psx - remove unused CD subsystem code, now that i've decided to resurrect it in a separate module.

This commit is contained in:
zeromus 2014-12-24 22:27:29 +00:00
parent 7fd19ab26d
commit a226f61f7c
21 changed files with 96 additions and 3390 deletions

View File

@ -12,17 +12,14 @@
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\cdrom\CDUtility.cpp" />
<ClCompile Include="..\cdrom\crc32.cpp" />
<ClCompile Include="..\cdrom\galois.cpp" />
<ClCompile Include="..\cdrom\l-ec.cpp" />
<ClCompile Include="..\cdrom\lec.cpp" />
<ClCompile Include="..\cdrom\recover-raw.cpp" />
<ClCompile Include="..\emuware\emuware.cpp" />
<ClCompile Include="..\emuware\EW_state.cpp" />
<ClCompile Include="..\endian.cpp" />
<ClCompile Include="..\octoshock.cpp" />
<ClCompile Include="..\psx\cdc.cpp" />
<ClCompile Include="..\psx\cpu.cpp" />
<ClCompile Include="..\psx\cpu.cpp">
<AssemblerOutput Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">All</AssemblerOutput>
</ClCompile>
<ClCompile Include="..\psx\dis.cpp" />
<ClCompile Include="..\psx\dma.cpp" />
<ClCompile Include="..\psx\frontio.cpp" />
@ -52,8 +49,6 @@
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\cdrom\CDUtility.h" />
<ClInclude Include="..\cdrom\dvdisaster.h" />
<ClInclude Include="..\cdrom\lec.h" />
<ClInclude Include="..\cdrom\SimpleFIFO.h" />
<ClInclude Include="..\emuware\emuware.h" />
<ClInclude Include="..\emuware\EW_state.h" />

View File

@ -59,18 +59,6 @@
<Filter>psx</Filter>
</ClCompile>
<ClCompile Include="..\endian.cpp" />
<ClCompile Include="..\cdrom\lec.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\galois.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\l-ec.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\crc32.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\psx\input\dualshock.cpp">
<Filter>psx\input</Filter>
</ClCompile>
@ -108,12 +96,6 @@
<ClCompile Include="..\video\Deinterlacer.cpp">
<Filter>video</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\CDUtility.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\recover-raw.cpp">
<Filter>cdrom</Filter>
</ClCompile>
<ClCompile Include="..\emuware\EW_state.cpp">
<Filter>emuware</Filter>
</ClCompile>
@ -129,6 +111,9 @@
<ClCompile Include="..\psx\gpu_sprite.cpp">
<Filter>psx</Filter>
</ClCompile>
<ClCompile Include="..\cdrom\CDUtility.cpp">
<Filter>cdrom</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\psx\cdc.h">
@ -176,15 +161,6 @@
<ClInclude Include="..\psx\timer.h">
<Filter>psx</Filter>
</ClInclude>
<ClInclude Include="..\cdrom\CDUtility.h">
<Filter>cdrom</Filter>
</ClInclude>
<ClInclude Include="..\cdrom\dvdisaster.h">
<Filter>cdrom</Filter>
</ClInclude>
<ClInclude Include="..\cdrom\lec.h">
<Filter>cdrom</Filter>
</ClInclude>
<ClInclude Include="..\psx\input\dualanalog.h">
<Filter>psx\input</Filter>
</ClInclude>
@ -236,6 +212,9 @@
<ClInclude Include="..\psx\masmem.h">
<Filter>psx</Filter>
</ClInclude>
<ClInclude Include="..\cdrom\CDUtility.h">
<Filter>cdrom</Filter>
</ClInclude>
</ItemGroup>
<ItemGroup>
<None Include="..\psx\spu_fir_table.inc">

View File

@ -1,58 +0,0 @@
/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "../mednafen.h"
#include "CDAccess.h"
#include "CDAccess_Image.h"
#include "CDAccess_CCD.h"
#ifdef HAVE_LIBCDIO
#include "CDAccess_Physical.h"
#endif
using namespace CDUtility;
CDAccess::CDAccess()
{
}
CDAccess::~CDAccess()
{
}
CDAccess *cdaccess_open_image(const char *path, bool image_memcache)
{
CDAccess *ret = NULL;
if(strlen(path) >= 4 && !strcasecmp(path + strlen(path) - 4, ".ccd"))
ret = new CDAccess_CCD(path, image_memcache);
else
ret = new CDAccess_Image(path, image_memcache);
return ret;
}
CDAccess *cdaccess_open_phys(const char *devicename)
{
#ifdef HAVE_LIBCDIO
return new CDAccess_Physical(devicename);
#else
throw MDFN_Error(0, _("Physical CD access support not compiled in."));
#endif
}

View File

@ -1,31 +0,0 @@
#ifndef __MDFN_CDROMFILE_H
#define __MDFN_CDROMFILE_H
#include <stdio.h>
#include "CDUtility.h"
class CDAccess
{
public:
CDAccess();
virtual ~CDAccess();
virtual void Read_Raw_Sector(uint8 *buf, int32 lba) = 0;
virtual void Read_TOC(CDUtility::TOC *toc) = 0;
virtual bool Is_Physical(void) throw() = 0;
virtual void Eject(bool eject_status) = 0; // Eject a disc if it's physical, otherwise NOP. Returns true on success(or NOP), false on error
private:
CDAccess(const CDAccess&); // No copy constructor.
CDAccess& operator=(const CDAccess&); // No assignment operator.
};
CDAccess *cdaccess_open_image(const char *path, bool image_memcache);
CDAccess *cdaccess_open_phys(const char *devicename);
#endif

View File

@ -22,8 +22,6 @@
#include "octoshock.h"
#include "CDUtility.h"
#include "dvdisaster.h"
#include "lec.h"
// Kill_LEC_Correct();
@ -31,6 +29,10 @@
namespace CDUtility
{
void CDUtility_Init()
{
}
// lookup table for crc calculation
static uint16 subq_crctab[256] =
{
@ -65,260 +67,71 @@ static uint16 subq_crctab[256] =
0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
static uint8 scramble_table[2352 - 12];
static bool CDUtility_Inited = false;
static void InitScrambleTable(void)
{
unsigned cv = 1;
for(unsigned i = 12; i < 2352; i++)
{
unsigned char z = 0;
for(int b = 0; b < 8; b++)
{
z |= (cv & 1) << b;
int feedback = ((cv >> 1) & 1) ^ (cv & 1);
cv = (cv >> 1) | (feedback << 14);
}
scramble_table[i - 12] = z;
}
//for(int i = 0; i < 2352 - 12; i++)
// printf("0x%02x, ", scramble_table[i]);
}
void CDUtility_Init(void)
{
if(!CDUtility_Inited)
{
Init_LEC_Correct();
InitScrambleTable();
CDUtility_Inited = true;
}
}
void encode_mode0_sector(uint32 aba, uint8 *sector_data)
{
CDUtility_Init();
lec_encode_mode0_sector(aba, sector_data);
}
void encode_mode1_sector(uint32 aba, uint8 *sector_data)
{
CDUtility_Init();
lec_encode_mode1_sector(aba, sector_data);
}
void encode_mode2_sector(uint32 aba, uint8 *sector_data)
{
CDUtility_Init();
lec_encode_mode2_sector(aba, sector_data);
}
void encode_mode2_form1_sector(uint32 aba, uint8 *sector_data)
{
CDUtility_Init();
lec_encode_mode2_form1_sector(aba, sector_data);
}
void encode_mode2_form2_sector(uint32 aba, uint8 *sector_data)
{
CDUtility_Init();
lec_encode_mode2_form2_sector(aba, sector_data);
}
bool edc_check(const uint8 *sector_data, bool xa)
{
CDUtility_Init();
return(CheckEDC(sector_data, xa));
}
bool edc_lec_check_and_correct(uint8 *sector_data, bool xa)
{
CDUtility_Init();
return(ValidateRawSector(sector_data, xa));
}
bool subq_check_checksum(const uint8 *SubQBuf)
{
uint16 crc = 0;
uint16 stored_crc = 0;
stored_crc = SubQBuf[0xA] << 8;
stored_crc |= SubQBuf[0xB];
for(int i = 0; i < 0xA; i++)
crc = subq_crctab[(crc >> 8) ^ SubQBuf[i]] ^ (crc << 8);
crc = ~crc;
return(crc == stored_crc);
}
void subq_generate_checksum(uint8 *buf)
{
uint16 crc = 0;
for(int i = 0; i < 0xA; i++)
crc = subq_crctab[(crc >> 8) ^ buf[i]] ^ (crc << 8);
// Checksum
buf[0xa] = ~(crc >> 8);
buf[0xb] = ~(crc);
}
void subq_deinterleave(const uint8 *SubPWBuf, uint8 *qbuf)
{
memset(qbuf, 0, 0xC);
for(int i = 0; i < 96; i++)
{
qbuf[i >> 3] |= ((SubPWBuf[i] >> 6) & 0x1) << (7 - (i & 0x7));
}
}
// Deinterleaves 96 bytes of subchannel P-W data from 96 bytes of interleaved subchannel PW data.
void subpw_deinterleave(const uint8 *in_buf, uint8 *out_buf)
{
assert(in_buf != out_buf);
memset(out_buf, 0, 96);
for(unsigned ch = 0; ch < 8; ch++)
{
for(unsigned i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3)] |= ((in_buf[i] >> (7 - ch)) & 0x1) << (7 - (i & 0x7));
}
}
}
// Interleaves 96 bytes of subchannel P-W data from 96 bytes of uninterleaved subchannel PW data.
void subpw_interleave(const uint8 *in_buf, uint8 *out_buf)
{
assert(in_buf != out_buf);
for(unsigned d = 0; d < 12; d++)
{
for(unsigned bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
uint8 rawb = 0;
for(unsigned ch = 0; ch < 8; ch++)
{
rawb |= ((in_buf[ch * 12 + d] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle] = rawb;
}
}
}
// NOTES ON LEADOUT AREA SYNTHESIS
//
// I'm not trusting that the "control" field for the TOC leadout entry will always be set properly, so | the control fields for the last track entry
// and the leadout entry together before extracting the D2 bit. Audio track->data leadout is fairly benign though maybe noisy(especially if we ever implement
// data scrambling properly), but data track->audio leadout could break things in an insidious manner for the more accurate drive emulation code).
//
void subpw_synth_leadout_lba(const TOC& toc, const int32 lba, uint8* SubPWBuf)
{
uint8 buf[0xC];
uint32 lba_relative;
uint32 ma, sa, fa;
uint32 m, s, f;
lba_relative = lba - toc.tracks[100].lba;
f = (lba_relative % 75);
s = ((lba_relative / 75) % 60);
m = (lba_relative / 75 / 60);
fa = (lba + 150) % 75;
sa = ((lba + 150) / 75) % 60;
ma = ((lba + 150) / 75 / 60);
uint8 adr = 0x1; // Q channel data encodes position
uint8 control = (toc.tracks[toc.last_track].control & 0x4) | toc.tracks[100].control;
memset(buf, 0, 0xC);
buf[0] = (adr << 0) | (control << 4);
buf[1] = 0xAA;
buf[2] = 0x01;
// Track relative MSF address
buf[3] = U8_to_BCD(m);
buf[4] = U8_to_BCD(s);
buf[5] = U8_to_BCD(f);
buf[6] = 0; // Zerroooo
// Absolute MSF address
buf[7] = U8_to_BCD(ma);
buf[8] = U8_to_BCD(sa);
buf[9] = U8_to_BCD(fa);
subq_generate_checksum(buf);
for(int i = 0; i < 96; i++)
SubPWBuf[i] = (((buf[i >> 3] >> (7 - (i & 0x7))) & 1) ? 0x40 : 0x00) | 0x80;
}
void synth_leadout_sector_lba(const uint8 mode, const TOC& toc, const int32 lba, uint8* out_buf)
{
memset(out_buf, 0, 2352 + 96);
subpw_synth_leadout_lba(toc, lba, out_buf + 2352);
if((toc.tracks[toc.last_track].control | toc.tracks[100].control) & 0x4)
{
switch(mode)
{
default:
encode_mode0_sector(LBA_to_ABA(lba), out_buf);
break;
case 0x01:
encode_mode1_sector(LBA_to_ABA(lba), out_buf);
break;
case 0x02:
out_buf[18] = 0x20;
encode_mode2_form2_sector(LBA_to_ABA(lba), out_buf);
break;
}
}
}
#if 0
bool subq_extrapolate(const uint8 *subq_input, int32 position_delta, uint8 *subq_output)
{
assert(subq_check_checksum(subq_input));
subq_generate_checksum(subq_output);
}
#endif
void scrambleize_data_sector(uint8 *sector_data)
{
for(unsigned i = 12; i < 2352; i++)
sector_data[i] ^= scramble_table[i - 12];
}
}
bool subq_check_checksum(const uint8 *SubQBuf)
{
uint16 crc = 0;
uint16 stored_crc = 0;
stored_crc = SubQBuf[0xA] << 8;
stored_crc |= SubQBuf[0xB];
for(int i = 0; i < 0xA; i++)
crc = subq_crctab[(crc >> 8) ^ SubQBuf[i]] ^ (crc << 8);
crc = ~crc;
return(crc == stored_crc);
}
void subq_generate_checksum(uint8 *buf)
{
uint16 crc = 0;
for(int i = 0; i < 0xA; i++)
crc = subq_crctab[(crc >> 8) ^ buf[i]] ^ (crc << 8);
// Checksum
buf[0xa] = ~(crc >> 8);
buf[0xb] = ~(crc);
}
// Deinterleaves 96 bytes of subchannel P-W data from 96 bytes of interleaved subchannel PW data.
void subpw_deinterleave(const uint8 *in_buf, uint8 *out_buf)
{
assert(in_buf != out_buf);
memset(out_buf, 0, 96);
for(unsigned ch = 0; ch < 8; ch++)
{
for(unsigned i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3)] |= ((in_buf[i] >> (7 - ch)) & 0x1) << (7 - (i & 0x7));
}
}
}
// Interleaves 96 bytes of subchannel P-W data from 96 bytes of uninterleaved subchannel PW data.
void subpw_interleave(const uint8 *in_buf, uint8 *out_buf)
{
assert(in_buf != out_buf);
for(unsigned d = 0; d < 12; d++)
{
for(unsigned bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
uint8 rawb = 0;
for(unsigned ch = 0; ch < 8; ch++)
{
rawb |= ((in_buf[ch * 12 + d] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle] = rawb;
}
}
}
}

View File

@ -152,52 +152,6 @@ namespace CDUtility
return( ((num / 10) << 4) + (num % 10) );
}
// should always perform the conversion, even if the bcd number is invalid.
static INLINE bool BCD_to_U8_check(uint8 bcd_number, uint8 *out_number)
{
*out_number = BCD_to_U8(bcd_number);
if(!BCD_is_valid(bcd_number))
return(false);
return(true);
}
//
// Sector data encoding functions(to full 2352 bytes raw sector).
//
// sector_data must be able to contain at least 2352 bytes.
void encode_mode0_sector(uint32 aba, uint8 *sector_data);
void encode_mode1_sector(uint32 aba, uint8 *sector_data); // 2048 bytes of user data at offset 16
void encode_mode2_sector(uint32 aba, uint8 *sector_data); // 2336 bytes of user data at offset 16
void encode_mode2_form1_sector(uint32 aba, uint8 *sector_data); // 2048+8 bytes of user data at offset 16
void encode_mode2_form2_sector(uint32 aba, uint8 *sector_data); // 2324+8 bytes of user data at offset 16
// out_buf must be able to contain 2352+96 bytes.
// "mode" is only used if(toc.tracks[100].control & 0x4)
void synth_leadout_sector_lba(const uint8 mode, const TOC& toc, const int32 lba, uint8* out_buf);
//
// User data error detection and correction
//
// Check EDC of a mode 1 or mode 2 form 1 sector.
// Returns "true" if checksum is ok(matches).
// Returns "false" if checksum mismatch.
// sector_data should contain 2352 bytes of raw sector data.
bool edc_check(const uint8 *sector_data, bool xa);
// Check EDC and L-EC data of a mode 1 or mode 2 form 1 sector, and correct bit errors if any exist.
// Returns "true" if errors weren't detected, or they were corrected succesfully.
// Returns "false" if errors couldn't be corrected.
// sector_data should contain 2352 bytes of raw sector data.
bool edc_lec_check_and_correct(uint8 *sector_data, bool xa);
//
// Subchannel(Q in particular) functions
//
// Returns false on checksum mismatch, true on match.
bool subq_check_checksum(const uint8 *subq_buf);
@ -205,23 +159,12 @@ namespace CDUtility
// in subq_buf.
void subq_generate_checksum(uint8 *subq_buf);
// Deinterleaves 12 bytes of subchannel Q data from 96 bytes of interleaved subchannel PW data.
void subq_deinterleave(const uint8 *subpw_buf, uint8 *subq_buf);
// Deinterleaves 96 bytes of subchannel P-W data from 96 bytes of interleaved subchannel PW data.
void subpw_deinterleave(const uint8 *in_buf, uint8 *out_buf);
// Interleaves 96 bytes of subchannel P-W data from 96 bytes of uninterleaved subchannel PW data.
void subpw_interleave(const uint8 *in_buf, uint8 *out_buf);
// Extrapolates Q subchannel current position data from subq_input, with frame/sector delta position_delta, and writes to subq_output.
// Only valid for ADR_CURPOS.
// subq_input must pass subq_check_checksum().
// TODO
//void subq_extrapolate(const uint8 *subq_input, int32 position_delta, uint8 *subq_output);
// (De)Scrambles data sector.
void scrambleize_data_sector(uint8 *sector_data);
}
#endif

View File

@ -1,3 +0,0 @@
#include "../mednafen.h"
#include "SimpleFIFO.h"

View File

@ -1,915 +0,0 @@
/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "../mednafen.h"
#include <string.h>
#include <sys/types.h>
#include <trio/trio.h>
#include "cdromif.h"
#include "CDAccess.h"
#include "../general.h"
#include <algorithm>
using namespace CDUtility;
enum
{
// Status/Error messages
CDIF_MSG_DONE = 0, // Read -> emu. args: No args.
CDIF_MSG_INFO, // Read -> emu. args: str_message
CDIF_MSG_FATAL_ERROR, // Read -> emu. args: *TODO ARGS*
//
// Command messages.
//
CDIF_MSG_DIEDIEDIE, // Emu -> read
CDIF_MSG_READ_SECTOR, /* Emu -> read
args[0] = lba
*/
CDIF_MSG_EJECT, // Emu -> read, args[0]; 0=insert, 1=eject
};
class CDIF_Message
{
public:
CDIF_Message();
CDIF_Message(unsigned int message_, uint32 arg0 = 0, uint32 arg1 = 0, uint32 arg2 = 0, uint32 arg3 = 0);
CDIF_Message(unsigned int message_, const std::string &str);
~CDIF_Message();
unsigned int message;
uint32 args[4];
void *parg;
std::string str_message;
};
class CDIF_Queue
{
public:
CDIF_Queue();
~CDIF_Queue();
bool Read(CDIF_Message *message, bool blocking = TRUE);
void Write(const CDIF_Message &message);
private:
std::queue<CDIF_Message> ze_queue;
MDFN_Mutex *ze_mutex;
MDFN_Cond *ze_cond;
};
typedef struct
{
bool valid;
bool error;
uint32 lba;
uint8 data[2352 + 96];
} CDIF_Sector_Buffer;
// TODO: prohibit copy constructor
class CDIF_MT : public CDIF
{
public:
CDIF_MT(CDAccess *cda);
virtual ~CDIF_MT();
virtual void HintReadSector(uint32 lba);
virtual bool ReadRawSector(uint8 *buf, uint32 lba);
// Return true if operation succeeded or it was a NOP(either due to not being implemented, or the current status matches eject_status).
// Returns false on failure(usually drive error of some kind; not completely fatal, can try again).
virtual bool Eject(bool eject_status);
// FIXME: Semi-private:
int ReadThreadStart(void);
private:
CDAccess *disc_cdaccess;
MDFN_Thread *CDReadThread;
// Queue for messages to the read thread.
CDIF_Queue ReadThreadQueue;
// Queue for messages to the emu thread.
CDIF_Queue EmuThreadQueue;
enum { SBSize = 256 };
CDIF_Sector_Buffer SectorBuffers[SBSize];
uint32 SBWritePos;
MDFN_Mutex *SBMutex;
MDFN_Cond *SBCond;
//
// Read-thread-only:
//
void RT_EjectDisc(bool eject_status, bool skip_actual_eject = false);
uint32 ra_lba;
int ra_count;
uint32 last_read_lba;
};
// TODO: prohibit copy constructor
class CDIF_ST : public CDIF
{
public:
CDIF_ST(CDAccess *cda);
virtual ~CDIF_ST();
virtual void HintReadSector(uint32 lba);
virtual bool ReadRawSector(uint8 *buf, uint32 lba);
virtual bool Eject(bool eject_status);
private:
CDAccess *disc_cdaccess;
};
CDIF::CDIF() : UnrecoverableError(false), is_phys_cache(false), DiscEjected(false)
{
}
CDIF::~CDIF()
{
}
CDIF_Message::CDIF_Message()
{
message = 0;
memset(args, 0, sizeof(args));
}
CDIF_Message::CDIF_Message(unsigned int message_, uint32 arg0, uint32 arg1, uint32 arg2, uint32 arg3)
{
message = message_;
args[0] = arg0;
args[1] = arg1;
args[2] = arg2;
args[3] = arg3;
}
CDIF_Message::CDIF_Message(unsigned int message_, const std::string &str)
{
message = message_;
str_message = str;
}
CDIF_Message::~CDIF_Message()
{
}
CDIF_Queue::CDIF_Queue()
{
ze_mutex = MDFND_CreateMutex();
ze_cond = MDFND_CreateCond();
}
CDIF_Queue::~CDIF_Queue()
{
MDFND_DestroyMutex(ze_mutex);
MDFND_DestroyCond(ze_cond);
}
// Returns FALSE if message not read, TRUE if it was read. Will always return TRUE if "blocking" is set.
// Will throw MDFN_Error if the read message code is CDIF_MSG_FATAL_ERROR
bool CDIF_Queue::Read(CDIF_Message *message, bool blocking)
{
bool ret = true;
//
//
//
MDFND_LockMutex(ze_mutex);
if(blocking)
{
while(ze_queue.size() == 0) // while, not just if.
{
MDFND_WaitCond(ze_cond, ze_mutex);
}
}
if(ze_queue.size() == 0)
ret = false;
else
{
*message = ze_queue.front();
ze_queue.pop();
}
MDFND_UnlockMutex(ze_mutex);
//
//
//
if(ret && message->message == CDIF_MSG_FATAL_ERROR)
throw MDFN_Error(0, "%s", message->str_message.c_str());
return(ret);
}
void CDIF_Queue::Write(const CDIF_Message &message)
{
MDFND_LockMutex(ze_mutex);
try
{
ze_queue.push(message);
}
catch(...)
{
fprintf(stderr, "\n\nCDIF_Message queue push failed!!! (We now return you to your regularly unscheduled lockup)\n\n");
}
MDFND_SignalCond(ze_cond); // Signal while the mutex is held to prevent icky race conditions.
MDFND_UnlockMutex(ze_mutex);
}
void CDIF_MT::RT_EjectDisc(bool eject_status, bool skip_actual_eject)
{
if(eject_status != DiscEjected)
{
if(!skip_actual_eject)
disc_cdaccess->Eject(eject_status);
// Set after ->Eject(), since it might throw an exception.
DiscEjected = -1; // For if TOC reading fails or there's something horribly wrong with the disc.
if(!eject_status) // Re-read the TOC
{
disc_cdaccess->Read_TOC(&disc_toc);
if(disc_toc.first_track < 1 || disc_toc.last_track > 99 || disc_toc.first_track > disc_toc.last_track)
{
throw(MDFN_Error(0, _("TOC first(%d)/last(%d) track numbers bad."), disc_toc.first_track, disc_toc.last_track));
}
}
DiscEjected = eject_status;
SBWritePos = 0;
ra_lba = 0;
ra_count = 0;
last_read_lba = ~0U;
memset(SectorBuffers, 0, SBSize * sizeof(CDIF_Sector_Buffer));
}
}
struct RTS_Args
{
CDIF_MT *cdif_ptr;
};
static int ReadThreadStart_C(void *v_arg)
{
RTS_Args *args = (RTS_Args *)v_arg;
return args->cdif_ptr->ReadThreadStart();
}
int CDIF_MT::ReadThreadStart()
{
bool Running = TRUE;
DiscEjected = true;
SBWritePos = 0;
ra_lba = 0;
ra_count = 0;
last_read_lba = ~0U;
try
{
RT_EjectDisc(false, true);
}
catch(std::exception &e)
{
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_FATAL_ERROR, std::string(e.what())));
return(0);
}
is_phys_cache = disc_cdaccess->Is_Physical();
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_DONE));
while(Running)
{
CDIF_Message msg;
// Only do a blocking-wait for a message if we don't have any sectors to read-ahead.
// MDFN_DispMessage("%d %d %d\n", last_read_lba, ra_lba, ra_count);
if(ReadThreadQueue.Read(&msg, ra_count ? FALSE : TRUE))
{
switch(msg.message)
{
case CDIF_MSG_DIEDIEDIE:
Running = FALSE;
break;
case CDIF_MSG_EJECT:
try
{
RT_EjectDisc(msg.args[0]);
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_DONE));
}
catch(std::exception &e)
{
EmuThreadQueue.Write(CDIF_Message(CDIF_MSG_FATAL_ERROR, std::string(e.what())));
}
break;
case CDIF_MSG_READ_SECTOR:
{
static const int max_ra = 16;
static const int initial_ra = 1;
static const int speedmult_ra = 2;
uint32 new_lba = msg.args[0];
assert((unsigned int)max_ra < (SBSize / 4));
if(last_read_lba != ~0U && new_lba == (last_read_lba + 1))
{
int how_far_ahead = ra_lba - new_lba;
if(how_far_ahead <= max_ra)
ra_count = std::min(speedmult_ra, 1 + max_ra - how_far_ahead);
else
ra_count++;
}
else if(new_lba != last_read_lba)
{
ra_lba = new_lba;
ra_count = initial_ra;
}
last_read_lba = new_lba;
}
break;
}
}
// Don't read >= the "end" of the disc, silly snake. Slither.
if(ra_count && ra_lba == disc_toc.tracks[100].lba)
{
ra_count = 0;
//printf("Ephemeral scarabs: %d!\n", ra_lba);
}
if(ra_count)
{
uint8 tmpbuf[2352 + 96];
bool error_condition = false;
try
{
disc_cdaccess->Read_Raw_Sector(tmpbuf, ra_lba);
}
catch(std::exception &e)
{
MDFN_PrintError(_("Sector %u read error: %s"), ra_lba, e.what());
memset(tmpbuf, 0, sizeof(tmpbuf));
error_condition = true;
}
//
//
MDFND_LockMutex(SBMutex);
SectorBuffers[SBWritePos].lba = ra_lba;
memcpy(SectorBuffers[SBWritePos].data, tmpbuf, 2352 + 96);
SectorBuffers[SBWritePos].valid = TRUE;
SectorBuffers[SBWritePos].error = error_condition;
SBWritePos = (SBWritePos + 1) % SBSize;
MDFND_SignalCond(SBCond);
MDFND_UnlockMutex(SBMutex);
//
//
ra_lba++;
ra_count--;
}
}
return(1);
}
CDIF_MT::CDIF_MT(CDAccess *cda) : disc_cdaccess(cda), CDReadThread(NULL), SBMutex(NULL), SBCond(NULL)
{
try
{
CDIF_Message msg;
RTS_Args s;
if(!(SBMutex = MDFND_CreateMutex()))
throw MDFN_Error(0, _("Error creating CD read thread mutex."));
if(!(SBCond = MDFND_CreateCond()))
throw MDFN_Error(0, _("Error creating CD read thread condition variable."));
UnrecoverableError = false;
s.cdif_ptr = this;
if(!(CDReadThread = MDFND_CreateThread(ReadThreadStart_C, &s)))
throw MDFN_Error(0, _("Error creating CD read thread."));
EmuThreadQueue.Read(&msg);
}
catch(...)
{
if(CDReadThread)
{
MDFND_WaitThread(CDReadThread, NULL);
CDReadThread = NULL;
}
if(SBMutex)
{
MDFND_DestroyMutex(SBMutex);
SBMutex = NULL;
}
if(SBCond)
{
MDFND_DestroyCond(SBCond);
SBCond = NULL;
}
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
throw;
}
}
CDIF_MT::~CDIF_MT()
{
bool thread_deaded_failed = false;
try
{
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_DIEDIEDIE));
}
catch(std::exception &e)
{
MDFND_PrintError(e.what());
thread_deaded_failed = true;
}
if(!thread_deaded_failed)
MDFND_WaitThread(CDReadThread, NULL);
if(SBMutex)
{
MDFND_DestroyMutex(SBMutex);
SBMutex = NULL;
}
if(SBCond)
{
MDFND_DestroyCond(SBCond);
SBCond = NULL;
}
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
}
bool CDIF::ValidateRawSector(uint8 *buf)
{
int mode = buf[12 + 3];
if(mode != 0x1 && mode != 0x2)
return(false);
if(!edc_lec_check_and_correct(buf, mode == 2))
return(false);
return(true);
}
bool CDIF_MT::ReadRawSector(uint8 *buf, uint32 lba)
{
bool found = FALSE;
bool error_condition = false;
if(UnrecoverableError)
{
memset(buf, 0, 2352 + 96);
return(false);
}
// This shouldn't happen, the emulated-system-specific CDROM emulation code should make sure the emulated program doesn't try
// to read past the last "real" sector of the disc.
if(lba >= disc_toc.tracks[100].lba)
{
printf("Attempt to read LBA %d, >= LBA %d\n", lba, disc_toc.tracks[100].lba);
return(FALSE);
}
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_READ_SECTOR, lba));
//
//
//
MDFND_LockMutex(SBMutex);
do
{
for(int i = 0; i < SBSize; i++)
{
if(SectorBuffers[i].valid && SectorBuffers[i].lba == lba)
{
error_condition = SectorBuffers[i].error;
memcpy(buf, SectorBuffers[i].data, 2352 + 96);
found = TRUE;
}
}
if(!found)
{
//int32 swt = MDFND_GetTime();
MDFND_WaitCond(SBCond, SBMutex);
//printf("SB Waited: %d\n", MDFND_GetTime() - swt);
}
} while(!found);
MDFND_UnlockMutex(SBMutex);
//
//
//
return(!error_condition);
}
void CDIF_MT::HintReadSector(uint32 lba)
{
if(UnrecoverableError)
return;
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_READ_SECTOR, lba));
}
int CDIF::ReadSector(uint8* pBuf, uint32 lba, uint32 nSectors)
{
int ret = 0;
if(UnrecoverableError)
return(false);
while(nSectors--)
{
uint8 tmpbuf[2352 + 96];
if(!ReadRawSector(tmpbuf, lba))
{
puts("CDIF Raw Read error");
return(FALSE);
}
if(!ValidateRawSector(tmpbuf))
{
MDFN_DispMessage(_("Uncorrectable data at sector %d"), lba);
MDFN_PrintError(_("Uncorrectable data at sector %d"), lba);
return(false);
}
const int mode = tmpbuf[12 + 3];
if(!ret)
ret = mode;
if(mode == 1)
{
memcpy(pBuf, &tmpbuf[12 + 4], 2048);
}
else if(mode == 2)
{
memcpy(pBuf, &tmpbuf[12 + 4 + 8], 2048);
}
else
{
printf("CDIF_ReadSector() invalid sector type at LBA=%u\n", (unsigned int)lba);
return(false);
}
pBuf += 2048;
lba++;
}
return(ret);
}
bool CDIF_MT::Eject(bool eject_status)
{
if(UnrecoverableError)
return(false);
try
{
CDIF_Message msg;
ReadThreadQueue.Write(CDIF_Message(CDIF_MSG_EJECT, eject_status));
EmuThreadQueue.Read(&msg);
}
catch(std::exception &e)
{
MDFN_PrintError(_("Error on eject/insert attempt: %s"), e.what());
return(false);
}
return(true);
}
//
//
// Single-threaded implementation follows.
//
//
CDIF_ST::CDIF_ST(CDAccess *cda) : disc_cdaccess(cda)
{
//puts("***WARNING USING SINGLE-THREADED CD READER***");
is_phys_cache = disc_cdaccess->Is_Physical();
UnrecoverableError = false;
DiscEjected = false;
disc_cdaccess->Read_TOC(&disc_toc);
if(disc_toc.first_track < 1 || disc_toc.last_track > 99 || disc_toc.first_track > disc_toc.last_track)
{
throw(MDFN_Error(0, _("TOC first(%d)/last(%d) track numbers bad."), disc_toc.first_track, disc_toc.last_track));
}
}
CDIF_ST::~CDIF_ST()
{
if(disc_cdaccess)
{
delete disc_cdaccess;
disc_cdaccess = NULL;
}
}
void CDIF_ST::HintReadSector(uint32 lba)
{
// TODO: disc_cdaccess seek hint? (probably not, would require asynchronousitycamel)
}
bool CDIF_ST::ReadRawSector(uint8 *buf, uint32 lba)
{
if(UnrecoverableError)
{
memset(buf, 0, 2352 + 96);
return(false);
}
try
{
disc_cdaccess->Read_Raw_Sector(buf, lba);
}
catch(std::exception &e)
{
MDFN_PrintError(_("Sector %u read error: %s"), lba, e.what());
memset(buf, 0, 2352 + 96);
return(false);
}
return(true);
}
bool CDIF_ST::Eject(bool eject_status)
{
if(UnrecoverableError)
return(false);
try
{
if(eject_status != DiscEjected)
{
disc_cdaccess->Eject(eject_status);
// Set after ->Eject(), since it might throw an exception.
DiscEjected = -1; // For if TOC reading fails or there's something horribly wrong with the disc.
if(!eject_status) // Re-read the TOC
{
disc_cdaccess->Read_TOC(&disc_toc);
if(disc_toc.first_track < 1 || disc_toc.last_track > 99 || disc_toc.first_track > disc_toc.last_track)
{
throw(MDFN_Error(0, _("TOC first(%d)/last(%d) track numbers bad."), disc_toc.first_track, disc_toc.last_track));
}
}
DiscEjected = eject_status;
}
}
catch(std::exception &e)
{
MDFN_PrintError("%s", e.what());
return(false);
}
return(true);
}
class CDIF_Stream_Thing : public Stream
{
public:
CDIF_Stream_Thing(CDIF *cdintf_arg, uint32 lba_arg, uint32 sector_count_arg);
~CDIF_Stream_Thing();
virtual uint64 attributes(void);
virtual uint8 *map(void);
virtual void unmap(void);
virtual uint64 read(void *data, uint64 count, bool error_on_eos = true);
virtual void write(const void *data, uint64 count);
virtual void seek(int64 offset, int whence);
virtual int64 tell(void);
virtual int64 size(void);
virtual void close(void);
private:
CDIF *cdintf;
const uint32 start_lba;
const uint32 sector_count;
int64 position;
};
CDIF_Stream_Thing::CDIF_Stream_Thing(CDIF *cdintf_arg, uint32 start_lba_arg, uint32 sector_count_arg) : cdintf(cdintf_arg), start_lba(start_lba_arg), sector_count(sector_count_arg)
{
}
CDIF_Stream_Thing::~CDIF_Stream_Thing()
{
}
uint64 CDIF_Stream_Thing::attributes(void)
{
return(ATTRIBUTE_READABLE | ATTRIBUTE_SEEKABLE);
}
uint8 *CDIF_Stream_Thing::map(void)
{
return NULL;
}
void CDIF_Stream_Thing::unmap(void)
{
}
uint64 CDIF_Stream_Thing::read(void *data, uint64 count, bool error_on_eos)
{
if(count > (((uint64)sector_count * 2048) - position))
{
if(error_on_eos)
{
throw MDFN_Error(0, "EOF");
}
count = ((uint64)sector_count * 2048) - position;
}
if(!count)
return(0);
for(uint64 rp = position; rp < (position + count); rp = (rp &~ 2047) + 2048)
{
uint8 buf[2048];
if(!cdintf->ReadSector(buf, start_lba + (rp / 2048), 1))
{
throw MDFN_Error(ErrnoHolder(EIO));
}
//::printf("Meow: %08llx -- %08llx\n", count, (rp - position) + std::min<uint64>(2048 - (rp & 2047), count - (rp - position)));
memcpy((uint8*)data + (rp - position), buf + (rp & 2047), std::min<uint64>(2048 - (rp & 2047), count - (rp - position)));
}
position += count;
return count;
}
void CDIF_Stream_Thing::write(const void *data, uint64 count)
{
throw MDFN_Error(ErrnoHolder(EBADF));
}
void CDIF_Stream_Thing::seek(int64 offset, int whence)
{
int64 new_position;
switch(whence)
{
default:
throw MDFN_Error(ErrnoHolder(EINVAL));
break;
case SEEK_SET:
new_position = offset;
break;
case SEEK_CUR:
new_position = position + offset;
break;
case SEEK_END:
new_position = ((int64)sector_count * 2048) + offset;
break;
}
if(new_position < 0 || new_position > ((int64)sector_count * 2048))
throw MDFN_Error(ErrnoHolder(EINVAL));
position = new_position;
}
int64 CDIF_Stream_Thing::tell(void)
{
return position;
}
int64 CDIF_Stream_Thing::size(void)
{
return(sector_count * 2048);
}
void CDIF_Stream_Thing::close(void)
{
}
Stream *CDIF::MakeStream(uint32 lba, uint32 sector_count)
{
return new CDIF_Stream_Thing(this, lba, sector_count);
}
CDIF *CDIF_Open(const char *path, const bool is_device, bool image_memcache)
{
if(is_device)
return new CDIF_MT(cdaccess_open_phys(path));
else
{
CDAccess *cda = cdaccess_open_image(path, image_memcache);
if(!image_memcache)
return new CDIF_MT(cda);
else
return new CDIF_ST(cda);
}
}

View File

@ -1,70 +0,0 @@
/* Mednafen - Multi-system Emulator
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#ifndef __MDFN_CDROM_CDROMIF_H
#define __MDFN_CDROM_CDROMIF_H
#include "CDUtility.h"
#include "../Stream.h"
#include <queue>
typedef CDUtility::TOC CD_TOC;
class CDIF
{
public:
CDIF();
virtual ~CDIF();
inline void ReadTOC(CDUtility::TOC *read_target)
{
*read_target = disc_toc;
}
virtual void HintReadSector(uint32 lba) = 0;
virtual bool ReadRawSector(uint8 *buf, uint32 lba) = 0;
// Call for mode 1 or mode 2 form 1 only.
bool ValidateRawSector(uint8 *buf);
// Utility/Wrapped functions
// Reads mode 1 and mode2 form 1 sectors(2048 bytes per sector returned)
// Will return the type(1, 2) of the first sector read to the buffer supplied, 0 on error
int ReadSector(uint8* pBuf, uint32 lba, uint32 nSectors);
// Return true if operation succeeded or it was a NOP(either due to not being implemented, or the current status matches eject_status).
// Returns false on failure(usually drive error of some kind; not completely fatal, can try again).
virtual bool Eject(bool eject_status) = 0;
inline bool IsPhysical(void) { return(is_phys_cache); }
// For Mode 1, or Mode 2 Form 1.
// No reference counting or whatever is done, so if you destroy the CDIF object before you destroy the returned Stream, things will go BOOM.
Stream *MakeStream(uint32 lba, uint32 sector_count);
protected:
bool UnrecoverableError;
bool is_phys_cache;
CDUtility::TOC disc_toc;
int DiscEjected; // 0 = inserted, 1 = ejected, -1 = DRAGONS ATE THE DISC. NOM NOM NOM.
};
CDIF *CDIF_Open(const char *path, const bool is_device, bool image_memcache);
#endif

View File

@ -1,130 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* CRC32 code based upon public domain code by Ross Williams (see notes below)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
/***
*** EDC checksum used in CDROM sectors
***/
/*****************************************************************/
/* */
/* CRC LOOKUP TABLE */
/* ================ */
/* The following CRC lookup table was generated automagically */
/* by the Rocksoft^tm Model CRC Algorithm Table Generation */
/* Program V1.0 using the following model parameters: */
/* */
/* Width : 4 bytes. */
/* Poly : 0x8001801BL */
/* Reverse : TRUE. */
/* */
/* For more information on the Rocksoft^tm Model CRC Algorithm, */
/* see the document titled "A Painless Guide to CRC Error */
/* Detection Algorithms" by Ross Williams */
/* (ross@guest.adelaide.edu.au.). This document is likely to be */
/* in the FTP archive "ftp.adelaide.edu.au/pub/rocksoft". */
/* */
/*****************************************************************/
unsigned long edctable[256] =
{
0x00000000L, 0x90910101L, 0x91210201L, 0x01B00300L,
0x92410401L, 0x02D00500L, 0x03600600L, 0x93F10701L,
0x94810801L, 0x04100900L, 0x05A00A00L, 0x95310B01L,
0x06C00C00L, 0x96510D01L, 0x97E10E01L, 0x07700F00L,
0x99011001L, 0x09901100L, 0x08201200L, 0x98B11301L,
0x0B401400L, 0x9BD11501L, 0x9A611601L, 0x0AF01700L,
0x0D801800L, 0x9D111901L, 0x9CA11A01L, 0x0C301B00L,
0x9FC11C01L, 0x0F501D00L, 0x0EE01E00L, 0x9E711F01L,
0x82012001L, 0x12902100L, 0x13202200L, 0x83B12301L,
0x10402400L, 0x80D12501L, 0x81612601L, 0x11F02700L,
0x16802800L, 0x86112901L, 0x87A12A01L, 0x17302B00L,
0x84C12C01L, 0x14502D00L, 0x15E02E00L, 0x85712F01L,
0x1B003000L, 0x8B913101L, 0x8A213201L, 0x1AB03300L,
0x89413401L, 0x19D03500L, 0x18603600L, 0x88F13701L,
0x8F813801L, 0x1F103900L, 0x1EA03A00L, 0x8E313B01L,
0x1DC03C00L, 0x8D513D01L, 0x8CE13E01L, 0x1C703F00L,
0xB4014001L, 0x24904100L, 0x25204200L, 0xB5B14301L,
0x26404400L, 0xB6D14501L, 0xB7614601L, 0x27F04700L,
0x20804800L, 0xB0114901L, 0xB1A14A01L, 0x21304B00L,
0xB2C14C01L, 0x22504D00L, 0x23E04E00L, 0xB3714F01L,
0x2D005000L, 0xBD915101L, 0xBC215201L, 0x2CB05300L,
0xBF415401L, 0x2FD05500L, 0x2E605600L, 0xBEF15701L,
0xB9815801L, 0x29105900L, 0x28A05A00L, 0xB8315B01L,
0x2BC05C00L, 0xBB515D01L, 0xBAE15E01L, 0x2A705F00L,
0x36006000L, 0xA6916101L, 0xA7216201L, 0x37B06300L,
0xA4416401L, 0x34D06500L, 0x35606600L, 0xA5F16701L,
0xA2816801L, 0x32106900L, 0x33A06A00L, 0xA3316B01L,
0x30C06C00L, 0xA0516D01L, 0xA1E16E01L, 0x31706F00L,
0xAF017001L, 0x3F907100L, 0x3E207200L, 0xAEB17301L,
0x3D407400L, 0xADD17501L, 0xAC617601L, 0x3CF07700L,
0x3B807800L, 0xAB117901L, 0xAAA17A01L, 0x3A307B00L,
0xA9C17C01L, 0x39507D00L, 0x38E07E00L, 0xA8717F01L,
0xD8018001L, 0x48908100L, 0x49208200L, 0xD9B18301L,
0x4A408400L, 0xDAD18501L, 0xDB618601L, 0x4BF08700L,
0x4C808800L, 0xDC118901L, 0xDDA18A01L, 0x4D308B00L,
0xDEC18C01L, 0x4E508D00L, 0x4FE08E00L, 0xDF718F01L,
0x41009000L, 0xD1919101L, 0xD0219201L, 0x40B09300L,
0xD3419401L, 0x43D09500L, 0x42609600L, 0xD2F19701L,
0xD5819801L, 0x45109900L, 0x44A09A00L, 0xD4319B01L,
0x47C09C00L, 0xD7519D01L, 0xD6E19E01L, 0x46709F00L,
0x5A00A000L, 0xCA91A101L, 0xCB21A201L, 0x5BB0A300L,
0xC841A401L, 0x58D0A500L, 0x5960A600L, 0xC9F1A701L,
0xCE81A801L, 0x5E10A900L, 0x5FA0AA00L, 0xCF31AB01L,
0x5CC0AC00L, 0xCC51AD01L, 0xCDE1AE01L, 0x5D70AF00L,
0xC301B001L, 0x5390B100L, 0x5220B200L, 0xC2B1B301L,
0x5140B400L, 0xC1D1B501L, 0xC061B601L, 0x50F0B700L,
0x5780B800L, 0xC711B901L, 0xC6A1BA01L, 0x5630BB00L,
0xC5C1BC01L, 0x5550BD00L, 0x54E0BE00L, 0xC471BF01L,
0x6C00C000L, 0xFC91C101L, 0xFD21C201L, 0x6DB0C300L,
0xFE41C401L, 0x6ED0C500L, 0x6F60C600L, 0xFFF1C701L,
0xF881C801L, 0x6810C900L, 0x69A0CA00L, 0xF931CB01L,
0x6AC0CC00L, 0xFA51CD01L, 0xFBE1CE01L, 0x6B70CF00L,
0xF501D001L, 0x6590D100L, 0x6420D200L, 0xF4B1D301L,
0x6740D400L, 0xF7D1D501L, 0xF661D601L, 0x66F0D700L,
0x6180D800L, 0xF111D901L, 0xF0A1DA01L, 0x6030DB00L,
0xF3C1DC01L, 0x6350DD00L, 0x62E0DE00L, 0xF271DF01L,
0xEE01E001L, 0x7E90E100L, 0x7F20E200L, 0xEFB1E301L,
0x7C40E400L, 0xECD1E501L, 0xED61E601L, 0x7DF0E700L,
0x7A80E800L, 0xEA11E901L, 0xEBA1EA01L, 0x7B30EB00L,
0xE8C1EC01L, 0x7850ED00L, 0x79E0EE00L, 0xE971EF01L,
0x7700F000L, 0xE791F101L, 0xE621F201L, 0x76B0F300L,
0xE541F401L, 0x75D0F500L, 0x7460F600L, 0xE4F1F701L,
0xE381F801L, 0x7310F900L, 0x72A0FA00L, 0xE231FB01L,
0x71C0FC00L, 0xE151FD01L, 0xE0E1FE01L, 0x7070FF00L
};
/*
* CDROM EDC calculation
*/
uint32 EDCCrc32(const unsigned char *data, int len)
{
uint32 crc = 0;
while(len--)
crc = edctable[(crc ^ *data++) & 0xFF] ^ (crc >> 8);
return crc;
}

View File

@ -1,172 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#ifndef DVDISASTER_H
#define DVDISASTER_H
/* "Dare to be gorgeous and unique.
* But don't ever be cryptic or otherwise unfathomable.
* Make it unforgettably great."
*
* From "A Final Note on Style",
* Amiga Intuition Reference Manual, 1986, p. 231
*/
/***
*** I'm too lazy to mess with #include dependencies.
*** Everything #includeable is rolled up herein...
*/
#include "octoshock.h"
#include <ctype.h>
#include <errno.h>
#include <fcntl.h>
#include <math.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/***
*** dvdisaster.c
***/
void PrepareDeadSector(void);
void CreateEcc(void);
void FixEcc(void);
void Verify(void);
uint32 EDCCrc32(const unsigned char*, int);
/***
*** galois.c
***
* This is currently the hardcoded GF(2**8).
* int32 gives abundant space for the GF.
* Squeezing it down to uint8 won't probably gain much,
* so we implement this defensively here.
*
* Note that some performance critical stuff needs to
* be #included from galois-inlines.h
*/
/* Galois field parameters for 8bit symbol Reed-Solomon code */
#define GF_SYMBOLSIZE 8
#define GF_FIELDSIZE (1<<GF_SYMBOLSIZE)
#define GF_FIELDMAX (GF_FIELDSIZE-1)
#define GF_ALPHA0 GF_FIELDMAX
/* Lookup tables for Galois field arithmetic */
typedef struct _GaloisTables
{ int32 gfGenerator; /* GF generator polynomial */
int32 *indexOf; /* log */
int32 *alphaTo; /* inverse log */
int32 *encAlphaTo; /* inverse log optimized for encoder */
} GaloisTables;
/* Lookup and working tables for the ReedSolomon codecs */
typedef struct _ReedSolomonTables
{ GaloisTables *gfTables;/* from above */
int32 *gpoly; /* RS code generator polynomial */
int32 fcr; /* first consecutive root of RS generator polynomial */
int32 primElem; /* primitive field element */
int32 nroots; /* degree of RS generator polynomial */
int32 ndata; /* data bytes per ecc block */
} ReedSolomonTables;
GaloisTables* CreateGaloisTables(int32);
void FreeGaloisTables(GaloisTables*);
ReedSolomonTables *CreateReedSolomonTables(GaloisTables*, int32, int32, int);
void FreeReedSolomonTables(ReedSolomonTables*);
/***
*** l-ec.c
***/
#define N_P_VECTORS 86 /* 43 16bit p vectors */
#define P_VECTOR_SIZE 26 /* using RS(26,24) ECC */
#define N_Q_VECTORS 52 /* 26 16bit q vectors */
#define Q_VECTOR_SIZE 45 /* using RS(45,43) ECC */
#define P_PADDING 229 /* padding values for */
#define Q_PADDING 210 /* shortened RS code */
int PToByteIndex(int, int);
int QToByteIndex(int, int);
void ByteIndexToP(int, int*, int*);
void ByteIndexToQ(int, int*, int*);
void GetPVector(unsigned char*, unsigned char*, int);
void SetPVector(unsigned char*, unsigned char*, int);
void FillPVector(unsigned char*, unsigned char, int);
void AndPVector(unsigned char*, unsigned char, int);
void OrPVector(unsigned char*, unsigned char, int);
void GetQVector(unsigned char*, unsigned char*, int);
void SetQVector(unsigned char*, unsigned char*, int);
void FillQVector(unsigned char*, unsigned char, int);
void AndQVector(unsigned char*, unsigned char, int);
void OrQVector(unsigned char*, unsigned char, int);
int DecodePQ(ReedSolomonTables*, unsigned char*, int, int*, int);
int CountC2Errors(unsigned char*);
/***
*** misc.c
***/
char* sgettext(char*);
char* sgettext_utf8(char*);
int64 uchar_to_int64(unsigned char*);
void int64_to_uchar(unsigned char*, int64);
void CalcSectors(int64, int64*, int*);
/***
*** recover-raw.c
***/
#define CD_RAW_SECTOR_SIZE 2352
#define CD_RAW_C2_SECTOR_SIZE (2352+294) /* main channel plus C2 vector */
int CheckEDC(const unsigned char*, bool);
int CheckMSF(unsigned char*, int);
int ValidateRawSector(unsigned char *frame, bool xaMode);
bool Init_LEC_Correct(void);
void Kill_LEC_Correct(void);
#endif /* DVDISASTER_H */

View File

@ -1,40 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* The Reed-Solomon error correction draws a lot of inspiration - and even code -
* from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
/*
* The following routine is performance critical.
*/
static inline int mod_fieldmax(int x)
{
while (x >= GF_FIELDMAX)
{
x -= GF_FIELDMAX;
x = (x >> GF_SYMBOLSIZE) + (x & GF_FIELDMAX);
}
return x;
}

View File

@ -1,156 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* The Reed-Solomon error correction draws a lot of inspiration - and even code -
* from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
#include "galois-inlines.h"
/***
*** Galois field arithmetic.
***
* Calculations are done over the extension field GF(2**n).
* Be careful not to overgeneralize these arithmetics;
* they only work for the case of GF(p**n) with p being prime.
*/
/* Initialize the Galois field tables */
GaloisTables* CreateGaloisTables(int32 gf_generator)
{
GaloisTables *gt = (GaloisTables *)calloc(1, sizeof(GaloisTables));
int32 b,log;
/* Allocate the tables.
The encoder uses a special version of alpha_to which has the mod_fieldmax()
folded into the table. */
gt->gfGenerator = gf_generator;
gt->indexOf = (int32 *)calloc(GF_FIELDSIZE, sizeof(int32));
gt->alphaTo = (int32 *)calloc(GF_FIELDSIZE, sizeof(int32));
gt->encAlphaTo = (int32 *)calloc(2*GF_FIELDSIZE, sizeof(int32));
/* create the log/ilog values */
for(b=1, log=0; log<GF_FIELDMAX; log++)
{ gt->indexOf[b] = log;
gt->alphaTo[log] = b;
b = b << 1;
if(b & GF_FIELDSIZE)
b = b ^ gf_generator;
}
if(b!=1)
{
printf("Failed to create the Galois field log tables!\n");
exit(1);
}
/* we're even closed using infinity (makes things easier) */
gt->indexOf[0] = GF_ALPHA0; /* log(0) = inf */
gt->alphaTo[GF_ALPHA0] = 0; /* and the other way around */
for(b=0; b<2*GF_FIELDSIZE; b++)
gt->encAlphaTo[b] = gt->alphaTo[mod_fieldmax(b)];
return gt;
}
void FreeGaloisTables(GaloisTables *gt)
{
if(gt->indexOf) free(gt->indexOf);
if(gt->alphaTo) free(gt->alphaTo);
if(gt->encAlphaTo) free(gt->encAlphaTo);
free(gt);
}
/***
*** Create the the Reed-Solomon generator polynomial
*** and some auxiliary data structures.
*/
ReedSolomonTables *CreateReedSolomonTables(GaloisTables *gt,
int32 first_consecutive_root,
int32 prim_elem,
int nroots_in)
{ ReedSolomonTables *rt = (ReedSolomonTables *)calloc(1, sizeof(ReedSolomonTables));
int32 i,j,root;
rt->gfTables = gt;
rt->fcr = first_consecutive_root;
rt->primElem = prim_elem;
rt->nroots = nroots_in;
rt->ndata = GF_FIELDMAX - rt->nroots;
rt->gpoly = (int32 *)calloc((rt->nroots+1), sizeof(int32));
/* Create the RS code generator polynomial */
rt->gpoly[0] = 1;
for(i=0, root=first_consecutive_root*prim_elem; i<rt->nroots; i++, root+=prim_elem)
{ rt->gpoly[i+1] = 1;
/* Multiply gpoly by alpha**(root+x) */
for(j=i; j>0; j--)
{
if(rt->gpoly[j] != 0)
rt->gpoly[j] = rt->gpoly[j-1] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[j]] + root)];
else
rt->gpoly[j] = rt->gpoly[j-1];
}
rt->gpoly[0] = gt->alphaTo[mod_fieldmax(gt->indexOf[rt->gpoly[0]] + root)];
}
/* Store the polynomials index for faster encoding */
for(i=0; i<=rt->nroots; i++)
rt->gpoly[i] = gt->indexOf[rt->gpoly[i]];
#if 0
/* for the precalculated unrolled loops only */
for(i=gt->nroots-1; i>0; i--)
PrintCLI(
" par_idx[((++spk)&%d)] ^= enc_alpha_to[feedback + %3d];\n",
nroots-1,gt->gpoly[i]);
PrintCLI(" par_idx[sp] = enc_alpha_to[feedback + %3d];\n",
gt->gpoly[0]);
#endif
return rt;
}
void FreeReedSolomonTables(ReedSolomonTables *rt)
{
if(rt->gpoly) free(rt->gpoly);
free(rt);
}

View File

@ -1,478 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* The Reed-Solomon error correction draws a lot of inspiration - and even code -
* from Phil Karn's excellent Reed-Solomon library: http://www.ka9q.net/code/fec/
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
#include "galois-inlines.h"
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
/***
*** Mapping between cd frame and parity vectors
***/
/*
* Mapping of frame bytes to P/Q Vectors
*/
int PToByteIndex(int p, int i)
{ return 12 + p + i*86;
}
void ByteIndexToP(int b, int *p, int *i)
{ *p = (b-12)%86;
*i = (b-12)/86;
}
int QToByteIndex(int q, int i)
{ int offset = 12 + (q & 1);
if(i == 43) return 2248+q;
if(i == 44) return 2300+q;
q&=~1;
return offset + (q*43 + i*88) % 2236;
}
void ByteIndexToQ(int b, int *q, int *i)
{ int x,y,offset;
if(b >= 2300)
{ *i = 44;
*q = (b-2300);
return;
}
if(b >= 2248)
{ *i = 43;
*q = (b-2248);
return;
}
offset = b&1;
b = (b-12)/2;
x = b/43;
y = (b-(x*43))%26;
*i = b-(x*43);
*q = 2*((x+26-y)%26)+offset;
}
/*
* There are 86 vectors of P-parity, yielding a RS(26,24) code.
*/
void GetPVector(unsigned char *frame, unsigned char *data, int n)
{ int i;
int w_idx = n+12;
for(i=0; i<26; i++, w_idx+=86)
data[i] = frame[w_idx];
}
void SetPVector(unsigned char *frame, unsigned char *data, int n)
{ int i;
int w_idx = n+12;
for(i=0; i<26; i++, w_idx+=86)
frame[w_idx] = data[i];
}
void FillPVector(unsigned char *frame, unsigned char data, int n)
{ int i;
int w_idx = n+12;
for(i=0; i<26; i++, w_idx+=86)
frame[w_idx] = data;
}
void OrPVector(unsigned char *frame, unsigned char value, int n)
{ int i;
int w_idx = n+12;
for(i=0; i<26; i++, w_idx+=86)
frame[w_idx] |= value;
}
void AndPVector(unsigned char *frame, unsigned char value, int n)
{ int i;
int w_idx = n+12;
for(i=0; i<26; i++, w_idx+=86)
frame[w_idx] &= value;
}
/*
* There are 52 vectors of Q-parity, yielding a RS(45,43) code.
*/
void GetQVector(unsigned char *frame, unsigned char *data, int n)
{ int offset = 12 + (n & 1);
int w_idx = (n&~1) * 43;
int i;
for(i=0; i<43; i++, w_idx+=88)
data[i] = frame[(w_idx % 2236) + offset];
data[43] = frame[2248 + n];
data[44] = frame[2300 + n];
}
void SetQVector(unsigned char *frame, unsigned char *data, int n)
{ int offset = 12 + (n & 1);
int w_idx = (n&~1) * 43;
int i;
for(i=0; i<43; i++, w_idx+=88)
frame[(w_idx % 2236) + offset] = data[i];
frame[2248 + n] = data[43];
frame[2300 + n] = data[44];
}
void FillQVector(unsigned char *frame, unsigned char data, int n)
{ int offset = 12 + (n & 1);
int w_idx = (n&~1) * 43;
int i;
for(i=0; i<43; i++, w_idx+=88)
frame[(w_idx % 2236) + offset] = data;
frame[2248 + n] = data;
frame[2300 + n] = data;
}
void OrQVector(unsigned char *frame, unsigned char data, int n)
{ int offset = 12 + (n & 1);
int w_idx = (n&~1) * 43;
int i;
for(i=0; i<43; i++, w_idx+=88)
frame[(w_idx % 2236) + offset] |= data;
frame[2248 + n] |= data;
frame[2300 + n] |= data;
}
void AndQVector(unsigned char *frame, unsigned char data, int n)
{ int offset = 12 + (n & 1);
int w_idx = (n&~1) * 43;
int i;
for(i=0; i<43; i++, w_idx+=88)
frame[(w_idx % 2236) + offset] &= data;
frame[2248 + n] &= data;
frame[2300 + n] &= data;
}
/***
*** C2 error counting
***/
int CountC2Errors(unsigned char *frame)
{ int i,count = 0;
frame += 2352;
for(i=0; i<294; i++, frame++)
{ if(*frame & 0x01) count++;
if(*frame & 0x02) count++;
if(*frame & 0x04) count++;
if(*frame & 0x08) count++;
if(*frame & 0x10) count++;
if(*frame & 0x20) count++;
if(*frame & 0x40) count++;
if(*frame & 0x80) count++;
}
return count;
}
/***
*** L-EC error correction for CD raw data sectors
***/
/*
* These could be used from ReedSolomonTables,
* but hardcoding them is faster.
*/
#define NROOTS 2
#define LEC_FIRST_ROOT 0 //GF_ALPHA0
#define LEC_PRIM_ELEM 1
#define LEC_PRIMTH_ROOT 1
/*
* Calculate the error syndrome
*/
int DecodePQ(ReedSolomonTables *rt, unsigned char *data, int padding,
int *erasure_list, int erasure_count)
{ GaloisTables *gt = rt->gfTables;
int syndrome[NROOTS];
int lambda[NROOTS+1];
int omega[NROOTS+1];
int b[NROOTS+1];
int reg[NROOTS+1];
int root[NROOTS];
int loc[NROOTS];
int syn_error;
int deg_lambda,lambda_roots;
int deg_omega;
int shortened_size = GF_FIELDMAX - padding;
int corrected = 0;
int i,j,k;
int r,el;
/*** Form the syndromes: Evaluate data(x) at roots of g(x) */
for(i=0; i<NROOTS; i++)
syndrome[i] = data[0];
for(j=1; j<shortened_size; j++)
for(i=0; i<NROOTS; i++)
if(syndrome[i] == 0)
syndrome[i] = data[j];
else syndrome[i] = data[j] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[syndrome[i]]
+ (LEC_FIRST_ROOT+i)*LEC_PRIM_ELEM)];
/*** Convert syndrome to index form, check for nonzero condition. */
syn_error = 0;
for(i=0; i<NROOTS; i++)
{ syn_error |= syndrome[i];
syndrome[i] = gt->indexOf[syndrome[i]];
}
/*** If the syndrome is zero, everything is fine. */
if(!syn_error)
return 0;
/*** Initialize lambda to be the erasure locator polynomial */
lambda[0] = 1;
lambda[1] = lambda[2] = 0;
erasure_list[0] += padding;
erasure_list[1] += padding;
if(erasure_count > 2) /* sanity check */
erasure_count = 0;
if(erasure_count > 0)
{ lambda[1] = gt->alphaTo[mod_fieldmax(LEC_PRIM_ELEM*(GF_FIELDMAX-1-erasure_list[0]))];
for(i=1; i<erasure_count; i++)
{ int u = mod_fieldmax(LEC_PRIM_ELEM*(GF_FIELDMAX-1-erasure_list[i]));
for(j=i+1; j>0; j--)
{ int tmp = gt->indexOf[lambda[j-1]];
if(tmp != GF_ALPHA0)
lambda[j] ^= gt->alphaTo[mod_fieldmax(u + tmp)];
}
}
}
for(i=0; i<NROOTS+1; i++)
b[i] = gt->indexOf[lambda[i]];
/*** Berlekamp-Massey algorithm to determine error+erasure locator polynomial */
r = erasure_count; /* r is the step number */
el = erasure_count;
/* Compute discrepancy at the r-th step in poly-form */
while(++r <= NROOTS)
{ int discr_r = 0;
for(i=0; i<r; i++)
if((lambda[i] != 0) && (syndrome[r-i-1] != GF_ALPHA0))
discr_r ^= gt->alphaTo[mod_fieldmax(gt->indexOf[lambda[i]] + syndrome[r-i-1])];
discr_r = gt->indexOf[discr_r];
if(discr_r == GF_ALPHA0)
{ /* B(x) = x*B(x) */
memmove(b+1, b, NROOTS*sizeof(b[0]));
b[0] = GF_ALPHA0;
}
else
{ int t[NROOTS+1];
/* T(x) = lambda(x) - discr_r*x*b(x) */
t[0] = lambda[0];
for(i=0; i<NROOTS; i++)
{ if(b[i] != GF_ALPHA0)
t[i+1] = lambda[i+1] ^ gt->alphaTo[mod_fieldmax(discr_r + b[i])];
else t[i+1] = lambda[i+1];
}
if(2*el <= r+erasure_count-1)
{ el = r + erasure_count - el;
/* B(x) <-- inv(discr_r) * lambda(x) */
for(i=0; i<=NROOTS; i++)
b[i] = (lambda[i] == 0) ? GF_ALPHA0
: mod_fieldmax(gt->indexOf[lambda[i]] - discr_r + GF_FIELDMAX);
}
else
{ /* 2 lines below: B(x) <-- x*B(x) */
memmove(b+1, b, NROOTS*sizeof(b[0]));
b[0] = GF_ALPHA0;
}
memcpy(lambda, t, (NROOTS+1)*sizeof(t[0]));
}
}
/*** Convert lambda to index form and compute deg(lambda(x)) */
deg_lambda = 0;
for(i=0; i<NROOTS+1; i++)
{ lambda[i] = gt->indexOf[lambda[i]];
if(lambda[i] != GF_ALPHA0)
deg_lambda = i;
}
/*** Find roots of the error+erasure locator polynomial by Chien search */
memcpy(reg+1, lambda+1, NROOTS*sizeof(reg[0]));
lambda_roots = 0; /* Number of roots of lambda(x) */
for(i=1, k=LEC_PRIMTH_ROOT-1; i<=GF_FIELDMAX; i++, k=mod_fieldmax(k+LEC_PRIMTH_ROOT))
{ int q=1; /* lambda[0] is always 0 */
for(j=deg_lambda; j>0; j--)
{ if(reg[j] != GF_ALPHA0)
{ reg[j] = mod_fieldmax(reg[j] + j);
q ^= gt->alphaTo[reg[j]];
}
}
if(q != 0) continue; /* Not a root */
/* store root in index-form and the error location number */
root[lambda_roots] = i;
loc[lambda_roots] = k;
/* If we've already found max possible roots, abort the search to save time */
if(++lambda_roots == deg_lambda) break;
}
/* deg(lambda) unequal to number of roots => uncorrectable error detected
This is not reliable for very small numbers of roots, e.g. nroots = 2 */
if(deg_lambda != lambda_roots)
{ return -1;
}
/* Compute err+eras evaluator poly omega(x) = syn(x)*lambda(x)
(modulo x**nroots). in index form. Also find deg(omega). */
deg_omega = deg_lambda-1;
for(i=0; i<=deg_omega; i++)
{ int tmp = 0;
for(j=i; j>=0; j--)
{ if((syndrome[i - j] != GF_ALPHA0) && (lambda[j] != GF_ALPHA0))
tmp ^= gt->alphaTo[mod_fieldmax(syndrome[i - j] + lambda[j])];
}
omega[i] = gt->indexOf[tmp];
}
/* Compute error values in poly-form.
num1 = omega(inv(X(l))),
num2 = inv(X(l))**(FIRST_ROOT-1) and
den = lambda_pr(inv(X(l))) all in poly-form. */
for(j=lambda_roots-1; j>=0; j--)
{ int num1 = 0;
int num2;
int den;
int location = loc[j];
for(i=deg_omega; i>=0; i--)
{ if(omega[i] != GF_ALPHA0)
num1 ^= gt->alphaTo[mod_fieldmax(omega[i] + i * root[j])];
}
num2 = gt->alphaTo[mod_fieldmax(root[j] * (LEC_FIRST_ROOT - 1) + GF_FIELDMAX)];
den = 0;
/* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
for(i=MIN(deg_lambda, NROOTS-1) & ~1; i>=0; i-=2)
{ if(lambda[i+1] != GF_ALPHA0)
den ^= gt->alphaTo[mod_fieldmax(lambda[i+1] + i * root[j])];
}
/* Apply error to data */
if(num1 != 0 && location >= padding)
{
corrected++;
data[location-padding] ^= gt->alphaTo[mod_fieldmax(gt->indexOf[num1] + gt->indexOf[num2]
+ GF_FIELDMAX - gt->indexOf[den])];
/* If no erasures were given, at most one error was corrected.
Return its position in erasure_list[0]. */
if(!erasure_count)
erasure_list[0] = location-padding;
}
#if 1
else return -3;
#endif
}
/*** Form the syndromes: Evaluate data(x) at roots of g(x) */
for(i=0; i<NROOTS; i++)
syndrome[i] = data[0];
for(j=1; j<shortened_size; j++)
for(i=0; i<NROOTS; i++)
{ if(syndrome[i] == 0)
syndrome[i] = data[j];
else syndrome[i] = data[j] ^ gt->alphaTo[mod_fieldmax(gt->indexOf[syndrome[i]]
+ (LEC_FIRST_ROOT+i)*LEC_PRIM_ELEM)];
}
/*** Convert syndrome to index form, check for nonzero condition. */
#if 1
for(i=0; i<NROOTS; i++)
if(syndrome[i])
return -2;
#endif
return corrected;
}

View File

@ -1,691 +0,0 @@
/* cdrdao - write audio CD-Rs in disc-at-once mode
*
* Copyright (C) 1998-2002 Andreas Mueller <andreas@daneb.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <assert.h>
#include <sys/types.h>
#include "lec.h"
#define GF8_PRIM_POLY 0x11d /* x^8 + x^4 + x^3 + x^2 + 1 */
#define EDC_POLY 0x8001801b /* (x^16 + x^15 + x^2 + 1) (x^16 + x^2 + x + 1) */
#define LEC_HEADER_OFFSET 12
#define LEC_DATA_OFFSET 16
#define LEC_MODE1_DATA_LEN 2048
#define LEC_MODE1_EDC_OFFSET 2064
#define LEC_MODE1_INTERMEDIATE_OFFSET 2068
#define LEC_MODE1_P_PARITY_OFFSET 2076
#define LEC_MODE1_Q_PARITY_OFFSET 2248
#define LEC_MODE2_FORM1_DATA_LEN (2048+8)
#define LEC_MODE2_FORM1_EDC_OFFSET 2072
#define LEC_MODE2_FORM2_DATA_LEN (2324+8)
#define LEC_MODE2_FORM2_EDC_OFFSET 2348
typedef u_int8_t gf8_t;
static u_int8_t GF8_LOG[256];
static gf8_t GF8_ILOG[256];
static const class Gf8_Q_Coeffs_Results_01 {
private:
u_int16_t table[43][256];
public:
Gf8_Q_Coeffs_Results_01();
~Gf8_Q_Coeffs_Results_01() {}
const u_int16_t *operator[] (int i) const { return &table[i][0]; }
operator const u_int16_t *() const { return &table[0][0]; }
} CF8_Q_COEFFS_RESULTS_01;
static const class CrcTable {
private:
u_int32_t table[256];
public:
CrcTable();
~CrcTable() {}
u_int32_t operator[](int i) const { return table[i]; }
operator const u_int32_t *() const { return table; }
} CRCTABLE;
static const class ScrambleTable {
private:
u_int8_t table[2340];
public:
ScrambleTable();
~ScrambleTable() {}
u_int8_t operator[](int i) const { return table[i]; }
operator const u_int8_t *() const { return table; }
} SCRAMBLE_TABLE;
/* Creates the logarithm and inverse logarithm table that is required
* for performing multiplication in the GF(8) domain.
*/
static void gf8_create_log_tables()
{
u_int8_t log;
u_int16_t b;
for (b = 0; b <= 255; b++) {
GF8_LOG[b] = 0;
GF8_ILOG[b] = 0;
}
b = 1;
for (log = 0; log < 255; log++) {
GF8_LOG[(u_int8_t)b] = log;
GF8_ILOG[log] = (u_int8_t)b;
b <<= 1;
if ((b & 0x100) != 0)
b ^= GF8_PRIM_POLY;
}
}
/* Addition in the GF(8) domain: just the XOR of the values.
*/
#define gf8_add(a, b) (a) ^ (b)
/* Multiplication in the GF(8) domain: add the logarithms (modulo 255)
* and return the inverse logarithm. Not used!
*/
#if 0
static gf8_t gf8_mult(gf8_t a, gf8_t b)
{
int16_t sum;
if (a == 0 || b == 0)
return 0;
sum = GF8_LOG[a] + GF8_LOG[b];
if (sum >= 255)
sum -= 255;
return GF8_ILOG[sum];
}
#endif
/* Division in the GF(8) domain: Like multiplication but logarithms a
* subtracted.
*/
static gf8_t gf8_div(gf8_t a, gf8_t b)
{
int16_t sum;
assert(b != 0);
if (a == 0)
return 0;
sum = GF8_LOG[a] - GF8_LOG[b];
if (sum < 0)
sum += 255;
return GF8_ILOG[sum];
}
Gf8_Q_Coeffs_Results_01::Gf8_Q_Coeffs_Results_01()
{
int i, j;
u_int16_t c;
gf8_t GF8_COEFFS_HELP[2][45];
u_int8_t GF8_Q_COEFFS[2][45];
gf8_create_log_tables();
/* build matrix H:
* 1 1 ... 1 1
* a^44 a^43 ... a^1 a^0
*
*
*/
for (j = 0; j < 45; j++) {
GF8_COEFFS_HELP[0][j] = 1; /* e0 */
GF8_COEFFS_HELP[1][j] = GF8_ILOG[44-j]; /* e1 */
}
/* resolve equation system for parity byte 0 and 1 */
/* e1' = e1 + e0 */
for (j = 0; j < 45; j++) {
GF8_Q_COEFFS[1][j] = gf8_add(GF8_COEFFS_HELP[1][j],
GF8_COEFFS_HELP[0][j]);
}
/* e1'' = e1' / (a^1 + 1) */
for (j = 0; j < 45; j++) {
GF8_Q_COEFFS[1][j] = gf8_div(GF8_Q_COEFFS[1][j], GF8_Q_COEFFS[1][43]);
}
/* e0' = e0 + e1 / a^1 */
for (j = 0; j < 45; j++) {
GF8_Q_COEFFS[0][j] = gf8_add(GF8_COEFFS_HELP[0][j],
gf8_div(GF8_COEFFS_HELP[1][j],
GF8_ILOG[1]));
}
/* e0'' = e0' / (1 + 1 / a^1) */
for (j = 0; j < 45; j++) {
GF8_Q_COEFFS[0][j] = gf8_div(GF8_Q_COEFFS[0][j], GF8_Q_COEFFS[0][44]);
}
/*
* Compute the products of 0..255 with all of the Q coefficients in
* advance. When building the scalar product between the data vectors
* and the P/Q vectors the individual products can be looked up in
* this table
*
* The P parity coefficients are just a subset of the Q coefficients so
* that we do not need to create a separate table for them.
*/
for (j = 0; j < 43; j++) {
table[j][0] = 0;
for (i = 1; i < 256; i++) {
c = GF8_LOG[i] + GF8_LOG[GF8_Q_COEFFS[0][j]];
if (c >= 255) c -= 255;
table[j][i] = GF8_ILOG[c];
c = GF8_LOG[i] + GF8_LOG[GF8_Q_COEFFS[1][j]];
if (c >= 255) c -= 255;
table[j][i] |= GF8_ILOG[c]<<8;
}
}
}
/* Reverses the bits in 'd'. 'bits' defines the bit width of 'd'.
*/
static u_int32_t mirror_bits(u_int32_t d, int bits)
{
int i;
u_int32_t r = 0;
for (i = 0; i < bits; i++) {
r <<= 1;
if ((d & 0x1) != 0)
r |= 0x1;
d >>= 1;
}
return r;
}
/* Build the CRC lookup table for EDC_POLY poly. The CRC is 32 bit wide
* and reversed (i.e. the bit stream is divided by the EDC_POLY with the
* LSB first order).
*/
CrcTable::CrcTable ()
{
u_int32_t i, j;
u_int32_t r;
for (i = 0; i < 256; i++) {
r = mirror_bits(i, 8);
r <<= 24;
for (j = 0; j < 8; j++) {
if ((r & 0x80000000) != 0) {
r <<= 1;
r ^= EDC_POLY;
}
else {
r <<= 1;
}
}
r = mirror_bits(r, 32);
table[i] = r;
}
}
/* Calculates the CRC of given data with given lengths based on the
* table lookup algorithm.
*/
static u_int32_t calc_edc(u_int8_t *data, int len)
{
u_int32_t crc = 0;
while (len--) {
crc = CRCTABLE[(int)(crc ^ *data++) & 0xff] ^ (crc >> 8);
}
return crc;
}
/* Build the scramble table as defined in the yellow book. The bytes
12 to 2351 of a sector will be XORed with the data of this table.
*/
ScrambleTable::ScrambleTable()
{
u_int16_t i, j;
u_int16_t reg = 1;
u_int8_t d;
for (i = 0; i < 2340; i++) {
d = 0;
for (j = 0; j < 8; j++) {
d >>= 1;
if ((reg & 0x1) != 0)
d |= 0x80;
if ((reg & 0x1) != ((reg >> 1) & 0x1)) {
reg >>= 1;
reg |= 0x4000; /* 15-bit register */
}
else {
reg >>= 1;
}
}
table[i] = d;
}
}
/* Calc EDC for a MODE 1 sector
*/
static void calc_mode1_edc(u_int8_t *sector)
{
u_int32_t crc = calc_edc(sector, LEC_MODE1_DATA_LEN + 16);
sector[LEC_MODE1_EDC_OFFSET] = crc & 0xffL;
sector[LEC_MODE1_EDC_OFFSET + 1] = (crc >> 8) & 0xffL;
sector[LEC_MODE1_EDC_OFFSET + 2] = (crc >> 16) & 0xffL;
sector[LEC_MODE1_EDC_OFFSET + 3] = (crc >> 24) & 0xffL;
}
/* Calc EDC for a XA form 1 sector
*/
static void calc_mode2_form1_edc(u_int8_t *sector)
{
u_int32_t crc = calc_edc(sector + LEC_DATA_OFFSET,
LEC_MODE2_FORM1_DATA_LEN);
sector[LEC_MODE2_FORM1_EDC_OFFSET] = crc & 0xffL;
sector[LEC_MODE2_FORM1_EDC_OFFSET + 1] = (crc >> 8) & 0xffL;
sector[LEC_MODE2_FORM1_EDC_OFFSET + 2] = (crc >> 16) & 0xffL;
sector[LEC_MODE2_FORM1_EDC_OFFSET + 3] = (crc >> 24) & 0xffL;
}
/* Calc EDC for a XA form 2 sector
*/
static void calc_mode2_form2_edc(u_int8_t *sector)
{
u_int32_t crc = calc_edc(sector + LEC_DATA_OFFSET,
LEC_MODE2_FORM2_DATA_LEN);
sector[LEC_MODE2_FORM2_EDC_OFFSET] = crc & 0xffL;
sector[LEC_MODE2_FORM2_EDC_OFFSET + 1] = (crc >> 8) & 0xffL;
sector[LEC_MODE2_FORM2_EDC_OFFSET + 2] = (crc >> 16) & 0xffL;
sector[LEC_MODE2_FORM2_EDC_OFFSET + 3] = (crc >> 24) & 0xffL;
}
/* Writes the sync pattern to the given sector.
*/
static void set_sync_pattern(u_int8_t *sector)
{
sector[0] = 0;
sector[1] = sector[2] = sector[3] = sector[4] = sector[5] =
sector[6] = sector[7] = sector[8] = sector[9] = sector[10] = 0xff;
sector[11] = 0;
}
static u_int8_t bin2bcd(u_int8_t b)
{
return (((b/10) << 4) & 0xf0) | ((b%10) & 0x0f);
}
/* Builds the sector header.
*/
static void set_sector_header(u_int8_t mode, u_int32_t adr, u_int8_t *sector)
{
sector[LEC_HEADER_OFFSET] = bin2bcd(adr / (60*75));
sector[LEC_HEADER_OFFSET + 1] = bin2bcd((adr / 75) % 60);
sector[LEC_HEADER_OFFSET + 2] = bin2bcd(adr % 75);
sector[LEC_HEADER_OFFSET + 3] = mode;
}
/* Calculate the P parities for the sector.
* The 43 P vectors of length 24 are combined with the GF8_P_COEFFS.
*/
static void calc_P_parity(u_int8_t *sector)
{
int i, j;
u_int16_t p01_msb, p01_lsb;
u_int8_t *p_lsb_start;
u_int8_t *p_lsb;
u_int8_t *p0, *p1;
u_int8_t d0,d1;
p_lsb_start = sector + LEC_HEADER_OFFSET;
p1 = sector + LEC_MODE1_P_PARITY_OFFSET;
p0 = sector + LEC_MODE1_P_PARITY_OFFSET + 2 * 43;
for (i = 0; i <= 42; i++) {
p_lsb = p_lsb_start;
p01_lsb = p01_msb = 0;
for (j = 19; j <= 42; j++) {
d0 = *p_lsb;
d1 = *(p_lsb+1);
p01_lsb ^= CF8_Q_COEFFS_RESULTS_01[j][d0];
p01_msb ^= CF8_Q_COEFFS_RESULTS_01[j][d1];
p_lsb += 2 * 43;
}
*p0 = p01_lsb;
*(p0 + 1) = p01_msb;
*p1 = p01_lsb>>8;
*(p1 + 1) = p01_msb>>8;
p0 += 2;
p1 += 2;
p_lsb_start += 2;
}
}
/* Calculate the Q parities for the sector.
* The 26 Q vectors of length 43 are combined with the GF8_Q_COEFFS.
*/
static void calc_Q_parity(u_int8_t *sector)
{
int i, j;
u_int16_t q01_lsb, q01_msb;
u_int8_t *q_lsb_start;
u_int8_t *q_lsb;
u_int8_t *q0, *q1, *q_start;
u_int8_t d0,d1;
q_lsb_start = sector + LEC_HEADER_OFFSET;
q_start = sector + LEC_MODE1_Q_PARITY_OFFSET;
q1 = sector + LEC_MODE1_Q_PARITY_OFFSET;
q0 = sector + LEC_MODE1_Q_PARITY_OFFSET + 2 * 26;
for (i = 0; i <= 25; i++) {
q_lsb = q_lsb_start;
q01_lsb = q01_msb = 0;
for (j = 0; j <= 42; j++) {
d0 = *q_lsb;
d1 = *(q_lsb+1);
q01_lsb ^= CF8_Q_COEFFS_RESULTS_01[j][d0];
q01_msb ^= CF8_Q_COEFFS_RESULTS_01[j][d1];
q_lsb += 2 * 44;
if (q_lsb >= q_start) {
q_lsb -= 2 * 1118;
}
}
*q0 = q01_lsb;
*(q0 + 1) = q01_msb;
*q1 = q01_lsb>>8;
*(q1 + 1) = q01_msb>>8;
q0 += 2;
q1 += 2;
q_lsb_start += 2 * 43;
}
}
/* Encodes a MODE 0 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide
*/
void lec_encode_mode0_sector(u_int32_t adr, u_int8_t *sector)
{
u_int16_t i;
set_sync_pattern(sector);
set_sector_header(0, adr, sector);
sector += 16;
for (i = 0; i < 2336; i++)
*sector++ = 0;
}
/* Encodes a MODE 1 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2048 bytes user data at
* offset 16
*/
void lec_encode_mode1_sector(u_int32_t adr, u_int8_t *sector)
{
set_sync_pattern(sector);
set_sector_header(1, adr, sector);
calc_mode1_edc(sector);
/* clear the intermediate field */
sector[LEC_MODE1_INTERMEDIATE_OFFSET] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 1] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 2] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 3] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 4] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 5] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 6] =
sector[LEC_MODE1_INTERMEDIATE_OFFSET + 7] = 0;
calc_P_parity(sector);
calc_Q_parity(sector);
}
/* Encodes a MODE 2 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2336 bytes user data at
* offset 16
*/
void lec_encode_mode2_sector(u_int32_t adr, u_int8_t *sector)
{
set_sync_pattern(sector);
set_sector_header(2, adr, sector);
}
/* Encodes a XA form 1 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2048+8 bytes user data at
* offset 16
*/
void lec_encode_mode2_form1_sector(u_int32_t adr, u_int8_t *sector)
{
set_sync_pattern(sector);
calc_mode2_form1_edc(sector);
/* P/Q partiy must not contain the sector header so clear it */
sector[LEC_HEADER_OFFSET] =
sector[LEC_HEADER_OFFSET + 1] =
sector[LEC_HEADER_OFFSET + 2] =
sector[LEC_HEADER_OFFSET + 3] = 0;
calc_P_parity(sector);
calc_Q_parity(sector);
/* finally add the sector header */
set_sector_header(2, adr, sector);
}
/* Encodes a XA form 2 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2324+8 bytes user data at
* offset 16
*/
void lec_encode_mode2_form2_sector(u_int32_t adr, u_int8_t *sector)
{
set_sync_pattern(sector);
calc_mode2_form2_edc(sector);
set_sector_header(2, adr, sector);
}
/* Scrambles and byte swaps an encoded sector.
* 'sector' must be 2352 byte wide.
*/
void lec_scramble(u_int8_t *sector)
{
u_int16_t i;
const u_int8_t *stable = SCRAMBLE_TABLE;
u_int8_t *p = sector;
u_int8_t tmp;
for (i = 0; i < 6; i++) {
/* just swap bytes of sector sync */
tmp = *p;
*p = *(p + 1);
p++;
*p++ = tmp;
}
for (;i < (2352 / 2); i++) {
/* scramble and swap bytes */
tmp = *p ^ *stable++;
*p = *(p + 1) ^ *stable++;
p++;
*p++ = tmp;
}
}
#if 0
#include <fcntl.h>
#include <unistd.h>
#include <string.h>
#include <stdio.h>
int main(int argc, char **argv)
{
char *infile;
char *outfile;
int fd_in, fd_out;
u_int8_t buffer1[2352];
u_int8_t buffer2[2352];
u_int32_t lba;
int i;
#if 0
for (i = 0; i < 2048; i++)
buffer1[i + 16] = 234;
lba = 150;
for (i = 0; i < 100000; i++) {
lec_encode_mode1_sector(lba, buffer1);
lec_scramble(buffer2);
lba++;
}
#else
if (argc != 3)
return 1;
infile = argv[1];
outfile = argv[2];
if ((fd_in = open(infile, O_RDONLY)) < 0) {
perror("Cannot open input file");
return 1;
}
if ((fd_out = open(outfile, O_WRONLY|O_CREAT|O_TRUNC, 0666)) < 0) {
perror("Cannot open output file");
return 1;
}
lba = 150;
do {
if (read(fd_in, buffer1, 2352) != 2352)
break;
switch (*(buffer1 + 12 + 3)) {
case 1:
memcpy(buffer2 + 16, buffer1 + 16, 2048);
lec_encode_mode1_sector(lba, buffer2);
break;
case 2:
if ((*(buffer1 + 12 + 4 + 2) & 0x20) != 0) {
/* form 2 sector */
memcpy(buffer2 + 16, buffer1 + 16, 2324 + 8);
lec_encode_mode2_form2_sector(lba, buffer2);
}
else {
/* form 1 sector */
memcpy(buffer2 + 16, buffer1 + 16, 2048 + 8);
lec_encode_mode2_form1_sector(lba, buffer2);
}
break;
}
if (memcmp(buffer1, buffer2, 2352) != 0) {
printf("Verify error at lba %ld\n", lba);
}
lec_scramble(buffer2);
write(fd_out, buffer2, 2352);
lba++;
} while (1);
close(fd_in);
close(fd_out);
#endif
return 0;
}
#endif

View File

@ -1,77 +0,0 @@
/* cdrdao - write audio CD-Rs in disc-at-once mode
*
* Copyright (C) 1998-2002 Andreas Mueller <mueller@daneb.ping.de>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#ifndef __LEC_H__
#define __LEC_H__
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <sys/types.h>
#include <inttypes.h>
typedef uint32_t u_int32_t;
typedef uint16_t u_int16_t;
typedef uint8_t u_int8_t;
#ifndef TRUE
#define TRUE 1
#endif
/* Encodes a MODE 0 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide
*/
void lec_encode_mode0_sector(u_int32_t adr, u_int8_t *sector);
/* Encodes a MODE 1 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2048 bytes user data at
* offset 16
*/
void lec_encode_mode1_sector(u_int32_t adr, u_int8_t *sector);
/* Encodes a MODE 2 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2336 bytes user data at
* offset 16
*/
void lec_encode_mode2_sector(u_int32_t adr, u_int8_t *sector);
/* Encodes a XA form 1 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2048+8 bytes user data at
* offset 16
*/
void lec_encode_mode2_form1_sector(u_int32_t adr, u_int8_t *sector);
/* Encodes a XA form 2 sector.
* 'adr' is the current physical sector address
* 'sector' must be 2352 byte wide containing 2324+8 bytes user data at
* offset 16
*/
void lec_encode_mode2_form2_sector(u_int32_t adr, u_int8_t *sector);
/* Scrambles and byte swaps an encoded sector.
* 'sector' must be 2352 byte wide.
*/
void lec_scramble(u_int8_t *sector);
#endif

View File

@ -1,203 +0,0 @@
/* dvdisaster: Additional error correction for optical media.
* Copyright (C) 2004-2007 Carsten Gnoerlich.
* Project home page: http://www.dvdisaster.com
* Email: carsten@dvdisaster.com -or- cgnoerlich@fsfe.org
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA,
* or direct your browser at http://www.gnu.org.
*/
#include "dvdisaster.h"
static GaloisTables *gt = NULL; /* for L-EC Reed-Solomon */
static ReedSolomonTables *rt = NULL;
bool Init_LEC_Correct(void)
{
gt = CreateGaloisTables(0x11d);
rt = CreateReedSolomonTables(gt, 0, 1, 10);
return(1);
}
void Kill_LEC_Correct(void)
{
FreeGaloisTables(gt);
FreeReedSolomonTables(rt);
}
/***
*** CD level CRC calculation
***/
/*
* Test raw sector against its 32bit CRC.
* Returns TRUE if frame is good.
*/
int CheckEDC(const unsigned char *cd_frame, bool xa_mode)
{
unsigned int expected_crc, real_crc;
unsigned int crc_base = xa_mode ? 2072 : 2064;
expected_crc = cd_frame[crc_base + 0] << 0;
expected_crc |= cd_frame[crc_base + 1] << 8;
expected_crc |= cd_frame[crc_base + 2] << 16;
expected_crc |= cd_frame[crc_base + 3] << 24;
if(xa_mode)
real_crc = EDCCrc32(cd_frame+16, 2056);
else
real_crc = EDCCrc32(cd_frame, 2064);
if(expected_crc == real_crc)
return(1);
else
{
//printf("Bad EDC CRC: Calculated: %08x, Recorded: %08x\n", real_crc, expected_crc);
return(0);
}
}
/***
*** A very simple L-EC error correction.
***
* Perform just one pass over the Q and P vectors to see if everything
* is okay respectively correct minor errors. This is pretty much the
* same stuff the drive is supposed to do in the final L-EC stage.
*/
static int simple_lec(unsigned char *frame)
{
unsigned char byte_state[2352];
unsigned char p_vector[P_VECTOR_SIZE];
unsigned char q_vector[Q_VECTOR_SIZE];
unsigned char p_state[P_VECTOR_SIZE];
int erasures[Q_VECTOR_SIZE], erasure_count;
int ignore[2];
int p_failures, q_failures;
int p_corrected, q_corrected;
int p,q;
/* Setup */
memset(byte_state, 0, 2352);
p_failures = q_failures = 0;
p_corrected = q_corrected = 0;
/* Perform Q-Parity error correction */
for(q=0; q<N_Q_VECTORS; q++)
{ int err;
/* We have no erasure information for Q vectors */
GetQVector(frame, q_vector, q);
err = DecodePQ(rt, q_vector, Q_PADDING, ignore, 0);
/* See what we've got */
if(err < 0) /* Uncorrectable. Mark bytes are erasure. */
{ q_failures++;
FillQVector(byte_state, 1, q);
}
else /* Correctable */
{ if(err == 1 || err == 2) /* Store back corrected vector */
{ SetQVector(frame, q_vector, q);
q_corrected++;
}
}
}
/* Perform P-Parity error correction */
for(p=0; p<N_P_VECTORS; p++)
{ int err,i;
/* Try error correction without erasure information */
GetPVector(frame, p_vector, p);
err = DecodePQ(rt, p_vector, P_PADDING, ignore, 0);
/* If unsuccessful, try again using erasures.
Erasure information is uncertain, so try this last. */
if(err < 0 || err > 2)
{ GetPVector(byte_state, p_state, p);
erasure_count = 0;
for(i=0; i<P_VECTOR_SIZE; i++)
if(p_state[i])
erasures[erasure_count++] = i;
if(erasure_count > 0 && erasure_count <= 2)
{ GetPVector(frame, p_vector, p);
err = DecodePQ(rt, p_vector, P_PADDING, erasures, erasure_count);
}
}
/* See what we've got */
if(err < 0) /* Uncorrectable. */
{ p_failures++;
}
else /* Correctable. */
{ if(err == 1 || err == 2) /* Store back corrected vector */
{ SetPVector(frame, p_vector, p);
p_corrected++;
}
}
}
/* Sum up */
if(q_failures || p_failures || q_corrected || p_corrected)
{
return 1;
}
return 0;
}
/***
*** Validate CD raw sector
***/
int ValidateRawSector(unsigned char *frame, bool xaMode)
{
int lec_did_sth = FALSE_0;
/* Do simple L-EC.
It seems that drives stop their internal L-EC as soon as the
EDC is okay, so we may see uncorrected errors in the parity bytes.
Since we are also interested in the user data only and doing the
L-EC is expensive, we skip our L-EC as well when the EDC is fine. */
if(!CheckEDC(frame, xaMode))
{
lec_did_sth = simple_lec(frame);
}
/* Test internal sector checksum again */
if(!CheckEDC(frame, xaMode))
{
/* EDC failure in RAW sector */
return FALSE_0;
}
return TRUE_1;
}

View File

@ -51,8 +51,6 @@
#include "psx.h"
#include "cdc.h"
#include "spu.h"
#include "cdrom/CDUtility.h"
#include "cdrom/cdromif.h"
#include "endian.h"
using namespace CDUtility;
@ -176,7 +174,7 @@ void PS_CDC::SoftReset(void)
SectorPipe_Pos = SectorPipe_In = 0;
SectorsRead = 0;
memset(SubQBuf, 0, sizeof(SubQBuf));
//memset(SubQBuf, 0, sizeof(SubQBuf));
memset(SubQBuf_Safe, 0, sizeof(SubQBuf_Safe));
SubQChecksumOK = false;
@ -266,7 +264,7 @@ SYNCFUNC(PS_CDC)
NSS(SectorPipe_Pos);
NSS(SectorPipe_In);
NSS(SubQBuf);
//NSS(SubQBuf);
NSS(SubQBuf_Safe);
NSS(SubQChecksumOK);
@ -425,12 +423,12 @@ bool PS_CDC::DecodeSubQ(uint8 *subpw)
if((tmp_q[0] & 0xF) == 1)
{
memcpy(SubQBuf, tmp_q, 0xC);
memcpy(SubQBuf_Safe, tmp_q, 0xC);
SubQChecksumOK = subq_check_checksum(tmp_q);
if(SubQChecksumOK)
{
memcpy(SubQBuf_Safe, tmp_q, 0xC);
// memcpy(SubQBuf_Safe, tmp_q, 0xC);
return(true);
}
}
@ -860,18 +858,17 @@ void PS_CDC::HandlePlayRead(void)
{
PSX_WARNING("[CDC] In leadout area: %u", CurSector);
//
// Synthesis is a bit of a kludge... :/
//
synth_leadout_sector_lba(0x02, toc, CurSector, read_buf);
DecodeSubQ(read_buf + 2352);
// " Synthesis is a bit of a kludge " but we've taken it out of here
//synth_leadout_sector_lba(0x02, toc, CurSector, read_buf);
Cur_disc->ReadLBA2448(CurSector,read_buf); // FIXME: error out on error.
}
else
{
Cur_disc->ReadLBA2448(CurSector,read_buf); // FIXME: error out on error.
DecodeSubQ(read_buf + 2352);
}
DecodeSubQ(read_buf + 2352);
if(SubQBuf_Safe[1] == 0xAA && (DriveStatus == DS_PLAYING || (!(SubQBuf_Safe[0] & 0x40) && (Mode & MODE_CDDA))))
{
@ -975,10 +972,12 @@ void PS_CDC::HandlePlayRead(void)
// maybe if(!(Mode & 0x30)) too?
if(!(buf[12 + 6] & 0x20))
{
#ifdef LEC_CHECK
if(!edc_lec_check_and_correct(buf, true))
{
printf("Bad sector? - %d", CurSector);
}
#endif
}
if(!(Mode & 0x30) && (buf[12 + 6] & 0x20))

View File

@ -92,7 +92,7 @@ class PS_CDC
uint8 SectorPipe_Pos;
uint8 SectorPipe_In;
uint8 SubQBuf[0xC];
//uint8 SubQBuf[0xC];
uint8 SubQBuf_Safe[0xC];
bool SubQChecksumOK;

View File

@ -22,8 +22,8 @@
#include "timer.h"
#include "sio.h"
#include "cdc.h"
#include "Stream.h"
#include "spu.h"
#include "cdrom/cdromif.h"
#include "error.h"
#include "endian.h"
#include "emuware/EW_state.h"
@ -2270,6 +2270,8 @@ s32 ShockDiscRef::InternalReadLBA2448(s32 lba, void* dst2448, bool needSubcode)
if(needSubcode && mSuppliesDeinterleavedSubcode)
{
//presently, CDC consumes deinterleaved subcode.
//perhaps this could be optimized in the future
u8 tmp[96];
CDUtility::subpw_interleave((u8*)dst2448+2352,tmp);
memcpy((u8*)dst2448+2352,tmp,96);

View File

@ -1,7 +1,6 @@
#pragma once
#include "emuware/emuware.h"
#include "cdrom/cdromif.h"
#include "video/surface.h"
#include "masmem.h"
#include "endian.h"