;
irq_enabled = false;
break;
case 0xE001:
irq_enabled = true;
break;
}
if ( irq_enabled )
irq_changed();
}
void Mapper_Mmc3::write( nes_time_t time, nes_addr_t addr, int data )
{
check( !(addr & ~0xe001) ); // writes to mirrored registers are rare
//dprintf( "%6d %02X->%04X\n", time, data, addr );
switch ( addr & 0xE001 )
{
case 0x8000: {
int changed = mode ^ data;
mode = data;
// avoid unnecessary bank updates
if ( changed & 0x80 )
update_chr_banks();
if ( changed & 0x40 )
update_prg_banks();
break;
}
case 0x8001: {
int bank = mode & 7;
banks [bank] = data;
if ( bank < 6 )
update_chr_banks();
else
update_prg_banks();
break;
}
case 0xA000:
mirror = data;
if ( !(cart().mirroring() & 0x08) )
{
if ( mirror & 1 )
mirror_horiz();
else
mirror_vert();
}
break;
case 0xA001:
sram_mode = data;
//dprintf( "%02X->%04X\n", data, addr );
// Startropics 1 & 2 use MMC6 and always enable low 512 bytes of SRAM
if ( (data & 0x3F) == 0x30 )
enable_sram( true );
else
enable_sram( data & 0x80, data & 0x40 );
break;
default:
run_until( time );
write_irq( addr, data );
break;
}
}
Nes_Mapper* Nes_Mapper::make_mmc3()
{
return BLARGG_NEW Mapper_Mmc3;
}

View File

@ -0,0 +1,149 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Namco_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Namco_Apu::Nes_Namco_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
Nes_Namco_Apu::~Nes_Namco_Apu()
{
}
void Nes_Namco_Apu::reset()
{
last_time = 0;
addr_reg = 0;
int i;
for ( i = 0; i < reg_count; i++ )
reg [i] = 0;
for ( i = 0; i < osc_count; i++ )
{
Namco_Osc& osc = oscs [i];
osc.delay = 0;
osc.last_amp = 0;
osc.wave_pos = 0;
}
}
void Nes_Namco_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
/*
void Nes_Namco_Apu::reflect_state( Tagged_Data& data )
{
reflect_int16( data, 'ADDR', &addr_reg );
static const char hex [17] = "0123456789ABCDEF";
int i;
for ( i = 0; i < reg_count; i++ )
reflect_int16( data, 'RG\0\0' + hex [i >> 4] * 0x100 + hex [i & 15], &reg [i] );
for ( i = 0; i < osc_count; i++ )
{
reflect_int32( data, 'DLY0' + i, &oscs [i].delay );
reflect_int16( data, 'POS0' + i, &oscs [i].wave_pos );
}
}
*/
void Nes_Namco_Apu::end_frame( nes_time_t time )
{
if ( time > last_time )
run_until( time );
assert( last_time >= time );
last_time -= time;
}
void Nes_Namco_Apu::run_until( nes_time_t nes_end_time )
{
int active_oscs = (reg [0x7F] >> 4 & 7) + 1;
for ( int i = osc_count - active_oscs; i < osc_count; i++ )
{
Namco_Osc& osc = oscs [i];
Blip_Buffer* output = osc.output;
if ( !output )
continue;
blip_resampled_time_t time =
output->resampled_time( last_time ) + osc.delay;
blip_resampled_time_t end_time = output->resampled_time( nes_end_time );
osc.delay = 0;
if ( time < end_time )
{
const BOOST::uint8_t* osc_reg = &reg [i * 8 + 0x40];
if ( !(osc_reg [4] & 0xE0) )
continue;
int volume = osc_reg [7] & 15;
if ( !volume )
continue;
long freq = (osc_reg [4] & 3) * 0x10000 + osc_reg [2] * 0x100L + osc_reg [0];
if ( freq < 64 * active_oscs )
continue; // prevent low frequencies from excessively delaying freq changes
blip_resampled_time_t period =
output->resampled_duration( 983040 ) / freq * active_oscs;
int wave_size = 32 - (osc_reg [4] >> 2 & 7) * 4;
if ( !wave_size )
continue;
int last_amp = osc.last_amp;
int wave_pos = osc.wave_pos;
do
{
// read wave sample
int addr = wave_pos + osc_reg [6];
int sample = reg [addr >> 1] >> (addr << 2 & 4);
wave_pos++;
sample = (sample & 15) * volume;
// output impulse if amplitude changed
int delta = sample - last_amp;
if ( delta )
{
last_amp = sample;
synth.offset_resampled( time, delta, output );
}
// next sample
time += period;
if ( wave_pos >= wave_size )
wave_pos = 0;
}
while ( time < end_time );
osc.wave_pos = wave_pos;
osc.last_amp = last_amp;
}
osc.delay = time - end_time;
}
last_time = nes_end_time;
}

View File

@ -0,0 +1,104 @@
// Namco 106 sound chip emulator
// Nes_Snd_Emu 0.1.7
#ifndef NES_NAMCO_APU_H
#define NES_NAMCO_APU_H
#include "Nes_Apu.h"
struct namco_state_t;
class Nes_Namco_Apu {
public:
Nes_Namco_Apu();
~Nes_Namco_Apu();
// See Nes_Apu.h for reference.
void volume( double );
void treble_eq( const blip_eq_t& );
void output( Blip_Buffer* );
enum { osc_count = 8 };
void osc_output( int index, Blip_Buffer* );
void reset();
void end_frame( nes_time_t );
// Read/write data register is at 0x4800
enum { data_reg_addr = 0x4800 };
void write_data( nes_time_t, int );
int read_data();
// Write-only address register is at 0xF800
enum { addr_reg_addr = 0xF800 };
void write_addr( int );
// to do: implement save/restore
void save_state( namco_state_t* out ) const;
void load_state( namco_state_t const& );
private:
// noncopyable
Nes_Namco_Apu( const Nes_Namco_Apu& );
Nes_Namco_Apu& operator = ( const Nes_Namco_Apu& );
struct Namco_Osc {
long delay;
Blip_Buffer* output;
short last_amp;
short wave_pos;
};
Namco_Osc oscs [osc_count];
nes_time_t last_time;
int addr_reg;
enum { reg_count = 0x80 };
BOOST::uint8_t reg [reg_count];
Blip_Synth<blip_good_quality,15> synth;
BOOST::uint8_t& access();
void run_until( nes_time_t );
};
/*
struct namco_state_t
{
BOOST::uint8_t regs [0x80];
BOOST::uint8_t addr;
BOOST::uint8_t unused;
BOOST::uint8_t positions [8];
BOOST::uint32_t delays [8];
};
*/
inline BOOST::uint8_t& Nes_Namco_Apu::access()
{
int addr = addr_reg & 0x7f;
if ( addr_reg & 0x80 )
addr_reg = (addr + 1) | 0x80;
return reg [addr];
}
inline void Nes_Namco_Apu::volume( double v ) { synth.volume( 0.10 / osc_count * v ); }
inline void Nes_Namco_Apu::treble_eq( const blip_eq_t& eq ) { synth.treble_eq( eq ); }
inline void Nes_Namco_Apu::write_addr( int v ) { addr_reg = v; }
inline int Nes_Namco_Apu::read_data() { return access(); }
inline void Nes_Namco_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline void Nes_Namco_Apu::write_data( nes_time_t time, int data )
{
run_until( time );
access() = data;
}
#endif

View File

@ -0,0 +1,157 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/libs/
#include "Nes_Nonlinearizer.h"
/* Library Copyright (C) 2003-2005 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
Nes_Nonlinearizer::Nes_Nonlinearizer() : Multi_Buffer( 1 )
{
enable_nonlinearity( true );
}
Nes_Nonlinearizer::~Nes_Nonlinearizer()
{
}
blargg_err_t Nes_Nonlinearizer::sample_rate( long rate, int msec )
{
BLARGG_RETURN_ERR( buf.sample_rate( rate, msec ) );
BLARGG_RETURN_ERR( tnd.sample_rate( rate, msec ) );
return Multi_Buffer::sample_rate( buf.sample_rate(), buf.length() );
}
void Nes_Nonlinearizer::clock_rate( long rate )
{
buf.clock_rate( rate );
tnd.clock_rate( rate );
}
void Nes_Nonlinearizer::bass_freq( int freq )
{
buf.bass_freq( freq );
tnd.bass_freq( freq );
}
void Nes_Nonlinearizer::clear()
{
accum = 0x8000;
buf.clear();
tnd.clear();
}
Nes_Nonlinearizer::channel_t Nes_Nonlinearizer::channel( int i )
{
channel_t c;
c.center = (2 <= i && i <= 4) ? &tnd : &buf;
c.left = c.center;
c.right = c.center;
return c;
}
void Nes_Nonlinearizer::end_frame( blip_time_t length, bool )
{
buf.end_frame( length );
tnd.end_frame( length );
}
long Nes_Nonlinearizer::samples_avail() const
{
return buf.samples_avail();
}
#include BLARGG_ENABLE_OPTIMIZER
void Nes_Nonlinearizer::enable_nonlinearity( bool b )
{
require( b ); // to do: implement non-linear output
double gain = 0x7fff * 0.742467605 * 1.2;
for ( int i = 0; i < half * 2; i++ )
{
int out = i << shift;
if ( i > half )
{
double n = 202.0 / (half - 1) * (i - half);
double d = 163.67 / (24329.0 / n + 100);
out = int (d * gain) + 0x8000;
}
table [i] = out;
}
}
void Nes_Nonlinearizer::make_nonlinear( long count )
{
const int zero_offset = 0x7f7f; // to do: use private constant from Blip_Buffer.h
#define ENTRY( s ) (table [((s) >> shift) & entry_mask])
BOOST::uint16_t* p = tnd.buffer_;
unsigned prev = ENTRY( accum );
long accum = this->accum;
for ( unsigned n = count; n--; )
{
accum += (long) *p - zero_offset;
if ( (accum >> shift) >= half * 2 )
{
// to do: extend table to handle overflow better
check( false ); // overflowed
accum = (half * 2 - 1) << shift;
}
unsigned entry = ENTRY( accum );
*p++ = entry - prev + zero_offset;
prev = entry;
}
this->accum = accum;
}
long Nes_Nonlinearizer::read_samples( blip_sample_t* out, long count )
{
long avail = buf.samples_avail();
assert( tnd.samples_avail() == avail );
if ( count > avail )
count = avail;
if ( count )
{
make_nonlinear( count );
Blip_Reader lin;
Blip_Reader nonlin;
int lin_bass = lin.begin( buf );
int nonlin_bass = nonlin.begin( tnd );
for ( int n = count; n--; )
{
int s = lin.read() + nonlin.read();
lin.next( lin_bass );
nonlin.next( nonlin_bass );
*out++ = s;
if ( (BOOST::int16_t) s != s )
out [-1] = 0x7FFF - (s >> 24);
}
lin.end( buf );
nonlin.end( tnd );
buf.remove_samples( count );
tnd.remove_samples( count );
}
return count;
}

View File

@ -0,0 +1,44 @@
// NES non-linear audio output
// Nes_Emu 0.5.0. Copyright (C) 2003-2005 Shay Green. GNU LGPL license.
#ifndef NES_NONLINEARIZER_H
#define NES_NONLINEARIZER_H
#include "Multi_Buffer.h"
class Nes_Nonlinearizer : public Multi_Buffer {
public:
Nes_Nonlinearizer();
~Nes_Nonlinearizer();
// Enable non-linear output
void enable_nonlinearity( bool = true );
// See Multi_Buffer.h
blargg_err_t sample_rate( long rate, int msec = blip_default_length );
Multi_Buffer::sample_rate;
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool unused = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
// End of public interface
private:
enum { shift = 5 };
enum { half = 0x8000 >> shift };
enum { entry_mask = half * 2 - 1 };
Blip_Buffer buf;
Blip_Buffer tnd;
long accum;
BOOST::uint16_t table [half * 2];
void make_nonlinear( long );
};
#endif

View File

@ -0,0 +1,545 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
// Nes_Osc
void Nes_Osc::clock_length( int halt_mask )
{
if ( length_counter && !(regs [0] & halt_mask) )
length_counter--;
}
void Nes_Envelope::clock_envelope()
{
int period = regs [0] & 15;
if ( reg_written [3] ) {
reg_written [3] = false;
env_delay = period;
envelope = 15;
}
else if ( --env_delay < 0 ) {
env_delay = period;
if ( envelope | (regs [0] & 0x20) )
envelope = (envelope - 1) & 15;
}
}
int Nes_Envelope::volume() const
{
return length_counter == 0 ? 0 : (regs [0] & 0x10) ? (regs [0] & 15) : envelope;
}
// Nes_Square
void Nes_Square::clock_sweep( int negative_adjust )
{
int sweep = regs [1];
if ( --sweep_delay < 0 )
{
reg_written [1] = true;
int period = this->period();
int shift = sweep & shift_mask;
if ( shift && (sweep & 0x80) && period >= 8 )
{
int offset = period >> shift;
if ( sweep & negate_flag )
offset = negative_adjust - offset;
if ( period + offset < 0x800 )
{
period += offset;
// rewrite period
regs [2] = period & 0xff;
regs [3] = (regs [3] & ~7) | ((period >> 8) & 7);
}
}
}
if ( reg_written [1] ) {
reg_written [1] = false;
sweep_delay = (sweep >> 4) & 7;
}
}
// TODO: clean up
inline nes_time_t Nes_Square::maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period )
{
long remain = end_time - time;
if ( remain > 0 )
{
int count = (remain + timer_period - 1) / timer_period;
phase = (phase + count) & (phase_range - 1);
time += (long) count * timer_period;
}
return time;
}
void Nes_Square::run( nes_time_t time, nes_time_t end_time )
{
const int period = this->period();
const int timer_period = (period + 1) * 2;
if ( !output )
{
delay = maintain_phase( time + delay, end_time, timer_period ) - end_time;
return;
}
int offset = period >> (regs [1] & shift_mask);
if ( regs [1] & negate_flag )
offset = 0;
const int volume = this->volume();
if ( volume == 0 || period < 8 || (period + offset) >= 0x800 )
{
if ( last_amp ) {
synth.offset( time, -last_amp, output );
last_amp = 0;
}
time += delay;
time = maintain_phase( time, end_time, timer_period );
}
else
{
// handle duty select
int duty_select = (regs [0] >> 6) & 3;
int duty = 1 << duty_select; // 1, 2, 4, 2
int amp = 0;
if ( duty_select == 3 ) {
duty = 2; // negated 25%
amp = volume;
}
if ( phase < duty )
amp ^= volume;
int delta = update_amp( amp );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
Blip_Buffer* const output = this->output;
const Synth& synth = this->synth;
int delta = amp * 2 - volume;
int phase = this->phase;
do {
phase = (phase + 1) & (phase_range - 1);
if ( phase == 0 || phase == duty ) {
delta = -delta;
synth.offset_inline( time, delta, output );
}
time += timer_period;
}
while ( time < end_time );
last_amp = (delta + volume) >> 1;
this->phase = phase;
}
}
delay = time - end_time;
}
// Nes_Triangle
void Nes_Triangle::clock_linear_counter()
{
if ( reg_written [3] )
linear_counter = regs [0] & 0x7f;
else if ( linear_counter )
linear_counter--;
if ( !(regs [0] & 0x80) )
reg_written [3] = false;
}
inline int Nes_Triangle::calc_amp() const
{
int amp = phase_range - phase;
if ( amp < 0 )
amp = phase - (phase_range + 1);
return amp;
}
// TODO: clean up
inline nes_time_t Nes_Triangle::maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period )
{
long remain = end_time - time;
if ( remain > 0 )
{
int count = (remain + timer_period - 1) / timer_period;
phase = ((unsigned) phase + 1 - count) & (phase_range * 2 - 1);
phase++;
time += (long) count * timer_period;
}
return time;
}
void Nes_Triangle::run( nes_time_t time, nes_time_t end_time )
{
const int timer_period = period() + 1;
if ( !output )
{
time += delay;
delay = 0;
if ( length_counter && linear_counter && timer_period >= 3 )
delay = maintain_phase( time, end_time, timer_period ) - end_time;
return;
}
// to do: track phase when period < 3
// to do: Output 7.5 on dac when period < 2? More accurate, but results in more clicks.
int delta = update_amp( calc_amp() );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( length_counter == 0 || linear_counter == 0 || timer_period < 3 )
{
time = end_time;
}
else if ( time < end_time )
{
Blip_Buffer* const output = this->output;
int phase = this->phase;
int volume = 1;
if ( phase > phase_range ) {
phase -= phase_range;
volume = -volume;
}
do {
if ( --phase == 0 ) {
phase = phase_range;
volume = -volume;
}
else {
synth.offset_inline( time, volume, output );
}
time += timer_period;
}
while ( time < end_time );
if ( volume < 0 )
phase += phase_range;
this->phase = phase;
last_amp = calc_amp();
}
delay = time - end_time;
}
// Nes_Dmc
void Nes_Dmc::reset()
{
address = 0;
dac = 0;
buf = 0;
bits_remain = 1;
bits = 0;
buf_full = false;
silence = true;
next_irq = Nes_Apu::no_irq;
irq_flag = false;
irq_enabled = false;
Nes_Osc::reset();
period = 0x1ac;
}
void Nes_Dmc::recalc_irq()
{
nes_time_t irq = Nes_Apu::no_irq;
if ( irq_enabled && length_counter )
irq = apu->last_dmc_time + delay +
((length_counter - 1) * 8 + bits_remain - 1) * nes_time_t (period) + 1;
if ( irq != next_irq ) {
next_irq = irq;
apu->irq_changed();
}
}
int Nes_Dmc::count_reads( nes_time_t time, nes_time_t* last_read ) const
{
if ( last_read )
*last_read = time;
if ( length_counter == 0 )
return 0; // not reading
long first_read = next_read_time();
long avail = time - first_read;
if ( avail <= 0 )
return 0;
int count = (avail - 1) / (period * 8) + 1;
if ( !(regs [0] & loop_flag) && count > length_counter )
count = length_counter;
if ( last_read ) {
*last_read = first_read + (count - 1) * (period * 8) + 1;
assert( *last_read <= time );
assert( count == count_reads( *last_read, NULL ) );
assert( count - 1 == count_reads( *last_read - 1, NULL ) );
}
return count;
}
static const short dmc_period_table [2] [16] = {
{0x1ac, 0x17c, 0x154, 0x140, 0x11e, 0x0fe, 0x0e2, 0x0d6, // NTSC
0x0be, 0x0a0, 0x08e, 0x080, 0x06a, 0x054, 0x048, 0x036},
{0x18e, 0x161, 0x13c, 0x129, 0x10a, 0x0ec, 0x0d2, 0x0c7, // PAL (totally untested)
0x0b1, 0x095, 0x084, 0x077, 0x062, 0x04e, 0x043, 0x032} // to do: verify PAL periods
};
inline void Nes_Dmc::reload_sample()
{
address = 0x4000 + regs [2] * 0x40;
length_counter = regs [3] * 0x10 + 1;
}
static const unsigned char dac_table [128] =
{
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9,10,11,12,13,14,
15,15,16,17,18,19,20,20,21,22,23,24,24,25,26,27,
27,28,29,30,31,31,32,33,33,34,35,36,36,37,38,38,
39,40,41,41,42,43,43,44,45,45,46,47,47,48,48,49,
50,50,51,52,52,53,53,54,55,55,56,56,57,58,58,59,
59,60,60,61,61,62,63,63,64,64,65,65,66,66,67,67,
68,68,69,70,70,71,71,72,72,73,73,74,74,75,75,75,
76,76,77,77,78,78,79,79,80,80,81,81,82,82,82,83,
};
void Nes_Dmc::write_register( int addr, int data )
{
if ( addr == 0 )
{
period = dmc_period_table [pal_mode] [data & 15];
irq_enabled = (data & 0xc0) == 0x80; // enabled only if loop disabled
irq_flag &= irq_enabled;
recalc_irq();
}
else if ( addr == 1 )
{
int old_dac = dac;
dac = data & 0x7F;
// adjust last_amp so that "pop" amplitude will be properly non-linear
// with respect to change in dac
int faked_nonlinear = dac - (dac_table [dac] - dac_table [old_dac]);
if ( !nonlinear )
last_amp = faked_nonlinear;
}
}
void Nes_Dmc::start()
{
reload_sample();
fill_buffer();
recalc_irq();
}
void Nes_Dmc::fill_buffer()
{
if ( !buf_full && length_counter )
{
require( prg_reader ); // prg_reader must be set
buf = prg_reader( prg_reader_data, 0x8000u + address );
address = (address + 1) & 0x7FFF;
buf_full = true;
if ( --length_counter == 0 )
{
if ( regs [0] & loop_flag ) {
reload_sample();
}
else {
apu->osc_enables &= ~0x10;
irq_flag = irq_enabled;
next_irq = Nes_Apu::no_irq;
apu->irq_changed();
}
}
}
}
void Nes_Dmc::run( nes_time_t time, nes_time_t end_time )
{
int delta = update_amp( dac );
if ( !output )
silence = true;
else if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
int bits_remain = this->bits_remain;
if ( silence && !buf_full )
{
int count = (end_time - time + period - 1) / period;
bits_remain = (bits_remain - 1 + 8 - (count % 8)) % 8 + 1;
time += count * period;
}
else
{
Blip_Buffer* const output = this->output;
const int period = this->period;
int bits = this->bits;
int dac = this->dac;
do
{
if ( !silence )
{
int step = (bits & 1) * 4 - 2;
bits >>= 1;
if ( unsigned (dac + step) <= 0x7F ) {
dac += step;
synth.offset_inline( time, step, output );
}
}
time += period;
if ( --bits_remain == 0 )
{
bits_remain = 8;
if ( !buf_full ) {
silence = true;
}
else {
silence = false;
bits = buf;
buf_full = false;
if ( !output )
silence = true;
fill_buffer();
}
}
}
while ( time < end_time );
this->dac = dac;
this->last_amp = dac;
this->bits = bits;
}
this->bits_remain = bits_remain;
}
delay = time - end_time;
}
// Nes_Noise
static const short noise_period_table [16] = {
0x004, 0x008, 0x010, 0x020, 0x040, 0x060, 0x080, 0x0A0,
0x0CA, 0x0FE, 0x17C, 0x1FC, 0x2FA, 0x3F8, 0x7F2, 0xFE4
};
void Nes_Noise::run( nes_time_t time, nes_time_t end_time )
{
int period = noise_period_table [regs [2] & 15];
#if NES_APU_NOISE_LOW_CPU
if ( period < 8 )
{
period = 8;
}
#endif
if ( !output )
{
// TODO: clean up
time += delay;
delay = time + (end_time - time + period - 1) / period * period - end_time;
return;
}
const int volume = this->volume();
int amp = (noise & 1) ? volume : 0;
int delta = update_amp( amp );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
const int mode_flag = 0x80;
if ( !volume )
{
// round to next multiple of period
time += (end_time - time + period - 1) / period * period;
// approximate noise cycling while muted, by shuffling up noise register
// to do: precise muted noise cycling?
if ( !(regs [2] & mode_flag) ) {
int feedback = (noise << 13) ^ (noise << 14);
noise = (feedback & 0x4000) | (noise >> 1);
}
}
else
{
Blip_Buffer* const output = this->output;
// using resampled time avoids conversion in synth.offset()
blip_resampled_time_t rperiod = output->resampled_duration( period );
blip_resampled_time_t rtime = output->resampled_time( time );
int noise = this->noise;
int delta = amp * 2 - volume;
const int tap = (regs [2] & mode_flag ? 8 : 13);
do {
int feedback = (noise << tap) ^ (noise << 14);
time += period;
if ( (noise + 1) & 2 ) {
// bits 0 and 1 of noise differ
delta = -delta;
synth.offset_resampled( rtime, delta, output );
}
rtime += rperiod;
noise = (feedback & 0x4000) | (noise >> 1);
}
while ( time < end_time );
last_amp = (delta + volume) >> 1;
this->noise = noise;
}
}
delay = time - end_time;
}

150
quicknes/nes_emu/Nes_Oscs.h Normal file
View File

@ -0,0 +1,150 @@
// Private oscillators used by Nes_Apu
// Nes_Snd_Emu 0.1.7
#ifndef NES_OSCS_H
#define NES_OSCS_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
class Nes_Apu;
struct Nes_Osc
{
unsigned char regs [4];
bool reg_written [4];
Blip_Buffer* output;
int length_counter;// length counter (0 if unused by oscillator)
int delay; // delay until next (potential) transition
int last_amp; // last amplitude oscillator was outputting
void clock_length( int halt_mask );
int period() const {
return (regs [3] & 7) * 0x100 + (regs [2] & 0xff);
}
void reset() {
delay = 0;
last_amp = 0;
}
int update_amp( int amp ) {
int delta = amp - last_amp;
last_amp = amp;
return delta;
}
};
struct Nes_Envelope : Nes_Osc
{
int envelope;
int env_delay;
void clock_envelope();
int volume() const;
void reset() {
envelope = 0;
env_delay = 0;
Nes_Osc::reset();
}
};
// Nes_Square
struct Nes_Square : Nes_Envelope
{
enum { negate_flag = 0x08 };
enum { shift_mask = 0x07 };
enum { phase_range = 8 };
int phase;
int sweep_delay;
typedef Blip_Synth<blip_good_quality,1> Synth;
Synth const& synth; // shared between squares
Nes_Square( Synth const* s ) : synth( *s ) { }
void clock_sweep( int adjust );
void run( nes_time_t, nes_time_t );
void reset() {
sweep_delay = 0;
Nes_Envelope::reset();
}
nes_time_t maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period );
};
// Nes_Triangle
struct Nes_Triangle : Nes_Osc
{
enum { phase_range = 16 };
int phase;
int linear_counter;
Blip_Synth<blip_med_quality,1> synth;
int calc_amp() const;
void run( nes_time_t, nes_time_t );
void clock_linear_counter();
void reset() {
linear_counter = 0;
phase = 1;
Nes_Osc::reset();
}
nes_time_t maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period );
};
// Nes_Noise
struct Nes_Noise : Nes_Envelope
{
int noise;
Blip_Synth<blip_med_quality,1> synth;
void run( nes_time_t, nes_time_t );
void reset() {
noise = 1 << 14;
Nes_Envelope::reset();
}
};
// Nes_Dmc
struct Nes_Dmc : Nes_Osc
{
int address; // address of next byte to read
int period;
//int length_counter; // bytes remaining to play (already defined in Nes_Osc)
int buf;
int bits_remain;
int bits;
bool buf_full;
bool silence;
enum { loop_flag = 0x40 };
int dac;
nes_time_t next_irq;
bool irq_enabled;
bool irq_flag;
bool pal_mode;
bool nonlinear;
int (*prg_reader)( void*, nes_addr_t ); // needs to be initialized to prg read function
void* prg_reader_data;
Nes_Apu* apu;
Blip_Synth<blip_med_quality,1> synth;
void start();
void write_register( int, int );
void run( nes_time_t, nes_time_t );
void recalc_irq();
void fill_buffer();
void reload_sample();
void reset();
int count_reads( nes_time_t, nes_time_t* ) const;
nes_time_t next_read_time() const;
};
#endif

View File

@ -0,0 +1,669 @@
// Timing and behavior of PPU
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu.h"
#include <string.h>
#include "Nes_State.h"
#include "Nes_Mapper.h"
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
// to do: remove unnecessary run_until() calls
#include "blargg_source.h"
// Timing
ppu_time_t const scanline_len = Nes_Ppu::scanline_len;
// if non-zero, report sprite max at fixed time rather than calculating it
nes_time_t const fixed_sprite_max_time = 0; // 1 * ((21 + 164) * scanline_len + 100) / ppu_overclock;
int const sprite_max_cpu_offset = 2420 + 3;
ppu_time_t const t_to_v_time = 20 * scanline_len + 302;
ppu_time_t const even_odd_time = 20 * scanline_len + 328;
ppu_time_t const first_scanline_time = 21 * scanline_len + 60; // this can be varied
ppu_time_t const first_hblank_time = 21 * scanline_len + 252;
ppu_time_t const earliest_sprite_max = sprite_max_cpu_offset * ppu_overclock;
ppu_time_t const earliest_sprite_hit = 21 * scanline_len + 339; // needs to be 22 * scanline_len when fixed_sprite_max_time is set
nes_time_t const vbl_end_time = 2272;
ppu_time_t const max_frame_length = 262 * scanline_len;
//ppu_time_t const max_frame_length = 320 * scanline_len; // longer frame for testing movie resync
nes_time_t const earliest_vbl_end_time = max_frame_length / ppu_overclock - 10;
// Scanline rendering
void Nes_Ppu::render_bg_until_( nes_time_t cpu_time )
{
ppu_time_t time = ppu_time( cpu_time );
ppu_time_t const frame_duration = scanline_len * 261;
if ( time > frame_duration )
time = frame_duration;
// one-time events
if ( frame_phase <= 1 )
{
if ( frame_phase < 1 )
{
// vtemp->vaddr
frame_phase = 1;
if ( w2001 & 0x08 )
vram_addr = vram_temp;
}
// variable-length scanline
if ( time <= even_odd_time )
{
next_bg_time = nes_time( even_odd_time );
return;
}
frame_phase = 2;
if ( !(w2001 & 0x08) || emu.nes.frame_count & 1 )
{
if ( --frame_length_extra < 0 )
{
frame_length_extra = 2;
frame_length_++;
}
burst_phase--;
}
burst_phase = (burst_phase + 2) % 3;
}
// scanlines
if ( scanline_time < time )
{
int count = (time - scanline_time + scanline_len) / scanline_len;
// hblank before next scanline
if ( hblank_time < scanline_time )
{
hblank_time += scanline_len;
run_hblank( 1 );
}
scanline_time += count * scanline_len;
hblank_time += scanline_len * (count - 1);
int saved_vaddr = vram_addr;
int start = scanline_count;
scanline_count += count;
draw_background( start, count );
vram_addr = saved_vaddr; // to do: this is cheap
run_hblank( count - 1 );
}
// hblank after current scanline
ppu_time_t next_ppu_time = hblank_time;
if ( hblank_time < time )
{
hblank_time += scanline_len;
run_hblank( 1 );
next_ppu_time = scanline_time; // scanline will run next
}
assert( time <= hblank_time );
// either hblank or scanline comes next
next_bg_time = nes_time( next_ppu_time );
}
void Nes_Ppu::render_until_( nes_time_t time )
{
// render bg scanlines then render sprite scanlines up to wherever bg was rendered to
render_bg_until( time );
next_sprites_time = nes_time( scanline_time );
if ( host_pixels )
{
int start = next_sprites_scanline;
int count = scanline_count - start;
if ( count > 0 )
{
next_sprites_scanline += count;
draw_sprites( start, count );
}
}
}
// Frame events
inline void Nes_Ppu::end_vblank()
{
// clear VBL, sprite hit, and max sprites flags first time after 20 scanlines
r2002 &= end_vbl_mask;
end_vbl_mask = ~0;
}
inline void Nes_Ppu::run_end_frame( nes_time_t time )
{
if ( !frame_ended )
{
// update frame_length
render_bg_until( time );
// set VBL when end of frame is reached
nes_time_t len = frame_length();
if ( time >= len )
{
r2002 |= 0x80;
frame_ended = true;
if ( w2000 & 0x80 )
nmi_time_ = len + 2 - (frame_length_extra >> 1);
}
}
}
// Sprite max
inline void Nes_Ppu::invalidate_sprite_max_()
{
next_sprite_max_run = earliest_sprite_max / ppu_overclock;
sprite_max_set_time = 0;
}
void Nes_Ppu::run_sprite_max_( nes_time_t cpu_time )
{
end_vblank(); // might get run outside $2002 handler
// 577.0 / 0x10000 ~= 1.0 / 113.581, close enough to accurately calculate which scanline it is
int start_scanline = next_sprite_max_scanline;
next_sprite_max_scanline = unsigned ((cpu_time - sprite_max_cpu_offset) * 577) / 0x10000u;
assert( next_sprite_max_scanline >= 0 && next_sprite_max_scanline <= last_sprite_max_scanline );
if ( !sprite_max_set_time )
{
if ( !(w2001 & 0x18) )
return;
long t = recalc_sprite_max( start_scanline );
sprite_max_set_time = indefinite_time;
if ( t > 0 )
sprite_max_set_time = t / 3 + sprite_max_cpu_offset;
next_sprite_max_run = sprite_max_set_time;
//dprintf( "sprite_max_set_time: %d\n", sprite_max_set_time );
}
if ( cpu_time > sprite_max_set_time )
{
r2002 |= 0x20;
//dprintf( "Sprite max flag set: %d\n", sprite_max_set_time );
next_sprite_max_run = indefinite_time;
}
}
inline void Nes_Ppu::run_sprite_max( nes_time_t t )
{
if ( !fixed_sprite_max_time && t > next_sprite_max_run )
run_sprite_max_( t );
}
inline void Nes_Ppu::invalidate_sprite_max( nes_time_t t )
{
if ( !fixed_sprite_max_time && !(r2002 & 0x20) )
{
run_sprite_max( t );
invalidate_sprite_max_();
}
}
// Sprite 0 hit
inline int Nes_Ppu_Impl::first_opaque_sprite_line() const
{
// advance earliest time if sprite has blank lines at beginning
byte const* p = map_chr( sprite_tile_index( spr_ram ) * 16 );
int twice = w2000 >> 5 & 1; // loop twice if double height is set
int line = 0;
do
{
for ( int n = 8; n--; p++ )
{
if ( p [0] | p [8] )
return line;
line++;
}
p += 8;
}
while ( !--twice );
return line;
}
void Nes_Ppu::update_sprite_hit( nes_time_t cpu_time )
{
ppu_time_t earliest = earliest_sprite_hit + spr_ram [0] * scanline_len + spr_ram [3];
//ppu_time_t latest = earliest + sprite_height() * scanline_len;
earliest += first_opaque_sprite_line() * scanline_len;
ppu_time_t time = ppu_time( cpu_time );
next_sprite_hit_check = indefinite_time;
if ( false )
if ( earliest < time )
{
r2002 |= 0x40;
return;
}
if ( time < earliest )
{
next_sprite_hit_check = nes_time( earliest );
return;
}
// within possible range; render scanline and compare pixels
int count_needed = 2 + (time - earliest_sprite_hit - spr_ram [3]) / scanline_len;
if ( count_needed > 240 )
count_needed = 240;
while ( scanline_count < count_needed )
render_bg_until( max( cpu_time, next_bg_time + 1 ) );
if ( sprite_hit_found < 0 )
return; // sprite won't hit
if ( !sprite_hit_found )
{
// check again next scanline
next_sprite_hit_check = nes_time( earliest_sprite_hit + spr_ram [3] +
(scanline_count - 1) * scanline_len );
}
else
{
// hit found
ppu_time_t hit_time = earliest_sprite_hit + sprite_hit_found - scanline_len;
if ( time < hit_time )
{
next_sprite_hit_check = nes_time( hit_time );
return;
}
//dprintf( "Sprite hit x: %d, y: %d, scanline_count: %d\n",
// sprite_hit_found % 341, sprite_hit_found / 341, scanline_count );
r2002 |= 0x40;
}
}
// $2002
inline void Nes_Ppu::query_until( nes_time_t time )
{
end_vblank();
// sprite hit
if ( time > next_sprite_hit_check )
update_sprite_hit( time );
// sprite max
if ( !fixed_sprite_max_time )
run_sprite_max( time );
else if ( time >= fixed_sprite_max_time )
r2002 |= (w2001 << 1 & 0x20) | (w2001 << 2 & 0x20);
}
int Nes_Ppu::read_2002( nes_time_t time )
{
nes_time_t next = next_status_event;
next_status_event = vbl_end_time;
int extra_clock = extra_clocks ? (extra_clocks - 1) >> 2 & 1 : 0;
if ( time > next && time > vbl_end_time + extra_clock )
{
query_until( time );
next_status_event = next_sprite_hit_check;
nes_time_t const next_max = fixed_sprite_max_time ?
fixed_sprite_max_time : next_sprite_max_run;
if ( next_status_event > next_max )
next_status_event = next_max;
if ( time > earliest_open_bus_decay() )
{
next_status_event = earliest_open_bus_decay();
update_open_bus( time );
}
if ( time > earliest_vbl_end_time )
{
if ( next_status_event > earliest_vbl_end_time )
next_status_event = earliest_vbl_end_time;
run_end_frame( time );
// special vbl behavior when read is just before or at clock when it's set
if ( extra_clocks != 1 )
{
if ( time == frame_length() )
{
nmi_time_ = indefinite_time;
//dprintf( "Suppressed NMI\n" );
}
}
else if ( time == frame_length() - 1 )
{
r2002 &= ~0x80;
frame_ended = true;
nmi_time_ = indefinite_time;
//dprintf( "Suppressed NMI\n" );
}
}
}
emu.set_ppu_2002_time( next_status_event );
int result = r2002;
second_write = false;
r2002 = result & ~0x80;
poke_open_bus( time, result, 0xE0 );
update_open_bus( time );
return ( result & 0xE0 ) | ( open_bus & 0x1F );
}
void Nes_Ppu::dma_sprites( nes_time_t time, void const* in )
{
//dprintf( "%d sprites written\n", time );
render_until( time );
invalidate_sprite_max( time );
// catch anything trying to dma while rendering is enabled
check( time + 513 <= vbl_end_time || !(w2001 & 0x18) );
memcpy( spr_ram + w2003, in, 0x100 - w2003 );
memcpy( spr_ram, (char*) in + 0x100 - w2003, w2003 );
}
// Read
inline int Nes_Ppu_Impl::read_2007( int addr )
{
int result = r2007;
if ( addr < 0x2000 )
{
r2007 = *map_chr( addr );
}
else
{
r2007 = get_nametable( addr ) [addr & 0x3ff];
if ( addr >= 0x3f00 )
{
return palette [map_palette( addr )] | ( open_bus & 0xC0 );
}
}
return result;
}
int Nes_Ppu::read( unsigned addr, nes_time_t time )
{
if ( addr & ~0x2007 )
dprintf( "Read from mirrored PPU register 0x%04X\n", addr );
switch ( addr & 7 )
{
// status
case 2: // handled inline
return read_2002( time );
// sprite ram
case 4: {
int result = spr_ram [w2003];
if ( (w2003 & 3) == 2 )
result &= 0xe3;
poke_open_bus( time, result, ~0 );
return result;
}
// video ram
case 7: {
render_bg_until( time );
int addr = vram_addr;
int new_addr = addr + addr_inc;
vram_addr = new_addr;
if ( ~addr & new_addr & vaddr_clock_mask )
{
emu.mapper->a12_clocked();
addr = vram_addr - addr_inc; // avoid having to save across func call
}
int result = read_2007( addr & 0x3fff );
poke_open_bus( time, result, ( ( addr & 0x3fff ) >= 0x3f00 ) ? 0x3F : ~0 );
return result;
}
default:
dprintf( "Read from unimplemented PPU register 0x%04X\n", addr );
break;
}
update_open_bus( time );
return open_bus;
}
// Write
void Nes_Ppu::write( nes_time_t time, unsigned addr, int data )
{
if ( addr & ~0x2007 )
dprintf( "Wrote to mirrored PPU register 0x%04X\n", addr );
switch ( addr & 7 )
{
case 0:{// control
int changed = w2000 ^ data;
if ( changed & 0x28 )
render_until( time ); // obj height or pattern addr changed
else if ( changed & 0x10 )
render_bg_until( time ); // bg pattern addr changed
else if ( ((data << 10) ^ vram_temp) & 0x0C00 )
render_bg_until( time ); // nametable changed
if ( changed & 0x80 )
{
if ( time > vbl_end_time + ((extra_clocks - 1) >> 2 & 1) )
end_vblank(); // to do: clean this up
if ( data & 0x80 & r2002 )
{
nmi_time_ = time + 2;
emu.event_changed();
}
if ( time >= earliest_vbl_end_time )
run_end_frame( time - 1 + (extra_clocks & 1) );
}
// nametable select
vram_temp = (vram_temp & ~0x0C00) | ((data & 3) * 0x400);
if ( changed & 0x20 ) // sprite height changed
invalidate_sprite_max( time );
w2000 = data;
addr_inc = data & 4 ? 32 : 1;
break;
}
case 1:{// sprites, bg enable
int changed = w2001 ^ data;
if ( changed & 0xE1 )
{
render_until( time + 1 ); // emphasis/monochrome bits changed
palette_changed = 0x18;
}
if ( changed & 0x14 )
render_until( time + 1 ); // sprite enable/clipping changed
else if ( changed & 0x0A )
render_bg_until( time + 1 ); // bg enable/clipping changed
if ( changed & 0x08 ) // bg enabled changed
emu.mapper->run_until( time );
if ( !(w2001 & 0x18) != !(data & 0x18) )
invalidate_sprite_max( time ); // all rendering just turned on or off
w2001 = data;
if ( changed & 0x08 )
emu.irq_changed();
break;
}
case 3: // spr addr
w2003 = data;
poke_open_bus( time, w2003, ~0 );
break;
case 4:
//dprintf( "%d sprites written\n", time );
if ( time > first_scanline_time / ppu_overclock )
{
render_until( time );
invalidate_sprite_max( time );
}
spr_ram [w2003] = data;
w2003 = (w2003 + 1) & 0xff;
break;
case 5:
render_bg_until( time );
if ( (second_write ^= 1) )
{
pixel_x = data & 7;
vram_temp = (vram_temp & ~0x1f) | (data >> 3);
}
else
{
vram_temp = (vram_temp & ~0x73e0) |
(data << 12 & 0x7000) | (data << 2 & 0x03e0);
}
break;
case 6:
render_bg_until( time );
if ( (second_write ^= 1) )
{
vram_temp = (vram_temp & 0xff) | (data << 8 & 0x3f00);
}
else
{
int changed = ~vram_addr & vram_temp;
vram_addr = vram_temp = (vram_temp & 0xff00) | data;
if ( changed & vaddr_clock_mask )
emu.mapper->a12_clocked();
}
break;
default:
dprintf( "Wrote to unimplemented PPU register 0x%04X\n", addr );
break;
}
poke_open_bus( time, data, ~0 );
}
// Frame begin/end
nes_time_t Nes_Ppu::begin_frame( ppu_time_t timestamp )
{
// current time
int cpu_timestamp = timestamp / ppu_overclock;
extra_clocks = timestamp - cpu_timestamp * ppu_overclock;
// frame end
ppu_time_t const frame_end = max_frame_length - 1 - extra_clocks;
frame_length_ = (frame_end + (ppu_overclock - 1)) / ppu_overclock;
frame_length_extra = frame_length_ * ppu_overclock - frame_end;
assert( (unsigned) frame_length_extra < 3 );
// nmi
nmi_time_ = indefinite_time;
if ( w2000 & 0x80 & r2002 )
nmi_time_ = 2 - (extra_clocks >> 1);
// bg rendering
frame_phase = 0;
scanline_count = 0;
hblank_time = first_hblank_time;
scanline_time = first_scanline_time;
next_bg_time = nes_time( t_to_v_time );
// sprite rendering
next_sprites_scanline = 0;
next_sprites_time = 0;
// status register
frame_ended = false;
end_vbl_mask = ~0xE0;
next_status_event = 0;
sprite_hit_found = 0;
next_sprite_hit_check = 0;
next_sprite_max_scanline = 0;
invalidate_sprite_max_();
decay_low += cpu_timestamp;
decay_high += cpu_timestamp;
base::begin_frame();
//dprintf( "cpu_timestamp: %d\n", cpu_timestamp );
return cpu_timestamp;
}
ppu_time_t Nes_Ppu::end_frame( nes_time_t end_time )
{
render_bg_until( end_time );
render_until( end_time );
query_until( end_time );
run_end_frame( end_time );
update_open_bus( end_time );
decay_low -= end_time;
decay_high -= end_time;
// to do: do more PPU RE to get exact behavior
if ( w2001 & 0x08 )
{
unsigned a = vram_addr + 2;
if ( (vram_addr & 0xff) >= 0xfe )
a = (vram_addr ^ 0x400) - 0x1e;
vram_addr = a;
}
if ( w2001 & 0x10 )
w2003 = 0;
suspend_rendering();
return (end_time - frame_length_) * ppu_overclock + frame_length_extra;
}
void Nes_Ppu::poke_open_bus( nes_time_t time, int data, int mask )
{
open_bus = ( open_bus & ~mask ) | ( data & mask );
if ( mask & 0x1F ) decay_low = time + scanline_len * 100 / ppu_overclock;
if ( mask & 0xE0 ) decay_high = time + scanline_len * 100 / ppu_overclock;
}
const nes_time_t Nes_Ppu::earliest_open_bus_decay() const
{
return ( decay_low < decay_high ) ? decay_low : decay_high;
}

141
quicknes/nes_emu/Nes_Ppu.h Normal file
View File

@ -0,0 +1,141 @@
// NES PPU emulator
// Nes_Emu 0.7.0
#ifndef NES_PPU_H
#define NES_PPU_H
#include "Nes_Ppu_Rendering.h"
class Nes_Mapper;
class Nes_Core;
typedef long nes_time_t;
typedef long ppu_time_t; // ppu_time_t = nes_time_t * ppu_overclock
ppu_time_t const ppu_overclock = 3; // PPU clocks for each CPU clock
class Nes_Ppu : public Nes_Ppu_Rendering {
typedef Nes_Ppu_Rendering base;
public:
Nes_Ppu( Nes_Core* );
// Begin PPU frame and return beginning CPU timestamp
nes_time_t begin_frame( ppu_time_t );
nes_time_t nmi_time() { return nmi_time_; }
void acknowledge_nmi() { nmi_time_ = LONG_MAX / 2 + 1; }
int read_2002( nes_time_t );
int read( unsigned addr, nes_time_t );
void write( nes_time_t, unsigned addr, int );
void render_bg_until( nes_time_t );
void render_until( nes_time_t );
// CPU time that frame will have ended by
int frame_length() const { return frame_length_; }
// End frame rendering and return PPU timestamp for next frame
ppu_time_t end_frame( nes_time_t );
// Do direct memory copy to sprite RAM
void dma_sprites( nes_time_t, void const* in );
int burst_phase;
private:
Nes_Core& emu;
enum { indefinite_time = LONG_MAX / 2 + 1 };
void suspend_rendering();
int read_( unsigned addr, nes_time_t ); // note swapped arguments!
// NES<->PPU time conversion
int extra_clocks;
ppu_time_t ppu_time( nes_time_t t ) const { return t * ppu_overclock + extra_clocks; }
nes_time_t nes_time( ppu_time_t t ) const { return (t - extra_clocks) / ppu_overclock; }
// frame
nes_time_t nmi_time_;
int end_vbl_mask;
int frame_length_;
int frame_length_extra;
bool frame_ended;
void end_vblank();
void run_end_frame( nes_time_t );
// bg rendering
nes_time_t next_bg_time;
ppu_time_t scanline_time;
ppu_time_t hblank_time;
int scanline_count;
int frame_phase;
void render_bg_until_( nes_time_t );
void run_scanlines( int count );
// sprite rendering
ppu_time_t next_sprites_time;
int next_sprites_scanline;
void render_until_( nes_time_t );
// $2002 status register
nes_time_t next_status_event;
void query_until( nes_time_t );
// sprite hit
nes_time_t next_sprite_hit_check;
void update_sprite_hit( nes_time_t );
// open bus decay
void update_open_bus( nes_time_t );
void poke_open_bus( nes_time_t, int, int mask );
const nes_time_t earliest_open_bus_decay() const;
// sprite max
nes_time_t next_sprite_max_run; // doesn't need to run until this time
nes_time_t sprite_max_set_time; // if 0, needs to be recalculated
int next_sprite_max_scanline;
void run_sprite_max_( nes_time_t );
void run_sprite_max( nes_time_t );
void invalidate_sprite_max_();
void invalidate_sprite_max( nes_time_t );
friend int nes_cpu_read_likely_ppu( class Nes_Core*, unsigned, nes_time_t );
};
inline void Nes_Ppu::suspend_rendering()
{
next_bg_time = indefinite_time;
next_sprites_time = indefinite_time;
extra_clocks = 0;
}
inline Nes_Ppu::Nes_Ppu( Nes_Core* e ) : emu( *e )
{
burst_phase = 0;
suspend_rendering();
}
inline void Nes_Ppu::render_until( nes_time_t t )
{
if ( t > next_sprites_time )
render_until_( t );
}
inline void Nes_Ppu::render_bg_until( nes_time_t t )
{
if ( t > next_bg_time )
render_bg_until_( t );
}
inline void Nes_Ppu::update_open_bus( nes_time_t time )
{
if ( time >= decay_low ) open_bus &= ~0x1F;
if ( time >= decay_high ) open_bus &= ~0xE0;
}
#endif

View File

@ -0,0 +1,69 @@
while ( true )
{
while ( count-- )
{
int attrib = attr_table [addr >> 2 & 0x07];
attrib >>= (addr >> 4 & 4) | (addr & 2);
unsigned long offset = (attrib & 3) * attrib_factor + this->palette_offset;
// draw one tile
cache_t const* lines = this->get_bg_tile( nametable [addr] + bg_bank );
byte* p = pixels;
addr++;
pixels += 8; // next tile
if ( !clipped )
{
// optimal case: no clipping
for ( int n = 4; n--; )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
p += row_bytes;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
}
else
{
lines += fine_y >> 1;
if ( fine_y & 1 )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
for ( int n = height >> 1; n--; )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
p += row_bytes;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
if ( height & 1 )
{
unsigned long line = *lines;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
}
}
}
count = count2;
count2 = 0;
addr -= 32;
attr_table = attr_table - nametable + nametable2;
nametable = nametable2;
if ( !count )
break;
}

View File

@ -0,0 +1,419 @@
// NES PPU register read/write and frame timing
// Nes_Emu 0.5.0. http://www.slack.net/~ant/
#include "Nes_Ppu.h"
#include <string.h>
/* Copyright (C) 2004-2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include BLARGG_SOURCE_BEGIN
// to do: implement junk in unused bits when reading registers
// to do: put in common or something
template<class T>
inline const T& min( const T& x, const T& y )
{
if ( x < y )
return x;
return y;
}
typedef BOOST::uint8_t byte;
ppu_time_t const ppu_overclock = 3; // PPU clocks for each CPU clock
ppu_time_t const scanline_duration = 341;
ppu_time_t const t_to_v_time = 20 * scanline_duration + 293;
//ppu_time_t const t_to_v_time = 19 * scanline_duration + 330; // 322 - 339 passes test
ppu_time_t const first_scanline_time = 21 * scanline_duration + 128;
ppu_time_t const first_hblank_time = 21 * scanline_duration + 256;
void Nes_Ppu::start_frame()
{
scanline_time = first_scanline_time;
hblank_time = first_hblank_time;
next_time = t_to_v_time / ppu_overclock;
next_scanline = 0;
frame_phase = 0;
query_phase = 0;
w2003 = 0;
memset( sprite_scanlines, 64 - max_sprites, sizeof sprite_scanlines );
}
void Nes_Ppu::query_until( nes_time_t time )
{
// nothing happens until scanline 20
if ( time > 2271 )
{
// clear VBL flag and sprite hit after 20 scanlines
if ( query_phase < 1 )
{
query_phase = 1;
r2002 &= ~0xc0;
}
// update sprite hit
if ( query_phase < 2 && update_sprite_hit( time ) )
query_phase = 2;
// set VBL flag a few clocks before the end of the frame (cheap hack)
if ( query_phase < 3 && time > 29777 )
{
query_phase = 3;
r2002 |= 0x80;
}
}
}
void Nes_Ppu::end_frame( nes_time_t end_time )
{
render_until( end_time );
query_until( end_time );
// to do: remove (shows number of sprites per line graphically)
if ( false )
if ( base_pixels )
{
for ( int i = 0; i < image_height; i++ )
{
int n = sprite_scanlines [i] - (64 - max_sprites);
memset( base_pixels + 16 + i * row_bytes, (n <= 8 ? 3 : 6), n );
}
}
// dprintf( "End of frame\n" );
start_frame();
}
inline byte const* Nes_Ppu::map_chr( int addr ) const
{
return &chr_rom [map_chr_addr( addr )];
}
// Read/write
inline byte* Nes_Ppu::map_palette( int addr )
{
if ( (addr & 3) == 0 )
addr &= 0x0f; // 0x10, 0x14, 0x18, 0x1c map to 0x00, 0x04, 0x08, 0x0c
return &palette [addr & 0x1f];
}
int Nes_Ppu::read( nes_time_t time, unsigned addr )
{
// Don't catch rendering up to present since status reads don't affect
// rendering and status is often polled in a tight loop.
switch ( addr & 7 )
{
// status
case 2: {
second_write = false;
query_until( time );
int result = r2002;
r2002 &= ~0x80;
return result;
}
// sprite ram
case 4: {
int result = spr_ram [w2003];
if ( (w2003 & 3) == 2 )
result &= 0xe3;
return result;
}
// video ram
case 7: {
render_until( time ); // changes to vram_addr affect rendering
int result = r2007;
int a = vram_addr & 0x3fff;
vram_addr = a + ((w2000 & 4) ? 32 : 1);
if ( a < 0x2000 )
{
r2007 = *map_chr( a );
}
else
{
r2007 = get_nametable( a ) [a & 0x3ff];
// palette doesn't use read buffer, but it's still filled with nametable contents
if ( a >= 0x3f00 )
result = *map_palette( a );
}
return result;
}
}
return 0;
}
void Nes_Ppu::write( nes_time_t time, unsigned addr, int data )
{
if ( addr > 0x2007 )
printf( "Write to mirrored $200x\n" );
int reg = (addr & 7);
if ( reg == 0 )
{
// render only if changes to register could affect it
int new_temp = (vram_temp & ~0x0c00) | ((data & 3) * 0x400);
if ( (new_temp - vram_temp) | ((w2000 ^ data) & 0x38) )
render_until( time );
vram_temp = new_temp;
w2000 = data;
return;
}
render_until( time );
switch ( reg )
{
//case 0: // control (handled above)
case 1: // sprites, bg enable
w2001 = data;
break;
case 3: // spr addr
w2003 = data;
break;
case 4:
spr_ram [w2003] = data;
w2003 = (w2003 + 1) & 0xff;
break;
case 5:
if ( second_write ) {
vram_temp = (vram_temp & ~0x73e0) |
((data & 0xf8) << 2) | ((data & 7) << 12);
}
else {
pixel_x = data & 7;
vram_temp = (vram_temp & ~0x001f) | (data >> 3);
}
second_write ^= 1;
break;
case 6: {
unsigned old_addr = vram_addr;
if ( second_write )
{
vram_addr = vram_temp = (vram_temp & ~0x00ff) | data;
// if ( time >= 2271 )
// dprintf( "%d VRAM fine: %d, tile: %d\n",
// (int) time, int (vram_addr >> 12), int ((vram_addr >> 5) & 31) );
}
else
{
vram_temp = (vram_temp & ~0xff00) | ((data << 8) & 0x3f00);
}
second_write ^= 1;
// if ( (vram_addr & old_addr) & 0x2000 )
// dprintf( "%d Toggled A13\n", time );
break;
}
case 7:
{
int a = vram_addr & 0x3fff;
vram_addr = a + ((w2000 & 4) ? 32 : 1);
if ( a < 0x2000 )
{
a = map_chr_addr( a );
BOOST::uint8_t& b = impl->chr_ram [a];
if ( (b ^ data) & chr_write_mask )
{
b = data;
assert( a < sizeof impl->chr_ram );
tiles_modified [(unsigned) a / bytes_per_tile] = true;
any_tiles_modified = true;
}
}
else if ( a < 0x3f00 )
{
get_nametable( a ) [a & 0x3ff] = data;
}
else
{
*map_palette( a ) = data & 0x3f;
}
break;
}
}
}
// Frame rendering
// returns true when sprite hit checking is done for the frame (hit flag won't change any more)
bool Nes_Ppu::update_sprite_hit( nes_time_t cpu_time )
{
// earliest time of hit empirically determined by testing on NES
ppu_time_t const delay = 21 * scanline_duration + 333;
if ( cpu_time < delay / ppu_overclock )
return false;
long time = cpu_time * ppu_overclock - delay;
long low_bound = spr_ram [0] * scanline_duration + spr_ram [3];
if ( time < low_bound )
return false;
int tile = spr_ram [1] + ((w2000 << 5) & 0x100);
int height = 1;
if ( w2000 & 0x20 )
{
height = 2;
tile = (tile & 1) * 0x100 + (tile & 0xfe);
}
byte const* data = map_chr( tile * bytes_per_tile );
for ( int n = height; n--; )
{
for ( int n = 8; n--; )
{
if ( time < low_bound )
return false;
if ( data [0] | data [8] )
{
r2002 |= 0x40;
return true;
}
data++;
low_bound += scanline_duration;
}
data += 8;
}
return true;
}
void Nes_Ppu::run_hblank( int n )
{
hblank_time += scanline_duration * n;
if ( w2001 & 0x08 )
{
// vram_addr = (vram_addr & ~0x41f) | (vram_temp & 0x41f);
long addr = vram_addr + n * 0x1000;
if ( addr >= 0x8000 )
{
addr &= 0x7fff;
int const mask = 0x3e0;
int a = (addr + 0x20) & mask;
if ( a == 30 * 0x20 )
{
a &= 0x1f;
addr ^= 0x800;
}
addr = (addr & ~mask) | (a & mask);
}
assert( addr < 0x8000 );
vram_addr = addr;
}
}
void Nes_Ppu::render_until_( nes_time_t cpu_time )
{
ppu_time_t time = cpu_time * ppu_overclock;
ppu_time_t const frame_duration = scanline_duration * 261;
if ( time > frame_duration )
time = frame_duration;
if ( frame_phase == 0 )
{
frame_phase = 1;
if ( w2001 & 0x08 )
vram_addr = vram_temp;
// else
// dprintf( "PPU off\n" );
}
if ( hblank_time < scanline_time && hblank_time < time )
run_hblank( 1 );
int count = 0;
while ( scanline_time < time )
{
scanline_time += scanline_duration;
count++;
}
if ( count )
{
int start = next_scanline;
int end = start + count;
assert( end <= image_height );
next_scanline = end;
if ( base_pixels )
{
if ( start == 0 )
{
memcpy( host_palette, palette, 32 );
int bg = palette [0];
for ( int i = 0; i < 32; i += 4 )
host_palette [i] = bg;
memcpy( host_palette + 32, host_palette, 32 );
}
if ( w2001 & 0x18 && any_tiles_modified )
{
any_tiles_modified = false;
update_tiles( 0 );
}
if ( w2001 & 0x08 )
{
draw_background( start, end );
}
else
{
run_hblank( end - start - 1 );
black_background( start, end );
}
// when clipping just sprites, save left strip then restore after drawing sprites
int const obj_mask = 0x04;
int const bg_mask = 0x02;
int clip_mode = ~w2001 & (obj_mask | bg_mask);
if ( clip_mode == obj_mask )
save_left( start, end );
else if ( clip_mode == bg_mask )
clip_left( start, end );
if ( w2001 & 0x10 )
draw_sprites( start, end );
if ( clip_mode == obj_mask )
restore_left( start, end );
else if ( clip_mode == (obj_mask | bg_mask) )
clip_left( start, end );
}
else
{
run_hblank( end - start - 1 );
}
}
if ( hblank_time < time )
run_hblank( 1 );
assert( time <= hblank_time );
next_time = min( scanline_time, hblank_time ) / ppu_overclock;
}

View File

@ -0,0 +1,483 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu_Impl.h"
#include <string.h>
#include "blargg_endian.h"
#include "Nes_State.h"
#include <stdint.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const cache_line_size = 128; // tile cache is kept aligned to this boundary
Nes_Ppu_Impl::Nes_Ppu_Impl()
{
impl = NULL;
chr_data = NULL;
chr_size = 0;
tile_cache = NULL;
host_palette = NULL;
max_palette_size = 0;
tile_cache_mem = NULL;
ppu_state_t::unused = 0;
#ifndef NDEBUG
// verify that unaligned accesses work
static unsigned char b [19] = { 0 };
static unsigned char b2 [19] = { 1,2,3,4,0,5,6,7,8,0,9,0,1,2,0,3,4,5,6 };
for ( int i = 0; i < 19; i += 5 )
*(volatile BOOST::uint32_t*) &b [i] = *(volatile BOOST::uint32_t*) &b2 [i];
assert( !memcmp( b, b2, 19 ) );
#endif
}
Nes_Ppu_Impl::~Nes_Ppu_Impl()
{
close_chr();
delete impl;
}
void Nes_Ppu_Impl::all_tiles_modified()
{
any_tiles_modified = true;
memset( modified_tiles, ~0, sizeof modified_tiles );
}
blargg_err_t Nes_Ppu_Impl::open_chr( byte const* new_chr, long chr_data_size )
{
close_chr();
if ( !impl )
{
impl = BLARGG_NEW impl_t;
CHECK_ALLOC( impl );
chr_ram = impl->chr_ram;
}
chr_data = new_chr;
chr_size = chr_data_size;
chr_is_writable = false;
if ( chr_data_size == 0 )
{
// CHR RAM
chr_data = impl->chr_ram;
chr_size = sizeof impl->chr_ram;
chr_is_writable = true;
}
// allocate aligned memory for cache
assert( chr_size % chr_addr_size == 0 );
long tile_count = chr_size / bytes_per_tile;
tile_cache_mem = BLARGG_NEW byte [tile_count * sizeof (cached_tile_t) * 2 + cache_line_size];
CHECK_ALLOC( tile_cache_mem );
tile_cache = (cached_tile_t*) (tile_cache_mem + cache_line_size -
(uintptr_t) tile_cache_mem % cache_line_size);
flipped_tiles = tile_cache + tile_count;
// rebuild cache
all_tiles_modified();
if ( !chr_is_writable )
{
any_tiles_modified = false;
rebuild_chr( 0, chr_size );
}
return 0;
}
void Nes_Ppu_Impl::close_chr()
{
delete [] tile_cache_mem;
tile_cache_mem = NULL;
}
void Nes_Ppu_Impl::set_chr_bank( int addr, int size, long data )
{
check( !chr_is_writable || addr == data ); // to do: is CHR RAM ever bank-switched?
//dprintf( "Tried to set CHR RAM bank at %04X to CHR+%04X\n", addr, data );
if ( data + size > chr_size )
data %= chr_size;
int count = (unsigned) size / chr_page_size;
assert( chr_page_size * count == size );
assert( addr + size <= chr_addr_size );
int page = (unsigned) addr / chr_page_size;
while ( count-- )
{
chr_pages [page] = data - page * chr_page_size;
page++;
data += chr_page_size;
}
}
void Nes_Ppu_Impl::save_state( Nes_State_* out ) const
{
*out->ppu = *this;
out->ppu_valid = true;
memcpy( out->spr_ram, spr_ram, out->spr_ram_size );
out->spr_ram_valid = true;
out->nametable_size = 0x800;
memcpy( out->nametable, impl->nt_ram, 0x800 );
if ( nt_banks [3] >= &impl->nt_ram [0xC00] )
{
// save extra nametable data in chr
out->nametable_size = 0x1000;
memcpy( out->chr, &impl->nt_ram [0x800], 0x800 );
}
out->chr_size = 0;
if ( chr_is_writable )
{
out->chr_size = chr_size;
check( out->nametable_size <= 0x800 );
assert( out->nametable_size <= 0x800 );
assert( out->chr_size <= out->chr_max );
memcpy( out->chr, impl->chr_ram, out->chr_size );
}
}
void Nes_Ppu_Impl::load_state( Nes_State_ const& in )
{
set_nt_banks( 0, 0, 0, 0 );
set_chr_bank( 0, 0x2000, 0 );
if ( in.ppu_valid )
STATIC_CAST(ppu_state_t&,*this) = *in.ppu;
if ( in.spr_ram_valid )
memcpy( spr_ram, in.spr_ram, sizeof spr_ram );
assert( in.nametable_size <= (int) sizeof impl->nt_ram );
if ( in.nametable_size >= 0x800 )
{
if ( in.nametable_size > 0x800 )
memcpy( &impl->nt_ram [0x800], in.chr, 0x800 );
memcpy( impl->nt_ram, in.nametable, 0x800 );
}
if ( chr_is_writable && in.chr_size )
{
assert( in.chr_size <= (int) sizeof impl->chr_ram );
memcpy( impl->chr_ram, in.chr, in.chr_size );
all_tiles_modified();
}
}
static BOOST::uint8_t const initial_palette [0x20] =
{
0x0f,0x01,0x00,0x01,0x00,0x02,0x02,0x0D,0x08,0x10,0x08,0x24,0x00,0x00,0x04,0x2C,
0x00,0x01,0x34,0x03,0x00,0x04,0x00,0x14,0x00,0x3A,0x00,0x02,0x00,0x20,0x2C,0x08
};
void Nes_Ppu_Impl::reset( bool full_reset )
{
w2000 = 0;
w2001 = 0;
r2002 = 0x80;
r2007 = 0;
open_bus = 0;
decay_low = 0;
decay_high = 0;
second_write = false;
vram_temp = 0;
pixel_x = 0;
if ( full_reset )
{
vram_addr = 0;
w2003 = 0;
memset( impl->chr_ram, 0xff, sizeof impl->chr_ram );
memset( impl->nt_ram, 0xff, sizeof impl->nt_ram );
memcpy( palette, initial_palette, sizeof palette );
}
set_nt_banks( 0, 0, 0, 0 );
set_chr_bank( 0, chr_addr_size, 0 );
memset( spr_ram, 0xff, sizeof spr_ram );
all_tiles_modified();
if ( max_palette_size > 0 )
memset( host_palette, 0, max_palette_size * sizeof *host_palette );
}
void Nes_Ppu_Impl::capture_palette()
{
if ( palette_size + palette_increment <= max_palette_size )
{
palette_offset = (palette_begin + palette_size) * 0x01010101;
short* out = host_palette + palette_size;
palette_size += palette_increment;
int i;
int emph = w2001 << 1 & 0x1C0;
int mono = (w2001 & 1 ? 0x30 : 0x3F);
for ( i = 0; i < 32; i++ )
out [i] = (palette [i] & mono) | emph;
int bg = out [0];
for ( i = 4; i < 32; i += 4 )
out [i] = bg;
memcpy( out + 32, out, 32 * sizeof *out );
}
}
void Nes_Ppu_Impl::run_hblank( int count )
{
require( count >= 0 );
long addr = (vram_addr & 0x7be0) + (vram_temp & 0x41f) + (count * 0x1000);
if ( w2001 & 0x08 )
{
while ( addr >= 0x8000 )
{
int y = (addr + 0x20) & 0x3e0;
addr = (addr - 0x8000) & ~0x3e0;
if ( y == 30 * 0x20 )
y = 0x800;
addr ^= y;
}
vram_addr = addr;
}
}
#ifdef __MWERKS__
#pragma ppc_unroll_factor_limit 1 // messes up calc_sprite_max_scanlines loop
static int zero = 0;
#else
const int zero = 0;
#endif
// Tile cache
inline unsigned long reorder( unsigned long n )
{
n |= n << 7;
return ((n << 14) | n);
}
inline void Nes_Ppu_Impl::update_tile( int index )
{
const byte* in = chr_data + (index) * bytes_per_tile;
byte* out = (byte*) tile_cache [index];
byte* flipped_out = (byte*) flipped_tiles [index];
unsigned long bit_mask = 0x11111111 + zero;
for ( int n = 4; n--; )
{
// Reorder two lines of two-bit pixels. No bits are wasted, so
// reordered version is also four bytes.
//
// 12345678 to A0E4B1F5C2G6D3H7
// ABCDEFGH
unsigned long c =
((reorder( in [0] ) & bit_mask) << 0) |
((reorder( in [8] ) & bit_mask) << 1) |
((reorder( in [1] ) & bit_mask) << 2) |
((reorder( in [9] ) & bit_mask) << 3);
in += 2;
SET_BE32( out, c );
out += 4;
// make horizontally-flipped version
c = ((c >> 28) & 0x000f) |
((c >> 20) & 0x00f0) |
((c >> 12) & 0x0f00) |
((c >> 4) & 0xf000) |
((c & 0xf000) << 4) |
((c & 0x0f00) << 12) |
((c & 0x00f0) << 20) |
((c & 0x000f) << 28);
SET_BE32( flipped_out, c );
flipped_out += 4;
}
}
void Nes_Ppu_Impl::rebuild_chr( unsigned long begin, unsigned long end )
{
unsigned end_index = (end + bytes_per_tile - 1) / bytes_per_tile;
for ( unsigned index = begin / bytes_per_tile; index < end_index; index++ )
update_tile( index );
}
void Nes_Ppu_Impl::update_tiles( int first_tile )
{
int chunk = 0;
do
{
if ( !(uint32_t&) modified_tiles [chunk] )
{
chunk += 4;
}
else
{
do
{
int modified = modified_tiles [chunk];
if ( modified )
{
modified_tiles [chunk] = 0;
int index = first_tile + chunk * 8;
do
{
if ( modified & 1 )
update_tile( index );
index++;
}
while ( (modified >>= 1) != 0 );
}
}
while ( ++chunk & 3 );
}
}
while ( chunk < chr_tile_count / 8 );
}
// Sprite max
template<int height>
struct calc_sprite_max_scanlines
{
static unsigned long func( byte const* sprites, byte* scanlines, int begin )
{
typedef BOOST::uint32_t uint32_t;
unsigned long any_hits = 0;
unsigned long const offset = 0x01010101 + zero;
unsigned limit = 239 + height - begin;
for ( int n = 64; n; --n )
{
int top = *sprites;
sprites += 4;
byte* p = scanlines + top;
if ( (unsigned) (239 - top) < limit )
{
unsigned long p0 = (uint32_t&) p [0] + offset;
unsigned long p4 = (uint32_t&) p [4] + offset;
(uint32_t&) p [0] = p0;
any_hits |= p0;
(uint32_t&) p [4] = p4;
any_hits |= p4;
if ( height > 8 )
{
unsigned long p0 = (uint32_t&) p [ 8] + offset;
unsigned long p4 = (uint32_t&) p [12] + offset;
(uint32_t&) p [ 8] = p0;
any_hits |= p0;
(uint32_t&) p [12] = p4;
any_hits |= p4;
}
}
}
return any_hits;
}
};
long Nes_Ppu_Impl::recalc_sprite_max( int scanline )
{
int const max_scanline_count = image_height;
byte sprite_max_scanlines [256 + 16];
// recalculate sprites per scanline
memset( sprite_max_scanlines + scanline, 0x78, last_sprite_max_scanline - scanline );
unsigned long any_hits;
if ( w2000 & 0x20 )
any_hits = calc_sprite_max_scanlines<16>::func( spr_ram, sprite_max_scanlines, scanline );
else
any_hits = calc_sprite_max_scanlines<8 >::func( spr_ram, sprite_max_scanlines, scanline );
// cause search to terminate past max_scanline_count if none have 8 or more sprites
(uint32_t&) sprite_max_scanlines [max_scanline_count] = 0;
sprite_max_scanlines [max_scanline_count + 3] = 0x80;
// avoid scan if no possible hits
if ( !(any_hits & 0x80808080) )
return 0;
// find soonest scanline with 8 or more sprites
while ( true )
{
unsigned long const mask = 0x80808080 + zero;
// check four at a time
byte* pos = &sprite_max_scanlines [scanline];
unsigned long n = (uint32_t&) *pos;
while ( 1 )
{
unsigned long x = n & mask;
pos += 4;
n = (uint32_t&) *pos;
if ( x )
break;
}
int height = sprite_height();
int remain = 8;
int i = 0;
// find which of the four
pos -= 3 + (pos [-4] >> 7 & 1);
pos += 1 - (*pos >> 7 & 1);
pos += 1 - (*pos >> 7 & 1);
assert( *pos & 0x80 );
scanline = pos - sprite_max_scanlines;
if ( scanline >= max_scanline_count )
break;
// find time that max sprites flag is set (or that it won't be set)
do
{
int relative = scanline - spr_ram [i];
i += 4;
if ( (unsigned) relative < (unsigned) height && !--remain )
{
// now use screwey search for 9th sprite
int offset = 0;
while ( i < 0x100 )
{
int relative = scanline - spr_ram [i + offset];
//dprintf( "Checking sprite %d [%d]\n", i / 4, offset );
i += 4;
offset = (offset + 1) & 3;
if ( (unsigned) relative < (unsigned) height )
{
//dprintf( "sprite max on scanline %d\n", scanline );
return scanline * scanline_len + (unsigned) i / 2;
}
}
break;
}
}
while ( i < 0x100 );
scanline++;
}
return 0;
}

View File

@ -0,0 +1,198 @@
// NES PPU misc functions and setup
// Nes_Emu 0.7.0
#ifndef NES_PPU_IMPL_H
#define NES_PPU_IMPL_H
#include "nes_data.h"
class Nes_State_;
class Nes_Ppu_Impl : public ppu_state_t {
public:
typedef BOOST::uint8_t byte;
typedef BOOST::uint32_t uint32_t;
Nes_Ppu_Impl();
~Nes_Ppu_Impl();
void reset( bool full_reset );
// Setup
blargg_err_t open_chr( const byte*, long size );
void rebuild_chr( unsigned long begin, unsigned long end );
void close_chr();
void save_state( Nes_State_* out ) const;
void load_state( Nes_State_ const& );
enum { image_width = 256 };
enum { image_height = 240 };
enum { image_left = 8 };
enum { buffer_width = image_width + 16 };
enum { buffer_height = image_height };
int write_2007( int );
// Host palette
enum { palette_increment = 64 };
short* host_palette;
int palette_begin;
int max_palette_size;
int palette_size; // set after frame is rendered
// Mapping
enum { vaddr_clock_mask = 0x1000 };
void set_nt_banks( int bank0, int bank1, int bank2, int bank3 );
void set_chr_bank( int addr, int size, long data );
// Nametable and CHR RAM
enum { nt_ram_size = 0x1000 };
enum { chr_addr_size = 0x2000 };
enum { bytes_per_tile = 16 };
enum { chr_tile_count = chr_addr_size / bytes_per_tile };
enum { mini_offscreen_height = 16 }; // double-height sprite
struct impl_t
{
byte nt_ram [nt_ram_size];
byte chr_ram [chr_addr_size];
union {
BOOST::uint32_t clip_buf [256 * 2];
byte mini_offscreen [buffer_width * mini_offscreen_height];
};
};
impl_t* impl;
enum { scanline_len = 341 };
protected:
byte spr_ram [0x100];
void begin_frame();
void run_hblank( int );
int sprite_height() const { return (w2000 >> 2 & 8) + 8; }
protected: //friend class Nes_Ppu; private:
int addr_inc; // pre-calculated $2007 increment (based on w2001 & 0x04)
int read_2007( int addr );
enum { last_sprite_max_scanline = 240 };
long recalc_sprite_max( int scanline );
int first_opaque_sprite_line() const;
protected: //friend class Nes_Ppu_Rendering; private:
unsigned long palette_offset;
int palette_changed;
void capture_palette();
bool any_tiles_modified;
bool chr_is_writable;
void update_tiles( int first_tile );
typedef uint32_t cache_t;
typedef cache_t cached_tile_t [4];
cached_tile_t const& get_bg_tile( int index ) const;
cached_tile_t const& get_sprite_tile( byte const* sprite ) const;
byte* get_nametable( int addr ) { return nt_banks [addr >> 10 & 3]; };
private:
static int map_palette( int addr );
int sprite_tile_index( byte const* sprite ) const;
// Mapping
enum { chr_page_size = 0x400 };
long chr_pages [chr_addr_size / chr_page_size];
long map_chr_addr( unsigned a ) const { return chr_pages [a / chr_page_size] + a; }
byte* nt_banks [4];
// CHR data
byte const* chr_data; // points to chr ram when there is no read-only data
byte* chr_ram; // always points to impl->chr_ram; makes write_2007() faster
long chr_size;
byte const* map_chr( int addr ) const { return &chr_data [map_chr_addr( addr )]; }
// CHR cache
cached_tile_t* tile_cache;
cached_tile_t* flipped_tiles;
byte* tile_cache_mem;
union {
byte modified_tiles [chr_tile_count / 8];
uint32_t align_;
};
void all_tiles_modified();
void update_tile( int index );
};
inline void Nes_Ppu_Impl::set_nt_banks( int bank0, int bank1, int bank2, int bank3 )
{
byte* nt_ram = impl->nt_ram;
nt_banks [0] = &nt_ram [bank0 * 0x400];
nt_banks [1] = &nt_ram [bank1 * 0x400];
nt_banks [2] = &nt_ram [bank2 * 0x400];
nt_banks [3] = &nt_ram [bank3 * 0x400];
}
inline int Nes_Ppu_Impl::map_palette( int addr )
{
if ( (addr & 3) == 0 )
addr &= 0x0f; // 0x10, 0x14, 0x18, 0x1c map to 0x00, 0x04, 0x08, 0x0c
return addr & 0x1f;
}
inline int Nes_Ppu_Impl::sprite_tile_index( byte const* sprite ) const
{
int tile = sprite [1] + (w2000 << 5 & 0x100);
if ( w2000 & 0x20 )
tile = (tile & 1) * 0x100 + (tile & 0xfe);
return tile;
}
inline int Nes_Ppu_Impl::write_2007( int data )
{
int addr = vram_addr;
byte* chr_ram = this->chr_ram; // pre-read
int changed = addr + addr_inc;
unsigned const divisor = bytes_per_tile * 8;
int mod_index = (unsigned) addr / divisor % (0x4000 / divisor);
vram_addr = changed;
changed ^= addr;
addr &= 0x3fff;
// use index into modified_tiles [] since it's calculated sooner than addr is masked
if ( (unsigned) mod_index < 0x2000 / divisor )
{
// Avoid overhead of checking for read-only CHR; if that is the case,
// this modification will be ignored.
int mod = modified_tiles [mod_index];
chr_ram [addr] = data;
any_tiles_modified = true;
modified_tiles [mod_index] = mod | (1 << ((unsigned) addr / bytes_per_tile % 8));
}
else if ( addr < 0x3f00 )
{
get_nametable( addr ) [addr & 0x3ff] = data;
}
else
{
data &= 0x3f;
byte& entry = palette [map_palette( addr )];
int changed = entry ^ data;
entry = data;
if ( changed )
palette_changed = 0x18;
}
return changed;
}
inline void Nes_Ppu_Impl::begin_frame()
{
palette_changed = 0x18;
palette_size = 0;
palette_offset = palette_begin * 0x01010101;
addr_inc = w2000 & 4 ? 32 : 1;
}
#endif

View File

@ -0,0 +1,487 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu_Rendering.h"
#include <string.h>
#include <stddef.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
#ifdef __MWERKS__
static unsigned zero = 0; // helps CodeWarrior optimizer when added to constants
#else
const unsigned zero = 0; // compile-time constant on other compilers
#endif
// Nes_Ppu_Impl
inline Nes_Ppu_Impl::cached_tile_t const&
Nes_Ppu_Impl::get_sprite_tile( byte const* sprite ) const
{
cached_tile_t* tiles = tile_cache;
if ( sprite [2] & 0x40 )
tiles = flipped_tiles;
int index = sprite_tile_index( sprite );
// use index directly, since cached tile is same size as native tile
BOOST_STATIC_ASSERT( sizeof (cached_tile_t) == bytes_per_tile );
return *(Nes_Ppu_Impl::cached_tile_t*)
((byte*) tiles + map_chr_addr( index * bytes_per_tile ));
}
inline Nes_Ppu_Impl::cached_tile_t const& Nes_Ppu_Impl::get_bg_tile( int index ) const
{
// use index directly, since cached tile is same size as native tile
BOOST_STATIC_ASSERT( sizeof (cached_tile_t) == bytes_per_tile );
return *(Nes_Ppu_Impl::cached_tile_t*)
((byte*) tile_cache + map_chr_addr( index * bytes_per_tile ));
}
// Fill
void Nes_Ppu_Rendering::fill_background( int count )
{
ptrdiff_t const next_line = scanline_row_bytes - image_width;
uint32_t* pixels = (uint32_t*) scanline_pixels;
unsigned long fill = palette_offset;
if ( (vram_addr & 0x3f00) == 0x3f00 )
{
// PPU uses current palette entry if addr is within palette ram
int color = vram_addr & 0x1f;
if ( !(color & 3) )
color &= 0x0f;
fill += color * 0x01010101;
}
for ( int n = count; n--; )
{
for ( int n = image_width / 16; n--; )
{
pixels [0] = fill;
pixels [1] = fill;
pixels [2] = fill;
pixels [3] = fill;
pixels += 4;
}
pixels = (uint32_t*) ((byte*) pixels + next_line);
}
}
void Nes_Ppu_Rendering::clip_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* p = scanline_pixels;
unsigned long fill = palette_offset;
for ( int n = count; n--; )
{
((uint32_t*) p) [0] = fill;
((uint32_t*) p) [1] = fill;
p += next_line;
}
}
void Nes_Ppu_Rendering::save_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* in = scanline_pixels;
uint32_t* out = impl->clip_buf;
for ( int n = count; n--; )
{
unsigned long in0 = ((uint32_t*) in) [0];
unsigned long in1 = ((uint32_t*) in) [1];
in += next_line;
out [0] = in0;
out [1] = in1;
out += 2;
}
}
void Nes_Ppu_Rendering::restore_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* out = scanline_pixels;
uint32_t* in = impl->clip_buf;
for ( int n = count; n--; )
{
unsigned long in0 = in [0];
unsigned long in1 = in [1];
in += 2;
((uint32_t*) out) [0] = in0;
((uint32_t*) out) [1] = in1;
out += next_line;
}
}
// Background
void Nes_Ppu_Rendering::draw_background_( int remain )
{
// Draws 'remain' background scanlines. Does not modify vram_addr.
int vram_addr = this->vram_addr & 0x7fff;
byte* row_pixels = scanline_pixels - pixel_x;
int left_clip = (w2001 >> 1 & 1) ^ 1;
row_pixels += left_clip * 8;
do
{
// scanlines until next row
int height = 8 - (vram_addr >> 12);
if ( height > remain )
height = remain;
// handle hscroll change before next scanline
int hscroll_changed = (vram_addr ^ vram_temp) & 0x41f;
int addr = vram_addr;
if ( hscroll_changed )
{
vram_addr ^= hscroll_changed;
height = 1; // hscroll will change after first line
}
remain -= height;
// increment address for next row
vram_addr += height << 12;
assert( vram_addr < 0x10000 );
if ( vram_addr & 0x8000 )
{
int y = (vram_addr + 0x20) & 0x3e0;
vram_addr &= 0x7fff & ~0x3e0;
if ( y == 30 * 0x20 )
y = 0x800; // toggle vertical nametable
vram_addr ^= y;
}
// nametable change usually occurs in middle of row
byte const* nametable = get_nametable( addr );
byte const* nametable2 = get_nametable( addr ^ 0x400 );
int count2 = addr & 31;
int count = 32 - count2 - left_clip;
if ( pixel_x )
count2++;
byte const* attr_table = &nametable [0x3c0 | (addr >> 4 & 0x38)];
int bg_bank = (w2000 << 4) & 0x100;
addr += left_clip;
// output pixels
ptrdiff_t const row_bytes = scanline_row_bytes;
byte* pixels = row_pixels;
row_pixels += height * row_bytes;
unsigned long const mask = 0x03030303 + zero;
unsigned long const attrib_factor = 0x04040404 + zero;
if ( height == 8 )
{
// unclipped
assert( (addr >> 12) == 0 );
addr &= 0x03ff;
int const fine_y = 0;
int const clipped = false;
#include "Nes_Ppu_Bg.h"
}
else
{
// clipped
int const fine_y = addr >> 12;
addr &= 0x03ff;
height -= fine_y & 1;
int const clipped = true;
#include "Nes_Ppu_Bg.h"
}
}
while ( remain );
}
// Sprites
void Nes_Ppu_Rendering::draw_sprites_( int begin, int end )
{
// Draws sprites on scanlines begin through end - 1. Handles clipping.
int const sprite_height = this->sprite_height();
int end_minus_one = end - 1;
int begin_minus_one = begin - 1;
int index = 0;
do
{
byte const* sprite = &spr_ram [index];
index += 4;
// find if sprite is visible
int top_minus_one = sprite [0];
int visible = end_minus_one - top_minus_one;
if ( visible <= 0 )
continue; // off bottom
// quickly determine whether sprite is unclipped
int neg_vis = visible - sprite_height;
int neg_skip = top_minus_one - begin_minus_one;
if ( (neg_skip | neg_vis) >= 0 ) // neg_skip >= 0 && neg_vis >= 0
{
// unclipped
#ifndef NDEBUG
int top = sprite [0] + 1;
assert( (top + sprite_height) > begin && top < end );
assert( begin <= top && top + sprite_height <= end );
#endif
int const skip = 0;
int visible = sprite_height;
#define CLIPPED 0
#include "Nes_Ppu_Sprites.h"
}
else
{
// clipped
if ( neg_vis > 0 )
visible -= neg_vis;
if ( neg_skip > 0 )
neg_skip = 0;
visible += neg_skip;
if ( visible <= 0 )
continue; // off top
// visible and clipped
#ifndef NDEBUG
int top = sprite [0] + 1;
assert( (top + sprite_height) > begin && top < end );
assert( top < begin || top + sprite_height > end );
#endif
int skip = -neg_skip;
//dprintf( "begin: %d, end: %d, top: %d, skip: %d, visible: %d\n",
// begin, end, top_minus_one + 1, skip, visible );
#define CLIPPED 1
#include "Nes_Ppu_Sprites.h"
}
}
while ( index < 0x100 );
}
void Nes_Ppu_Rendering::check_sprite_hit( int begin, int end )
{
// Checks for sprite 0 hit on scanlines begin through end - 1.
// Updates sprite_hit_found. Background (but not sprites) must have
// already been rendered for the scanlines.
// clip
int top = spr_ram [0] + 1;
int skip = begin - top;
if ( skip < 0 )
skip = 0;
top += skip;
int visible = end - top;
if ( visible <= 0 )
return; // not visible
int height = sprite_height();
if ( visible >= height )
{
visible = height;
sprite_hit_found = -1; // signal that no more hit checking will take place
}
// pixels
ptrdiff_t next_row = this->scanline_row_bytes;
byte const* bg = this->scanline_pixels + spr_ram [3] + (top - begin) * next_row;
cache_t const* lines = get_sprite_tile( spr_ram );
// left edge clipping
int start_x = 0;
if ( spr_ram [3] < 8 && (w2001 & 0x01e) != 0x1e )
{
if ( spr_ram [3] == 0 )
return; // won't hit
start_x = 8 - spr_ram [3];
}
// vertical flip
int final = skip + visible;
if ( spr_ram [2] & 0x80 )
{
skip += height - 1;
final = skip - visible;
}
// check each line
unsigned long const mask = 0x01010101 + zero;
do
{
// get pixels for line
unsigned long line = lines [skip >> 1];
unsigned long hit0 = ((uint32_t*) bg) [0];
unsigned long hit1 = ((uint32_t*) bg) [1];
bg += next_row;
line >>= skip << 1 & 2;
line |= line >> 1;
// check for hits
hit0 = ((hit0 >> 1) | hit0) & (line >> 4);
hit1 = ((hit1 >> 1) | hit1) & line;
if ( (hit0 | hit1) & mask )
{
// write to memory to avoid endian issues
uint32_t quads [3];
quads [0] = hit0;
quads [1] = hit1;
// find which pixel hit
int x = start_x;
do
{
if ( ((byte*) quads) [x] & 1 )
{
x += spr_ram [3];
if ( x >= 255 )
break; // ignore right edge
if ( spr_ram [2] & 0x80 )
skip = height - 1 - skip; // vertical flip
int y = spr_ram [0] + 1 + skip;
sprite_hit_found = y * scanline_len + x;
return;
}
}
while ( x++ < 7 );
}
if ( skip > final )
skip -= 2;
skip++;
}
while ( skip != final );
}
// Draw scanlines
inline bool Nes_Ppu_Rendering::sprite_hit_possible( int scanline ) const
{
return !sprite_hit_found && spr_ram [0] <= scanline && (w2001 & 0x18) == 0x18;
}
void Nes_Ppu_Rendering::draw_scanlines( int start, int count,
byte* pixels, long pitch, int mode )
{
assert( start + count <= image_height );
assert( pixels );
scanline_pixels = pixels + image_left;
scanline_row_bytes = pitch;
int const obj_mask = 2;
int const bg_mask = 1;
int draw_mode = (w2001 >> 3) & 3;
int clip_mode = (~w2001 >> 1) & draw_mode;
if ( !(draw_mode & bg_mask) )
{
// no background
clip_mode |= bg_mask; // avoid unnecessary save/restore
if ( mode & bg_mask )
fill_background( count );
}
if ( start == 0 && mode & 1 )
memset( sprite_scanlines, max_sprites - sprite_limit, 240 );
if ( (draw_mode &= mode) )
{
// sprites and/or background are being rendered
if ( any_tiles_modified && chr_is_writable )
{
any_tiles_modified = false;
update_tiles( 0 );
}
if ( draw_mode & bg_mask )
{
//dprintf( "bg %3d-%3d\n", start, start + count - 1 );
draw_background_( count );
if ( clip_mode == bg_mask )
clip_left( count );
if ( sprite_hit_possible( start + count ) )
check_sprite_hit( start, start + count );
}
if ( draw_mode & obj_mask )
{
// when clipping just sprites, save left strip then restore after drawing them
if ( clip_mode == obj_mask )
save_left( count );
//dprintf( "obj %3d-%3d\n", start, start + count - 1 );
draw_sprites_( start, start + count );
if ( clip_mode == obj_mask )
restore_left( count );
if ( clip_mode == (obj_mask | bg_mask) )
clip_left( count );
}
}
scanline_pixels = NULL;
}
void Nes_Ppu_Rendering::draw_background( int start, int count )
{
// always capture palette at least once per frame
if ( (start + count >= 240 && !palette_size) || (w2001 & palette_changed) )
{
palette_changed = false;
capture_palette();
}
if ( host_pixels )
{
draw_scanlines( start, count, host_pixels + host_row_bytes * start, host_row_bytes, 1 );
}
else if ( sprite_hit_possible( start + count ) )
{
// not rendering, but still handle sprite hit using mini graphics buffer
int y = spr_ram [0] + 1;
int skip = min( count, max( y - start, 0 ) );
int visible = min( count - skip, sprite_height() );
assert( skip + visible <= count );
assert( visible <= mini_offscreen_height );
if ( visible > 0 )
{
run_hblank( skip );
draw_scanlines( start + skip, visible, impl->mini_offscreen, buffer_width, 3 );
}
}
}

View File

@ -0,0 +1,63 @@
// NES PPU emulator graphics rendering
// Nes_Emu 0.7.0
#ifndef NES_PPU_RENDERING_H
#define NES_PPU_RENDERING_H
#include "Nes_Ppu_Impl.h"
class Nes_Ppu_Rendering : public Nes_Ppu_Impl {
typedef Nes_Ppu_Impl base;
public:
Nes_Ppu_Rendering();
int sprite_limit;
byte* host_pixels;
long host_row_bytes;
protected:
long sprite_hit_found; // -1: sprite 0 didn't hit, 0: no hit so far, > 0: y * 341 + x
void draw_background( int start, int count );
void draw_sprites( int start, int count );
private:
void draw_scanlines( int start, int count, byte* pixels, long pitch, int mode );
void draw_background_( int count );
// destination for draw functions; avoids extra parameters
byte* scanline_pixels;
long scanline_row_bytes;
// fill/copy
void fill_background( int count );
void clip_left( int count );
void save_left( int count );
void restore_left( int count );
// sprites
enum { max_sprites = 64 };
byte sprite_scanlines [image_height]; // number of sprites on each scanline
void draw_sprites_( int start, int count );
bool sprite_hit_possible( int scanline ) const;
void check_sprite_hit( int begin, int end );
};
inline Nes_Ppu_Rendering::Nes_Ppu_Rendering()
{
sprite_limit = 8;
host_pixels = NULL;
}
inline void Nes_Ppu_Rendering::draw_sprites( int start, int count )
{
assert( host_pixels );
draw_scanlines( start, count, host_pixels + host_row_bytes * start, host_row_bytes, 2 );
}
#endif

View File

@ -0,0 +1,132 @@
int sprite_2 = sprite [2];
// pixels
ptrdiff_t next_row = this->scanline_row_bytes;
byte* out = this->scanline_pixels + sprite [3] +
(top_minus_one + skip - begin_minus_one) * next_row;
cache_t const* lines = get_sprite_tile( sprite );
int dir = 1;
byte* scanlines = this->sprite_scanlines + 1 + top_minus_one + skip;
if ( sprite_2 & 0x80 )
{
// vertical flip
out -= next_row;
out += visible * next_row;
next_row = -next_row;
dir = -1;
scanlines += visible - 1;
#if CLIPPED
int height = this->sprite_height();
skip = height - skip - visible;
assert( skip + visible <= height );
#endif
}
// attributes
unsigned long offset = (sprite_2 & 3) * 0x04040404 + (this->palette_offset + 0x10101010);
unsigned long const mask = 0x03030303 + zero;
unsigned long const maskgen = 0x80808080 + zero;
#define DRAW_PAIR( shift ) { \
int sprite_count = *scanlines; \
CALC_FOUR( ((uint32_t*) out) [0], (line >> (shift + 4)), out0 ) \
CALC_FOUR( ((uint32_t*) out) [1], (line >> shift), out1 ) \
if ( sprite_count < this->max_sprites ) { \
((uint32_t*) out) [0] = out0; \
((uint32_t*) out) [1] = out1; \
} \
if ( CLIPPED ) visible--; \
out += next_row; \
*scanlines = sprite_count + 1; \
scanlines += dir; \
if ( CLIPPED && !visible ) break; \
}
if ( !(sprite_2 & 0x20) )
{
// front
unsigned long const maskgen2 = 0x7f7f7f7f + zero;
#define CALC_FOUR( in, line, out ) \
unsigned long out; \
{ \
unsigned long bg = in; \
unsigned long sp = line & mask; \
unsigned long bgm = maskgen2 + ((bg >> 4) & mask); \
unsigned long spm = (maskgen - sp) & maskgen2; \
unsigned long m = (bgm & spm) >> 2; \
out = (bg & ~m) | ((sp + offset) & m); \
}
#if CLIPPED
lines += skip >> 1;
unsigned long line = *lines++;
if ( skip & 1 )
goto front_skip;
while ( true )
{
DRAW_PAIR( 0 )
front_skip:
DRAW_PAIR( 2 )
line = *lines++;
}
#else
for ( int n = visible >> 1; n--; )
{
unsigned long line = *lines++;
DRAW_PAIR( 0 )
DRAW_PAIR( 2 )
}
#endif
#undef CALC_FOUR
}
else
{
// behind
unsigned long const omask = 0x20202020 + zero;
unsigned long const bg_or = 0xc3c3c3c3 + zero;
#define CALC_FOUR( in, line, out ) \
unsigned long out; \
{ \
unsigned long bg = in; \
unsigned long sp = line & mask; \
unsigned long bgm = maskgen - (bg & mask); \
unsigned long spm = maskgen - sp; \
out = (bg & (bgm | bg_or)) | (spm & omask) | \
(((offset & spm) + sp) & ~(bgm >> 2)); \
}
#if CLIPPED
lines += skip >> 1;
unsigned long line = *lines++;
if ( skip & 1 )
goto back_skip;
while ( true )
{
DRAW_PAIR( 0 )
back_skip:
DRAW_PAIR( 2 )
line = *lines++;
}
#else
for ( int n = visible >> 1; n--; )
{
unsigned long line = *lines++;
DRAW_PAIR( 0 )
DRAW_PAIR( 2 )
}
#endif
#undef CALC_FOUR
}
#undef CLIPPED
#undef DRAW_PAIR

View File

@ -0,0 +1,472 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Recorder.h"
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const joypad_sync_value = 0xFF; // joypad data on frames it's never read
Nes_Recorder::Nes_Recorder()
{
cache = 0;
film_ = 0;
frames = 0;
resync_enabled = false;
disable_reverse( 1 ); // sets cache_period_ and cache_size
reverse_allowed = true;
buffer_height_ = Nes_Ppu::buffer_height * frames_size + 2;
}
Nes_Recorder::~Nes_Recorder()
{
free( frames );
delete [] cache;
}
blargg_err_t Nes_Recorder::init_()
{
RETURN_ERR( base::init_() );
cache = new Nes_State [cache_size];
int frame_count = reverse_allowed ? frames_size : 1;
CHECK_ALLOC( frames = (saved_frame_t*) calloc( sizeof *frames, frame_count ) );
for ( int i = 0; i < frame_count; i++ )
frames [i].top = (long) i * Nes_Ppu::buffer_height + 1;
return 0;
}
void Nes_Recorder::clear_cache()
{
ready_to_resync = false;
reverse_enabled = false;
for ( int i = 0; i < cache_size; i++ )
cache [i].set_timestamp( invalid_frame_count );
}
void Nes_Recorder::set_film( Nes_Film* new_film, frame_count_t time )
{
require( new_film );
film_ = new_film;
clear_cache();
if ( !film_->blank() )
{
tell_ = film_->constrain( time );
check( tell_ == time ); // catch seeks outside film
seek_( tell_ );
}
}
void Nes_Recorder::reset( bool full_reset, bool erase_battery_ram )
{
base::reset( full_reset, erase_battery_ram );
tell_ = 0;
film_->clear();
clear_cache();
}
void Nes_Recorder::loading_state( Nes_State const& in )
{
reset();
tell_ = in.timestamp();
}
// Frame emulation
inline int Nes_Recorder::cache_index( frame_count_t t ) const
{
return (t / cache_period_) % cache_size;
}
void Nes_Recorder::emulate_frame_( Nes_Film::joypad_t joypad )
{
if ( base::timestamp() % cache_period_ == 0 )
save_state( &cache [cache_index( base::timestamp() )] );
if ( base::emulate_frame( joypad & 0xFF, (joypad >> 8) & 0xFF ) ) { }
}
void Nes_Recorder::replay_frame_( Nes_Film::joypad_t joypad )
{
if ( base::timestamp() % film_->period() == 0 )
{
if ( film_->read_snapshot( base::timestamp() ).timestamp() == invalid_frame_count )
{
Nes_State_* ss = film_->modify_snapshot( base::timestamp() );
if ( ss )
save_state( ss );
else
check( false ); // out of memory simply causes lack of caching
}
}
emulate_frame_( joypad );
}
int Nes_Recorder::replay_frame()
{
frame_count_t start_time = base::timestamp();
int joypad = film_->get_joypad( start_time );
if ( !film_->has_joypad_sync() )
{
replay_frame_( joypad );
}
else if ( (joypad & 0xFF) != joypad_sync_value )
{
// joypad should be read
replay_frame_( joypad );
if ( !joypad_read_count() )
{
// emulator has fallen behind
dprintf( "Fell behind joypad data \n" );
base::set_timestamp( start_time );
}
}
else
{
// get joypad for next frame in case emulator gets ahead
if ( film_->contains_frame( start_time + 1 ) )
{
joypad = film_->get_joypad( start_time + 1 );
if ( (joypad & 0xFF) == joypad_sync_value )
joypad = 0; // next frame shouldn't read joypad either, so just give it nothing
}
// joypad should not be read
replay_frame_( joypad );
if ( joypad_read_count() )
{
// emulator is ahead
dprintf( "Ahead of joypad data \n" );
base::set_timestamp( film_->constrain( base::timestamp() + 1 ) );
}
}
return base::timestamp() - start_time;
}
// Film handling
Nes_State_ const* Nes_Recorder::nearest_snapshot( frame_count_t time ) const
{
Nes_State_ const* ss = film_->nearest_snapshot( time );
if ( ss )
{
// check cache for any snapshots more recent than film_'s
for ( frame_count_t t = time - time % cache_period_;
ss->timestamp() < t; t -= cache_period_ )
{
Nes_State_ const& cache_ss = cache [cache_index( t )];
if ( cache_ss.timestamp() == t )
return &cache_ss;
}
}
return ss;
}
void Nes_Recorder::seek_( frame_count_t time )
{
Nes_State_ const* ss = nearest_snapshot( time );
if ( !film_->contains( time ) || !ss )
{
require( false ); // tried to seek outside recording
return;
}
base::load_state( *ss );
frame_ = 0; // don't render graphics
frame_count_t max_iter = (time - base::timestamp()) * 2; // don't seek forever
while ( base::timestamp() < time && max_iter-- )
replay_frame();
}
void Nes_Recorder::seek( frame_count_t time )
{
check( film_->contains( time ) );
time = film_->constrain( time );
if ( time != tell() )
{
reverse_enabled = false;
seek_( time );
tell_ = base::timestamp();
}
}
inline frame_count_t Nes_Recorder::advancing_frame()
{
if ( reverse_enabled )
{
reverse_enabled = false;
if ( !film_->blank() )
seek_( tell_ );
}
frame_ = &frames [0];
tell_ = base::timestamp();
return tell_++;
}
blargg_err_t Nes_Recorder::emulate_frame( int joypad, int joypad2 )
{
frame_count_t time = advancing_frame();
require( film_->blank() || film_->contains( time ) );
Nes_Film::joypad_t joypads = joypad2 * 0x100 + joypad;
Nes_State_* ss = 0;
RETURN_ERR( film_->record_frame( time, joypads, &ss ) );
if ( ss )
save_state( ss );
emulate_frame_( joypads );
if ( film_->has_joypad_sync() && !joypad_read_count() )
RETURN_ERR( film_->set_joypad( time, joypad_sync_value ) );
// avoid stale cache snapshot after trimming film
if ( base::timestamp() % cache_period_ == 0 )
cache [cache_index( base::timestamp() )].set_timestamp( invalid_frame_count );
return 0;
}
void Nes_Recorder::next_frame()
{
if ( tell() >= film_->end() )
{
check( false ); // tried to go past end
return;
}
frame_count_t time = advancing_frame();
assert( base::timestamp() == time || base::timestamp() == time + 1 );
// ready_to_resync avoids endless resyncing if joypad isn't getting read when
// it should, thus the timestamp never incrementing.
if ( ready_to_resync )
{
Nes_State_ const& ss = film_->read_snapshot( time );
if ( ss.timestamp() == time )
{
// todo: remove
#if !defined (NDEBUG) && 1
dprintf( "Resynced \n" );
static Nes_State* temp = BLARGG_NEW Nes_State [2];
static char* temp2 = new char [sizeof *temp];
if ( temp && temp2 )
{
save_state( temp );
memcpy( temp2, temp, sizeof *temp );
long a = temp->apu.noise.shift_reg;
long b = temp->apu.apu.w40xx [0x11];
long c = temp->apu.dmc.bits;
base::load_state( ss );
save_state( temp );
save_state( &temp [1] );
// shift register and dac are not maintained
temp->apu.noise.shift_reg = a;
temp->apu.apu.w40xx [0x11] = b;
temp->apu.dmc.bits = c;
if ( memcmp( temp2, temp, sizeof *temp ) )
{
check( !"Film sync corrected error" );
Std_File_Writer out;
(void) !out.open( "state0" );
(void) !temp [0].write( out );
(void) !out.open( "state1" );
(void) !temp [1].write( out );
//(void) !out.open( "state2" );
//(void) !ss.write( out );
}
}
if ( 0 )
#endif
base::load_state( ss );
}
}
int count = replay_frame();
tell_ = base::timestamp();
// examination of count prevents endless resync if frame is getting doubled
ready_to_resync = false;
if ( count && resync_enabled && film_->read_snapshot( tell_ ).timestamp() == tell_ )
{
fade_sound_out = true;
ready_to_resync = true;
}
}
// Extra features
void Nes_Recorder::record_keyframe()
{
if ( !film_->blank() )
{
Nes_State_* ss = film_->modify_snapshot( base::timestamp() );
if ( !ss )
{
check( false ); // out of memory simply causes lack of key frame adjustment
}
// first snapshot can only be replaced if key frame is at beginning of film
else if ( ss->timestamp() > film_->begin() || base::timestamp() == film_->begin() )
{
if ( ss->timestamp() != base::timestamp() )
save_state( ss );
}
}
}
frame_count_t Nes_Recorder::nearby_keyframe( frame_count_t time ) const
{
// TODO: reimplement using direct snapshot and cache access
check( film_->contains( time ) );
// don't adjust time if seeking to beginning or end
if ( film_->begin() < time && time < film_->end() )
{
// rounded time must be within about a minute of requested time
int const half_threshold = 45 * frame_rate;
// find nearest snapshots before and after requested time
frame_count_t after = invalid_frame_count;
frame_count_t before = time + half_threshold;
do
{
after = before;
Nes_State_ const* ss = nearest_snapshot( film_->constrain( before - 1 ) );
if ( !ss )
{
require( false ); // tried to seek outside recording
return time;
}
before = ss->timestamp();
}
while ( time < before );
// determine closest and use if within threshold
frame_count_t closest = after;
if ( time - before < after - time )
closest = before;
int delta = time - closest;
if ( max( delta, -delta ) < half_threshold )
time = closest;
if ( time < film_->begin() )
time = film_->begin();
}
return time;
}
void Nes_Recorder::skip( int delta )
{
if ( delta ) // rounding code can't handle zero
{
// round to nearest cache timestamp (even if not in cache)
frame_count_t current = tell();
frame_count_t time = current + delta + cache_period_ / 2;
time -= time % cache_period_;
if ( delta < 0 )
{
if ( time >= current )
time -= cache_period_;
}
else if ( time <= current )
{
time += cache_period_;
}
seek( film_->constrain( time ) );
}
}
// Reverse handling
// Get index of frame at given timestamp in reverse frames
inline int Nes_Recorder::reverse_index( frame_count_t time ) const
{
int index = time % (frames_size * 2);
if ( index >= frames_size ) // opposite direction on odd runs
index = frames_size * 2 - 1 - index;
return index;
}
// Generate frame at given timestamp into proper position in reverse frames
void Nes_Recorder::reverse_fill( frame_count_t time )
{
if ( time >= film_->begin() )
{
// todo: can cause excessive seeking when joypad data loses sync
if ( base::timestamp() != time )
seek_( time );
saved_frame_t* frame = &frames [reverse_index( time )];
frame_ = frame;
if ( time % frames_size == frames_size - 1 )
fade_sound_out = true;
replay_frame();
frame->sample_count = base::read_samples( frame->samples, frame->max_samples );
}
}
void Nes_Recorder::prev_frame()
{
if ( tell() <= film_->begin() || !reverse_allowed )
{
check( false ); // tried to go before beginning
return;
}
int offset = tell_ % frames_size;
frame_count_t aligned = tell_ - offset;
if ( reverse_enabled )
{
reverse_fill( aligned - 1 - offset );
}
else
{
reverse_enabled = true;
for ( int i = 0; i < frames_size; i++ )
{
frame_count_t time = aligned + i;
if ( i >= offset )
time -= offset + frames_size; // restore some of previous second
reverse_fill( time );
}
}
tell_--;
frame_ = &frames [reverse_index( tell_ )];
}
long Nes_Recorder::read_samples( short* out, long count )
{
require( count >= frame().sample_count );
if ( !reverse_enabled )
return base::read_samples( out, count );
// copy samples in reverse without reversing left and right channels
// to do: optimize?
count = frame().sample_count;
blip_sample_t const* in = STATIC_CAST(saved_frame_t const&,frame()).samples;
int step = frame().chan_count - 1;
for ( int i = 0; i < count; i++ )
out [count - 1 - (i ^ step)] = in [i];
return count;
}

View File

@ -0,0 +1,142 @@
// NES emulator with movie recording and playback in both directions
// Nes_Emu 0.7.0
#ifndef NES_RECORDER_H
#define NES_RECORDER_H
#include "Nes_Emu.h"
#include "Nes_Film.h"
class Nes_Recorder : public Nes_Emu {
public:
// Set new film to use for recording and playback. If film isn't empty, seeks to
// its beginning (or to optional specified fime). Film *must* be loaded before
// using the recorder for emulation.
void set_film( Nes_Film*, frame_count_t );
void set_film( Nes_Film* f ) { set_film( f, f->begin() ); }
// Currently loaded film
Nes_Film& film() const { return *film_; }
// Time references are in terms of timestamps at a single moment, rather than
// the frames that occur between two timestamps. All timestamps must be within
// the current recording. The emulator is always at a particular timestamp in the
// recording; a frame exists only in the graphics buffer and sample buffer. Shown
// below are timestamps and the frame that occurs between 1 and 2.
// |---|///|---|---
// 0 1 2 3 timestamps of snapshots between frames
// Current timestamp
frame_count_t tell() const;
// Seek to new timestamp. Time is constrained to recording if it falls outside.
void seek( frame_count_t );
// Record new frame at current timestamp and remove anything previously
// recorded after it.
blargg_err_t emulate_frame( int joypad, int joypad2 = 0 );
// Increment timestamp and generate frame for that duration. Does nothing
// if already at end of recording.
void next_frame();
// Decrement timestamp and generate frame for that duration. Does nothing
// if already at beginning of recording. Performance is close to that of
// next_frame().
void prev_frame();
// Additional features
// Disable reverse support and optionally use less-frequent cache snapshots, in order
// to drastically reduce the required height of the graphics buffer and memory usage.
// If used, must be called one time *before* any use of emulator.
void disable_reverse( int cache_period_secs = 5 );
// Call when current film has been significantly changed (loaded from file).
// Doesn't need to be called if film was merely trimmed.
void film_changed();
// Attempt to add keyframe to film at current timestamp, which will make future
// seeking to this point faster after film is later loaded.
void record_keyframe();
// Get time of nearby key frame within +/- 45 seconds, otherwise return time unchanged.
// Seeking to times of key frames is much faster than an arbitrary time. Time
// is constrained to film if it falls outside.
frame_count_t nearby_keyframe( frame_count_t ) const;
// Quickly skip forwards or backwards, staying within recording. May skip slightly
// more or less than delta, but will always skip at least some if delta is non-zero
// (i.e. repeated skip( 1 ) calls will eventually reach the end of the recording).
void skip( int delta );
// When enabled, emulator is synchronized at each snapshot in film. This
// corrects any emulation differences compared to when the film was made. Might
// be necessary when playing movies made in an older version of this emulator
// or from other emulators.
void enable_resync( bool b = true ) { resync_enabled = b; }
// Height of graphics buffer needed when running forward (next_frame() or
// emulate_frame(), but not prev_frame())
enum { forward_buffer_height = Nes_Ppu::buffer_height };
public:
Nes_Recorder();
virtual ~Nes_Recorder();
virtual blargg_err_t init_();
virtual void reset( bool = true, bool = false );
void load_state( Nes_State const& s ) { Nes_Emu::load_state( s ); }
blargg_err_t load_state( Auto_File_Reader r ) { return Nes_Emu::load_state( r ); }
virtual long read_samples( short* out, long count );
private:
typedef Nes_Emu base;
// snapshots
Nes_State* cache;
int cache_size;
int cache_period_;
Nes_Film* film_;
void clear_cache();
int cache_index( frame_count_t ) const;
Nes_State_ const* nearest_snapshot( frame_count_t ) const;
// film
frame_count_t tell_;
bool resync_enabled;
bool ready_to_resync;
void emulate_frame_( Nes_Film::joypad_t );
void replay_frame_( Nes_Film::joypad_t );
int replay_frame();
void seek_( frame_count_t );
frame_count_t advancing_frame();
void loading_state( Nes_State const& );
// reverse handling
enum { frames_size = frame_rate };
struct saved_frame_t : Nes_Emu::frame_t {
enum { max_samples = 2048 };
blip_sample_t samples [max_samples];
};
saved_frame_t* frames;
bool reverse_enabled;
bool reverse_allowed;
void reverse_fill( frame_count_t );
int reverse_index( frame_count_t ) const; // index for given frame
};
inline frame_count_t Nes_Recorder::tell() const { return film_->constrain( tell_ ); }
inline void Nes_Recorder::film_changed() { set_film( &film(), film().constrain( tell() ) ); }
inline void Nes_Recorder::disable_reverse( int new_cache_period )
{
reverse_allowed = false;
buffer_height_ = Nes_Ppu::buffer_height;
cache_period_ = new_cache_period * frame_rate;
cache_size = 2 * 60 * frame_rate / cache_period_ + 7; // +7 reduces contention
}
#endif

View File

@ -0,0 +1,324 @@
// Nes_Emu 0.5.6. http://www.slack.net/~ant/
#include "Nes_Rewinder.h"
#include <string.h>
/* Copyright (C) 2004-2005 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
// to do: fade out at transitions between forward and reverse
#include BLARGG_SOURCE_BEGIN
// If true, always keep recent frame images in graphics buffer. Reduces overall
// performance by about 33% on my machine, due to the frame buffer not staying in the cache.
bool const quick_reverse = false;
Nes_Rewinder::Nes_Rewinder( frame_count_t snapshot_period ) : recorder( snapshot_period )
{
pixels = NULL;
frames = NULL;
reverse_enabled = false;
}
Nes_Rewinder::~Nes_Rewinder()
{
delete [] frames;
}
blargg_err_t Nes_Rewinder::init()
{
if ( !frames )
{
BLARGG_RETURN_ERR( recorder::init() );
frames = BLARGG_NEW frame_t [frames_size];
BLARGG_CHECK_ALLOC( frames );
}
return blargg_success;
}
blargg_err_t Nes_Rewinder::load_ines_rom( Data_Reader& in, Data_Reader* ips )
{
if ( !frames )
BLARGG_RETURN_ERR( init() );
return recorder::load_ines_rom( in, ips );
}
long Nes_Rewinder::samples_avail() const
{
return frames [current_frame].sample_count;
}
inline void copy_reverse( const blip_sample_t* in, int count, blip_sample_t* out, int step )
{
in += count;
while ( count > 0 )
{
count -= step;
in -= step;
*out = *in;
out += step;
}
}
long Nes_Rewinder::read_samples( short* out, long out_size )
{
int count = samples_avail();
if ( count )
{
if ( count > out_size )
{
count = out_size;
assert( false ); // has no provision for reading partial buffer
}
if ( !reverse_enabled )
{
memcpy( out, frames [current_frame].samples, count * sizeof *out );
}
else
{
int step = samples_per_frame();
for ( int i = step; i-- > 0; )
copy_reverse( frames [current_frame].samples + i, count, out + i, step );
}
if ( fade_sound_in )
{
fade_sound_in = false;
fade_samples_( out, count, 1 );
}
if ( frames [current_frame].fade_out )
{
fade_sound_in = true;
fade_samples_( out, count, -1 );
}
}
return count;
}
void Nes_Rewinder::seek( frame_count_t time )
{
if ( time != tell() )
{
clear_reverse();
recorder::seek_( time );
}
}
inline void Nes_Rewinder::set_output( int index )
{
recorder::set_pixels( pixels + index * frame_height * row_bytes, row_bytes );
}
void Nes_Rewinder::frame_rendered( int index, bool using_buffer )
{
frame_t& frame = frames [index];
if ( recorder::frames_emulated() > 0 )
{
frame.palette_size = recorder::palette_size();
for ( int i = frame.palette_size; i--; )
frame.palette [i] = recorder::palette_entry( i );
frame.sample_count = recorder::read_samples( frame.samples, frame.max_samples );
}
else if ( pixels && using_buffer )
{
int old_index = (index + frames_size - 1) % frames_size;
memcpy( &frame, &frames [old_index], sizeof frame );
// to do: handle case where row_bytes is a lot greater than buffer_width
memcpy( pixels + index * frame_height * row_bytes,
pixels + old_index * frame_height * row_bytes,
row_bytes * frame_height );
}
frame.fade_out = false;
}
blargg_err_t Nes_Rewinder::next_frame( int joypad, int joypad2 )
{
if ( reverse_enabled )
{
if ( !get_film().empty() ) // if empty then we can't seek
recorder::seek_( reversed_time );
clear_reverse();
}
current_frame = 0;
if ( quick_reverse )
{
current_frame = recorder::tell() % frames_size;
if ( buffer_scrambled )
buffer_scrambled--;
}
set_output( current_frame );
BLARGG_RETURN_ERR( recorder::next_frame( joypad, joypad2 ) );
frame_rendered( current_frame, quick_reverse );
return blargg_success;
}
frame_count_t Nes_Rewinder::tell() const
{
return reverse_enabled ? reversed_time : recorder::tell();
}
void Nes_Rewinder::clear_cache()
{
recorder::clear_cache();
clear_reverse();
}
void Nes_Rewinder::clear_reverse()
{
buffer_scrambled = frames_size;
reverse_enabled = false;
reverse_unmirrored = 0;
reverse_pivot = 0;
reversed_time = 0;
}
void Nes_Rewinder::play_frame_( int index )
{
if ( negative_seek > 0 )
{
negative_seek--;
}
else
{
set_output( index );
recorder::play_frame_();
frame_rendered( index, true );
}
}
void Nes_Rewinder::seek_clamped( frame_count_t time )
{
negative_seek = movie_begin() - time;
if ( negative_seek > 0 )
time = movie_begin();
recorder::seek_( time );
}
void Nes_Rewinder::enter_reverse()
{
reversed_time = recorder::tell() - 1;
reverse_pivot = reversed_time % frames_size;
frame_count_t first_frame = reversed_time - reverse_pivot;
if ( buffer_scrambled )
{
// buffer hasn't been filled with a clean second of frames since last seek
dprintf( "Refilling reverse buffer, pivot: %d\n", (int) reverse_pivot );
// fill beginning
seek_clamped( first_frame );
for ( int i = 0; i <= reverse_pivot; i++ )
play_frame_( i );
frames [0].fade_out = true;
// fill end
seek_clamped( first_frame - frames_size + reverse_pivot + 1 );
for ( int i = reverse_pivot + 1; i < frames_size; i++ )
play_frame_( i );
}
if ( reverse_pivot + 1 < frames_size )
frames [reverse_pivot + 1].fade_out = true;
reverse_unmirrored = 2; // unmirrored for first two passes, then alternating
reverse_pivot = -reverse_pivot; // don't pivot yet
seek_clamped( first_frame - frames_size );
// Buffer is now filled. Current second is at beginning and previous at end,
// and in this example reversed_time is 24 and reverse_pivot is 4:
// 20 21 22 23 24 25 16 17 18 19
// As fragment of current second is played backwards, it will be replaced with
// beginning of previous second:
// <---------------
// 20 21 22 23 24 25 16 17 18 19 frame 25
// 20 21 22 23 24 10 16 17 18 19 frame 24
// 20 21 22 23 11 10 16 17 18 19 frame 23
// 20 21 22 12 11 10 16 17 18 19 frame 22
// 20 21 13 12 11 10 16 17 18 19 frame 21
// 20 14 13 12 11 10 16 17 18 19 frame 20
// 15 14 13 12 11 10 16 17 18 19 frame 19
// Then filling will keep replacing buffer contents in a converging fashion:
// <---------
// 15 14 13 12 11 10 16 17 18 0 frame 19
// 15 14 13 12 11 10 16 17 1 0 frame 18
// 15 14 13 12 11 10 16 2 1 0 frame 17
// 15 14 13 12 11 10 3 2 1 0 frame 16
// -------------->
// 4 14 13 12 11 10 3 2 1 0 frame 15
// 4 5 13 12 11 10 3 2 1 0 frame 14
// 4 5 6 12 11 10 3 2 1 0 frame 13
// 4 5 6 7 11 10 3 2 1 0 frame 12
// 4 5 6 7 8 10 3 2 1 0 frame 11
// 4 5 6 7 8 9 3 2 1 0 frame 10
// <---------------
// etc.
}
void Nes_Rewinder::prev_frame()
{
if ( tell() <= movie_begin() )
{
require( false ); // tried to go before beginning of movie
return;
}
if ( !reverse_enabled )
{
reverse_enabled = true;
enter_reverse();
}
else
{
play_frame_( current_frame );
reversed_time--;
if ( reversed_time % frames_size == frames_size - 1 )
{
if ( reverse_pivot < 0 )
reverse_pivot = -reverse_pivot;
if ( --reverse_unmirrored < 0 )
reverse_unmirrored = 1;
seek_clamped( reversed_time - frames_size * 2 + 1 );
}
}
// determine index of frame in buffer
int raw_index = reversed_time % frames_size;
int index = raw_index;
if ( !reverse_unmirrored )
index = frames_size - 1 - index;
if ( index <= reverse_pivot )
index = reverse_pivot - index;
current_frame = index;
if ( raw_index == 0 ) // previous frame will be from previous restoration
frames [index].fade_out = true;
}

View File

@ -0,0 +1,95 @@
// NES recorder with smooth rewind (backwards playback)
// Nes_Emu 0.5.6. Copyright (C) 2004-2005 Shay Green. GNU LGPL license.
#ifndef NES_REWINDER_H
#define NES_REWINDER_H
#include "Nes_Recorder.h"
class Nes_Rewinder : public Nes_Recorder {
typedef Nes_Recorder recorder;
enum { frames_size = frames_per_second };
public:
explicit Nes_Rewinder( frame_count_t snapshot_period = 0 );
~Nes_Rewinder();
// Nes_Rewinder adds a single feature to Nes_Recorder: the ability to generate
// consecutive previous frames with similar performance to normal forward
// generation.
// Emulate frame *ending* at current timestamp. On exit, timestamp = timestamp - 1.
void prev_frame();
// Recently-generated frames are stored in a caller-supplied graphics buffer,
// which is many times taller than a single frame image.
enum { frame_height = Nes_Recorder::buffer_height };
enum { buffer_height = frame_height * frames_size };
// Y coordinate of image for current frame in graphics buffer
int get_buffer_y();
// Documented in Nes_Emu.h and Nes_Recorder.h
blargg_err_t load_ines_rom( Data_Reader&, Data_Reader* = NULL );
void set_pixels( void*, long bytes_per_row );
blargg_err_t next_frame( int joypad, int joypad2 = 0 );
frame_count_t tell() const;
void seek( frame_count_t );
long samples_avail() const;
long read_samples( short* out, long max_samples );
int palette_size() const { return frames [current_frame].palette_size; }
int palette_entry( int i ) const { return frames [current_frame].palette [i]; }
blargg_err_t init();
// End of public interface
private:
BOOST::uint8_t* pixels;
long row_bytes;
// frame cache
struct frame_t
{
int sample_count;
bool fade_out;
int palette_size;
byte palette [max_palette_size];
enum { max_samples = 2048 };
blip_sample_t samples [max_samples];
};
frame_t* frames;
int current_frame;
bool fade_sound_in;
void set_output( int index );
void frame_rendered( int index, bool using_buffer );
void clear_cache(); // Nes_Recorder override
// clamped seek
int negative_seek; // if positive, number of frames to ignore before playing
void play_frame_( int index );
void seek_clamped( frame_count_t ); // allows timestamp to be before beginning
// reversed frame mapping
frame_count_t reversed_time;// current time is different than emulator time in reverse
int buffer_scrambled; // number of frames remaining before buffer isn't scrambled
bool reverse_enabled;
int reverse_unmirrored; // number of buffers until buffer order is mirrored
int reverse_pivot; // pivot point in buffer
void clear_reverse();
void enter_reverse();
};
inline int Nes_Rewinder::get_buffer_y()
{
return current_frame * frame_height + image_top;
}
inline void Nes_Rewinder::set_pixels( void* p, long rb )
{
pixels = (BOOST::uint8_t*) p;
row_bytes = rb;
}
#endif

Some files were not shown because too many files have changed in this diff Show More