Replace QuickNES core with QuickerNES (squashed PR #3839)

resolves #3848
This commit is contained in:
Sergio Martin 2024-03-22 16:31:22 +01:00 committed by GitHub
parent 0857dd6771
commit 9c4a818423
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
101 changed files with 465 additions and 18045 deletions

2
.gitignore vendored
View File

@ -6,6 +6,8 @@
/test_output
**/ipch/**
/Assets/dll/*.wbx
Backup/
UpgradeLog.htm
*.ilk
*.il

3
.gitmodules vendored
View File

@ -70,3 +70,6 @@
[submodule "ExternalProjects/SDL2/libusb"]
path = ExternalProjects/SDL2/libusb
url = https://github.com/libusb/libusb.git
[submodule "quicknes/core"]
path = quicknes/core
url = https://github.com/SergioMartin86/quickerNES.git

Binary file not shown.

Binary file not shown.

BIN
Assets/dll/libquicknes.so Executable file

Binary file not shown.

2
Dist/Package.sh Executable file → Normal file
View File

@ -13,7 +13,7 @@ if [ "$1" = "windows-x64" ]; then
rm -f "EmuHawkMono.sh"
cd "dll"
rm -f "libe_sqlite3.so" "libSDL2.so" "OpenTK.dll.config" \
"libbizlynx.dll.so" "libbizswan.dll.so" "libblip_buf.so" "libbizhash.so" "libdarm.so" "libemu83.so" "libencore.so" "libfwunpack.so" "libgambatte.so" "libLibretroBridge.so" "libquicknes.dll.so.0.7.0" "librcheevos.so" "libsameboy.so" "libmgba.dll.so" "libMSXHawk.so" "libwaterboxhost.so"
"libbizlynx.dll.so" "libbizswan.dll.so" "libblip_buf.so" "libbizhash.so" "libdarm.so" "libemu83.so" "libencore.so" "libfwunpack.so" "libgambatte.so" "libLibretroBridge.so" "libquicknes.dll.so" "librcheevos.so" "libsameboy.so" "libmgba.dll.so" "libMSXHawk.so" "libwaterboxhost.so"
else
find . -type f -name "*.sh" -exec chmod +x {} \; # installed with -m644 but needs to be 755
cd "dll"

View File

@ -316,7 +316,7 @@ MSX | **MSXHawk**
N64 | Ares64, **Mupen64Plus**
NDS | **melonDS**
Neo Geo Pocket | **NeoPop**
NES | **NesHawk**, QuickNes
NES | **NesHawk**, quickerNES
Odyssey² | **O2Hawk**
PC-FX | **T.S.T.**
Playstation (PSX) | **Nymashock**, **Octoshock**

View File

@ -23,7 +23,7 @@ Jump to:
- [NLua](#nlua)
- [Nyma cores](#nyma-cores)
- [Octoshock](#octoshock)
- [QuickNES](#quicknes)
- [quickerNES](#quickernes)
- [Roslyn Analyzers](#roslyn-analyzers)
- [Virtu](#virtu)
- [Waterbox (host)](#waterbox-host)
@ -264,8 +264,8 @@ Uses C++.
## QuickNES
> The unmanaged side of the QuickNES core.
## quickerNES
> The unmanaged side of the quickerNES core.
Uses C++.

View File

@ -1,35 +1,9 @@
#include <cstdlib>
#include <cstring>
#include "nes_emu/Nes_Emu.h"
// simulate the write so we'll know how long the buffer needs to be
class Sim_Writer : public Data_Writer
{
long size_;
public:
Sim_Writer():size_(0) { }
error_t write(const void *, long size)
{
size_ += size;
return 0;
}
long size() const { return size_; }
};
// 0 filled new just for kicks
void *operator new(std::size_t n)
{
if (!n)
n = 1;
void *p = std::malloc(n);
std::memset(p, 0, n);
return p;
}
void operator delete(void *p)
{
std::free(p);
}
#include <emu.hpp>
#include <jaffarCommon/include/file.hpp>
#include <jaffarCommon/include/serializers/contiguous.hpp>
#include <jaffarCommon/include/deserializers/contiguous.hpp>
#ifdef _MSC_VER
#define EXPORT extern "C" __declspec(dllexport)
@ -39,42 +13,50 @@ void operator delete(void *p)
#define EXPORT extern "C" __attribute__((force_align_arg_pointer))
#endif
EXPORT void qn_setup_mappers()
// Relevant defines for video output
#define VIDEO_BUFFER_SIZE 65536
#define DEFAULT_WIDTH 256
#define DEFAULT_HEIGHT 240
EXPORT quickerNES::Emu *qn_new()
{
register_optional_mappers();
// Zero intialized emulator to make super sure no side effects from previous data remains
auto ptr = calloc(1, sizeof(quickerNES::Emu));
auto e = new (ptr) quickerNES::Emu();
// Creating video buffer
auto videoBuffer = (uint8_t *) malloc(VIDEO_BUFFER_SIZE);
e->set_pixels(videoBuffer, DEFAULT_WIDTH + 8);
return e;
}
EXPORT Nes_Emu *qn_new()
{
return new Nes_Emu();
EXPORT void qn_delete(quickerNES::Emu *e)
{
free(e->get_pixels_base_ptr());
free(e);
}
EXPORT void qn_delete(Nes_Emu *e)
EXPORT const char *qn_loadines(quickerNES::Emu *e, const void *data, int length)
{
delete e;
e->load_ines((const uint8_t*)data);
return 0;
}
EXPORT const char *qn_loadines(Nes_Emu *e, const void *data, int length)
{
Mem_File_Reader r(data, length);
Auto_File_Reader a(r);
return e->load_ines(a);
}
EXPORT const char *qn_set_sample_rate(Nes_Emu *e, int rate)
EXPORT const char *qn_set_sample_rate(quickerNES::Emu *e, int rate)
{
const char *ret = e->set_sample_rate(rate);
if (!ret)
e->set_equalizer(Nes_Emu::nes_eq);
if (!ret) e->set_equalizer(quickerNES::Emu::nes_eq);
return ret;
}
EXPORT const char *qn_emulate_frame(Nes_Emu *e, int pad1, int pad2)
EXPORT const char *qn_emulate_frame(quickerNES::Emu *e, int pad1, int pad2)
{
return e->emulate_frame(pad1, pad2);
return e->emulate_frame((uint32_t)pad1, (uint32_t)pad2);
}
EXPORT void qn_blit(Nes_Emu *e, int32_t *dest, const int32_t *colors, int cropleft, int croptop, int cropright, int cropbottom)
EXPORT void qn_blit(quickerNES::Emu *e, int32_t *dest, const int32_t *colors, int cropleft, int croptop, int cropright, int cropbottom)
{
// what is the point of the 256 color bitmap and the dynamic color allocation to it?
// why not just render directly to a 512 color bitmap with static palette positions?
@ -99,17 +81,17 @@ EXPORT void qn_blit(Nes_Emu *e, int32_t *dest, const int32_t *colors, int crople
}
}
EXPORT const Nes_Emu::rgb_t *qn_get_default_colors()
EXPORT const quickerNES::Emu::rgb_t *qn_get_default_colors()
{
return Nes_Emu::nes_colors;
return quickerNES::Emu::nes_colors;
}
EXPORT int qn_get_joypad_read_count(Nes_Emu *e)
EXPORT int qn_get_joypad_read_count(quickerNES::Emu *e)
{
return e->frame().joypad_read_count;
return e->get_joypad_read_count();
}
EXPORT void qn_get_audio_info(Nes_Emu *e, int *sample_count, int *chan_count)
EXPORT void qn_get_audio_info(quickerNES::Emu *e, int *sample_count, int *chan_count)
{
if (sample_count)
*sample_count = e->frame().sample_count;
@ -117,96 +99,75 @@ EXPORT void qn_get_audio_info(Nes_Emu *e, int *sample_count, int *chan_count)
*chan_count = e->frame().chan_count;
}
EXPORT int qn_read_audio(Nes_Emu *e, short *dest, int max_samples)
EXPORT int qn_read_audio(quickerNES::Emu *e, short *dest, int max_samples)
{
return e->read_samples(dest, max_samples);
}
EXPORT void qn_reset(Nes_Emu *e, int hard)
EXPORT void qn_reset(quickerNES::Emu *e, int hard)
{
e->reset(hard);
}
EXPORT const char *qn_state_size(Nes_Emu *e, int *size)
EXPORT const char *qn_state_size(quickerNES::Emu *e, int *size)
{
Sim_Writer w;
Auto_File_Writer a(w);
const char *ret = e->save_state(a);
if (size)
*size = w.size();
return ret;
jaffarCommon::serializer::Contiguous s;
e->serializeState(s);
*size = s.getOutputSize();
return 0;
}
EXPORT const char *qn_state_save(Nes_Emu *e, void *dest, int size)
EXPORT const char *qn_state_save(quickerNES::Emu *e, void *dest, int size)
{
Mem_Writer w(dest, size, 0);
Auto_File_Writer a(w);
const char *ret = e->save_state(a);
if (!ret && w.size() != size)
return "Buffer Underrun!";
return ret;
jaffarCommon::serializer::Contiguous s(dest, size);
e->serializeState(s);
return 0;
}
EXPORT const char *qn_state_load(Nes_Emu *e, const void *src, int size)
EXPORT const char *qn_state_load(quickerNES::Emu *e, const void *src, int size)
{
Mem_File_Reader r(src, size);
Auto_File_Reader a(r);
return e->load_state(a);
jaffarCommon::deserializer::Contiguous d(src, size);
e->deserializeState(d);
return 0;
}
EXPORT int qn_has_battery_ram(Nes_Emu *e)
EXPORT int qn_has_battery_ram(quickerNES::Emu *e)
{
return e->has_battery_ram();
}
EXPORT const char *qn_battery_ram_size(Nes_Emu *e, int *size)
EXPORT const char *qn_battery_ram_size(quickerNES::Emu *e, int *size)
{
Sim_Writer w;
Auto_File_Writer a(w);
const char *ret = e->save_battery_ram(a);
if (size)
*size = w.size();
return ret;
*size = e->get_high_mem_size();
return 0;
}
EXPORT const char *qn_battery_ram_save(Nes_Emu *e, void *dest, int size)
EXPORT const char *qn_battery_ram_save(quickerNES::Emu *e, void *dest, int size)
{
Mem_Writer w(dest, size, 0);
Auto_File_Writer a(w);
const char *ret = e->save_battery_ram(a);
if (!ret && w.size() != size)
return "Buffer Underrun!";
return ret;
memcpy(dest, e->high_mem(), size);
return 0;
}
EXPORT const char *qn_battery_ram_load(Nes_Emu *e, const void *src, int size)
EXPORT const char *qn_battery_ram_load(quickerNES::Emu *e, const void *src, int size)
{
Mem_File_Reader r(src, size);
Auto_File_Reader a(r);
return e->load_battery_ram(a);
memcpy(e->high_mem(), src, size);
return 0;
}
EXPORT const char *qn_battery_ram_clear(Nes_Emu *e)
EXPORT const char *qn_battery_ram_clear(quickerNES::Emu *e)
{
int size = 0;
const char *ret = qn_battery_ram_size(e, &size);
if (ret)
return ret;
void *data = std::malloc(size);
if (!data)
return "Out of Memory!";
std::memset(data, 0xff, size);
ret = qn_battery_ram_load(e, data, size);
std::free(data);
return ret;
qn_battery_ram_size(e, &size);
std::memset(e->high_mem(), 0xff, size);
return 0;
}
EXPORT void qn_set_sprite_limit(Nes_Emu *e, int n)
EXPORT void qn_set_sprite_limit(quickerNES::Emu *e, int n)
{
e->set_sprite_mode((Nes_Emu::sprite_mode_t)n);
e->set_sprite_mode((quickerNES::Emu::sprite_mode_t)n);
}
EXPORT int qn_get_memory_area(Nes_Emu *e, int which, const void **data, int *size, int *writable, const char **name)
EXPORT int qn_get_memory_area(quickerNES::Emu *e, int which, const void **data, int *size, int *writable, const char **name)
{
if (!data || !size || !writable || !name)
return 0;
@ -215,7 +176,7 @@ EXPORT int qn_get_memory_area(Nes_Emu *e, int which, const void **data, int *siz
default:
return 0;
case 0:
*data = e->low_mem();
*data = e->get_low_mem();
*size = e->low_mem_size;
*writable = 1;
*name = "RAM";
@ -229,58 +190,58 @@ EXPORT int qn_get_memory_area(Nes_Emu *e, int which, const void **data, int *siz
case 2:
*data = e->chr_mem();
*size = e->chr_size();
*writable = 0;
*writable = 1;
*name = "CHR";
return 1;
case 3:
*data = e->nametable_mem();
*size = e->nametable_size();
*writable = 0;
*writable = 1;
*name = "CIRAM (nametables)";
return 1;
case 4:
*data = e->cart()->prg();
*size = e->cart()->prg_size();
*writable = 0;
*writable = 1;
*name = "PRG ROM";
return 1;
case 5:
*data = e->cart()->chr();
*size = e->cart()->chr_size();
*writable = 0;
*writable = 1;
*name = "CHR VROM";
return 1;
case 6:
*data = e->pal_mem();
*size = 32;
*size = e->pal_mem_size();
*writable = 1;
*name = "PALRAM";
return 1;
case 7:
*data = e->oam_mem();
*size = 256;
*data = e->spr_mem();
*size = e->spr_mem_size();
*writable = 1;
*name = "OAM";
return 1;
}
}
EXPORT unsigned char qn_peek_prgbus(Nes_Emu *e, int addr)
EXPORT unsigned char qn_peek_prgbus(quickerNES::Emu *e, int addr)
{
return e->peek_prg(addr & 0xffff);
}
EXPORT void qn_poke_prgbus(Nes_Emu *e, int addr, unsigned char val)
EXPORT void qn_poke_prgbus(quickerNES::Emu *e, int addr, unsigned char val)
{
e->poke_prg(addr & 0xffff, val);
}
EXPORT void qn_get_cpuregs(Nes_Emu *e, unsigned int *dest)
EXPORT void qn_get_cpuregs(quickerNES::Emu *e, unsigned int *dest)
{
e->get_regs(dest);
}
EXPORT const char *qn_get_mapper(Nes_Emu *e, int *number)
EXPORT const char *qn_get_mapper(quickerNES::Emu *e, int *number)
{
int m = e->cart()->mapper_code();
if (number)
@ -288,54 +249,90 @@ EXPORT const char *qn_get_mapper(Nes_Emu *e, int *number)
switch (m)
{
default: return "unknown";
case 0: return "nrom";
case 1: return "mmc1";
case 2: return "unrom";
case 3: return "cnrom";
case 4: return "mmc3";
case 7: return "aorom";
case 69: return "fme7";
case 5: return "mmc5";
case 19: return "namco106";
case 24: return "vrc6a";
case 26: return "vrc6b";
case 11: return "color_dreams";
case 34: return "nina1";
case 66: return "gnrom";
case 87: return "mapper_87";
case 0: return "nrom";
case 1: return "mmc1";
case 2: return "unrom";
case 3: return "cnrom";
case 4: return "mmc3";
case 5: return "mmc5";
case 7: return "aorom";
case 9: return "mmc2";
case 10: return "mmc4";
case 11: return "color_dreams";
case 15: return "k1029/30P";
case 19: return "namco106";
case 21: return "vrc2,vrc4(21)";
case 22: return "vrc2,vrc4(22)";
case 23: return "vrc2,vrc4(23)";
case 24: return "vrc6a";
case 25: return "vrc2,vrc4(25)";
case 26: return "vrc6b";
case 30: return "Unrom512";
case 32: return "Irem_G101";
case 33: return "TaitoTC0190";
case 34: return "nina1";
case 60: return "NROM-128";
case 66: return "gnrom";
case 69: return "fme7";
case 70: return "74x161x162x32(70)";
case 71: return "camerica";
case 73: return "vrc3";
case 75: return "vrc1";
case 78: return "mapper_78";
case 79: return "nina03,nina06(79)";
case 85: return "vrc7";
case 86: return "mapper_86";
case 87: return "mapper_87";
case 88: return "namco34(88)";
case 89: return "sunsoft2b";
case 93: return "sunsoft2a";
case 94: return "Un1rom";
case 97: return "irem_tam_s1";
case 113: return "nina03,nina06(113)";
case 140: return "jaleco_jf11";
case 152: return "74x161x162x32(152)";
case 154: return "namco34(154)";
case 156: return "dis23c01_daou";
case 180: return "uxrom(inverted)";
case 184: return "sunsoft1";
case 190: return "magickidgoogoo";
case 193: return "tc112";
case 206: return "namco34(206)";
case 207: return "taitox1005";
case 232: return "quattro";
case 9: return "mmc2";
case 10: return "mmc4";
case 240: return "mapper_240";
case 241: return "mapper_241";
case 246: return "mapper_246";
}
}
EXPORT byte qn_get_reg2000(Nes_Emu *e)
EXPORT uint8_t qn_get_reg2000(quickerNES::Emu *e)
{
return e->get_ppu2000();
}
EXPORT byte *qn_get_palmem(Nes_Emu *e)
EXPORT uint8_t *qn_get_palmem(quickerNES::Emu *e)
{
return e->pal_mem();
}
EXPORT byte *qn_get_oammem(Nes_Emu *e)
EXPORT uint8_t *qn_get_oammem(quickerNES::Emu *e)
{
return e->oam_mem();
return e->pal_mem();
}
EXPORT byte qn_peek_ppu(Nes_Emu *e, int addr)
EXPORT uint8_t qn_peek_ppu(quickerNES::Emu *e, int addr)
{
return e->peek_ppu(addr);
}
EXPORT void qn_peek_ppubus(Nes_Emu *e, byte *dest)
EXPORT void qn_peek_ppubus(quickerNES::Emu *e, uint8_t *dest)
{
for (int i = 0; i < 0x3000; i++)
dest[i] = e->peek_ppu(i);
}
EXPORT void qn_set_tracecb(Nes_Emu *e, void (*cb)(unsigned int *dest))
EXPORT void qn_set_tracecb(quickerNES::Emu *e, void (*cb)(unsigned int *dest))
{
e->set_tracecb(cb);
}

1
quicknes/core Submodule

@ -0,0 +1 @@
Subproject commit f70db77e696a57e4d9ce790d610f2de7c0acbf68

View File

@ -1,775 +0,0 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "Data_Reader.h"
#include "blargg_endian.h"
#include <stdio.h>
#include <errno.h>
/* Copyright (C) 2005-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
// Data_Reader
blargg_err_t Data_Reader::read( void* p, int n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
if ( n > remain() )
return blargg_err_file_eof;
blargg_err_t err = read_v( p, n );
if ( !err )
remain_ -= n;
return err;
}
blargg_err_t Data_Reader::read_avail( void* p, int* n_ )
{
assert( *n_ >= 0 );
int n = min( (BOOST::uint64_t)(*n_), remain() );
*n_ = 0;
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
blargg_err_t err = read_v( p, n );
if ( !err )
{
remain_ -= n;
*n_ = n;
}
return err;
}
blargg_err_t Data_Reader::read_avail( void* p, long* n )
{
int i = STATIC_CAST(int, *n);
blargg_err_t err = read_avail( p, &i );
*n = i;
return err;
}
blargg_err_t Data_Reader::skip_v( int count )
{
char buf [512];
while ( count )
{
int n = min( count, (int) sizeof buf );
count -= n;
RETURN_ERR( read_v( buf, n ) );
}
return blargg_ok;
}
blargg_err_t Data_Reader::skip( int n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n <= 0 )
return blargg_ok;
if ( n > remain() )
return blargg_err_file_eof;
blargg_err_t err = skip_v( n );
if ( !err )
remain_ -= n;
return err;
}
// File_Reader
blargg_err_t File_Reader::seek( BOOST::uint64_t n )
{
assert( n >= 0 );
if ( n < 0 )
return blargg_err_caller;
if ( n == tell() )
return blargg_ok;
if ( n > size() )
return blargg_err_file_eof;
blargg_err_t err = seek_v( n );
if ( !err )
set_tell( n );
return err;
}
blargg_err_t File_Reader::skip_v( BOOST::uint64_t n )
{
return seek_v( tell() + n );
}
// Subset_Reader
Subset_Reader::Subset_Reader( Data_Reader* dr, BOOST::uint64_t size ) :
in( dr )
{
set_remain( min( size, dr->remain() ) );
}
blargg_err_t Subset_Reader::read_v( void* p, int s )
{
return in->read( p, s );
}
// Remaining_Reader
Remaining_Reader::Remaining_Reader( void const* h, int size, Data_Reader* r ) :
in( r )
{
header = h;
header_remain = size;
set_remain( size + r->remain() );
}
blargg_err_t Remaining_Reader::read_v( void* out, int count )
{
int first = min( count, header_remain );
if ( first )
{
memcpy( out, header, first );
header = STATIC_CAST(char const*, header) + first;
header_remain -= first;
}
return in->read( STATIC_CAST(char*, out) + first, count - first );
}
// Mem_File_Reader
Mem_File_Reader::Mem_File_Reader( const void* p, long s ) :
begin( STATIC_CAST(const char*, p) )
{
set_size( s );
}
blargg_err_t Mem_File_Reader::read_v( void* p, int s )
{
memcpy( p, begin + tell(), s );
return blargg_ok;
}
blargg_err_t Mem_File_Reader::seek_v( int )
{
return blargg_ok;
}
// Callback_Reader
Callback_Reader::Callback_Reader( callback_t c, BOOST::uint64_t s, void* d ) :
callback( c ),
user_data( d )
{
set_remain( s );
}
blargg_err_t Callback_Reader::read_v( void* out, int count )
{
return callback( user_data, out, count );
}
// Callback_File_Reader
Callback_File_Reader::Callback_File_Reader( callback_t c, BOOST::uint64_t s, void* d ) :
callback( c ),
user_data( d )
{
set_size( s );
}
blargg_err_t Callback_File_Reader::read_v( void* out, int count )
{
return callback( user_data, out, count, tell() );
}
blargg_err_t Callback_File_Reader::seek_v( int )
{
return blargg_ok;
}
static const BOOST::uint8_t mask_tab[6]={0x80,0xE0,0xF0,0xF8,0xFC,0xFE};
static const BOOST::uint8_t val_tab[6]={0,0xC0,0xE0,0xF0,0xF8,0xFC};
size_t utf8_char_len_from_header( char p_c )
{
// what is this?
// BOOST::uint8_t c = (BOOST::uint8_t)p_c;
size_t cnt = 0;
for(;;)
{
if ( ( p_c & mask_tab[cnt] ) == val_tab[cnt] ) break;
if ( ++cnt >= 6 ) return 0;
}
return cnt + 1;
}
size_t utf8_decode_char( const char *p_utf8, unsigned & wide, size_t mmax )
{
const BOOST::uint8_t * utf8 = ( const BOOST::uint8_t* )p_utf8;
if ( mmax == 0 )
{
wide = 0;
return 0;
}
if ( utf8[0] < 0x80 )
{
wide = utf8[0];
return utf8[0]>0 ? 1 : 0;
}
if ( mmax > 6 ) mmax = 6;
wide = 0;
unsigned res=0;
unsigned n;
unsigned cnt=0;
for(;;)
{
if ( ( *utf8 & mask_tab[cnt] ) == val_tab[cnt] ) break;
if ( ++cnt >= mmax ) return 0;
}
cnt++;
if ( cnt==2 && !( *utf8 & 0x1E ) ) return 0;
if ( cnt == 1 )
res = *utf8;
else
res = ( 0xFF >> ( cnt + 1 ) ) & *utf8;
for ( n = 1; n < cnt; n++ )
{
if ( ( utf8[n] & 0xC0 ) != 0x80 )
return 0;
if ( !res && n == 2 && !( ( utf8[n] & 0x7F ) >> ( 7 - cnt ) ) )
return 0;
res = ( res << 6 ) | ( utf8[n] & 0x3F );
}
wide = res;
return cnt;
}
size_t utf8_encode_char( unsigned wide, char * target )
{
size_t count;
if ( wide < 0x80 )
count = 1;
else if ( wide < 0x800 )
count = 2;
else if ( wide < 0x10000 )
count = 3;
else if ( wide < 0x200000 )
count = 4;
else if ( wide < 0x4000000 )
count = 5;
else if ( wide <= 0x7FFFFFFF )
count = 6;
else
return 0;
if ( target == 0 )
return count;
switch ( count )
{
case 6:
target[5] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x4000000;
case 5:
target[4] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x200000;
case 4:
target[3] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x10000;
case 3:
target[2] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0x800;
case 2:
target[1] = 0x80 | ( wide & 0x3F );
wide = wide >> 6;
wide |= 0xC0;
case 1:
target[0] = wide;
}
return count;
}
size_t utf16_encode_char( unsigned cur_wchar, blargg_wchar_t * out )
{
if ( cur_wchar < 0x10000 )
{
if ( out ) *out = (blargg_wchar_t) cur_wchar; return 1;
}
else if ( cur_wchar < ( 1 << 20 ) )
{
unsigned c = cur_wchar - 0x10000;
//MSDN:
//The first (high) surrogate is a 16-bit code value in the range U+D800 to U+DBFF. The second (low) surrogate is a 16-bit code value in the range U+DC00 to U+DFFF. Using surrogates, Unicode can support over one million characters. For more details about surrogates, refer to The Unicode Standard, version 2.0.
if ( out )
{
out[0] = ( blargg_wchar_t )( 0xD800 | ( 0x3FF & ( c >> 10 ) ) );
out[1] = ( blargg_wchar_t )( 0xDC00 | ( 0x3FF & c ) ) ;
}
return 2;
}
else
{
if ( out ) *out = '?'; return 1;
}
}
size_t utf16_decode_char( const blargg_wchar_t * p_source, unsigned * p_out, size_t p_source_length )
{
if ( p_source_length == 0 ) return 0;
else if ( p_source_length == 1 )
{
*p_out = p_source[0];
return 1;
}
else
{
size_t retval = 0;
unsigned decoded = p_source[0];
if ( decoded != 0 )
{
retval = 1;
if ( ( decoded & 0xFC00 ) == 0xD800 )
{
unsigned low = p_source[1];
if ( ( low & 0xFC00 ) == 0xDC00 )
{
decoded = 0x10000 + ( ( ( decoded & 0x3FF ) << 10 ) | ( low & 0x3FF ) );
retval = 2;
}
}
}
*p_out = decoded;
return retval;
}
}
// Converts wide-character path to UTF-8. Free result with free(). Only supported on Windows.
char* blargg_to_utf8( const blargg_wchar_t* wpath )
{
if ( wpath == NULL )
return NULL;
size_t needed = 0;
size_t mmax = blargg_wcslen( wpath );
if ( mmax <= 0 )
return NULL;
size_t ptr = 0;
while ( ptr < mmax )
{
unsigned wide = 0;
size_t char_len = utf16_decode_char( wpath + ptr, &wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
needed += utf8_encode_char( wide, 0 );
}
if ( needed <= 0 )
return NULL;
char* path = (char*) calloc( needed + 1, 1 );
if ( path == NULL )
return NULL;
ptr = 0;
size_t actual = 0;
while ( ptr < mmax && actual < needed )
{
unsigned wide = 0;
size_t char_len = utf16_decode_char( wpath + ptr, &wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
actual += utf8_encode_char( wide, path + actual );
}
if ( actual == 0 )
{
free( path );
return NULL;
}
assert( actual == needed );
return path;
}
// Converts UTF-8 path to wide-character. Free result with free() Only supported on Windows.
blargg_wchar_t* blargg_to_wide( const char* path )
{
if ( path == NULL )
return NULL;
size_t mmax = strlen( path );
if ( mmax <= 0 )
return NULL;
size_t needed = 0;
size_t ptr = 0;
while ( ptr < mmax )
{
unsigned wide = 0;
size_t char_len = utf8_decode_char( path + ptr, wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
needed += utf16_encode_char( wide, 0 );
}
if ( needed <= 0 )
return NULL;
blargg_wchar_t* wpath = (blargg_wchar_t*) calloc( needed + 1, sizeof *wpath );
if ( wpath == NULL )
return NULL;
ptr = 0;
size_t actual = 0;
while ( ptr < mmax && actual < needed )
{
unsigned wide = 0;
size_t char_len = utf8_decode_char( path + ptr, wide, mmax - ptr );
if ( !char_len ) break;
ptr += char_len;
actual += utf16_encode_char( wide, wpath + actual );
}
if ( actual == 0 )
{
free( wpath );
return NULL;
}
assert( actual == needed );
return wpath;
}
#ifdef _WIN32
static FILE* blargg_fopen( const char path [], const char mode [] )
{
FILE* file = NULL;
blargg_wchar_t* wmode = NULL;
blargg_wchar_t* wpath = NULL;
wpath = blargg_to_wide( path );
if ( wpath )
{
wmode = blargg_to_wide( mode );
if ( wmode )
file = _wfopen( wpath, wmode );
}
// Save and restore errno in case free() clears it
int saved_errno = errno;
free( wmode );
free( wpath );
errno = saved_errno;
return file;
}
#else
static inline FILE* blargg_fopen( const char path [], const char mode [] )
{
return fopen( path, mode );
}
#endif
// Std_File_Reader
Std_File_Reader::Std_File_Reader()
{
file_ = NULL;
}
Std_File_Reader::~Std_File_Reader()
{
close();
}
static blargg_err_t blargg_fopen( FILE** out, const char path [] )
{
errno = 0;
*out = blargg_fopen( path, "rb" );
if ( !*out )
{
#ifdef ENOENT
if ( errno == ENOENT )
return blargg_err_file_missing;
#endif
#ifdef ENOMEM
if ( errno == ENOMEM )
return blargg_err_memory;
#endif
return blargg_err_file_read;
}
return blargg_ok;
}
static blargg_err_t blargg_fsize( FILE* f, long* out )
{
if ( fseek( f, 0, SEEK_END ) )
return blargg_err_file_io;
*out = ftell( f );
if ( *out < 0 )
return blargg_err_file_io;
if ( fseek( f, 0, SEEK_SET ) )
return blargg_err_file_io;
return blargg_ok;
}
blargg_err_t Std_File_Reader::open( const char path [] )
{
close();
FILE* f;
RETURN_ERR( blargg_fopen( &f, path ) );
long s;
blargg_err_t err = blargg_fsize( f, &s );
if ( err )
{
fclose( f );
return err;
}
file_ = f;
set_size( s );
return blargg_ok;
}
void Std_File_Reader::make_unbuffered()
{
if ( setvbuf( STATIC_CAST(FILE*, file_), NULL, _IONBF, 0 ) )
check( false ); // shouldn't fail, but OK if it does
}
blargg_err_t Std_File_Reader::read_v( void* p, int s )
{
if ( (size_t) s != fread( p, 1, s, STATIC_CAST(FILE*, file_) ) )
{
// Data_Reader's wrapper should prevent EOF
check( !feof( STATIC_CAST(FILE*, file_) ) );
return blargg_err_file_io;
}
return blargg_ok;
}
#ifdef __CELLOS_LV2__
int
fseeko(FILE *stream, off_t pos, int whence)
{
return fseek(stream, (long)pos, whence);
}
#endif
blargg_err_t Std_File_Reader::seek_v( BOOST::uint64_t n )
{
#ifdef _WIN32
if ( fseek( STATIC_CAST(FILE*, file_), n, SEEK_SET ) )
#else
if ( fseeko( STATIC_CAST(FILE*, file_), n, SEEK_SET ) )
#endif
{
// Data_Reader's wrapper should prevent EOF
check( !feof( STATIC_CAST(FILE*, file_) ) );
return blargg_err_file_io;
}
return blargg_ok;
}
void Std_File_Reader::close()
{
if ( file_ )
{
fclose( STATIC_CAST(FILE*, file_) );
file_ = NULL;
}
}
// Gzip_File_Reader
#ifndef __LIBRETRO__
#ifdef HAVE_ZLIB_H
#include "zlib.h"
static const char* get_gzip_eof( const char path [], long* eof )
{
FILE* file;
RETURN_ERR( blargg_fopen( &file, path ) );
int const h_size = 4;
unsigned char h [h_size];
// read four bytes to ensure that we can seek to -4 later
if ( fread( h, 1, h_size, file ) != (size_t) h_size || h[0] != 0x1F || h[1] != 0x8B )
{
// Not gzipped
if ( ferror( file ) )
return blargg_err_file_io;
if ( fseek( file, 0, SEEK_END ) )
return blargg_err_file_io;
*eof = ftell( file );
if ( *eof < 0 )
return blargg_err_file_io;
}
else
{
// Gzipped; get uncompressed size from end
if ( fseek( file, -h_size, SEEK_END ) )
return blargg_err_file_io;
if ( fread( h, 1, h_size, file ) != (size_t) h_size )
return blargg_err_file_io;
*eof = get_le32( h );
}
if ( fclose( file ) )
check( false );
return blargg_ok;
}
Gzip_File_Reader::Gzip_File_Reader()
{
file_ = NULL;
}
Gzip_File_Reader::~Gzip_File_Reader()
{
close();
}
blargg_err_t Gzip_File_Reader::open( const char path [] )
{
close();
long s;
RETURN_ERR( get_gzip_eof( path, &s ) );
file_ = gzopen( path, "rb" );
if ( !file_ )
return blargg_err_file_read;
set_size( s );
return blargg_ok;
}
static blargg_err_t convert_gz_error( gzFile file )
{
int err;
gzerror( file, &err );
switch ( err )
{
case Z_STREAM_ERROR: break;
case Z_DATA_ERROR: return blargg_err_file_corrupt;
case Z_MEM_ERROR: return blargg_err_memory;
case Z_BUF_ERROR: break;
}
return blargg_err_internal;
}
blargg_err_t Gzip_File_Reader::read_v( void* p, int s )
{
int result = gzread( (gzFile) file_, p, s );
if ( result != s )
{
if ( result < 0 )
return convert_gz_error( (gzFile) file_ );
return blargg_err_file_corrupt;
}
return blargg_ok;
}
blargg_err_t Gzip_File_Reader::seek_v( int n )
{
if ( gzseek( (gzFile) file_, n, SEEK_SET ) < 0 )
return convert_gz_error( (gzFile) file_ );
return blargg_ok;
}
void Gzip_File_Reader::close()
{
if ( file_ )
{
if ( gzclose( (gzFile) file_ ) )
check( false );
file_ = NULL;
}
}
#endif
#endif

View File

@ -1,265 +0,0 @@
// Lightweight interface for reading data from byte stream
// File_Extractor 1.0.0
#ifndef DATA_READER_H
#define DATA_READER_H
#include "blargg_common.h"
/* Some functions accept a long instead of int for convenience where caller has
a long due to some other interface, and would otherwise have to get a warning,
or cast it (and verify that it wasn't outside the range of an int).
To really support huge (>2GB) files, long isn't a solution, since there's no
guarantee it's more than 32 bits. We'd need to use long long (if available), or
something compiler-specific, and change all places file sizes or offsets are
used. */
// Supports reading and finding out how many bytes are remaining
class Data_Reader {
public:
// Reads min(*n,remain()) bytes and sets *n to this number, thus trying to read more
// tham remain() bytes doesn't result in error, just *n being set to remain().
blargg_err_t read_avail( void* p, int* n );
blargg_err_t read_avail( void* p, long* n );
// Reads exactly n bytes, or returns error if they couldn't ALL be read.
// Reading past end of file results in blargg_err_file_eof.
blargg_err_t read( void* p, int n );
// Number of bytes remaining until end of file
BOOST::uint64_t remain() const { return remain_; }
// Reads and discards n bytes. Skipping past end of file results in blargg_err_file_eof.
blargg_err_t skip( int n );
virtual ~Data_Reader() { }
private:
// noncopyable
Data_Reader( const Data_Reader& );
Data_Reader& operator = ( const Data_Reader& );
// Derived interface
protected:
Data_Reader() : remain_( 0 ) { }
// Sets remain
void set_remain( BOOST::uint64_t n ) { assert( n >= 0 ); remain_ = n; }
// Do same as read(). Guaranteed that 0 < n <= remain(). Value of remain() is updated
// AFTER this call succeeds, not before. set_remain() should NOT be called from this.
virtual blargg_err_t read_v( void*, int n ) BLARGG_PURE( { (void)n; return blargg_ok; } )
// Do same as skip(). Guaranteed that 0 < n <= remain(). Default just reads data
// and discards it. Value of remain() is updated AFTER this call succeeds, not
// before. set_remain() should NOT be called from this.
virtual blargg_err_t skip_v( int n );
// Implementation
public:
BLARGG_DISABLE_NOTHROW
private:
BOOST::uint64_t remain_;
};
// Supports seeking in addition to Data_Reader operations
class File_Reader : public Data_Reader {
public:
// Size of file
BOOST::uint64_t size() const { return size_; }
// Current position in file
BOOST::uint64_t tell() const { return size_ - remain(); }
// Goes to new position
blargg_err_t seek( BOOST::uint64_t );
// Derived interface
protected:
// Sets size and resets position
void set_size( BOOST::uint64_t n ) { size_ = n; Data_Reader::set_remain( n ); }
void set_size( int n ) { set_size( STATIC_CAST(BOOST::uint64_t, n) ); }
void set_size( long n ) { set_size( STATIC_CAST(BOOST::uint64_t, n) ); }
// Sets reported position
void set_tell( BOOST::uint64_t i ) { assert( 0 <= i && i <= size_ ); Data_Reader::set_remain( size_ - i ); }
// Do same as seek(). Guaranteed that 0 <= n <= size(). Value of tell() is updated
// AFTER this call succeeds, not before. set_* functions should NOT be called from this.
virtual blargg_err_t seek_v( BOOST::uint64_t n ) BLARGG_PURE( { (void)n; return blargg_ok; } )
// Implementation
protected:
File_Reader() : size_( 0 ) { }
virtual blargg_err_t skip_v( BOOST::uint64_t );
private:
BOOST::uint64_t size_;
void set_remain(); // avoid accidental use of set_remain
};
// Reads from file on disk
class Std_File_Reader : public File_Reader {
public:
// Opens file
blargg_err_t open( const char path [] );
// Closes file if one was open
void close();
// Switches to unbuffered mode. Useful if buffering is already being
// done at a higher level.
void make_unbuffered();
// Implementation
public:
Std_File_Reader();
virtual ~Std_File_Reader();
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( BOOST::uint64_t );
private:
void* file_;
};
// Treats range of memory as a file
class Mem_File_Reader : public File_Reader {
public:
Mem_File_Reader( const void* begin, long size );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
const char* const begin;
};
// Allows only count bytes to be read from reader passed
class Subset_Reader : public Data_Reader {
public:
Subset_Reader( Data_Reader*, BOOST::uint64_t count );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
Data_Reader* const in;
};
// Joins already-read header and remaining data into original file.
// Meant for cases where you've already read header and don't want
// to seek and re-read data (for efficiency).
class Remaining_Reader : public Data_Reader {
public:
Remaining_Reader( void const* header, int header_size, Data_Reader* );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
Data_Reader* const in;
void const* header;
int header_remain;
};
// Invokes callback function to read data
extern "C" { // necessary to be usable from C
typedef const char* (*callback_reader_func_t)(
void* user_data, // Same value passed to constructor
void* out, // Buffer to place data into
int count // Number of bytes to read
);
}
class Callback_Reader : public Data_Reader {
public:
typedef callback_reader_func_t callback_t;
Callback_Reader( callback_t, BOOST::uint64_t size, void* user_data );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
private:
callback_t const callback;
void* const user_data;
};
// Invokes callback function to read data
extern "C" { // necessary to be usable from C
typedef const char* (*callback_file_reader_func_t)(
void* user_data, // Same value passed to constructor
void* out, // Buffer to place data into
int count, // Number of bytes to read
BOOST::uint64_t pos // Position in file to read from
);
}
class Callback_File_Reader : public File_Reader {
public:
typedef callback_file_reader_func_t callback_t;
Callback_File_Reader( callback_t, BOOST::uint64_t size, void* user_data );
// Implementation
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
callback_t const callback;
void* const user_data;
};
#ifdef HAVE_ZLIB_H
// Reads file compressed with gzip (or uncompressed)
class Gzip_File_Reader : public File_Reader {
public:
// Opens possibly gzipped file
blargg_err_t open( const char path [] );
// Closes file if one was open
void close();
// Implementation
public:
Gzip_File_Reader();
~Gzip_File_Reader();
protected:
virtual blargg_err_t read_v( void*, int );
virtual blargg_err_t seek_v( int );
private:
// void* so "zlib.h" doesn't have to be included here
void* file_;
};
#endif
char* blargg_to_utf8( const blargg_wchar_t* );
blargg_wchar_t* blargg_to_wide( const char* );
#endif

View File

@ -1,51 +0,0 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "blargg_common.h"
/* Copyright (C) 2008-2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
void blargg_vector_::init()
{
begin_ = NULL;
size_ = 0;
}
void blargg_vector_::clear()
{
void* p = begin_;
begin_ = NULL;
size_ = 0;
free( p );
}
blargg_err_t blargg_vector_::resize_( size_t n, size_t elem_size )
{
if ( n != size_ )
{
if ( n == 0 )
{
// Simpler to handle explicitly. Realloc will handle a size of 0,
// but then we have to avoid raising an error for a NULL return.
clear();
}
else
{
void* p = realloc( begin_, n * elem_size );
CHECK_ALLOC( p );
begin_ = p;
size_ = n;
}
}
return blargg_ok;
}

View File

@ -1,217 +0,0 @@
// Sets up common environment for Shay Green's libraries.
// To change configuration options, modify blargg_config.h, not this file.
// File_Extractor 1.0.0
#ifndef BLARGG_COMMON_H
#define BLARGG_COMMON_H
#include <stdlib.h>
#include <stdint.h>
#include <assert.h>
#include <limits.h>
typedef const char* blargg_err_t; // 0 on success, otherwise error string
#ifdef _WIN32
typedef wchar_t blargg_wchar_t;
#else
typedef uint16_t blargg_wchar_t;
#endif
inline size_t blargg_wcslen( const blargg_wchar_t* str )
{
size_t length = 0;
while ( *str++ ) length++;
return length;
}
// Success; no error
blargg_err_t const blargg_ok = 0;
// BLARGG_RESTRICT: equivalent to C99's restrict, where supported
#if __GNUC__ >= 3 || _MSC_VER >= 1100
#define BLARGG_RESTRICT __restrict
#else
#define BLARGG_RESTRICT
#endif
#if __cplusplus >= 199711
#define BLARGG_MUTABLE mutable
#else
#define BLARGG_MUTABLE
#endif
/* BLARGG_4CHAR('a','b','c','d') = 'abcd' (four character integer constant).
I don't just use 'abcd' because that's implementation-dependent. */
#define BLARGG_4CHAR( a, b, c, d ) \
((a&0xFF)*0x1000000 + (b&0xFF)*0x10000 + (c&0xFF)*0x100 + (d&0xFF))
/* BLARGG_STATIC_ASSERT( expr ): Generates compile error if expr is 0.
Can be used at file, function, or class scope. */
#ifdef _MSC_VER
// MSVC6 (_MSC_VER < 1300) __LINE__ fails when /Zl is specified
#define BLARGG_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / (int) !!(expr) - 1] )
#else
// Others fail when declaring same function multiple times in class,
// so differentiate them by line
#define BLARGG_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / !!(expr) - 1] [__LINE__] )
#endif
/* Pure virtual functions cause a vtable entry to a "called pure virtual"
error handler, requiring linkage to the C++ runtime library. This macro is
used in place of the "= 0", and simply expands to its argument. During
development, it expands to "= 0", allowing detection of missing overrides. */
#define BLARGG_PURE( def ) def
/* My code depends on ASCII anywhere a character or string constant is
compared with data read from a file, and anywhere file data is read and
treated as a string. */
#if '\n'!=0x0A || ' '!=0x20 || '0'!=0x30 || 'A'!=0x41 || 'a'!=0x61
#error "ASCII character set required"
#endif
/* My code depends on int being at least 32 bits. Almost everything these days
uses at least 32-bit ints, so it's hard to even find a system with 16-bit ints
to test with. The issue can't be gotten around by using a suitable blargg_int
everywhere either, because int is often converted to implicitly when doing
arithmetic on smaller types. */
#if UINT_MAX < 0xFFFFFFFF
#error "int must be at least 32 bits"
#endif
// In case compiler doesn't support these properly. Used rarely.
#define STATIC_CAST(T,expr) static_cast<T> (expr)
#define CONST_CAST( T,expr) const_cast<T> (expr)
// User configuration can override the above macros if necessary
#include "blargg_config.h"
/* BLARGG_DEPRECATED [_TEXT] for any declarations/text to be removed in a
future version. In GCC, we can let the compiler warn. In other compilers,
we strip it out unless BLARGG_LEGACY is true. */
#if BLARGG_LEGACY
// Allow old client code to work without warnings
#define BLARGG_DEPRECATED_TEXT( text ) text
#define BLARGG_DEPRECATED( text ) text
#elif __GNUC__ >= 4
// In GCC, we can mark declarations and let the compiler warn
#define BLARGG_DEPRECATED_TEXT( text ) text
#define BLARGG_DEPRECATED( text ) __attribute__ ((deprecated)) text
#else
// By default, deprecated items are removed, to avoid use in new code
#define BLARGG_DEPRECATED_TEXT( text )
#define BLARGG_DEPRECATED( text )
#endif
/* BOOST::int8_t, BOOST::int32_t, etc.
I used BOOST since I originally was going to allow use of the boost library
for prividing the definitions. If I'm defining them, they must be scoped or
else they could conflict with the standard ones at global scope. Even if
HAVE_STDINT_H isn't defined, I can't assume the typedefs won't exist at
global scope already. */
#if defined (HAVE_STDINT_H) || \
UCHAR_MAX != 0xFF || USHRT_MAX != 0xFFFF || UINT_MAX != 0xFFFFFFFF
#include <stdint.h>
#define BOOST
#else
struct BOOST
{
typedef signed char int8_t;
typedef unsigned char uint8_t;
typedef short int16_t;
typedef unsigned short uint16_t;
typedef int int32_t;
typedef unsigned int uint32_t;
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
};
#endif
/* My code is not written with exceptions in mind, so either uses new (nothrow)
OR overrides operator new in my classes. The former is best since clients
creating objects will get standard exceptions on failure, but that causes it
to require the standard C++ library. So, when the client is using the C
interface, I override operator new to use malloc. */
// BLARGG_DISABLE_NOTHROW is put inside classes
#ifndef BLARGG_DISABLE_NOTHROW
// throw spec mandatory in ISO C++ if NULL can be returned
#if __cplusplus >= 199711 || __GNUC__ >= 3 || _MSC_VER >= 1300
#define BLARGG_THROWS_NOTHING throw ()
#else
#define BLARGG_THROWS_NOTHING
#endif
#define BLARGG_DISABLE_NOTHROW \
void* operator new ( size_t s ) BLARGG_THROWS_NOTHING { return malloc( s ); }\
void operator delete( void* p ) BLARGG_THROWS_NOTHING { free( p ); }
#define BLARGG_NEW new
#else
// BLARGG_NEW is used in place of new in library code
#include <new>
#define BLARGG_NEW new (std::nothrow)
#endif
class blargg_vector_ {
protected:
void* begin_;
size_t size_;
void init();
blargg_err_t resize_( size_t n, size_t elem_size );
public:
size_t size() const { return size_; }
void clear();
};
// Very lightweight vector for POD types (no constructor/destructor)
template<class T>
class blargg_vector : public blargg_vector_ {
union T_must_be_pod { T t; }; // fails if T is not POD
public:
blargg_vector() { init(); }
~blargg_vector() { clear(); }
blargg_err_t resize( size_t n ) { return resize_( n, sizeof (T) ); }
T* begin() { return static_cast<T*> (begin_); }
const T* begin() const { return static_cast<T*> (begin_); }
T* end() { return static_cast<T*> (begin_) + size_; }
const T* end() const { return static_cast<T*> (begin_) + size_; }
T& operator [] ( size_t n )
{
assert( n < size_ );
return static_cast<T*> (begin_) [n];
}
const T& operator [] ( size_t n ) const
{
assert( n < size_ );
return static_cast<T*> (begin_) [n];
}
};
// Callback function with user data.
// blargg_callback<T> set_callback; // for user, this acts like...
// void set_callback( T func, void* user_data = NULL ); // ...this
// To call function, do set_callback.f( .. set_callback.data ... );
template<class T>
struct blargg_callback
{
T f;
void* data;
blargg_callback() { f = NULL; }
void operator () ( T callback, void* user_data = NULL ) { f = callback; data = user_data; }
};
BLARGG_DEPRECATED( typedef signed int blargg_long; )
BLARGG_DEPRECATED( typedef unsigned int blargg_ulong; )
#if BLARGG_LEGACY
#define BOOST_STATIC_ASSERT BLARGG_STATIC_ASSERT
#endif
#endif

View File

@ -1,37 +0,0 @@
// Library configuration. Modify this file as necessary.
// File_Extractor 1.0.0
#ifndef BLARGG_CONFIG_H
#define BLARGG_CONFIG_H
// Uncomment a #define line below to have effect described.
// #define HAVE_ZLIB_H
// Enable RAR archive support. Doing so adds extra licensing restrictions
// to this library (see unrar/readme.txt for more information).
#define FEX_ENABLE_RAR 1
// Accept file paths encoded as UTF-8. Currently only affects Windows,
// as Unix/Linux/Mac OS X already use UTF-8 paths.
#define BLARGG_UTF8_PATHS 1
// Enable support for as building DLL on Windows.
//#define BLARGG_BUILD_DLL 1
// Support only the listed archive types. Remove any you don't need.
/*
#define FEX_TYPE_LIST \
fex_7z_type,\
fex_gz_type,\
fex_rar_type,\
fex_zip_type,
*/
#define HAVE_STDINT_H
// Use standard config.h if present
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#endif

View File

@ -1,185 +0,0 @@
// CPU Byte Order Utilities
// File_Extractor 1.0.0
#ifndef BLARGG_ENDIAN_H
#define BLARGG_ENDIAN_H
#include "blargg_common.h"
// BLARGG_CPU_CISC: Defined if CPU has very few general-purpose registers (< 16)
#if defined (__i386__) || defined (__x86_64__) || defined (_M_IX86) || defined (_M_X64)
#define BLARGG_CPU_X86 1
#define BLARGG_CPU_CISC 1
#endif
#if defined (__powerpc__) || defined (__ppc__) || defined (__ppc64__) || \
defined (__POWERPC__) || defined (__powerc)
#define BLARGG_CPU_POWERPC 1
#define BLARGG_CPU_RISC 1
#endif
// BLARGG_BIG_ENDIAN, BLARGG_LITTLE_ENDIAN: Determined automatically, otherwise only
// one may be #defined to 1. Only needed if something actually depends on byte order.
#if !defined (BLARGG_BIG_ENDIAN) && !defined (BLARGG_LITTLE_ENDIAN)
#ifdef __GLIBC__
// GCC handles this for us
#include <endian.h>
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define BLARGG_LITTLE_ENDIAN 1
#elif __BYTE_ORDER == __BIG_ENDIAN
#define BLARGG_BIG_ENDIAN 1
#endif
#else
#if defined (LSB_FIRST) || defined (__LITTLE_ENDIAN__) || BLARGG_CPU_X86 || \
(defined (LITTLE_ENDIAN) && LITTLE_ENDIAN+0 != 1234)
#define BLARGG_LITTLE_ENDIAN 1
#endif
#if defined (MSB_FIRST) || defined (__BIG_ENDIAN__) || defined (WORDS_BIGENDIAN) || \
defined (__sparc__) || BLARGG_CPU_POWERPC || \
(defined (BIG_ENDIAN) && BIG_ENDIAN+0 != 4321)
#define BLARGG_BIG_ENDIAN 1
#elif !defined (__mips__)
// No endian specified; assume little-endian, since it's most common
#define BLARGG_LITTLE_ENDIAN 1
#endif
#endif
#endif
#if BLARGG_LITTLE_ENDIAN && BLARGG_BIG_ENDIAN
#undef BLARGG_LITTLE_ENDIAN
#undef BLARGG_BIG_ENDIAN
#endif
inline void blargg_verify_byte_order()
{
#ifndef NDEBUG
#if BLARGG_BIG_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i == 0 );
#elif BLARGG_LITTLE_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i != 0 );
#endif
#endif
}
inline unsigned get_le16( void const* p )
{
return (unsigned) ((unsigned char const*) p) [1] << 8 |
(unsigned) ((unsigned char const*) p) [0];
}
inline unsigned get_be16( void const* p )
{
return (unsigned) ((unsigned char const*) p) [0] << 8 |
(unsigned) ((unsigned char const*) p) [1];
}
inline unsigned get_le32( void const* p )
{
return (unsigned) ((unsigned char const*) p) [3] << 24 |
(unsigned) ((unsigned char const*) p) [2] << 16 |
(unsigned) ((unsigned char const*) p) [1] << 8 |
(unsigned) ((unsigned char const*) p) [0];
}
inline unsigned get_be32( void const* p )
{
return (unsigned) ((unsigned char const*) p) [0] << 24 |
(unsigned) ((unsigned char const*) p) [1] << 16 |
(unsigned) ((unsigned char const*) p) [2] << 8 |
(unsigned) ((unsigned char const*) p) [3];
}
inline void set_le16( void* p, unsigned n )
{
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [0] = (unsigned char) n;
}
inline void set_be16( void* p, unsigned n )
{
((unsigned char*) p) [0] = (unsigned char) (n >> 8);
((unsigned char*) p) [1] = (unsigned char) n;
}
inline void set_le32( void* p, unsigned n )
{
((unsigned char*) p) [0] = (unsigned char) n;
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [2] = (unsigned char) (n >> 16);
((unsigned char*) p) [3] = (unsigned char) (n >> 24);
}
inline void set_be32( void* p, unsigned n )
{
((unsigned char*) p) [3] = (unsigned char) n;
((unsigned char*) p) [2] = (unsigned char) (n >> 8);
((unsigned char*) p) [1] = (unsigned char) (n >> 16);
((unsigned char*) p) [0] = (unsigned char) (n >> 24);
}
#if BLARGG_NONPORTABLE
// Optimized implementation if byte order is known
#if BLARGG_LITTLE_ENDIAN
#define GET_LE16( addr ) (*(BOOST::uint16_t const*) (addr))
#define GET_LE32( addr ) (*(BOOST::uint32_t const*) (addr))
#define SET_LE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_LE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#elif BLARGG_BIG_ENDIAN
#define GET_BE16( addr ) (*(BOOST::uint16_t const*) (addr))
#define GET_BE32( addr ) (*(BOOST::uint32_t const*) (addr))
#define SET_BE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_BE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#if BLARGG_CPU_POWERPC
// PowerPC has special byte-reversed instructions
#if defined (__MWERKS__)
#define GET_LE16( addr ) (__lhbrx( addr, 0 ))
#define GET_LE32( addr ) (__lwbrx( addr, 0 ))
#define SET_LE16( addr, in ) (__sthbrx( in, addr, 0 ))
#define SET_LE32( addr, in ) (__stwbrx( in, addr, 0 ))
#elif defined (__GNUC__)
#define GET_LE16( addr ) ({unsigned short ppc_lhbrx_; __asm__ volatile( "lhbrx %0,0,%1" : "=r" (ppc_lhbrx_) : "r" (addr) : "memory" ); ppc_lhbrx_;})
#define GET_LE32( addr ) ({unsigned short ppc_lwbrx_; __asm__ volatile( "lwbrx %0,0,%1" : "=r" (ppc_lwbrx_) : "r" (addr) : "memory" ); ppc_lwbrx_;})
#define SET_LE16( addr, in ) ({__asm__ volatile( "sthbrx %0,0,%1" : : "r" (in), "r" (addr) : "memory" );})
#define SET_LE32( addr, in ) ({__asm__ volatile( "stwbrx %0,0,%1" : : "r" (in), "r" (addr) : "memory" );})
#endif
#endif
#endif
#endif
#ifndef GET_LE16
#define GET_LE16( addr ) get_le16( addr )
#define SET_LE16( addr, data ) set_le16( addr, data )
#endif
#ifndef GET_LE32
#define GET_LE32( addr ) get_le32( addr )
#define SET_LE32( addr, data ) set_le32( addr, data )
#endif
#ifndef GET_BE16
#define GET_BE16( addr ) get_be16( addr )
#define SET_BE16( addr, data ) set_be16( addr, data )
#endif
#ifndef GET_BE32
#define GET_BE32( addr ) get_be32( addr )
#define SET_BE32( addr, data ) set_be32( addr, data )
#endif
// auto-selecting versions
inline void set_le( BOOST::uint16_t* p, unsigned n ) { SET_LE16( p, n ); }
inline void set_le( BOOST::uint32_t* p, unsigned n ) { SET_LE32( p, n ); }
inline void set_be( BOOST::uint16_t* p, unsigned n ) { SET_BE16( p, n ); }
inline void set_be( BOOST::uint32_t* p, unsigned n ) { SET_BE32( p, n ); }
inline unsigned get_le( BOOST::uint16_t const* p ) { return GET_LE16( p ); }
inline unsigned get_le( BOOST::uint32_t const* p ) { return GET_LE32( p ); }
inline unsigned get_be( BOOST::uint16_t const* p ) { return GET_BE16( p ); }
inline unsigned get_be( BOOST::uint32_t const* p ) { return GET_BE32( p ); }
#endif

View File

@ -1,113 +0,0 @@
// File_Extractor 1.0.0. http://www.slack.net/~ant/
#include "blargg_errors.h"
/* Copyright (C) 2009 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this module; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA */
#include "blargg_source.h"
blargg_err_def_t blargg_err_generic = BLARGG_ERR_GENERIC;
blargg_err_def_t blargg_err_memory = BLARGG_ERR_MEMORY;
blargg_err_def_t blargg_err_caller = BLARGG_ERR_CALLER;
blargg_err_def_t blargg_err_internal = BLARGG_ERR_INTERNAL;
blargg_err_def_t blargg_err_limitation = BLARGG_ERR_LIMITATION;
blargg_err_def_t blargg_err_file_missing = BLARGG_ERR_FILE_MISSING;
blargg_err_def_t blargg_err_file_read = BLARGG_ERR_FILE_READ;
blargg_err_def_t blargg_err_file_write = BLARGG_ERR_FILE_WRITE;
blargg_err_def_t blargg_err_file_io = BLARGG_ERR_FILE_IO;
blargg_err_def_t blargg_err_file_full = BLARGG_ERR_FILE_FULL;
blargg_err_def_t blargg_err_file_eof = BLARGG_ERR_FILE_EOF;
blargg_err_def_t blargg_err_file_type = BLARGG_ERR_FILE_TYPE;
blargg_err_def_t blargg_err_file_feature = BLARGG_ERR_FILE_FEATURE;
blargg_err_def_t blargg_err_file_corrupt = BLARGG_ERR_FILE_CORRUPT;
const char* blargg_err_str( blargg_err_t err )
{
if ( !err )
return "";
if ( *err == BLARGG_ERR_TYPE("")[0] )
return err + 1;
return err;
}
bool blargg_is_err_type( blargg_err_t err, const char type [] )
{
if ( err )
{
// True if first strlen(type) characters of err match type
char const* p = err;
while ( *type && *type == *p )
{
type++;
p++;
}
if ( !*type )
return true;
}
return false;
}
const char* blargg_err_details( blargg_err_t err )
{
const char* p = err;
if ( !p )
{
p = "";
}
else if ( *p == BLARGG_ERR_TYPE("")[0] )
{
while ( *p && *p != ';' )
p++;
// Skip ; and space after it
if ( *p )
{
p++;
check( *p == ' ' );
if ( *p )
p++;
}
}
return p;
}
int blargg_err_to_code( blargg_err_t err, blargg_err_to_code_t const codes [] )
{
if ( !err )
return 0;
while ( codes->str && !blargg_is_err_type( err, codes->str ) )
codes++;
return codes->code;
}
blargg_err_t blargg_code_to_err( int code, blargg_err_to_code_t const codes [] )
{
if ( !code )
return blargg_ok;
while ( codes->str && codes->code != code )
codes++;
if ( !codes->str )
return blargg_err_generic;
return codes->str;
}

View File

@ -1,80 +0,0 @@
// Error strings and conversion functions
// File_Extractor 1.0.0
#ifndef BLARGG_ERRORS_H
#define BLARGG_ERRORS_H
#ifndef BLARGG_COMMON_H
#include "blargg_common.h"
#endif
typedef const char blargg_err_def_t [];
// Basic errors
extern blargg_err_def_t blargg_err_generic;
extern blargg_err_def_t blargg_err_memory;
extern blargg_err_def_t blargg_err_caller;
extern blargg_err_def_t blargg_err_internal;
extern blargg_err_def_t blargg_err_limitation;
// File low-level
extern blargg_err_def_t blargg_err_file_missing; // not found
extern blargg_err_def_t blargg_err_file_read;
extern blargg_err_def_t blargg_err_file_write;
extern blargg_err_def_t blargg_err_file_io;
extern blargg_err_def_t blargg_err_file_full;
extern blargg_err_def_t blargg_err_file_eof;
// File high-level
extern blargg_err_def_t blargg_err_file_type; // wrong file type
extern blargg_err_def_t blargg_err_file_feature;
extern blargg_err_def_t blargg_err_file_corrupt;
// C string describing error, or "" if err == NULL
const char* blargg_err_str( blargg_err_t err );
// True iff error is of given type, or false if err == NULL
bool blargg_is_err_type( blargg_err_t, const char type [] );
// Details of error without describing main cause, or "" if err == NULL
const char* blargg_err_details( blargg_err_t err );
// Converts error string to integer code using mapping table. Calls blargg_is_err_type()
// for each str and returns code on first match. Returns 0 if err == NULL.
struct blargg_err_to_code_t {
const char* str;
int code;
};
int blargg_err_to_code( blargg_err_t err, blargg_err_to_code_t const [] );
// Converts error code back to string. If code == 0, returns NULL. If not in table,
// returns blargg_err_generic.
blargg_err_t blargg_code_to_err( int code, blargg_err_to_code_t const [] );
// Generates error string literal with details of cause
#define BLARGG_ERR( type, str ) (type "; " str)
// Extra space to make it clear when blargg_err_str() isn't called to get
// printable version of error. At some point, I might prefix error strings
// with a code, to speed conversion to a code.
#define BLARGG_ERR_TYPE( str ) " " str
// Error types to pass to BLARGG_ERR macro
#define BLARGG_ERR_GENERIC BLARGG_ERR_TYPE( "operation failed" )
#define BLARGG_ERR_MEMORY BLARGG_ERR_TYPE( "out of memory" )
#define BLARGG_ERR_CALLER BLARGG_ERR_TYPE( "internal usage bug" )
#define BLARGG_ERR_INTERNAL BLARGG_ERR_TYPE( "internal bug" )
#define BLARGG_ERR_LIMITATION BLARGG_ERR_TYPE( "exceeded limitation" )
#define BLARGG_ERR_FILE_MISSING BLARGG_ERR_TYPE( "file not found" )
#define BLARGG_ERR_FILE_READ BLARGG_ERR_TYPE( "couldn't open file" )
#define BLARGG_ERR_FILE_WRITE BLARGG_ERR_TYPE( "couldn't modify file" )
#define BLARGG_ERR_FILE_IO BLARGG_ERR_TYPE( "read/write error" )
#define BLARGG_ERR_FILE_FULL BLARGG_ERR_TYPE( "disk full" )
#define BLARGG_ERR_FILE_EOF BLARGG_ERR_TYPE( "truncated file" )
#define BLARGG_ERR_FILE_TYPE BLARGG_ERR_TYPE( "wrong file type" )
#define BLARGG_ERR_FILE_FEATURE BLARGG_ERR_TYPE( "unsupported file feature" )
#define BLARGG_ERR_FILE_CORRUPT BLARGG_ERR_TYPE( "corrupt file" )
#endif

View File

@ -1,121 +0,0 @@
/* Included at the beginning of library source files, AFTER all other #include
lines. Sets up helpful macros and services used in my source code. Since this
is only "active" in my source code, I don't have to worry about polluting the
global namespace with unprefixed names. */
// File_Extractor 1.0.0
#ifndef BLARGG_SOURCE_H
#define BLARGG_SOURCE_H
#ifndef BLARGG_COMMON_H // optimization only
#include "blargg_common.h"
#endif
#include "blargg_errors.h"
#include <string.h> /* memcpy(), memset(), memmove() */
#include <stddef.h> /* offsetof() */
/* The following four macros are for debugging only. Some or all might be
defined to do nothing, depending on the circumstances. Described is what
happens when a particular macro is defined to do something. When defined to
do nothing, the macros do NOT evaluate their argument(s). */
/* If expr is false, prints file and line number, then aborts program. Meant
for checking internal state and consistency. A failed assertion indicates a bug
in MY code.
void assert( bool expr ); */
#include <assert.h>
/* If expr is false, prints file and line number, then aborts program. Meant
for checking caller-supplied parameters and operations that are outside the
control of the module. A failed requirement probably indicates a bug in YOUR
code.
void require( bool expr ); */
#undef require
#define require( expr ) assert( expr )
/* Like printf() except output goes to debugging console/file.
void dprintf( const char format [], ... ); */
static inline void blargg_dprintf_( const char [], ... ) { }
#undef dprintf
#define dprintf (1) ? (void) 0 : blargg_dprintf_
/* If expr is false, prints file and line number to debug console/log, then
continues execution normally. Meant for flagging potential problems or things
that should be looked into, but that aren't serious problems.
void check( bool expr ); */
#undef check
#define check( expr ) ((void) 0)
/* If expr yields non-NULL error string, returns it from current function,
otherwise continues normally. */
#undef RETURN_ERR
#define RETURN_ERR( expr ) \
do {\
blargg_err_t blargg_return_err_ = (expr);\
if ( blargg_return_err_ )\
return blargg_return_err_;\
} while ( 0 )
/* If ptr is NULL, returns out-of-memory error, otherwise continues normally. */
#undef CHECK_ALLOC
#define CHECK_ALLOC( ptr ) \
do {\
if ( !(ptr) )\
return blargg_err_memory;\
} while ( 0 )
/* The usual min/max functions for built-in types. */
template<typename T> T min( T x, T y ) { return x < y ? x : y; }
template<typename T> T max( T x, T y ) { return x > y ? x : y; }
#define BLARGG_DEF_MIN_MAX( type )
BLARGG_DEF_MIN_MAX( int )
BLARGG_DEF_MIN_MAX( unsigned )
BLARGG_DEF_MIN_MAX( long )
BLARGG_DEF_MIN_MAX( unsigned long )
BLARGG_DEF_MIN_MAX( float )
BLARGG_DEF_MIN_MAX( double )
#if __WORDSIZE != 64
BLARGG_DEF_MIN_MAX( BOOST::uint64_t )
#endif
// typedef unsigned char byte;
typedef unsigned char blargg_byte;
#undef byte
#define byte blargg_byte
#ifndef BLARGG_EXPORT
#if defined (_WIN32) && BLARGG_BUILD_DLL
#define BLARGG_EXPORT __declspec(dllexport)
#elif defined (__GNUC__)
// can always set visibility, even when not building DLL
#define BLARGG_EXPORT __attribute__ ((visibility ("default")))
#else
#define BLARGG_EXPORT
#endif
#endif
#if BLARGG_LEGACY
#define BLARGG_CHECK_ALLOC CHECK_ALLOC
#define BLARGG_RETURN_ERR RETURN_ERR
#endif
// Called after failed operation when overall operation may still complete OK.
// Only used by unit testing framework.
#undef ACK_FAILURE
#define ACK_FAILURE() ((void)0)
/* BLARGG_SOURCE_BEGIN: If defined, #included, allowing redefition of dprintf etc.
and check */
#ifdef BLARGG_SOURCE_BEGIN
#include BLARGG_SOURCE_BEGIN
#endif
#endif

2
quicknes/make/.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
*.dll
*.so

View File

@ -13,11 +13,12 @@ endif
CXXFLAGS_32 = -march=pentium4 -mtune=core2
CXXFLAGS_64 =
CXXFLAGS = -Wall -DDISABLE_AUTO_FILE -D__LIBRETRO__ -DNDEBUG -I.. -O3 -Wno-multichar -fno-exceptions -fomit-frame-pointer -flto $(CXXFLAGS_$(ARCH))
CXXFLAGS = -Wall -I../core/source/quickerNES/core/ -I../core/extern -O3 -Wfatal-errors -Werror -fomit-frame-pointer -flto -D_QUICKERNES_DETECT_JOYPAD_READS -D_QUICKERNES_ENABLE_TRACEBACK_SUPPORT $(CXXFLAGS_$(ARCH))
# TODO: include these as options in the Makefile
# -fprofile-generate
# -fprofile-use
TARGET = libquicknes.dll
TARGET = libquicknes.so
LDFLAGS_32 = -static -static-libgcc -static-libstdc++
LDFLAGS_64 =
LDFLAGS = -shared $(LDFLAGS_$(ARCH)) $(CXXFLAGS)
@ -26,43 +27,26 @@ DEST_64 = ../../Assets/dll
DESTCOPY_64 = ../../output/dll
SRCS = \
../nes_emu/abstract_file.cpp \
../nes_emu/apu_state.cpp \
../nes_emu/Blip_Buffer.cpp \
../nes_emu/Effects_Buffer.cpp \
../nes_emu/Mapper_Fme7.cpp \
../nes_emu/Mapper_Mmc5.cpp \
../nes_emu/Mapper_Namco106.cpp \
../nes_emu/Mapper_Vrc6.cpp \
../nes_emu/misc_mappers.cpp \
../nes_emu/Multi_Buffer.cpp \
../nes_emu/Nes_Apu.cpp \
../nes_emu/Nes_Buffer.cpp \
../nes_emu/Nes_Cart.cpp \
../nes_emu/Nes_Core.cpp \
../nes_emu/Nes_Cpu.cpp \
../nes_emu/nes_data.cpp \
../nes_emu/Nes_Effects_Buffer.cpp \
../nes_emu/Nes_Emu.cpp \
../nes_emu/Nes_File.cpp \
../nes_emu/Nes_Fme7_Apu.cpp \
../nes_emu/Nes_Mapper.cpp \
../nes_emu/nes_mappers.cpp \
../nes_emu/Nes_Mmc1.cpp \
../nes_emu/Nes_Mmc3.cpp \
../nes_emu/Nes_Namco_Apu.cpp \
../nes_emu/Nes_Oscs.cpp \
../nes_emu/Nes_Ppu.cpp \
../nes_emu/Nes_Ppu_Impl.cpp \
../nes_emu/Nes_Ppu_Rendering.cpp \
../nes_emu/Nes_State.cpp \
../nes_emu/nes_util.cpp \
../nes_emu/Nes_Vrc6_Apu.cpp \
../nes_emu/Mmc24.cpp \
../bizinterface.cpp \
../fex/Data_Reader.cpp \
../fex/blargg_errors.cpp \
../fex/blargg_common.cpp
../core/source/quickerNES/core/apu/vrc7/emu2413_state.cpp \
../core/source/quickerNES/core/apu/vrc7/emu2413.cpp \
../core/source/quickerNES/core/apu/vrc7/apu_vrc7.cpp \
../core/source/quickerNES/core/apu/fme7/apu_fme7.cpp \
../core/source/quickerNES/core/apu/namco/apu_namco.cpp \
../core/source/quickerNES/core/apu/effectsBuffer.cpp \
../core/source/quickerNES/core/apu/blipBuffer.cpp \
../core/source/quickerNES/core/apu/NESEffectsBuffer.cpp \
../core/source/quickerNES/core/apu/vrc6/apu_vrc6.cpp \
../core/source/quickerNES/core/apu/oscs.cpp \
../core/source/quickerNES/core/apu/apu.cpp \
../core/source/quickerNES/core/apu/buffer.cpp \
../core/source/quickerNES/core/apu/multiBuffer.cpp \
../core/source/quickerNES/core/emu.cpp \
../core/source/quickerNES/core/mappers/mapper.cpp \
../core/source/quickerNES/core/cpu.cpp \
../core/source/quickerNES/core/ppu/ppu.cpp \
../core/source/quickerNES/core/ppu/ppuRendering.cpp \
../core/source/quickerNES/core/ppu/ppuImpl.cpp \
../bizinterface.cpp
OBJS = $(SRCS:.cpp=.o)
@ -75,8 +59,8 @@ $(TARGET) : $(OBJS)
$(CXX) -o $@ $(LDFLAGS) $(OBJS)
clean:
$(RM) $(OBJS)
$(RM) $(TARGET)
$(RM) -f $(OBJS)
$(RM) -f $(TARGET)
install:
$(CP) $(TARGET) $(DEST_$(ARCH))

4
quicknes/msvc/.gitignore vendored Normal file
View File

@ -0,0 +1,4 @@
x64
*.aps
*.rc
*.h

View File

@ -1,7 +1,7 @@

Microsoft Visual Studio Solution File, Format Version 12.00
# Visual Studio Version 16
VisualStudioVersion = 16.0.30011.22
VisualStudioVersion = 16.0.30011.22
MinimumVisualStudioVersion = 10.0.40219.1
Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "libquicknes", "libquicknes.vcxproj", "{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}"
EndProject

View File

@ -11,86 +11,112 @@
</ProjectConfiguration>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\bizinterface.cpp" />
<ClCompile Include="..\fex\blargg_common.cpp" />
<ClCompile Include="..\fex\blargg_errors.cpp" />
<ClCompile Include="..\fex\Data_Reader.cpp" />
<ClCompile Include="..\nes_emu\abstract_file.cpp" />
<ClCompile Include="..\nes_emu\apu_state.cpp" />
<ClCompile Include="..\nes_emu\Blip_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Effects_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Fme7.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Mmc5.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Namco106.cpp" />
<ClCompile Include="..\nes_emu\Mapper_Vrc6.cpp" />
<ClCompile Include="..\nes_emu\misc_mappers.cpp" />
<ClCompile Include="..\nes_emu\Mmc24.cpp" />
<ClCompile Include="..\nes_emu\Multi_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Cart.cpp" />
<ClCompile Include="..\nes_emu\Nes_Core.cpp" />
<ClCompile Include="..\nes_emu\Nes_Cpu.cpp" />
<ClCompile Include="..\nes_emu\nes_data.cpp" />
<ClCompile Include="..\nes_emu\Nes_Effects_Buffer.cpp" />
<ClCompile Include="..\nes_emu\Nes_Emu.cpp" />
<ClCompile Include="..\nes_emu\Nes_File.cpp" />
<ClCompile Include="..\nes_emu\Nes_Fme7_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mapper.cpp" />
<ClCompile Include="..\nes_emu\nes_mappers.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mmc1.cpp" />
<ClCompile Include="..\nes_emu\Nes_Mmc3.cpp" />
<ClCompile Include="..\nes_emu\Nes_Namco_Apu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Oscs.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu_Impl.cpp" />
<ClCompile Include="..\nes_emu\Nes_Ppu_Rendering.cpp" />
<ClCompile Include="..\nes_emu\Nes_State.cpp" />
<ClCompile Include="..\nes_emu\nes_util.cpp" />
<ClCompile Include="..\nes_emu\Nes_Vrc6_Apu.cpp" />
<ClInclude Include="..\core\extern\jaffarCommon\include\file.hpp" />
<ClInclude Include="..\core\extern\jaffarCommon\include\deserializers\contiguous.hpp" />
<ClInclude Include="..\core\extern\jaffarCommon\include\deserializers\base.hpp" />
<ClInclude Include="..\core\extern\jaffarCommon\include\serializers\contiguous.hpp" />
<ClInclude Include="..\core\extern\jaffarCommon\include\serializers\base.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\vrc7\emu2413_state.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\vrc7\apu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\vrc7\emu2413.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\fme7\apu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\namco\apu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\vrc6\apu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\multiBuffer.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\apu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\buffer.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\blipBuffer.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\effectsBuffer.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\oscs.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\apu\NESEffectsBuffer.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\emu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper015.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper140.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper010.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper089.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper024.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper085.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper244.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper022.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper032.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper241.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper033.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper152.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper004.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper094.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper113.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper240.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper232.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper207.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper001.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper075.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper206.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper156.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper000.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper071.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper034.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper011.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper073.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper009.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper079.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper021.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper154.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper180.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper184.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper002.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper030.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper005.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper025.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper070.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper093.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper023.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper086.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper003.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper246.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper097.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper078.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper060.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper019.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper190.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper193.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper026.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper069.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper007.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper088.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper066.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\mappers\mapper087.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\cart.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\cpu.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\core.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\ppu\ppuImpl.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\ppu\ppuRendering.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\ppu\ppuSprites.hpp" />
<ClInclude Include="..\core\source\quickerNES\core\ppu\ppu.hpp" />
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\fex\blargg_common.h" />
<ClInclude Include="..\fex\blargg_config.h" />
<ClInclude Include="..\fex\blargg_endian.h" />
<ClInclude Include="..\fex\blargg_errors.h" />
<ClInclude Include="..\fex\blargg_source.h" />
<ClInclude Include="..\fex\Data_Reader.h" />
<ClInclude Include="..\nes_emu\abstract_file.h" />
<ClInclude Include="..\nes_emu\apu_state.h" />
<ClInclude Include="..\nes_emu\blargg_common.h" />
<ClInclude Include="..\nes_emu\blargg_config.h" />
<ClInclude Include="..\nes_emu\blargg_endian.h" />
<ClInclude Include="..\nes_emu\blargg_source.h" />
<ClInclude Include="..\nes_emu\Blip_Buffer.h" />
<ClInclude Include="..\nes_emu\Blip_Synth.h" />
<ClInclude Include="..\nes_emu\Effects_Buffer.h" />
<ClInclude Include="..\nes_emu\Mmc24.h" />
<ClInclude Include="..\nes_emu\Multi_Buffer.h" />
<ClInclude Include="..\nes_emu\Nes_Apu.h" />
<ClInclude Include="..\nes_emu\Nes_Buffer.h" />
<ClInclude Include="..\nes_emu\Nes_Cart.h" />
<ClInclude Include="..\nes_emu\Nes_Core.h" />
<ClInclude Include="..\nes_emu\Nes_Cpu.h" />
<ClInclude Include="..\nes_emu\nes_cpu_io.h" />
<ClInclude Include="..\nes_emu\nes_data.h" />
<ClInclude Include="..\nes_emu\Nes_Effects_Buffer.h" />
<ClInclude Include="..\nes_emu\Nes_Emu.h" />
<ClInclude Include="..\nes_emu\Nes_File.h" />
<ClInclude Include="..\nes_emu\Nes_Fme7_Apu.h" />
<ClInclude Include="..\nes_emu\Nes_Mapper.h" />
<ClInclude Include="..\nes_emu\Nes_Namco_Apu.h" />
<ClInclude Include="..\nes_emu\nes_ntsc.h" />
<ClInclude Include="..\nes_emu\nes_ntsc_impl.h" />
<ClInclude Include="..\nes_emu\Nes_Oscs.h" />
<ClInclude Include="..\nes_emu\Nes_Ppu.h" />
<ClInclude Include="..\nes_emu\Nes_Ppu_Bg.h" />
<ClInclude Include="..\nes_emu\Nes_Ppu_Impl.h" />
<ClInclude Include="..\nes_emu\Nes_Ppu_Rendering.h" />
<ClInclude Include="..\nes_emu\Nes_Ppu_Sprites.h" />
<ClInclude Include="..\nes_emu\Nes_State.h" />
<ClInclude Include="..\nes_emu\nes_util.h" />
<ClInclude Include="..\nes_emu\Nes_Vrc6_Apu.h" />
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\core\source\quickerNES\core\apu\apu.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\fme7\apu_fme7.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\namco\apu_namco.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\vrc6\apu_vrc6.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\vrc7\apu_vrc7.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\vrc7\emu2413_state.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\vrc7\emu2413.cpp " />
<ClCompile Include="..\core\source\quickerNES\core\apu\effectsBuffer.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\blipBuffer.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\NESEffectsBuffer.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\oscs.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\buffer.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\apu\multiBuffer.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\emu.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\mappers\mapper.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\cpu.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\ppu\ppu.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\ppu\ppuRendering.cpp" />
<ClCompile Include="..\core\source\quickerNES\core\ppu\ppuImpl.cpp" />
<ClCompile Include="..\bizinterface.cpp " />
</ItemGroup>
<PropertyGroup Label="Globals">
<ProjectGuid>{F07F76D3-08E6-4EBC-82F9-53FF90ABD9A9}</ProjectGuid>
@ -102,14 +128,14 @@
<ConfigurationType>DynamicLibrary</ConfigurationType>
<UseDebugLibraries>true</UseDebugLibraries>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v142</PlatformToolset>
<PlatformToolset>v143</PlatformToolset>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
<ConfigurationType>DynamicLibrary</ConfigurationType>
<UseDebugLibraries>false</UseDebugLibraries>
<WholeProgramOptimization>true</WholeProgramOptimization>
<CharacterSet>MultiByte</CharacterSet>
<PlatformToolset>v142</PlatformToolset>
<PlatformToolset>v143</PlatformToolset>
</PropertyGroup>
<Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
<ImportGroup Label="ExtensionSettings">
@ -121,13 +147,19 @@
<Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
</ImportGroup>
<PropertyGroup Label="UserMacros" />
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<IncludePath>..\core\source\quickerNES\core;..\core\extern;$(IncludePath)</IncludePath>
</PropertyGroup>
<PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
<IncludePath>..\core\source\quickerNES\core;..\core\extern;$(IncludePath)</IncludePath>
</PropertyGroup>
<ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
<ClCompile>
<WarningLevel>Level3</WarningLevel>
<Optimization>Disabled</Optimization>
<DisableSpecificWarnings>4244;4800;4804;4996</DisableSpecificWarnings>
<AdditionalIncludeDirectories>$(ProjectDir)\..</AdditionalIncludeDirectories>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);DISABLE_AUTO_FILE;__LIBRETRO__</PreprocessorDefinitions>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);_QUICKERNES_DETECT_JOYPAD_READS;_QUICKERNES_ENABLE_TRACEBACK_SUPPORT;</PreprocessorDefinitions>
<MultiProcessorCompilation>true</MultiProcessorCompilation>
</ClCompile>
<Link>
@ -146,7 +178,7 @@
<IntrinsicFunctions>true</IntrinsicFunctions>
<DisableSpecificWarnings>4244;4800;4804;4996</DisableSpecificWarnings>
<AdditionalIncludeDirectories>$(ProjectDir)\..</AdditionalIncludeDirectories>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);DISABLE_AUTO_FILE;__LIBRETRO__;NDEBUG</PreprocessorDefinitions>
<PreprocessorDefinitions>_WINDLL;%(PreprocessorDefinitions);_QUICKERNES_DETECT_JOYPAD_READS;_QUICKERNES_ENABLE_TRACEBACK_SUPPORT;</PreprocessorDefinitions>
<MultiProcessorCompilation>true</MultiProcessorCompilation>
</ClCompile>
<Link>

View File

@ -1,267 +0,0 @@
<?xml version="1.0" encoding="utf-8"?>
<Project ToolsVersion="4.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<ItemGroup>
<Filter Include="Source Files">
<UniqueIdentifier>{4FC737F1-C7A5-4376-A066-2A32D752A2FF}</UniqueIdentifier>
<Extensions>cpp;c;cc;cxx;def;odl;idl;hpj;bat;asm;asmx</Extensions>
</Filter>
<Filter Include="Header Files">
<UniqueIdentifier>{93995380-89BD-4b04-88EB-625FBE52EBFB}</UniqueIdentifier>
<Extensions>h;hpp;hxx;hm;inl;inc;xsd</Extensions>
</Filter>
<Filter Include="Resource Files">
<UniqueIdentifier>{67DA6AB6-F800-4c08-8B7A-83BB121AAD01}</UniqueIdentifier>
<Extensions>rc;ico;cur;bmp;dlg;rc2;rct;bin;rgs;gif;jpg;jpeg;jpe;resx;tiff;tif;png;wav;mfcribbon-ms</Extensions>
</Filter>
<Filter Include="Header Files\fex">
<UniqueIdentifier>{ba7f113f-5234-44b7-a84c-35ad9dd39db2}</UniqueIdentifier>
</Filter>
<Filter Include="Source Files\nes_emu">
<UniqueIdentifier>{704585a9-2165-422f-8457-b6c5ffe9179d}</UniqueIdentifier>
</Filter>
<Filter Include="Source Files\fex">
<UniqueIdentifier>{109f60b9-f5f8-4f85-807d-b0c977848674}</UniqueIdentifier>
</Filter>
<Filter Include="Header Files\nes_emu">
<UniqueIdentifier>{278454e6-01bf-4140-8707-bc2a4512c2ac}</UniqueIdentifier>
</Filter>
</ItemGroup>
<ItemGroup>
<ClCompile Include="..\nes_emu\abstract_file.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\apu_state.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Blip_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Effects_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Fme7.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Mmc5.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Namco106.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mapper_Vrc6.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\misc_mappers.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Multi_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Cart.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Core.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Cpu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_data.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Effects_Buffer.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Emu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_File.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Fme7_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mapper.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_mappers.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mmc1.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Mmc3.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Namco_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Oscs.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu_Impl.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Ppu_Rendering.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_State.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\nes_util.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Nes_Vrc6_Apu.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
<ClCompile Include="..\fex\blargg_common.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
<ClCompile Include="..\fex\blargg_errors.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
<ClCompile Include="..\fex\Data_Reader.cpp">
<Filter>Source Files\fex</Filter>
</ClCompile>
<ClCompile Include="..\bizinterface.cpp">
<Filter>Source Files</Filter>
</ClCompile>
<ClCompile Include="..\nes_emu\Mmc24.cpp">
<Filter>Source Files\nes_emu</Filter>
</ClCompile>
</ItemGroup>
<ItemGroup>
<ClInclude Include="..\nes_emu\abstract_file.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\apu_state.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\blargg_common.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\blargg_config.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\blargg_endian.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\blargg_source.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Blip_Buffer.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Blip_Synth.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Effects_Buffer.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Multi_Buffer.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Apu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Buffer.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Cart.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Core.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Cpu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\nes_cpu_io.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\nes_data.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Effects_Buffer.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Emu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_File.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Fme7_Apu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Mapper.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Namco_Apu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\nes_ntsc.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\nes_ntsc_impl.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Oscs.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Ppu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Ppu_Bg.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Ppu_Impl.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Ppu_Rendering.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Ppu_Sprites.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_State.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\nes_util.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Nes_Vrc6_Apu.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
<ClInclude Include="..\fex\blargg_common.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\fex\blargg_config.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\fex\blargg_endian.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\fex\blargg_errors.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\fex\blargg_source.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\fex\Data_Reader.h">
<Filter>Header Files\fex</Filter>
</ClInclude>
<ClInclude Include="..\nes_emu\Mmc24.h">
<Filter>Header Files\nes_emu</Filter>
</ClInclude>
</ItemGroup>
</Project>

View File

@ -1,412 +0,0 @@
// Blip_Buffer 0.4.0. http://www.slack.net/~ant/
#include "Blip_Buffer.h"
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
int const buffer_extra = blip_widest_impulse_ + 2;
Blip_Buffer::Blip_Buffer()
{
factor_ = LONG_MAX;
offset_ = 0;
buffer_ = 0;
buffer_size_ = 0;
sample_rate_ = 0;
reader_accum = 0;
bass_shift = 0;
clock_rate_ = 0;
bass_freq_ = 16;
length_ = 0;
// assumptions code makes about implementation-defined features
#ifndef NDEBUG
// right shift of negative value preserves sign
buf_t_ i = -0x7FFFFFFE;
assert( (i >> 1) == -0x3FFFFFFF );
// casting to short truncates to 16 bits and sign-extends
i = 0x18000;
assert( (short) i == -0x8000 );
#endif
}
Blip_Buffer::~Blip_Buffer()
{
free( buffer_ );
}
void Blip_Buffer::clear( int entire_buffer )
{
offset_ = 0;
reader_accum = 0;
if ( buffer_ )
{
long count = (entire_buffer ? buffer_size_ : samples_avail());
memset( buffer_, 0, (count + buffer_extra) * sizeof (buf_t_) );
}
}
Blip_Buffer::blargg_err_t Blip_Buffer::set_sample_rate( long new_rate, int msec )
{
// start with maximum length that resampled time can represent
long new_size = (ULONG_MAX >> BLIP_BUFFER_ACCURACY) - buffer_extra - 64;
if ( msec != blip_max_length )
{
long s = (new_rate * (msec + 1) + 999) / 1000;
if ( s < new_size )
new_size = s;
else
assert( 0 ); // fails if requested buffer length exceeds limit
}
if ( buffer_size_ != new_size )
{
void* p = realloc( buffer_, (new_size + buffer_extra) * sizeof *buffer_ );
if ( !p )
return "Out of memory";
buffer_ = (buf_t_*) p;
}
buffer_size_ = new_size;
// update things based on the sample rate
sample_rate_ = new_rate;
length_ = new_size * 1000 / new_rate - 1;
if ( msec )
assert( length_ == msec ); // ensure length is same as that passed in
if ( clock_rate_ )
clock_rate( clock_rate_ );
bass_freq( bass_freq_ );
clear();
return 0; // success
}
blip_resampled_time_t Blip_Buffer::clock_rate_factor( long clock_rate ) const
{
double ratio = (double) sample_rate_ / clock_rate;
long factor = (long) floor( ratio * (1L << BLIP_BUFFER_ACCURACY) + 0.5 );
assert( factor > 0 || !sample_rate_ ); // fails if clock/output ratio is too large
return (blip_resampled_time_t) factor;
}
void Blip_Buffer::bass_freq( int freq )
{
bass_freq_ = freq;
int shift = 31;
if ( freq > 0 )
{
shift = 13;
long f = (freq << 16) / sample_rate_;
while ( (f >>= 1) && --shift ) { }
}
bass_shift = shift;
}
void Blip_Buffer::end_frame( blip_time_t t )
{
offset_ += t * factor_;
assert( samples_avail() <= (long) buffer_size_ ); // time outside buffer length
}
void Blip_Buffer::remove_silence( long count )
{
assert( count <= samples_avail() ); // tried to remove more samples than available
offset_ -= (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
}
long Blip_Buffer::count_samples( blip_time_t t ) const
{
unsigned long last_sample = resampled_time( t ) >> BLIP_BUFFER_ACCURACY;
unsigned long first_sample = offset_ >> BLIP_BUFFER_ACCURACY;
return (long) (last_sample - first_sample);
}
blip_time_t Blip_Buffer::count_clocks( long count ) const
{
if ( count > buffer_size_ )
count = buffer_size_;
blip_resampled_time_t time = (blip_resampled_time_t) count << BLIP_BUFFER_ACCURACY;
return (blip_time_t) ((time - offset_ + factor_ - 1) / factor_);
}
void Blip_Buffer::remove_samples( long count )
{
if ( count )
{
remove_silence( count );
// copy remaining samples to beginning and clear old samples
long remain = samples_avail() + buffer_extra;
memmove( buffer_, buffer_ + count, remain * sizeof *buffer_ );
memset( buffer_ + remain, 0, count * sizeof *buffer_ );
}
}
// Blip_Synth_
Blip_Synth_::Blip_Synth_( short* p, int w ) :
impulses( p ),
width( w )
{
volume_unit_ = 0.0;
kernel_unit = 0;
buf = 0;
last_amp = 0;
delta_factor = 0;
}
// TODO: apparently this is defined elsewhere too
#define pi my_pi
static double const pi = 3.1415926535897932384626433832795029;
static void gen_sinc( float* out, int count, double oversample, double treble, double cutoff )
{
if ( cutoff >= 0.999 )
cutoff = 0.999;
if ( treble < -300.0 )
treble = -300.0;
if ( treble > 5.0 )
treble = 5.0;
double const maxh = 4096.0;
double const rolloff = pow( 10.0, 1.0 / (maxh * 20.0) * treble / (1.0 - cutoff) );
double const pow_a_n = pow( rolloff, maxh - maxh * cutoff );
double const to_angle = pi / 2 / maxh / oversample;
for ( int i = 0; i < count; i++ )
{
double angle = ((i - count) * 2 + 1) * to_angle;
double c = rolloff * cos( (maxh - 1.0) * angle ) - cos( maxh * angle );
double cos_nc_angle = cos( maxh * cutoff * angle );
double cos_nc1_angle = cos( (maxh * cutoff - 1.0) * angle );
double cos_angle = cos( angle );
c = c * pow_a_n - rolloff * cos_nc1_angle + cos_nc_angle;
double d = 1.0 + rolloff * (rolloff - cos_angle - cos_angle);
double b = 2.0 - cos_angle - cos_angle;
double a = 1.0 - cos_angle - cos_nc_angle + cos_nc1_angle;
out [i] = (float) ((a * d + c * b) / (b * d)); // a / b + c / d
}
}
void blip_eq_t::generate( float* out, int count ) const
{
// lower cutoff freq for narrow kernels with their wider transition band
// (8 points->1.49, 16 points->1.15)
double oversample = blip_res * 2.25 / count + 0.85;
double half_rate = sample_rate * 0.5;
if ( cutoff_freq )
oversample = half_rate / cutoff_freq;
double cutoff = rolloff_freq * oversample / half_rate;
gen_sinc( out, count, blip_res * oversample, treble, cutoff );
// apply (half of) hamming window
double to_fraction = pi / (count - 1);
for ( int i = count; i--; )
out [i] *= 0.54 - 0.46 * cos( i * to_fraction );
}
void Blip_Synth_::adjust_impulse()
{
// sum pairs for each phase and add error correction to end of first half
int const size = impulses_size();
for ( int p = blip_res; p-- >= blip_res / 2; )
{
int p2 = blip_res - 2 - p;
long error = kernel_unit;
for ( int i = 1; i < size; i += blip_res )
{
error -= impulses [i + p ];
error -= impulses [i + p2];
}
if ( p == p2 )
error /= 2; // phase = 0.5 impulse uses same half for both sides
impulses [size - blip_res + p] += error;
//printf( "error: %ld\n", error );
}
//for ( int i = blip_res; i--; printf( "\n" ) )
// for ( int j = 0; j < width / 2; j++ )
// printf( "%5ld,", impulses [j * blip_res + i + 1] );
}
void Blip_Synth_::treble_eq( blip_eq_t const& eq )
{
float fimpulse [blip_res / 2 * (blip_widest_impulse_ - 1) + blip_res * 2];
int const half_size = blip_res / 2 * (width - 1);
eq.generate( &fimpulse [blip_res], half_size );
int i;
// need mirror slightly past center for calculation
for ( i = blip_res; i--; )
fimpulse [blip_res + half_size + i] = fimpulse [blip_res + half_size - 1 - i];
// starts at 0
for ( i = 0; i < blip_res; i++ )
fimpulse [i] = 0.0f;
// find rescale factor
double total = 0.0;
for ( i = 0; i < half_size; i++ )
total += fimpulse [blip_res + i];
//double const base_unit = 44800.0 - 128 * 18; // allows treble up to +0 dB
//double const base_unit = 37888.0; // allows treble to +5 dB
double const base_unit = 32768.0; // necessary for blip_unscaled to work
double rescale = base_unit / 2 / total;
kernel_unit = (long) base_unit;
// integrate, first difference, rescale, convert to int
double sum = 0.0;
double next = 0.0;
int const impulses_size = this->impulses_size();
for ( i = 0; i < impulses_size; i++ )
{
impulses [i] = (short) floor( (next - sum) * rescale + 0.5 );
sum += fimpulse [i];
next += fimpulse [i + blip_res];
}
adjust_impulse();
// volume might require rescaling
double vol = volume_unit_;
if ( vol )
{
volume_unit_ = 0.0;
volume_unit( vol );
}
}
void Blip_Synth_::volume_unit( double new_unit )
{
if ( new_unit != volume_unit_ )
{
// use default eq if it hasn't been set yet
if ( !kernel_unit )
treble_eq( -8.0 );
volume_unit_ = new_unit;
double factor = new_unit * (1L << blip_sample_bits) / kernel_unit;
if ( factor > 0.0 )
{
int shift = 0;
// if unit is really small, might need to attenuate kernel
while ( factor < 2.0 )
{
shift++;
factor *= 2.0;
}
if ( shift )
{
kernel_unit >>= shift;
assert( kernel_unit > 0 ); // fails if volume unit is too low
// keep values positive to avoid round-towards-zero of sign-preserving
// right shift for negative values
long offset = 0x8000 + (1 << (shift - 1));
long offset2 = 0x8000 >> shift;
for ( int i = impulses_size(); i--; )
impulses [i] = (short) (((impulses [i] + offset) >> shift) - offset2);
adjust_impulse();
}
}
delta_factor = (int) floor( factor + 0.5 );
//printf( "delta_factor: %d, kernel_unit: %d\n", delta_factor, kernel_unit );
}
}
long Blip_Buffer::read_samples( blip_sample_t* out, long max_samples, int stereo )
{
long count = samples_avail();
if ( count > max_samples )
count = max_samples;
if ( count )
{
int const sample_shift = blip_sample_bits - 16;
int const bass_shift = this->bass_shift;
long accum = reader_accum;
buf_t_* in = buffer_;
if ( !stereo )
{
for ( long n = count; n--; )
{
long s = accum >> sample_shift;
accum -= accum >> bass_shift;
accum += *in++;
*out++ = (blip_sample_t) s;
// clamp sample
if ( (blip_sample_t) s != s )
out [-1] = (blip_sample_t) (0x7FFF - (s >> 24));
}
}
else
{
for ( long n = count; n--; )
{
long s = accum >> sample_shift;
accum -= accum >> bass_shift;
accum += *in++;
*out = (blip_sample_t) s;
out += 2;
// clamp sample
if ( (blip_sample_t) s != s )
out [-2] = (blip_sample_t) (0x7FFF - (s >> 24));
}
}
reader_accum = accum;
remove_samples( count );
}
return count;
}
void Blip_Buffer::mix_samples( blip_sample_t const* in, long count )
{
buf_t_* out = buffer_ + (offset_ >> BLIP_BUFFER_ACCURACY) + blip_widest_impulse_ / 2;
int const sample_shift = blip_sample_bits - 16;
int prev = 0;
while ( count-- )
{
long s = (long) *in++ << sample_shift;
*out += s - prev;
prev = s;
++out;
}
*out -= prev;
}

View File

@ -1,354 +0,0 @@
// Band-limited sound synthesis and buffering
// Blip_Buffer 0.4.0
#ifndef BLIP_BUFFER_H
#define BLIP_BUFFER_H
// Time unit at source clock rate
typedef long blip_time_t;
// Output samples are 16-bit signed, with a range of -32768 to 32767
typedef short blip_sample_t;
enum { blip_sample_max = 32767 };
class Blip_Buffer {
public:
typedef const char* blargg_err_t;
// Set output sample rate and buffer length in milliseconds (1/1000 sec, defaults
// to 1/4 second), then clear buffer. Returns NULL on success, otherwise if there
// isn't enough memory, returns error without affecting current buffer setup.
blargg_err_t set_sample_rate( long samples_per_sec, int msec_length = 1000 / 4 );
// Set number of source time units per second
void clock_rate( long );
// End current time frame of specified duration and make its samples available
// (along with any still-unread samples) for reading with read_samples(). Begins
// a new time frame at the end of the current frame.
void end_frame( blip_time_t time );
// Read at most 'max_samples' out of buffer into 'dest', removing them from from
// the buffer. Returns number of samples actually read and removed. If stereo is
// true, increments 'dest' one extra time after writing each sample, to allow
// easy interleving of two channels into a stereo output buffer.
long read_samples( blip_sample_t* dest, long max_samples, int stereo = 0 );
// Additional optional features
// Current output sample rate
long sample_rate() const;
// Length of buffer, in milliseconds
int length() const;
// Number of source time units per second
long clock_rate() const;
// Set frequency high-pass filter frequency, where higher values reduce bass more
void bass_freq( int frequency );
// Number of samples delay from synthesis to samples read out
int output_latency() const;
// Remove all available samples and clear buffer to silence. If 'entire_buffer' is
// false, just clears out any samples waiting rather than the entire buffer.
void clear( int entire_buffer = 1 );
// Number of samples available for reading with read_samples()
long samples_avail() const;
// Remove 'count' samples from those waiting to be read
void remove_samples( long count );
// Experimental features
// Number of raw samples that can be mixed within frame of specified duration.
long count_samples( blip_time_t duration ) const;
// Mix 'count' samples from 'buf' into buffer.
void mix_samples( blip_sample_t const* buf, long count );
// Count number of clocks needed until 'count' samples will be available.
// If buffer can't even hold 'count' samples, returns number of clocks until
// buffer becomes full.
blip_time_t count_clocks( long count ) const;
// not documented yet
typedef unsigned long blip_resampled_time_t;
void remove_silence( long count );
blip_resampled_time_t resampled_duration( int t ) const { return t * factor_; }
blip_resampled_time_t resampled_time( blip_time_t t ) const { return t * factor_ + offset_; }
blip_resampled_time_t clock_rate_factor( long clock_rate ) const;
public:
Blip_Buffer();
~Blip_Buffer();
// Deprecated
typedef blip_resampled_time_t resampled_time_t;
blargg_err_t sample_rate( long r ) { return set_sample_rate( r ); }
blargg_err_t sample_rate( long r, int msec ) { return set_sample_rate( r, msec ); }
private:
// noncopyable
Blip_Buffer( const Blip_Buffer& );
Blip_Buffer& operator = ( const Blip_Buffer& );
public:
typedef long buf_t_;
unsigned long factor_;
blip_resampled_time_t offset_;
buf_t_* buffer_;
long buffer_size_;
private:
long reader_accum;
int bass_shift;
long sample_rate_;
long clock_rate_;
int bass_freq_;
int length_;
friend class Blip_Reader;
};
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
// Number of bits in resample ratio fraction. Higher values give a more accurate ratio
// but reduce maximum buffer size.
#ifndef BLIP_BUFFER_ACCURACY
#define BLIP_BUFFER_ACCURACY 16
#endif
// Number bits in phase offset. Fewer than 6 bits (64 phase offsets) results in
// noticeable broadband noise when synthesizing high frequency square waves.
// Affects size of Blip_Synth objects since they store the waveform directly.
#ifndef BLIP_PHASE_BITS
#define BLIP_PHASE_BITS 6
#endif
// Internal
typedef unsigned long blip_resampled_time_t;
int const blip_widest_impulse_ = 16;
int const blip_res = 1 << BLIP_PHASE_BITS;
class blip_eq_t;
class Blip_Synth_ {
double volume_unit_;
short* const impulses;
int const width;
long kernel_unit;
int impulses_size() const { return blip_res / 2 * width + 1; }
void adjust_impulse();
public:
Blip_Buffer* buf;
int last_amp;
int delta_factor;
Blip_Synth_( short* impulses, int width );
void treble_eq( blip_eq_t const& );
void volume_unit( double );
};
// Quality level. Start with blip_good_quality.
const int blip_med_quality = 8;
const int blip_good_quality = 12;
const int blip_high_quality = 16;
// Range specifies the greatest expected change in amplitude. Calculate it
// by finding the difference between the maximum and minimum expected
// amplitudes (max - min).
template<int quality,int range>
class Blip_Synth {
public:
// Set overall volume of waveform
void volume( double v ) { impl.volume_unit( v * (1.0 / (range < 0 ? -range : range)) ); }
// Configure low-pass filter (see notes.txt)
void treble_eq( blip_eq_t const& eq ) { impl.treble_eq( eq ); }
// Get/set Blip_Buffer used for output
Blip_Buffer* output() const { return impl.buf; }
void output( Blip_Buffer* b ) { impl.buf = b; impl.last_amp = 0; }
// Update amplitude of waveform at given time. Using this requires a separate
// Blip_Synth for each waveform.
void update( blip_time_t time, int amplitude );
// Low-level interface
// Add an amplitude transition of specified delta, optionally into specified buffer
// rather than the one set with output(). Delta can be positive or negative.
// The actual change in amplitude is delta * (volume / range)
void offset( blip_time_t, int delta, Blip_Buffer* ) const;
void offset( blip_time_t t, int delta ) const { offset( t, delta, impl.buf ); }
// Works directly in terms of fractional output samples. Contact author for more.
void offset_resampled( blip_resampled_time_t, int delta, Blip_Buffer* ) const;
// Same as offset(), except code is inlined for higher performance
void offset_inline( blip_time_t t, int delta, Blip_Buffer* buf ) const {
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
void offset_inline( blip_time_t t, int delta ) const {
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
public:
Blip_Synth() : impl( impulses, quality ) { }
private:
typedef short imp_t;
imp_t impulses [blip_res * (quality / 2) + 1];
Blip_Synth_ impl;
};
// Low-pass equalization parameters
class blip_eq_t {
public:
// Logarithmic rolloff to treble dB at half sampling rate. Negative values reduce
// treble, small positive values (0 to 5.0) increase treble.
blip_eq_t( double treble_db = 0 );
// See notes.txt
blip_eq_t( double treble, long rolloff_freq, long sample_rate, long cutoff_freq = 0 );
private:
double treble;
long rolloff_freq;
long sample_rate;
long cutoff_freq;
void generate( float* out, int count ) const;
friend class Blip_Synth_;
};
int const blip_sample_bits = 30;
// Optimized inline sample reader for custom sample formats and mixing of Blip_Buffer samples
class Blip_Reader {
public:
// Begin reading samples from buffer. Returns value to pass to next() (can
// be ignored if default bass_freq is acceptable).
int begin( Blip_Buffer& );
// Current sample
long read() const { return accum >> (blip_sample_bits - 16); }
// Current raw sample in full internal resolution
long read_raw() const { return accum; }
// Advance to next sample
void next( int bass_shift = 9 ) { accum += *buf++ - (accum >> bass_shift); }
// End reading samples from buffer. The number of samples read must now be removed
// using Blip_Buffer::remove_samples().
void end( Blip_Buffer& b ) { b.reader_accum = accum; }
private:
const Blip_Buffer::buf_t_* buf;
long accum;
};
// End of public interface
#include <assert.h>
// Compatibility with older version
const long blip_unscaled = 65535;
const int blip_low_quality = blip_med_quality;
const int blip_best_quality = blip_high_quality;
#define BLIP_FWD( i ) { \
long t0 = i0 * delta + buf [fwd + i]; \
long t1 = imp [blip_res * (i + 1)] * delta + buf [fwd + 1 + i]; \
i0 = imp [blip_res * (i + 2)]; \
buf [fwd + i] = t0; \
buf [fwd + 1 + i] = t1; }
#define BLIP_REV( r ) { \
long t0 = i0 * delta + buf [rev - r]; \
long t1 = imp [blip_res * r] * delta + buf [rev + 1 - r]; \
i0 = imp [blip_res * (r - 1)]; \
buf [rev - r] = t0; \
buf [rev + 1 - r] = t1; }
template<int quality,int range>
inline void Blip_Synth<quality,range>::offset_resampled( blip_resampled_time_t time,
int delta, Blip_Buffer* blip_buf ) const
{
// Fails if time is beyond end of Blip_Buffer, due to a bug in caller code or the
// need for a longer buffer as set by set_sample_rate().
assert( (long) (time >> BLIP_BUFFER_ACCURACY) < blip_buf->buffer_size_ );
delta *= impl.delta_factor;
int phase = (int) (time >> (BLIP_BUFFER_ACCURACY - BLIP_PHASE_BITS) & (blip_res - 1));
imp_t const* imp = impulses + blip_res - phase;
long* buf = blip_buf->buffer_ + (time >> BLIP_BUFFER_ACCURACY);
long i0 = *imp;
int const fwd = (blip_widest_impulse_ - quality) / 2;
int const rev = fwd + quality - 2;
BLIP_FWD( 0 )
if ( quality > 8 ) BLIP_FWD( 2 )
if ( quality > 12 ) BLIP_FWD( 4 )
{
int const mid = quality / 2 - 1;
long t0 = i0 * delta + buf [fwd + mid - 1];
long t1 = imp [blip_res * mid] * delta + buf [fwd + mid];
imp = impulses + phase;
i0 = imp [blip_res * mid];
buf [fwd + mid - 1] = t0;
buf [fwd + mid] = t1;
}
if ( quality > 12 ) BLIP_REV( 6 )
if ( quality > 8 ) BLIP_REV( 4 )
BLIP_REV( 2 )
long t0 = i0 * delta + buf [rev];
long t1 = *imp * delta + buf [rev + 1];
buf [rev] = t0;
buf [rev + 1] = t1;
}
#undef BLIP_FWD
#undef BLIP_REV
template<int quality,int range>
void Blip_Synth<quality,range>::offset( blip_time_t t, int delta, Blip_Buffer* buf ) const
{
offset_resampled( t * buf->factor_ + buf->offset_, delta, buf );
}
template<int quality,int range>
void Blip_Synth<quality,range>::update( blip_time_t t, int amp )
{
int delta = amp - impl.last_amp;
impl.last_amp = amp;
offset_resampled( t * impl.buf->factor_ + impl.buf->offset_, delta, impl.buf );
}
inline blip_eq_t::blip_eq_t( double t ) :
treble( t ), rolloff_freq( 0 ), sample_rate( 44100 ), cutoff_freq( 0 ) { }
inline blip_eq_t::blip_eq_t( double t, long rf, long sr, long cf ) :
treble( t ), rolloff_freq( rf ), sample_rate( sr ), cutoff_freq( cf ) { }
inline int Blip_Buffer::length() const { return length_; }
inline long Blip_Buffer::samples_avail() const { return (long) (offset_ >> BLIP_BUFFER_ACCURACY); }
inline long Blip_Buffer::sample_rate() const { return sample_rate_; }
inline int Blip_Buffer::output_latency() const { return blip_widest_impulse_ / 2; }
inline long Blip_Buffer::clock_rate() const { return clock_rate_; }
inline void Blip_Buffer::clock_rate( long cps ) { factor_ = clock_rate_factor( clock_rate_ = cps ); }
inline int Blip_Reader::begin( Blip_Buffer& blip_buf )
{
buf = blip_buf.buffer_;
accum = blip_buf.reader_accum;
return blip_buf.bass_shift;
}
int const blip_max_length = 0;
int const blip_default_length = 250;
#endif

View File

@ -1,208 +0,0 @@
// Blip_Synth and Blip_Wave are waveform transition synthesizers for adding
// waveforms to a Blip_Buffer.
// Blip_Buffer 0.3.4. Copyright (C) 2003-2005 Shay Green. GNU LGPL license.
#ifndef BLIP_SYNTH_H
#define BLIP_SYNTH_H
#ifndef BLIP_BUFFER_H
#include "Blip_Buffer.h"
#endif
// Quality level. Higher levels are slower, and worse in a few cases.
// Use blip_good_quality as a starting point.
const int blip_low_quality = 1;
const int blip_med_quality = 2;
const int blip_good_quality = 3;
const int blip_high_quality = 4;
// Blip_Synth is a transition waveform synthesizer which adds band-limited
// offsets (transitions) into a Blip_Buffer. For a simpler interface, use
// Blip_Wave (below).
//
// Range specifies the greatest expected offset that will occur. For a
// waveform that goes between +amp and -amp, range should be amp * 2 (half
// that if it only goes between +amp and 0). When range is large, a higher
// accuracy scheme is used; to force this even when range is small, pass
// the negative of range (i.e. -range).
template<int quality,int range>
class Blip_Synth {
BOOST_STATIC_ASSERT( 1 <= quality && quality <= 5 );
BOOST_STATIC_ASSERT( -32768 <= range && range <= 32767 );
enum {
abs_range = (range < 0) ? -range : range,
fine_mode = (range > 512 || range < 0),
width = (quality < 5 ? quality * 4 : Blip_Buffer::widest_impulse_),
res = 1 << blip_res_bits_,
impulse_size = width / 2 * (fine_mode + 1),
base_impulses_size = width / 2 * (res / 2 + 1),
fine_bits = (fine_mode ? (abs_range <= 64 ? 2 : abs_range <= 128 ? 3 :
abs_range <= 256 ? 4 : abs_range <= 512 ? 5 : abs_range <= 1024 ? 6 :
abs_range <= 2048 ? 7 : 8) : 0)
};
blip_pair_t_ impulses [impulse_size * res * 2 + base_impulses_size];
Blip_Impulse_ impulse;
void init() { impulse.init( impulses, width, res, fine_bits ); }
public:
Blip_Synth() { init(); }
Blip_Synth( double volume ) { init(); this->volume( volume ); }
// Configure low-pass filter (see notes.txt). Not optimized for real-time control
void treble_eq( const blip_eq_t& eq ) { impulse.treble_eq( eq ); }
// Set volume of a transition at amplitude 'range' by setting volume_unit
// to v / range
void volume( double v ) { impulse.volume_unit( v * (1.0 / abs_range) ); }
// Set base volume unit of transitions, where 1.0 is a full swing between the
// positive and negative extremes. Not optimized for real-time control.
void volume_unit( double unit ) { impulse.volume_unit( unit ); }
// Default Blip_Buffer used for output when none is specified for a given call
Blip_Buffer* output() const { return impulse.buf; }
void output( Blip_Buffer* b ) { impulse.buf = b; }
// Add an amplitude offset (transition) with a magnitude of delta * volume_unit
// into the specified buffer (default buffer if none specified) at the
// specified source time. Delta can be positive or negative. To increase
// performance by inlining code at the call site, use offset_inline().
void offset( blip_time_t, int delta, Blip_Buffer* ) const;
void offset_resampled( blip_resampled_time_t, int delta, Blip_Buffer* ) const;
void offset_resampled( blip_resampled_time_t t, int o ) const {
offset_resampled( t, o, impulse.buf );
}
void offset( blip_time_t t, int delta ) const {
offset( t, delta, impulse.buf );
}
void offset_inline( blip_time_t time, int delta, Blip_Buffer* buf ) const {
offset_resampled( time * buf->factor_ + buf->offset_, delta, buf );
}
void offset_inline( blip_time_t time, int delta ) const {
offset_inline( time, delta, impulse.buf );
}
};
// Blip_Wave is a synthesizer for adding a *single* waveform to a Blip_Buffer.
// A wave is built from a series of delays and new amplitudes. This provides a
// simpler interface than Blip_Synth, nothing more.
template<int quality,int range>
class Blip_Wave {
Blip_Synth<quality,range> synth;
blip_time_t time_;
int last_amp;
void init() { time_ = 0; last_amp = 0; }
public:
// Start wave at time 0 and amplitude 0
Blip_Wave() { init(); }
Blip_Wave( double volume ) { init(); this->volume( volume ); }
// See Blip_Synth for description
void volume( double v ) { synth.volume( v ); }
void volume_unit( double v ) { synth.volume_unit( v ); }
void treble_eq( const blip_eq_t& eq){ synth.treble_eq( eq ); }
Blip_Buffer* output() const { return synth.output(); }
void output( Blip_Buffer* b ) { synth.output( b ); if ( !b ) time_ = last_amp = 0; }
// Current time in frame
blip_time_t time() const { return time_; }
void time( blip_time_t t ) { time_ = t; }
// Current amplitude of wave
int amplitude() const { return last_amp; }
void amplitude( int );
// Move forward by 't' time units
void delay( blip_time_t t ) { time_ += t; }
// End time frame of specified duration. Localize time to new frame.
// If wave hadn't been run to end of frame, start it at beginning of new frame.
void end_frame( blip_time_t duration )
{
time_ -= duration;
if ( time_ < 0 )
time_ = 0;
}
};
// End of public interface
template<int quality,int range>
void Blip_Wave<quality,range>::amplitude( int amp ) {
int delta = amp - last_amp;
last_amp = amp;
synth.offset_inline( time_, delta );
}
template<int quality,int range>
inline void Blip_Synth<quality,range>::offset_resampled( blip_resampled_time_t time,
int delta, Blip_Buffer* blip_buf ) const
{
typedef blip_pair_t_ pair_t;
unsigned sample_index = (time >> BLIP_BUFFER_ACCURACY) & ~1;
assert(( "Blip_Synth/Blip_wave: Went past end of buffer",
sample_index < blip_buf->buffer_size_ ));
enum { const_offset = Blip_Buffer::widest_impulse_ / 2 - width / 2 };
pair_t* buf = (pair_t*) &blip_buf->buffer_ [const_offset + sample_index];
enum { shift = BLIP_BUFFER_ACCURACY - blip_res_bits_ };
enum { mask = res * 2 - 1 };
const pair_t* imp = &impulses [((time >> shift) & mask) * impulse_size];
pair_t offset = impulse.offset * delta;
if ( !fine_bits )
{
// normal mode
for ( int n = width / 4; n; --n )
{
pair_t t0 = buf [0] - offset;
pair_t t1 = buf [1] - offset;
t0 += imp [0] * delta;
t1 += imp [1] * delta;
imp += 2;
buf [0] = t0;
buf [1] = t1;
buf += 2;
}
}
else
{
// fine mode
enum { sub_range = 1 << fine_bits };
delta += sub_range / 2;
int delta2 = (delta & (sub_range - 1)) - sub_range / 2;
delta >>= fine_bits;
for ( int n = width / 4; n; --n )
{
pair_t t0 = buf [0] - offset;
pair_t t1 = buf [1] - offset;
t0 += imp [0] * delta2;
t0 += imp [1] * delta;
t1 += imp [2] * delta2;
t1 += imp [3] * delta;
imp += 4;
buf [0] = t0;
buf [1] = t1;
buf += 2;
}
}
}
template<int quality,int range>
void Blip_Synth<quality,range>::offset( blip_time_t time, int delta, Blip_Buffer* buf ) const {
offset_resampled( time * buf->factor_ + buf->offset_, delta, buf );
}
#endif

View File

@ -1,518 +0,0 @@
// Game_Music_Emu 0.3.0. http://www.slack.net/~ant/
#include "Effects_Buffer.h"
#include <string.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
typedef long fixed_t;
#define TO_FIXED( f ) fixed_t ((f) * (1L << 15) + 0.5)
#define FMUL( x, y ) (((x) * (y)) >> 15)
const unsigned echo_size = 4096;
const unsigned echo_mask = echo_size - 1;
BOOST_STATIC_ASSERT( (echo_size & echo_mask) == 0 ); // must be power of 2
const unsigned reverb_size = 8192 * 2;
const unsigned reverb_mask = reverb_size - 1;
BOOST_STATIC_ASSERT( (reverb_size & reverb_mask) == 0 ); // must be power of 2
Effects_Buffer::config_t::config_t()
{
pan_1 = -0.15f;
pan_2 = 0.15f;
reverb_delay = 88.0f;
reverb_level = 0.12f;
echo_delay = 61.0f;
echo_level = 0.10f;
delay_variance = 18.0f;
effects_enabled = false;
}
void Effects_Buffer::set_depth( double d )
{
float f = (float) d;
config_t c;
c.pan_1 = -0.6f * f;
c.pan_2 = 0.6f * f;
c.reverb_delay = 880 * 0.1f;
c.echo_delay = 610 * 0.1f;
if ( f > 0.5 )
f = 0.5; // TODO: more linear reduction of extreme reverb/echo
c.reverb_level = 0.5f * f;
c.echo_level = 0.30f * f;
c.delay_variance = 180 * 0.1f;
c.effects_enabled = (d > 0.0f);
config( c );
}
Effects_Buffer::Effects_Buffer( bool center_only ) : Multi_Buffer( 2 )
{
buf_count = center_only ? max_buf_count - 4 : max_buf_count;
echo_buf = NULL;
echo_pos = 0;
reverb_buf = NULL;
reverb_pos = 0;
stereo_remain = 0;
effect_remain = 0;
effects_enabled = false;
set_depth( 0 );
}
Effects_Buffer::~Effects_Buffer()
{
delete [] echo_buf;
delete [] reverb_buf;
}
blargg_err_t Effects_Buffer::set_sample_rate( long rate, int msec )
{
if ( !echo_buf )
{
echo_buf = BLARGG_NEW blip_sample_t [echo_size];
CHECK_ALLOC( echo_buf );
}
if ( !reverb_buf )
{
reverb_buf = BLARGG_NEW blip_sample_t [reverb_size];
CHECK_ALLOC( reverb_buf );
}
for ( int i = 0; i < buf_count; i++ )
RETURN_ERR( bufs [i].set_sample_rate( rate, msec ) );
config( config_ );
clear();
return Multi_Buffer::set_sample_rate( bufs [0].sample_rate(), bufs [0].length() );
}
void Effects_Buffer::clock_rate( long rate )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].clock_rate( rate );
}
void Effects_Buffer::bass_freq( int freq )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].bass_freq( freq );
}
void Effects_Buffer::clear()
{
stereo_remain = 0;
effect_remain = 0;
if ( echo_buf )
memset( echo_buf, 0, echo_size * sizeof *echo_buf );
if ( reverb_buf )
memset( reverb_buf, 0, reverb_size * sizeof *reverb_buf );
for ( int i = 0; i < buf_count; i++ )
bufs [i].clear();
}
inline int pin_range( int n, int max, int min = 0 )
{
if ( n < min )
return min;
if ( n > max )
return max;
return n;
}
void Effects_Buffer::config( const config_t& cfg )
{
channels_changed();
// clear echo and reverb buffers
if ( !config_.effects_enabled && cfg.effects_enabled && echo_buf )
{
memset( echo_buf, 0, echo_size * sizeof (blip_sample_t) );
memset( reverb_buf, 0, reverb_size * sizeof (blip_sample_t) );
}
config_ = cfg;
if ( config_.effects_enabled )
{
// convert to internal format
chans.pan_1_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_1 );
chans.pan_1_levels [1] = TO_FIXED( 2 ) - chans.pan_1_levels [0];
chans.pan_2_levels [0] = TO_FIXED( 1 ) - TO_FIXED( config_.pan_2 );
chans.pan_2_levels [1] = TO_FIXED( 2 ) - chans.pan_2_levels [0];
chans.reverb_level = TO_FIXED( config_.reverb_level );
chans.echo_level = TO_FIXED( config_.echo_level );
int delay_offset = int (1.0 / 2000 * config_.delay_variance * sample_rate());
int reverb_sample_delay = int (1.0 / 1000 * config_.reverb_delay * sample_rate());
chans.reverb_delay_l = pin_range( reverb_size -
(reverb_sample_delay - delay_offset) * 2, reverb_size - 2, 0 );
chans.reverb_delay_r = pin_range( reverb_size + 1 -
(reverb_sample_delay + delay_offset) * 2, reverb_size - 1, 1 );
int echo_sample_delay = int (1.0 / 1000 * config_.echo_delay * sample_rate());
chans.echo_delay_l = pin_range( echo_size - 1 - (echo_sample_delay - delay_offset),
echo_size - 1 );
chans.echo_delay_r = pin_range( echo_size - 1 - (echo_sample_delay + delay_offset),
echo_size - 1 );
// set up outputs
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
if ( i < 2 )
{
o.center = &bufs [i];
o.left = &bufs [3];
o.right = &bufs [4];
}
else
{
o.center = &bufs [2];
o.left = &bufs [5];
o.right = &bufs [6];
}
}
}
else
{
// set up outputs
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
o.center = &bufs [0];
o.left = &bufs [1];
o.right = &bufs [2];
}
}
if ( buf_count < max_buf_count )
{
for ( unsigned i = 0; i < chan_count; i++ )
{
channel_t& o = channels [i];
o.left = o.center;
o.right = o.center;
}
}
}
void Effects_Buffer::end_frame( blip_time_t clock_count, bool stereo )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].end_frame( clock_count );
if ( stereo && buf_count == max_buf_count )
stereo_remain = bufs [0].samples_avail() + bufs [0].output_latency();
if ( effects_enabled || config_.effects_enabled )
effect_remain = bufs [0].samples_avail() + bufs [0].output_latency();
effects_enabled = config_.effects_enabled;
}
long Effects_Buffer::samples_avail() const
{
return bufs [0].samples_avail() * 2;
}
long Effects_Buffer::read_samples( blip_sample_t* out, long total_samples )
{
require( total_samples % 2 == 0 ); // count must be even
long remain = bufs [0].samples_avail();
if ( remain > (total_samples >> 1) )
remain = (total_samples >> 1);
total_samples = remain;
while ( remain )
{
int active_bufs = buf_count;
long count = remain;
// optimizing mixing to skip any channels which had nothing added
if ( effect_remain )
{
if ( count > effect_remain )
count = effect_remain;
if ( stereo_remain )
{
mix_enhanced( out, count );
}
else
{
mix_mono_enhanced( out, count );
active_bufs = 3;
}
}
else if ( stereo_remain )
{
mix_stereo( out, count );
active_bufs = 3;
}
else
{
mix_mono( out, count );
active_bufs = 1;
}
out += count * 2;
remain -= count;
stereo_remain -= count;
if ( stereo_remain < 0 )
stereo_remain = 0;
effect_remain -= count;
if ( effect_remain < 0 )
effect_remain = 0;
for ( int i = 0; i < buf_count; i++ )
{
if ( i < active_bufs )
bufs [i].remove_samples( count );
else
bufs [i].remove_silence( count ); // keep time synchronized
}
}
return total_samples * 2;
}
void Effects_Buffer::mix_mono( blip_sample_t* out, long count )
{
Blip_Reader c;
int shift = c.begin( bufs [0] );
// unrolled loop
for ( long n = count >> 1; n--; )
{
long cs0 = c.read();
c.next( shift );
long cs1 = c.read();
c.next( shift );
if ( (BOOST::int16_t) cs0 != cs0 )
cs0 = 0x7FFF - (cs0 >> 24);
((BOOST::uint32_t*) out) [0] = ((BOOST::uint16_t) cs0) | (cs0 << 16);
if ( (BOOST::int16_t) cs1 != cs1 )
cs1 = 0x7FFF - (cs1 >> 24);
((BOOST::uint32_t*) out) [1] = ((BOOST::uint16_t) cs1) | (cs1 << 16);
out += 4;
}
if ( count & 1 )
{
int s = c.read();
c.next( shift );
out [0] = s;
out [1] = s;
if ( (BOOST::int16_t) s != s )
{
s = 0x7FFF - (s >> 24);
out [0] = s;
out [1] = s;
}
}
c.end( bufs [0] );
}
void Effects_Buffer::mix_stereo( blip_sample_t* out, long count )
{
Blip_Reader l; l.begin( bufs [1] );
Blip_Reader r; r.begin( bufs [2] );
Blip_Reader c;
int shift = c.begin( bufs [0] );
while ( count-- )
{
int cs = c.read();
c.next( shift );
int left = cs + l.read();
int right = cs + r.read();
l.next( shift );
r.next( shift );
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
c.end( bufs [0] );
r.end( bufs [2] );
l.end( bufs [1] );
}
void Effects_Buffer::mix_mono_enhanced( blip_sample_t* out, long count )
{
Blip_Reader sq1; sq1.begin( bufs [0] );
Blip_Reader sq2; sq2.begin( bufs [1] );
Blip_Reader center;
int shift = center.begin( bufs [2] );
int echo_pos = this->echo_pos;
int reverb_pos = this->reverb_pos;
while ( count-- )
{
int sum1_s = sq1.read();
int sum2_s = sq2.read();
sq1.next( shift );
sq2.next( shift );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = center.read();
center.next( shift );
int left = new_reverb_l + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
this->reverb_pos = reverb_pos;
this->echo_pos = echo_pos;
sq1.end( bufs [0] );
sq2.end( bufs [1] );
center.end( bufs [2] );
}
void Effects_Buffer::mix_enhanced( blip_sample_t* out, long count )
{
Blip_Reader l1; l1.begin( bufs [3] );
Blip_Reader r1; r1.begin( bufs [4] );
Blip_Reader l2; l2.begin( bufs [5] );
Blip_Reader r2; r2.begin( bufs [6] );
Blip_Reader sq1; sq1.begin( bufs [0] );
Blip_Reader sq2; sq2.begin( bufs [1] );
Blip_Reader center;
int shift = center.begin( bufs [2] );
int echo_pos = this->echo_pos;
int reverb_pos = this->reverb_pos;
while ( count-- )
{
int sum1_s = sq1.read();
int sum2_s = sq2.read();
sq1.next( shift );
sq2.next( shift );
int new_reverb_l = FMUL( sum1_s, chans.pan_1_levels [0] ) +
FMUL( sum2_s, chans.pan_2_levels [0] ) + l1.read() +
reverb_buf [(reverb_pos + chans.reverb_delay_l) & reverb_mask];
int new_reverb_r = FMUL( sum1_s, chans.pan_1_levels [1] ) +
FMUL( sum2_s, chans.pan_2_levels [1] ) + r1.read() +
reverb_buf [(reverb_pos + chans.reverb_delay_r) & reverb_mask];
l1.next( shift );
r1.next( shift );
fixed_t reverb_level = chans.reverb_level;
reverb_buf [reverb_pos] = FMUL( new_reverb_l, reverb_level );
reverb_buf [reverb_pos + 1] = FMUL( new_reverb_r, reverb_level );
reverb_pos = (reverb_pos + 2) & reverb_mask;
int sum3_s = center.read();
center.next( shift );
int left = new_reverb_l + sum3_s + l2.read() + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_l) & echo_mask] );
int right = new_reverb_r + sum3_s + r2.read() + FMUL( chans.echo_level,
echo_buf [(echo_pos + chans.echo_delay_r) & echo_mask] );
l2.next( shift );
r2.next( shift );
echo_buf [echo_pos] = sum3_s;
echo_pos = (echo_pos + 1) & echo_mask;
if ( (BOOST::int16_t) left != left )
left = 0x7FFF - (left >> 24);
out [0] = left;
out [1] = right;
out += 2;
if ( (BOOST::int16_t) right != right )
out [-1] = 0x7FFF - (right >> 24);
}
this->reverb_pos = reverb_pos;
this->echo_pos = echo_pos;
sq1.end( bufs [0] );
sq2.end( bufs [1] );
center.end( bufs [2] );
l1.end( bufs [3] );
r1.end( bufs [4] );
l2.end( bufs [5] );
r2.end( bufs [6] );
}

View File

@ -1,93 +0,0 @@
// Multi-channel effects buffer with panning, echo and reverb
// Game_Music_Emu 0.3.0
#ifndef EFFECTS_BUFFER_H
#define EFFECTS_BUFFER_H
#include "Multi_Buffer.h"
// Effects_Buffer uses several buffers and outputs stereo sample pairs.
class Effects_Buffer : public Multi_Buffer {
public:
// If center_only is true, only center buffers are created and
// less memory is used.
Effects_Buffer( bool center_only = false );
// Channel Effect Center Pan
// ---------------------------------
// 0,5 reverb pan_1
// 1,6 reverb pan_2
// 2,7 echo -
// 3 echo -
// 4 echo -
// Channel configuration
struct config_t {
double pan_1; // -1.0 = left, 0.0 = center, 1.0 = right
double pan_2;
double echo_delay; // msec
double echo_level; // 0.0 to 1.0
double reverb_delay; // msec
double delay_variance; // difference between left/right delays (msec)
double reverb_level; // 0.0 to 1.0
bool effects_enabled; // if false, use optimized simple mixer
config_t();
};
// Set configuration of buffer
virtual void config( const config_t& );
void set_depth( double );
public:
~Effects_Buffer();
blargg_err_t set_sample_rate( long samples_per_sec, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool was_stereo = true );
long read_samples( blip_sample_t*, long );
long samples_avail() const;
private:
typedef long fixed_t;
enum { max_buf_count = 7 };
Blip_Buffer bufs [max_buf_count];
enum { chan_count = 5 };
channel_t channels [chan_count];
config_t config_;
long stereo_remain;
long effect_remain;
int buf_count;
bool effects_enabled;
blip_sample_t* reverb_buf;
blip_sample_t* echo_buf;
int reverb_pos;
int echo_pos;
struct {
fixed_t pan_1_levels [2];
fixed_t pan_2_levels [2];
int echo_delay_l;
int echo_delay_r;
fixed_t echo_level;
int reverb_delay_l;
int reverb_delay_r;
fixed_t reverb_level;
} chans;
void mix_mono( blip_sample_t*, long );
void mix_stereo( blip_sample_t*, long );
void mix_enhanced( blip_sample_t*, long );
void mix_mono_enhanced( blip_sample_t*, long );
};
inline Effects_Buffer::channel_t Effects_Buffer::channel( int i ) {
return channels [i % chan_count];
}
#endif

View File

@ -1,213 +0,0 @@
// Sunsoft FME-7 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Mapper.h"
#include "blargg_endian.h"
#include "Nes_Fme7_Apu.h"
/* Copyright (C) 2005 Chris Moeller */
/* Copyright (C) 2005-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct fme7_state_t
{
// first 16 bytes in register order
BOOST::uint8_t regs [13];
BOOST::uint8_t irq_mode;
BOOST::uint16_t irq_count;
BOOST::uint8_t command;
BOOST::uint8_t irq_pending;
fme7_apu_state_t sound_state; // only used when saving/restoring state
void swap();
};
BOOST_STATIC_ASSERT( sizeof (fme7_state_t) == 18 + sizeof (fme7_apu_state_t) );
void fme7_state_t::swap()
{
set_le16( &irq_count, irq_count );
for ( unsigned i = 0; i < sizeof sound_state.delays / sizeof sound_state.delays [0]; i++ )
set_le16( &sound_state.delays [i], sound_state.delays [i] );
}
class Mapper_Fme7 : public Nes_Mapper, fme7_state_t {
nes_time_t last_time;
Nes_Fme7_Apu sound;
public:
Mapper_Fme7()
{
fme7_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
virtual void reset_state()
{
regs [8] = 0x40; // wram disabled
irq_count = 0xFFFF;
sound.reset();
}
virtual void save_state( mapper_state_t& out )
{
sound.save_state( &sound_state );
fme7_state_t::swap();
Nes_Mapper::save_state( out );
fme7_state_t::swap(); // to do: kind of hacky to swap in place
}
virtual void read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
fme7_state_t::swap();
sound.load_state( sound_state );
}
void write_register( int index, int data );
virtual void apply_mapping()
{
last_time = 0;
for ( int i = 0; i < (int) sizeof regs; i++ )
write_register( i, regs [i] );
}
virtual void run_until( nes_time_t end_time )
{
int new_count = irq_count - (end_time - last_time);
last_time = end_time;
if ( new_count <= 0 && (irq_mode & 0x81) == 0x81 )
irq_pending = true;
if ( irq_mode & 0x01 )
irq_count = new_count & 0xFFFF;
}
virtual nes_time_t next_irq( nes_time_t )
{
if ( irq_pending )
return 0;
if ( (irq_mode & 0x81) == 0x81 )
return last_time + irq_count + 1;
return no_irq;
}
virtual void end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
sound.end_frame( end_time );
}
void write_irq( nes_time_t, int index, int data );
virtual void write( nes_time_t time, nes_addr_t addr, int data )
{
switch ( addr & 0xE000 )
{
case 0x8000:
command = data & 0x0F;
break;
case 0xA000:
if ( command < 0x0D )
write_register( command, data );
else
write_irq( time, command, data );
break;
case 0xC000:
sound.write_latch( data );
break;
case 0xE000:
sound.write_data( time, data );
break;
}
}
};
void Mapper_Fme7::write_irq( nes_time_t time, int index, int data )
{
run_until( time );
switch ( index )
{
case 0x0D:
irq_mode = data;
irq_pending = false;
irq_changed();
break;
case 0x0E:
irq_count = (irq_count & 0xFF00) | data;
break;
case 0x0F:
irq_count = data << 8 | (irq_count & 0xFF);
break;
}
}
void Mapper_Fme7::write_register( int index, int data )
{
regs [index] = data;
int prg_bank = index - 0x09;
if ( (unsigned) prg_bank < 3 ) // most common
{
set_prg_bank( 0x8000 | (prg_bank << bank_8k), bank_8k, data );
}
else if ( index == 0x08 )
{
enable_sram( (data & 0xC0) == 0xC0 );
if ( !(data & 0xC0) )
set_prg_bank( 0x6000, bank_8k, data & 0x3F );
}
else if ( index < 0x08 )
{
set_chr_bank( index * 0x400, bank_1k, data );
}
else
{
assert( index == 0x0C );
if ( data & 2 )
mirror_single( data & 1 );
else if ( data & 1 )
mirror_horiz();
else
mirror_vert();
}
}
void register_fme7_mapper();
void register_fme7_mapper()
{
register_mapper<Mapper_Fme7>( 69 );
}

View File

@ -1,155 +0,0 @@
// NES MMC5 mapper, currently only tailored for Castlevania 3 (U)
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include "Nes_Core.h"
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct mmc5_state_t
{
enum { reg_count = 0x30 };
byte regs [0x30];
byte irq_enabled;
};
// to do: finalize state format
BOOST_STATIC_ASSERT( sizeof (mmc5_state_t) == 0x31 );
class Mapper_Mmc5 : public Nes_Mapper, mmc5_state_t {
nes_time_t irq_time;
public:
Mapper_Mmc5()
{
mmc5_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
irq_time = no_irq;
regs [0x00] = 2;
regs [0x01] = 3;
regs [0x14] = 0x7f;
regs [0x15] = 0x7f;
regs [0x16] = 0x7f;
regs [0x17] = 0x7f;
}
virtual void read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
irq_time = no_irq;
}
enum { regs_addr = 0x5100 };
virtual void apply_mapping();
virtual nes_time_t next_irq( nes_time_t )
{
if ( irq_enabled & 0x80 )
return irq_time;
return no_irq;
}
virtual bool write_intercepted( nes_time_t time, nes_addr_t addr, int data )
{
int reg = addr - regs_addr;
if ( (unsigned) reg < reg_count )
{
regs [reg] = data;
switch ( reg )
{
case 0x05:
mirror_manual( data & 3, data >> 2 & 3,
data >> 4 & 3, data >> 6 & 3 );
break;
case 0x15:
set_prg_bank( 0x8000, bank_16k, data >> 1 & 0x3f );
break;
case 0x16:
set_prg_bank( 0xC000, bank_8k, data & 0x7f );
break;
case 0x17:
set_prg_bank( 0xE000, bank_8k, data & 0x7f );
break;
case 0x20:
case 0x21:
case 0x22:
case 0x23:
case 0x28:
case 0x29:
case 0x2a:
case 0x2b:
set_chr_bank( ((reg >> 1 & 4) + (reg & 3)) * 0x400, bank_1k, data );
break;
}
check( (regs [0x00] & 3) == 2 );
check( (regs [0x01] & 3) == 3 );
}
else if ( addr == 0x5203 )
{
irq_time = no_irq;
if ( data && data < 240 )
{
irq_time = (341 * 21 + 128 + (data * 341)) / 3;
if ( irq_time < time )
irq_time = no_irq;
}
irq_changed();
}
else if ( addr == 0x5204 )
{
irq_enabled = data;
irq_changed();
}
else
{
return false;
}
return true;
}
virtual void write( nes_time_t, nes_addr_t, int ) { }
};
void Mapper_Mmc5::apply_mapping()
{
static unsigned char list [] = {
0x05, 0x15, 0x16, 0x17,
0x20, 0x21, 0x22, 0x23,
0x28, 0x29, 0x2a, 0x2b
};
for ( int i = 0; i < (int) sizeof list; i++ )
write_intercepted( 0, regs_addr + list [i], regs [list [i]] );
intercept_writes( 0x5100, 0x200 );
}
void register_mmc5_mapper();
void register_mmc5_mapper()
{
register_mapper<Mapper_Mmc5>( 5 );
}

View File

@ -1,216 +0,0 @@
// Namco 106 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include "Nes_Namco_Apu.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// to do: CHR mapping and nametable handling needs work
struct namco106_state_t
{
BOOST::uint8_t regs [16];
BOOST::uint16_t irq_ctr;
BOOST::uint8_t irq_pending;
BOOST::uint8_t unused1 [1];
};
BOOST_STATIC_ASSERT( sizeof (namco106_state_t) == 20 );
class Mapper_Namco106 : public Nes_Mapper, namco106_state_t {
Nes_Namco_Apu sound;
nes_time_t last_time;
public:
Mapper_Namco106()
{
namco106_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
void reset_state()
{
regs [12] = 0;
regs [13] = 1;
regs [14] = last_bank - 1;
sound.reset();
}
virtual void apply_mapping()
{
last_time = 0;
enable_sram();
intercept_writes( 0x4800, 1 );
intercept_reads ( 0x4800, 1 );
intercept_writes( 0x5000, 0x1000 );
intercept_reads ( 0x5000, 0x1000 );
for ( int i = 0; i < (int) sizeof regs; i++ )
write( 0, 0x8000 + i * 0x800, regs [i] );
}
virtual nes_time_t next_irq( nes_time_t time )
{
if ( irq_pending )
return time;
if ( !(irq_ctr & 0x8000) )
return no_irq;
return 0x10000 - irq_ctr + last_time;
}
virtual void run_until( nes_time_t end_time )
{
long count = irq_ctr + (end_time - last_time);
if ( irq_ctr & 0x8000 )
{
if ( count > 0xffff )
{
count = 0xffff;
irq_pending = true;
}
}
else if ( count > 0x7fff )
{
count = 0x7fff;
}
irq_ctr = count;
last_time = end_time;
}
virtual void end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until( end_time );
last_time -= end_time;
assert( last_time >= 0 );
sound.end_frame( end_time );
}
void write_bank( nes_addr_t, int data );
void write_irq( nes_time_t, nes_addr_t, int data );
virtual int read( nes_time_t time, nes_addr_t addr )
{
if ( addr == 0x4800 )
return sound.read_data();
if ( addr == 0x5000 )
{
irq_pending = false;
return irq_ctr & 0xff;
}
if ( addr == 0x5800 )
{
irq_pending = false;
return irq_ctr >> 8;
}
return Nes_Mapper::read( time, addr );
}
virtual bool write_intercepted( nes_time_t time, nes_addr_t addr, int data )
{
if ( addr == 0x4800 )
{
sound.write_data( time, data );
}
else if ( addr == 0x5000 )
{
irq_ctr = (irq_ctr & 0xff00) | data;
irq_pending = false;
irq_changed();
}
else if ( addr == 0x5800 )
{
irq_ctr = (data << 8) | (irq_ctr & 0xff);
irq_pending = false;
irq_changed();
}
else
{
return false;
}
return true;
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
int reg = addr >> 11 & 0x0F;
regs [reg] = data;
int prg_bank = reg - 0x0c;
if ( (unsigned) prg_bank < 3 )
{
if ( prg_bank == 0 && (data & 0x40) )
mirror_vert();
set_prg_bank( 0x8000 | (prg_bank << bank_8k), bank_8k, data & 0x3F );
}
else if ( reg < 8 )
{
set_chr_bank( reg * 0x400, bank_1k, data );
}
else if ( reg < 0x0c )
{
mirror_manual( regs [8] & 1, regs [9] & 1, regs [10] & 1, regs [11] & 1 );
}
else
{
sound.write_addr( data );
}
}
};
void register_namco106_mapper();
void register_namco106_mapper()
{
register_mapper<Mapper_Namco106>( 19 );
}
// in the most obscure place in case crappy linker is used
void register_optional_mappers();
void register_optional_mappers()
{
extern void register_misc_mappers();
register_misc_mappers();
extern void register_vrc6_mapper();
register_vrc6_mapper();
//extern void register_mmc5_mapper();
//register_mmc5_mapper();
extern void register_fme7_mapper();
register_fme7_mapper();
extern void register_namco106_mapper();
register_namco106_mapper();
extern void register_mmc24();
register_mmc24();
}

View File

@ -1,262 +0,0 @@
// Konami VRC6 mapper
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Vrc6_Apu.h"
#include "blargg_endian.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
struct vrc6_state_t
{
// written registers
byte prg_16k_bank;
// could move sound regs int and out of vrc6_apu_state_t for state saving,
// allowing them to be stored here
byte old_sound_regs [3] [3]; // to do: eliminate this duplicate
byte mirroring;
byte prg_8k_bank;
byte chr_banks [8];
byte irq_reload;
byte irq_mode;
// internal state
BOOST::uint16_t next_time;
byte irq_pending;
byte unused;
vrc6_apu_state_t sound_state;
void swap();
};
BOOST_STATIC_ASSERT( sizeof (vrc6_state_t) == 26 + sizeof (vrc6_apu_state_t) );
void vrc6_state_t::swap()
{
set_le16( &next_time, next_time );
for ( unsigned i = 0; i < sizeof sound_state.delays / sizeof sound_state.delays [0]; i++ )
set_le16( &sound_state.delays [i], sound_state.delays [i] );
}
class Mapper_Vrc6 : public Nes_Mapper, vrc6_state_t {
int swap_mask;
Nes_Vrc6_Apu sound;
enum { timer_period = 113 * 4 + 3 };
public:
Mapper_Vrc6( int sm )
{
swap_mask = sm;
vrc6_state_t* state = this;
register_state( state, sizeof *state );
}
virtual int channel_count() const { return sound.osc_count; }
virtual void set_channel_buf( int i, Blip_Buffer* b ) { sound.osc_output( i, b ); }
virtual void set_treble( blip_eq_t const& eq ) { sound.treble_eq( eq ); }
virtual void reset_state()
{
prg_8k_bank = last_bank - 1;
sound.reset();
}
virtual void save_state( mapper_state_t& out )
{
sound.save_state( &sound_state );
vrc6_state_t::swap();
Nes_Mapper::save_state( out );
vrc6_state_t::swap(); // to do: kind of hacky to swap in place
}
virtual void read_state( mapper_state_t const& in );
virtual void apply_mapping()
{
enable_sram();
set_prg_bank( 0x8000, bank_16k, prg_16k_bank );
set_prg_bank( 0xC000, bank_8k, prg_8k_bank );
for ( int i = 0; i < (int) sizeof chr_banks; i++ )
set_chr_bank( i * 0x400, bank_1k, chr_banks [i] );
write_bank( 0xb003, mirroring );
}
void reset_timer( nes_time_t present )
{
next_time = present + unsigned ((0x100 - irq_reload) * timer_period) / 4;
}
virtual void run_until( nes_time_t end_time )
{
if ( irq_mode & 2 )
{
while ( next_time < end_time )
{
//dprintf( "%d timer expired\n", next_time );
irq_pending = true;
reset_timer( next_time );
}
}
}
virtual void end_frame( nes_time_t end_time )
{
run_until( end_time );
// to do: next_time might go negative if IRQ is disabled
next_time -= end_time;
sound.end_frame( end_time );
}
virtual nes_time_t next_irq( nes_time_t present )
{
if ( irq_pending )
return present;
if ( irq_mode & 2 )
return next_time + 1;
return no_irq;
}
void write_bank( nes_addr_t, int data );
void write_irq( nes_time_t, nes_addr_t, int data );
virtual void write( nes_time_t time, nes_addr_t addr, int data )
{
int osc = unsigned (addr - sound.base_addr) / sound.addr_step;
if ( (addr + 1) & 2 ) // optionally swap 1 and 2
addr ^= swap_mask;
int reg = addr & 3;
if ( (unsigned) osc < sound.osc_count && reg < sound.reg_count )
sound.write_osc( time, osc, reg, data );
else if ( addr < 0xf000 )
write_bank( addr, data );
else
write_irq( time, addr, data );
}
};
void Mapper_Vrc6::read_state( mapper_state_t const& in )
{
Nes_Mapper::read_state( in );
vrc6_state_t::swap();
// to do: eliminate when format is updated
// old-style registers
static char zero [sizeof old_sound_regs] = { 0 };
if ( 0 != memcmp( old_sound_regs, zero, sizeof zero ) )
{
dprintf( "Using old VRC6 sound register format\n" );
memcpy( sound_state.regs, old_sound_regs, sizeof sound_state.regs );
memset( old_sound_regs, 0, sizeof old_sound_regs );
}
sound.load_state( sound_state );
}
void Mapper_Vrc6::write_irq( nes_time_t time, nes_addr_t addr, int data )
{
// IRQ
run_until( time );
//dprintf( "%d VRC6 IRQ [%d] = %02X\n", time, addr & 3, data );
switch ( addr & 3 )
{
case 0:
irq_reload = data;
break;
case 1:
irq_pending = false;
irq_mode = data;
if ( data & 2 )
reset_timer( time );
break;
case 2:
irq_pending = false;
irq_mode = (irq_mode & ~2) | ((irq_mode << 1) & 2);
break;
}
irq_changed();
}
void Mapper_Vrc6::write_bank( nes_addr_t addr, int data )
{
switch ( addr & 0xf003 )
{
case 0x8000:
prg_16k_bank = data;
set_prg_bank( 0x8000, bank_16k, data );
break;
case 0xb003: {
mirroring = data;
//dprintf( "Change mirroring %d\n", data );
// emu()->enable_sram( data & 0x80 ); // to do: needed?
int page = data >> 5 & 1;
if ( data & 8 )
mirror_single( ((data >> 2) ^ page) & 1 );
else if ( data & 4 )
mirror_horiz( page );
else
mirror_vert( page );
break;
}
case 0xc000:
prg_8k_bank = data;
set_prg_bank( 0xC000, bank_8k, data );
break;
default:
int bank = (addr >> 11 & 4) | (addr & 3);
if ( addr >= 0xd000 )
{
//dprintf( "change chr bank %d\n", bank );
chr_banks [bank] = data;
set_chr_bank( bank * 0x400, bank_1k, data );
}
break;
}
}
static Nes_Mapper* make_vrc6a()
{
return BLARGG_NEW Mapper_Vrc6( 0 );
}
static Nes_Mapper* make_vrc6b()
{
return BLARGG_NEW Mapper_Vrc6( 3 );
}
void register_vrc6_mapper();
void register_vrc6_mapper()
{
Nes_Mapper::register_mapper( 24, make_vrc6a );
Nes_Mapper::register_mapper( 26, make_vrc6b );
}

View File

@ -1,117 +0,0 @@
#include <cstring>
#include "Nes_Mapper.h"
#include "blargg_source.h"
#include "Mmc24.h"
class MMC2: public Nes_Mapper
{
byte regs[6]; // A,B,C,D,E,F
void mirror(byte val)
{
if (val & 1)
mirror_horiz();
else
mirror_vert();
}
public:
MMC2()
{
register_state(regs, sizeof(regs));
}
virtual void reset_state()
{
std::memset(regs, 0, sizeof(regs));
}
virtual void apply_mapping()
{
mirror(regs[5]);
set_prg_bank(0x8000, bank_8k, regs[0]);
set_prg_bank(0xa000, bank_8k, 13);
set_prg_bank(0xc000, bank_8k, 14);
set_prg_bank(0xe000, bank_8k, 15);
set_chr_bank(0x0000, bank_4k, regs[1]);
set_chr_bank(0x1000, bank_4k, regs[3]);
set_chr_bank_ex(0x0000, bank_4k, regs[2]);
set_chr_bank_ex(0x1000, bank_4k, regs[4]);
}
virtual void write(nes_time_t, nes_addr_t addr, int data)
{
switch (addr >> 12)
{
case 0xa: regs[0] = data; set_prg_bank(0x8000, bank_8k, data); break;
case 0xb: regs[1] = data; set_chr_bank(0x0000, bank_4k, data); break;
case 0xc: regs[2] = data; set_chr_bank_ex(0x0000, bank_4k, data); break;
case 0xd: regs[3] = data; set_chr_bank(0x1000, bank_4k, data); break;
case 0xe: regs[4] = data; set_chr_bank_ex(0x1000, bank_4k, data); break;
case 0xf: regs[5] = data; mirror(data); break;
}
}
};
class MMC4: public Nes_Mapper
{
byte regs[6]; // A,B,C,D,E,F
void mirror(byte val)
{
if (val & 1)
mirror_horiz();
else
mirror_vert();
}
public:
MMC4()
{
register_state(regs, sizeof(regs));
}
virtual void reset_state()
{
std::memset(regs, 0, sizeof(regs));
}
virtual void apply_mapping()
{
enable_sram();
mirror(regs[5]);
set_prg_bank(0x8000, bank_16k, regs[0]);
set_chr_bank(0x0000, bank_4k, regs[1]);
set_chr_bank(0x1000, bank_4k, regs[3]);
set_chr_bank_ex(0x0000, bank_4k, regs[2]);
set_chr_bank_ex(0x1000, bank_4k, regs[4]);
}
virtual void write(nes_time_t, nes_addr_t addr, int data)
{
switch (addr >> 12)
{
case 0xa: regs[0] = data; set_prg_bank(0x8000, bank_16k, data); break;
case 0xb: regs[1] = data; set_chr_bank(0x0000, bank_4k, data); break;
case 0xc: regs[2] = data; set_chr_bank_ex(0x0000, bank_4k, data); break;
case 0xd: regs[3] = data; set_chr_bank(0x1000, bank_4k, data); break;
case 0xe: regs[4] = data; set_chr_bank_ex(0x1000, bank_4k, data); break;
case 0xf: regs[5] = data; mirror(data); break;
}
}
};
void register_mmc24()
{
register_mapper<MMC2>(9);
register_mapper<MMC4>(10);
}

View File

@ -1,7 +0,0 @@
#ifndef MMC24_H
#define MMC24_H
void register_mmc24();
#endif

View File

@ -1,213 +0,0 @@
// Blip_Buffer 0.4.0. http://www.slack.net/~ant/
#include "Multi_Buffer.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Multi_Buffer::Multi_Buffer( int spf ) : samples_per_frame_( spf )
{
length_ = 0;
sample_rate_ = 0;
channels_changed_count_ = 1;
}
blargg_err_t Multi_Buffer::set_channel_count( int )
{
return 0;
}
Mono_Buffer::Mono_Buffer() : Multi_Buffer( 1 )
{
}
Mono_Buffer::~Mono_Buffer()
{
}
blargg_err_t Mono_Buffer::set_sample_rate( long rate, int msec )
{
RETURN_ERR( buf.set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( buf.sample_rate(), buf.length() );
}
// Silent_Buffer
Silent_Buffer::Silent_Buffer() : Multi_Buffer( 1 ) // 0 channels would probably confuse
{
chan.left = NULL;
chan.center = NULL;
chan.right = NULL;
}
// Mono_Buffer
Mono_Buffer::channel_t Mono_Buffer::channel( int )
{
channel_t ch;
ch.center = &buf;
ch.left = &buf;
ch.right = &buf;
return ch;
}
void Mono_Buffer::end_frame( blip_time_t t, bool )
{
buf.end_frame( t );
}
// Stereo_Buffer
Stereo_Buffer::Stereo_Buffer() : Multi_Buffer( 2 )
{
chan.center = &bufs [0];
chan.left = &bufs [1];
chan.right = &bufs [2];
}
Stereo_Buffer::~Stereo_Buffer()
{
}
blargg_err_t Stereo_Buffer::set_sample_rate( long rate, int msec )
{
for ( int i = 0; i < buf_count; i++ )
RETURN_ERR( bufs [i].set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( bufs [0].sample_rate(), bufs [0].length() );
}
void Stereo_Buffer::clock_rate( long rate )
{
for ( int i = 0; i < buf_count; i++ )
bufs [i].clock_rate( rate );
}
void Stereo_Buffer::bass_freq( int bass )
{
for ( unsigned i = 0; i < buf_count; i++ )
bufs [i].bass_freq( bass );
}
void Stereo_Buffer::clear()
{
stereo_added = false;
was_stereo = false;
for ( int i = 0; i < buf_count; i++ )
bufs [i].clear();
}
void Stereo_Buffer::end_frame( blip_time_t clock_count, bool stereo )
{
for ( unsigned i = 0; i < buf_count; i++ )
bufs [i].end_frame( clock_count );
stereo_added |= stereo;
}
long Stereo_Buffer::read_samples( blip_sample_t* out, long count )
{
require( !(count & 1) ); // count must be even
count = (unsigned) count / 2;
long avail = bufs [0].samples_avail();
if ( count > avail )
count = avail;
if ( count )
{
if ( stereo_added || was_stereo )
{
mix_stereo( out, count );
bufs [0].remove_samples( count );
bufs [1].remove_samples( count );
bufs [2].remove_samples( count );
}
else
{
mix_mono( out, count );
bufs [0].remove_samples( count );
bufs [1].remove_silence( count );
bufs [2].remove_silence( count );
}
// to do: this might miss opportunities for optimization
if ( !bufs [0].samples_avail() ) {
was_stereo = stereo_added;
stereo_added = false;
}
}
return count * 2;
}
void Stereo_Buffer::mix_stereo( blip_sample_t* out, long count )
{
Blip_Reader left;
Blip_Reader right;
Blip_Reader center;
left.begin( bufs [1] );
right.begin( bufs [2] );
int bass = center.begin( bufs [0] );
while ( count-- )
{
int c = center.read();
long l = c + left.read();
long r = c + right.read();
center.next( bass );
out [0] = l;
out [1] = r;
out += 2;
if ( (BOOST::int16_t) l != l )
out [-2] = 0x7FFF - (l >> 24);
left.next( bass );
right.next( bass );
if ( (BOOST::int16_t) r != r )
out [-1] = 0x7FFF - (r >> 24);
}
center.end( bufs [0] );
right.end( bufs [2] );
left.end( bufs [1] );
}
void Stereo_Buffer::mix_mono( blip_sample_t* out, long count )
{
Blip_Reader in;
int bass = in.begin( bufs [0] );
while ( count-- )
{
long s = in.read();
in.next( bass );
out [0] = s;
out [1] = s;
out += 2;
if ( (BOOST::int16_t) s != s ) {
s = 0x7FFF - (s >> 24);
out [-2] = s;
out [-1] = s;
}
}
in.end( bufs [0] );
}

View File

@ -1,175 +0,0 @@
// Multi-channel sound buffer interface, and basic mono and stereo buffers
// Blip_Buffer 0.4.0
#ifndef MULTI_BUFFER_H
#define MULTI_BUFFER_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
// Interface to one or more Blip_Buffers mapped to one or more channels
// consisting of left, center, and right buffers.
class Multi_Buffer {
public:
Multi_Buffer( int samples_per_frame );
virtual ~Multi_Buffer() { }
// Set the number of channels available
virtual blargg_err_t set_channel_count( int );
// Get indexed channel, from 0 to channel count - 1
struct channel_t {
Blip_Buffer* center;
Blip_Buffer* left;
Blip_Buffer* right;
};
virtual channel_t channel( int index ) = 0;
// See Blip_Buffer.h
virtual blargg_err_t set_sample_rate( long rate, int msec = blip_default_length ) = 0;
virtual void clock_rate( long ) = 0;
virtual void bass_freq( int ) = 0;
virtual void clear() = 0;
long sample_rate() const;
// Length of buffer, in milliseconds
int length() const;
// See Blip_Buffer.h. For optimal operation, pass false for 'added_stereo'
// if nothing was added to the left and right buffers of any channel for
// this time frame.
virtual void end_frame( blip_time_t, bool added_stereo = true ) = 0;
// Number of samples per output frame (1 = mono, 2 = stereo)
int samples_per_frame() const;
// Count of changes to channel configuration. Incremented whenever
// a change is made to any of the Blip_Buffers for any channel.
unsigned channels_changed_count() { return channels_changed_count_; }
// See Blip_Buffer.h
virtual long read_samples( blip_sample_t*, long ) = 0;
virtual long samples_avail() const = 0;
protected:
void channels_changed() { channels_changed_count_++; }
private:
// noncopyable
Multi_Buffer( const Multi_Buffer& );
Multi_Buffer& operator = ( const Multi_Buffer& );
unsigned channels_changed_count_;
long sample_rate_;
int length_;
int const samples_per_frame_;
};
// Uses a single buffer and outputs mono samples.
class Mono_Buffer : public Multi_Buffer {
Blip_Buffer buf;
public:
Mono_Buffer();
~Mono_Buffer();
// Buffer used for all channels
Blip_Buffer* center() { return &buf; }
// See Multi_Buffer
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool unused = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
};
// Uses three buffers (one for center) and outputs stereo sample pairs.
class Stereo_Buffer : public Multi_Buffer {
public:
Stereo_Buffer();
~Stereo_Buffer();
// Buffers used for all channels
Blip_Buffer* center() { return &bufs [0]; }
Blip_Buffer* left() { return &bufs [1]; }
Blip_Buffer* right() { return &bufs [2]; }
// See Multi_Buffer
blargg_err_t set_sample_rate( long, int msec = blip_default_length );
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int index );
void end_frame( blip_time_t, bool added_stereo = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
private:
enum { buf_count = 3 };
Blip_Buffer bufs [buf_count];
channel_t chan;
bool stereo_added;
bool was_stereo;
void mix_stereo( blip_sample_t*, long );
void mix_mono( blip_sample_t*, long );
};
// Silent_Buffer generates no samples, useful where no sound is wanted
class Silent_Buffer : public Multi_Buffer {
channel_t chan;
public:
Silent_Buffer();
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void clock_rate( long ) { }
void bass_freq( int ) { }
void clear() { }
channel_t channel( int ) { return chan; }
void end_frame( blip_time_t, bool unused = true ) { }
long samples_avail() const { return 0; }
long read_samples( blip_sample_t*, long ) { return 0; }
};
// End of public interface
inline blargg_err_t Multi_Buffer::set_sample_rate( long rate, int msec )
{
sample_rate_ = rate;
length_ = msec;
return 0;
}
inline blargg_err_t Silent_Buffer::set_sample_rate( long rate, int msec )
{
return Multi_Buffer::set_sample_rate( rate, msec );
}
inline int Multi_Buffer::samples_per_frame() const { return samples_per_frame_; }
inline long Stereo_Buffer::samples_avail() const { return bufs [0].samples_avail() * 2; }
inline Stereo_Buffer::channel_t Stereo_Buffer::channel( int ) { return chan; }
inline long Multi_Buffer::sample_rate() const { return sample_rate_; }
inline int Multi_Buffer::length() const { return length_; }
inline void Mono_Buffer::clock_rate( long rate ) { buf.clock_rate( rate ); }
inline void Mono_Buffer::clear() { buf.clear(); }
inline void Mono_Buffer::bass_freq( int freq ) { buf.bass_freq( freq ); }
inline long Mono_Buffer::read_samples( blip_sample_t* p, long s ) { return buf.read_samples( p, s ); }
inline long Mono_Buffer::samples_avail() const { return buf.samples_avail(); }
#endif

View File

@ -1,380 +0,0 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const amp_range = 15;
Nes_Apu::Nes_Apu() :
square1( &square_synth ),
square2( &square_synth )
{
dmc.apu = this;
dmc.prg_reader = NULL;
irq_notifier_ = NULL;
oscs [0] = &square1;
oscs [1] = &square2;
oscs [2] = &triangle;
oscs [3] = &noise;
oscs [4] = &dmc;
output( NULL );
volume( 1.0 );
reset( false );
}
Nes_Apu::~Nes_Apu()
{
}
void Nes_Apu::treble_eq( const blip_eq_t& eq )
{
square_synth.treble_eq( eq );
triangle.synth.treble_eq( eq );
noise.synth.treble_eq( eq );
dmc.synth.treble_eq( eq );
}
void Nes_Apu::enable_nonlinear( double v )
{
dmc.nonlinear = true;
square_synth.volume( 1.3 * 0.25751258 / 0.742467605 * 0.25 / amp_range * v );
const double tnd = 0.48 / 202 * nonlinear_tnd_gain();
triangle.synth.volume( 3.0 * tnd );
noise.synth.volume( 2.0 * tnd );
dmc.synth.volume( tnd );
square1 .last_amp = 0;
square2 .last_amp = 0;
triangle.last_amp = 0;
noise .last_amp = 0;
dmc .last_amp = 0;
}
void Nes_Apu::volume( double v )
{
dmc.nonlinear = false;
square_synth.volume( 0.1128 / amp_range * v );
triangle.synth.volume( 0.12765 / amp_range * v );
noise.synth.volume( 0.0741 / amp_range * v );
dmc.synth.volume( 0.42545 / 127 * v );
}
void Nes_Apu::output( Blip_Buffer* buffer )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buffer );
}
void Nes_Apu::reset( bool pal_mode, int initial_dmc_dac )
{
// to do: time pal frame periods exactly
frame_period = pal_mode ? 8314 : 7458;
dmc.pal_mode = pal_mode;
square1.reset();
square2.reset();
triangle.reset();
noise.reset();
dmc.reset();
last_time = 0;
last_dmc_time = 0;
osc_enables = 0;
irq_flag = false;
earliest_irq_ = no_irq;
frame_delay = 1;
write_register( 0, 0x4017, 0x00 );
write_register( 0, 0x4015, 0x00 );
for ( nes_addr_t addr = start_addr; addr <= 0x4013; addr++ )
write_register( 0, addr, (addr & 3) ? 0x00 : 0x10 );
dmc.dac = initial_dmc_dac;
if ( !dmc.nonlinear )
triangle.last_amp = 15;
//if ( !dmc.nonlinear ) // to do: remove?
// dmc.last_amp = initial_dmc_dac; // prevent output transition
}
void Nes_Apu::irq_changed()
{
nes_time_t new_irq = dmc.next_irq;
if ( dmc.irq_flag | irq_flag ) {
new_irq = 0;
}
else if ( new_irq > next_irq ) {
new_irq = next_irq;
}
if ( new_irq != earliest_irq_ ) {
earliest_irq_ = new_irq;
if ( irq_notifier_ )
irq_notifier_( irq_data );
}
}
// frames
void Nes_Apu::run_until( nes_time_t end_time )
{
require( end_time >= last_dmc_time );
if ( end_time > next_dmc_read_time() )
{
nes_time_t start = last_dmc_time;
last_dmc_time = end_time;
dmc.run( start, end_time );
}
}
void Nes_Apu::run_until_( nes_time_t end_time )
{
require( end_time >= last_time );
if ( end_time == last_time )
return;
if ( last_dmc_time < end_time )
{
nes_time_t start = last_dmc_time;
last_dmc_time = end_time;
dmc.run( start, end_time );
}
while ( true )
{
// earlier of next frame time or end time
nes_time_t time = last_time + frame_delay;
if ( time > end_time )
time = end_time;
frame_delay -= time - last_time;
// run oscs to present
square1.run( last_time, time );
square2.run( last_time, time );
triangle.run( last_time, time );
noise.run( last_time, time );
last_time = time;
if ( time == end_time )
break; // no more frames to run
// take frame-specific actions
frame_delay = frame_period;
switch ( frame++ )
{
case 0:
if ( !(frame_mode & 0xc0) ) {
next_irq = time + frame_period * 4 + 1;
irq_flag = true;
}
// fall through
case 2:
// clock length and sweep on frames 0 and 2
square1.clock_length( 0x20 );
square2.clock_length( 0x20 );
noise.clock_length( 0x20 );
triangle.clock_length( 0x80 ); // different bit for halt flag on triangle
square1.clock_sweep( -1 );
square2.clock_sweep( 0 );
break;
case 1:
// frame 1 is slightly shorter
frame_delay -= 2;
break;
case 3:
frame = 0;
// frame 3 is almost twice as long in mode 1
if ( frame_mode & 0x80 )
frame_delay += frame_period - 6;
break;
}
// clock envelopes and linear counter every frame
triangle.clock_linear_counter();
square1.clock_envelope();
square2.clock_envelope();
noise.clock_envelope();
}
}
template<class T>
inline void zero_apu_osc( T* osc, nes_time_t time )
{
Blip_Buffer* output = osc->output;
int last_amp = osc->last_amp;
osc->last_amp = 0;
if ( output && last_amp )
osc->synth.offset( time, -last_amp, output );
}
void Nes_Apu::end_frame( nes_time_t end_time )
{
if ( end_time > last_time )
run_until_( end_time );
if ( dmc.nonlinear )
{
zero_apu_osc( &square1, last_time );
zero_apu_osc( &square2, last_time );
zero_apu_osc( &triangle, last_time );
zero_apu_osc( &noise, last_time );
zero_apu_osc( &dmc, last_time );
}
// make times relative to new frame
last_time -= end_time;
require( last_time >= 0 );
last_dmc_time -= end_time;
require( last_dmc_time >= 0 );
if ( next_irq != no_irq ) {
next_irq -= end_time;
assert( next_irq >= 0 );
}
if ( dmc.next_irq != no_irq ) {
dmc.next_irq -= end_time;
assert( dmc.next_irq >= 0 );
}
if ( earliest_irq_ != no_irq ) {
earliest_irq_ -= end_time;
if ( earliest_irq_ < 0 )
earliest_irq_ = 0;
}
}
// registers
static const unsigned char length_table [0x20] = {
0x0A, 0xFE, 0x14, 0x02, 0x28, 0x04, 0x50, 0x06,
0xA0, 0x08, 0x3C, 0x0A, 0x0E, 0x0C, 0x1A, 0x0E,
0x0C, 0x10, 0x18, 0x12, 0x30, 0x14, 0x60, 0x16,
0xC0, 0x18, 0x48, 0x1A, 0x10, 0x1C, 0x20, 0x1E
};
void Nes_Apu::write_register( nes_time_t time, nes_addr_t addr, int data )
{
require( addr > 0x20 ); // addr must be actual address (i.e. 0x40xx)
require( (unsigned) data <= 0xff );
// Ignore addresses outside range
if ( addr < start_addr || end_addr < addr )
return;
run_until_( time );
if ( addr < 0x4014 )
{
// Write to channel
int osc_index = (addr - start_addr) >> 2;
Nes_Osc* osc = oscs [osc_index];
int reg = addr & 3;
osc->regs [reg] = data;
osc->reg_written [reg] = true;
if ( osc_index == 4 )
{
// handle DMC specially
dmc.write_register( reg, data );
}
else if ( reg == 3 )
{
// load length counter
if ( (osc_enables >> osc_index) & 1 )
osc->length_counter = length_table [(data >> 3) & 0x1f];
// reset square phase
if ( osc_index < 2 )
((Nes_Square*) osc)->phase = Nes_Square::phase_range - 1;
}
}
else if ( addr == 0x4015 )
{
// Channel enables
for ( int i = osc_count; i--; )
if ( !((data >> i) & 1) )
oscs [i]->length_counter = 0;
bool recalc_irq = dmc.irq_flag;
dmc.irq_flag = false;
int old_enables = osc_enables;
osc_enables = data;
if ( !(data & 0x10) ) {
dmc.next_irq = no_irq;
recalc_irq = true;
}
else if ( !(old_enables & 0x10) ) {
dmc.start(); // dmc just enabled
}
if ( recalc_irq )
irq_changed();
}
else if ( addr == 0x4017 )
{
// Frame mode
frame_mode = data;
bool irq_enabled = !(data & 0x40);
irq_flag &= irq_enabled;
next_irq = no_irq;
// mode 1
frame_delay = (frame_delay & 1);
frame = 0;
if ( !(data & 0x80) )
{
// mode 0
frame = 1;
frame_delay += frame_period;
if ( irq_enabled )
next_irq = time + frame_delay + frame_period * 3;
}
irq_changed();
}
}
int Nes_Apu::read_status( nes_time_t time )
{
run_until_( time - 1 );
int result = (dmc.irq_flag << 7) | (irq_flag << 6);
for ( int i = 0; i < osc_count; i++ )
if ( oscs [i]->length_counter )
result |= 1 << i;
run_until_( time );
if ( irq_flag ) {
irq_flag = false;
irq_changed();
}
return result;
}

View File

@ -1,177 +0,0 @@
// NES 2A03 APU sound chip emulator
// Nes_Snd_Emu 0.1.7
#ifndef NES_APU_H
#define NES_APU_H
typedef long nes_time_t; // CPU clock cycle count
typedef unsigned nes_addr_t; // 16-bit memory address
#include "Nes_Oscs.h"
struct apu_state_t;
class Nes_Buffer;
class Nes_Apu {
public:
Nes_Apu();
~Nes_Apu();
// Set buffer to generate all sound into, or disable sound if NULL
void output( Blip_Buffer* );
// Set memory reader callback used by DMC oscillator to fetch samples.
// When callback is invoked, 'user_data' is passed unchanged as the
// first parameter.
void dmc_reader( int (*callback)( void* user_data, nes_addr_t ), void* user_data = NULL );
// All time values are the number of CPU clock cycles relative to the
// beginning of the current time frame. Before resetting the CPU clock
// count, call end_frame( last_cpu_time ).
// Write to register (0x4000-0x4017, except 0x4014 and 0x4016)
enum { start_addr = 0x4000 };
enum { end_addr = 0x4017 };
void write_register( nes_time_t, nes_addr_t, int data );
// Read from status register at 0x4015
enum { status_addr = 0x4015 };
int read_status( nes_time_t );
// Run all oscillators up to specified time, end current time frame, then
// start a new time frame at time 0. Time frames have no effect on emulation
// and each can be whatever length is convenient.
void end_frame( nes_time_t );
// Additional optional features (can be ignored without any problem)
// Reset internal frame counter, registers, and all oscillators.
// Use PAL timing if pal_timing is true, otherwise use NTSC timing.
// Set the DMC oscillator's initial DAC value to initial_dmc_dac without
// any audible click.
void reset( bool pal_timing = false, int initial_dmc_dac = 0 );
// Save/load exact emulation state
void save_state( apu_state_t* out ) const;
void load_state( apu_state_t const& );
// Set overall volume (default is 1.0)
void volume( double );
// Set treble equalization (see notes.txt)
void treble_eq( const blip_eq_t& );
// Set sound output of specific oscillator to buffer. If buffer is NULL,
// the specified oscillator is muted and emulation accuracy is reduced.
// The oscillators are indexed as follows: 0) Square 1, 1) Square 2,
// 2) Triangle, 3) Noise, 4) DMC.
enum { osc_count = 5 };
void osc_output( int index, Blip_Buffer* buffer );
// Set IRQ time callback that is invoked when the time of earliest IRQ
// may have changed, or NULL to disable. When callback is invoked,
// 'user_data' is passed unchanged as the first parameter.
void irq_notifier( void (*callback)( void* user_data ), void* user_data = NULL );
// Get time that APU-generated IRQ will occur if no further register reads
// or writes occur. If IRQ is already pending, returns irq_waiting. If no
// IRQ will occur, returns no_irq.
enum { no_irq = LONG_MAX / 2 + 1 };
enum { irq_waiting = 0 };
nes_time_t earliest_irq( nes_time_t ) const;
// Count number of DMC reads that would occur if 'run_until( t )' were executed.
// If last_read is not NULL, set *last_read to the earliest time that
// 'count_dmc_reads( time )' would result in the same result.
int count_dmc_reads( nes_time_t t, nes_time_t* last_read = NULL ) const;
// Time when next DMC memory read will occur
nes_time_t next_dmc_read_time() const;
// Run DMC until specified time, so that any DMC memory reads can be
// accounted for (i.e. inserting CPU wait states).
void run_until( nes_time_t );
// End of public interface.
private:
friend class Nes_Nonlinearizer;
void enable_nonlinear( double volume );
static double nonlinear_tnd_gain() { return 0.75; }
private:
friend struct Nes_Dmc;
// noncopyable
Nes_Apu( const Nes_Apu& );
Nes_Apu& operator = ( const Nes_Apu& );
Nes_Osc* oscs [osc_count];
Nes_Square square1;
Nes_Square square2;
Nes_Noise noise;
Nes_Triangle triangle;
Nes_Dmc dmc;
nes_time_t last_time; // has been run until this time in current frame
nes_time_t last_dmc_time;
nes_time_t earliest_irq_;
nes_time_t next_irq;
int frame_period;
int frame_delay; // cycles until frame counter runs next
int frame; // current frame (0-3)
int osc_enables;
int frame_mode;
bool irq_flag;
void (*irq_notifier_)( void* user_data );
void* irq_data;
Nes_Square::Synth square_synth; // shared by squares
void irq_changed();
void state_restored();
void run_until_( nes_time_t );
// TODO: remove
friend class Nes_Core;
};
inline void Nes_Apu::osc_output( int osc, Blip_Buffer* buf )
{
assert( (unsigned) osc < osc_count );
oscs [osc]->output = buf;
}
inline nes_time_t Nes_Apu::earliest_irq( nes_time_t ) const
{
return earliest_irq_;
}
inline void Nes_Apu::dmc_reader( int (*func)( void*, nes_addr_t ), void* user_data )
{
dmc.prg_reader_data = user_data;
dmc.prg_reader = func;
}
inline void Nes_Apu::irq_notifier( void (*func)( void* user_data ), void* user_data )
{
irq_notifier_ = func;
irq_data = user_data;
}
inline int Nes_Apu::count_dmc_reads( nes_time_t time, nes_time_t* last_read ) const
{
return dmc.count_reads( time, last_read );
}
inline nes_time_t Nes_Dmc::next_read_time() const
{
if ( length_counter == 0 )
return Nes_Apu::no_irq; // not reading
return apu->last_dmc_time + delay + long (bits_remain - 1) * period;
}
inline nes_time_t Nes_Apu::next_dmc_read_time() const { return dmc.next_read_time(); }
#endif

View File

@ -1,201 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Buffer.h"
#include "Nes_Apu.h"
/* Library Copyright (C) 2003-2006 Shay Green. This library is free software;
you can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
details. You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
// Nes_Buffer
Nes_Buffer::Nes_Buffer() : Multi_Buffer( 1 ) { }
Nes_Buffer::~Nes_Buffer() { }
Multi_Buffer* set_apu( Nes_Buffer* buf, Nes_Apu* apu )
{
buf->set_apu( apu );
return buf;
}
void Nes_Buffer::enable_nonlinearity( bool b )
{
if ( b )
clear();
Nes_Apu* apu = nonlin.enable( b, &tnd );
apu->osc_output( 0, &buf );
apu->osc_output( 1, &buf );
}
blargg_err_t Nes_Buffer::set_sample_rate( long rate, int msec )
{
enable_nonlinearity( nonlin.enabled ); // reapply
RETURN_ERR( buf.set_sample_rate( rate, msec ) );
RETURN_ERR( tnd.set_sample_rate( rate, msec ) );
return Multi_Buffer::set_sample_rate( buf.sample_rate(), buf.length() );
}
void Nes_Buffer::clock_rate( long rate )
{
buf.clock_rate( rate );
tnd.clock_rate( rate );
}
void Nes_Buffer::bass_freq( int freq )
{
buf.bass_freq( freq );
tnd.bass_freq( freq );
}
void Nes_Buffer::clear()
{
nonlin.clear();
buf.clear();
tnd.clear();
}
Nes_Buffer::channel_t Nes_Buffer::channel( int i )
{
channel_t c;
c.center = &buf;
if ( 2 <= i && i <= 4 )
c.center = &tnd; // only use for triangle, noise, and dmc
c.left = c.center;
c.right = c.center;
return c;
}
void Nes_Buffer::end_frame( blip_time_t length, bool )
{
buf.end_frame( length );
tnd.end_frame( length );
}
long Nes_Buffer::samples_avail() const
{
return buf.samples_avail();
}
long Nes_Buffer::read_samples( blip_sample_t* out, long count )
{
count = nonlin.make_nonlinear( tnd, count );
if ( count )
{
Blip_Reader lin;
Blip_Reader nonlin;
int lin_bass = lin.begin( buf );
int nonlin_bass = nonlin.begin( tnd );
for ( int n = count; n--; )
{
int s = lin.read() + nonlin.read();
lin.next( lin_bass );
nonlin.next( nonlin_bass );
*out++ = s;
if ( (BOOST::int16_t) s != s )
out [-1] = 0x7FFF - (s >> 24);
}
lin.end( buf );
nonlin.end( tnd );
buf.remove_samples( count );
tnd.remove_samples( count );
}
return count;
}
// Nes_Nonlinearizer
Nes_Nonlinearizer::Nes_Nonlinearizer()
{
apu = NULL;
enabled = true;
float const gain = 0x7fff * 1.3f;
// don't use entire range, so any overflow will stay within table
int const range = (int) (table_size * Nes_Apu::nonlinear_tnd_gain());
for ( int i = 0; i < table_size; i++ )
{
int const offset = table_size - range;
int j = i - offset;
float n = 202.0f / (range - 1) * j;
float d = gain * 163.67f / (24329.0f / n + 100.0f);
int out = (int) d;
//out = j << (15 - table_bits); // make table linear for testing
assert( out < 0x8000 );
table [j & (table_size - 1)] = out;
}
}
Nes_Apu* Nes_Nonlinearizer::enable( bool b, Blip_Buffer* buf )
{
require( apu );
apu->osc_output( 2, buf );
apu->osc_output( 3, buf );
apu->osc_output( 4, buf );
enabled = b;
if ( b )
apu->enable_nonlinear( 1.0 );
else
apu->volume( 1.0 );
return apu;
}
#define ENTRY( s ) table [(s) >> (blip_sample_bits - table_bits - 1) & (table_size - 1)]
long Nes_Nonlinearizer::make_nonlinear( Blip_Buffer& buf, long count )
{
require( apu );
long avail = buf.samples_avail();
if ( count > avail )
count = avail;
if ( count && enabled )
{
Blip_Buffer::buf_t_* p = buf.buffer_;
long accum = this->accum;
long prev = this->prev;
for ( unsigned n = count; n; --n )
{
long entry = ENTRY( accum );
check( (entry >= 0) == (accum >= 0) );
accum += *p;
*p++ = (entry - prev) << (blip_sample_bits - 16);
prev = entry;
}
this->prev = prev;
this->accum = accum;
}
return count;
}
void Nes_Nonlinearizer::clear()
{
accum = 0;
prev = ENTRY( 86016000 ); // avoid thump due to APU's triangle dc bias
// TODO: still results in slight clicks and thumps
}

View File

@ -1,68 +0,0 @@
// NES non-linear audio buffer
// Nes_Emu 0.7.0
#ifndef NES_BUFFER_H
#define NES_BUFFER_H
#include "Multi_Buffer.h"
class Nes_Apu;
class Nes_Nonlinearizer {
private:
enum { table_bits = 11 };
enum { table_size = 1 << table_bits };
BOOST::int16_t table [table_size];
Nes_Apu* apu;
long accum;
long prev;
public:
Nes_Nonlinearizer();
bool enabled;
void clear();
void set_apu( Nes_Apu* a ) { apu = a; }
Nes_Apu* enable( bool, Blip_Buffer* tnd );
long make_nonlinear( Blip_Buffer& buf, long count );
};
class Nes_Buffer : public Multi_Buffer {
public:
Nes_Buffer();
~Nes_Buffer();
// Setup APU for use with buffer, including setting its output to this buffer.
// If you're using Nes_Emu, this is automatically called for you.
void set_apu( Nes_Apu* apu ) { nonlin.set_apu( apu ); }
// Enable/disable non-linear output
void enable_nonlinearity( bool = true );
// Blip_Buffer to output other sound chips to
Blip_Buffer* buffer() { return &buf; }
// See Multi_Buffer.h
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
#if 0 // What is this?
Multi_Buffer::sample_rate;
#endif
void clock_rate( long );
void bass_freq( int );
void clear();
channel_t channel( int );
void end_frame( blip_time_t, bool unused = true );
long samples_avail() const;
long read_samples( blip_sample_t*, long );
private:
Blip_Buffer buf;
Blip_Buffer tnd;
Nes_Nonlinearizer nonlin;
friend Multi_Buffer* set_apu( Nes_Buffer*, Nes_Apu* );
};
#endif

View File

@ -1,268 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Cart.h"
#include <stdlib.h>
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
char const Nes_Cart::not_ines_file [] = "Not an iNES file";
Nes_Cart::Nes_Cart()
{
prg_ = NULL;
chr_ = NULL;
clear();
}
Nes_Cart::~Nes_Cart()
{
clear();
}
void Nes_Cart::clear()
{
free( prg_ );
prg_ = NULL;
free( chr_ );
chr_ = NULL;
prg_size_ = 0;
chr_size_ = 0;
mapper = 0;
}
long Nes_Cart::round_to_bank_size( long n )
{
n += bank_size - 1;
return n - n % bank_size;
}
blargg_err_t Nes_Cart::resize_prg( long size )
{
if ( size != prg_size_ )
{
// padding allows CPU to always read operands of instruction, which
// might go past end of data
void* p = realloc( prg_, round_to_bank_size( size ) + 2 );
CHECK_ALLOC( p || !size );
prg_ = (byte*) p;
prg_size_ = size;
}
return 0;
}
blargg_err_t Nes_Cart::resize_chr( long size )
{
if ( size != chr_size_ )
{
void* p = realloc( chr_, round_to_bank_size( size ) );
CHECK_ALLOC( p || !size );
chr_ = (byte*) p;
chr_size_ = size;
}
return 0;
}
// iNES reading
struct ines_header_t {
BOOST::uint8_t signature [4];
BOOST::uint8_t prg_count; // number of 16K PRG banks
BOOST::uint8_t chr_count; // number of 8K CHR banks
BOOST::uint8_t flags; // MMMM FTBV Mapper low, Four-screen, Trainer, Battery, V mirror
BOOST::uint8_t flags2; // MMMM --XX Mapper high 4 bits
BOOST::uint8_t zero [8]; // if zero [7] is non-zero, treat flags2 as zero
};
BOOST_STATIC_ASSERT( sizeof (ines_header_t) == 16 );
blargg_err_t Nes_Cart::load_ines( Auto_File_Reader in )
{
RETURN_ERR( in.open() );
ines_header_t h;
RETURN_ERR( in->read( &h, sizeof h ) );
if ( 0 != memcmp( h.signature, "NES\x1A", 4 ) )
return not_ines_file;
if ( h.zero [7] ) // handle header defaced by a fucking idiot's handle
h.flags2 = 0;
set_mapper( h.flags, h.flags2 );
if ( h.flags & 0x04 ) // skip trainer
RETURN_ERR( in->skip( 512 ) );
RETURN_ERR( resize_prg( h.prg_count * 16 * 1024L ) );
RETURN_ERR( resize_chr( h.chr_count * 8 * 1024L ) );
RETURN_ERR( in->read( prg(), prg_size() ) );
RETURN_ERR( in->read( chr(), chr_size() ) );
return 0;
}
// IPS patching
// IPS patch file format (integers are big-endian):
// 5 "PATCH"
// n blocks
//
// normal block:
// 3 offset
// 2 size
// n data
//
// repeated byte block:
// 3 offset
// 2 0
// 2 size
// 1 fill value
//
// end block (optional):
// 3 "EOF"
//
// A block can append data to the file by specifying an offset at the end of
// the current file data.
typedef BOOST::uint8_t byte;
static blargg_err_t apply_ips_patch( Data_Reader& patch, byte** file, long* file_size )
{
byte signature [5];
RETURN_ERR( patch.read( signature, sizeof signature ) );
if ( memcmp( signature, "PATCH", sizeof signature ) )
return "Not an IPS patch file";
while ( patch.remain() )
{
// read offset
byte buf [6];
RETURN_ERR( patch.read( buf, 3 ) );
long offset = buf [0] * 0x10000 + buf [1] * 0x100 + buf [2];
if ( offset == 0x454F46 ) // 'EOF'
break;
// read size
RETURN_ERR( patch.read( buf, 2 ) );
long size = buf [0] * 0x100 + buf [1];
// size = 0 signals a run of identical bytes
int fill = -1;
if ( size == 0 )
{
RETURN_ERR( patch.read( buf, 3 ) );
size = buf [0] * 0x100 + buf [1];
fill = buf [2];
}
// expand file if new data is at exact end of file
if ( offset == *file_size )
{
*file_size = offset + size;
void* p = realloc( *file, *file_size );
CHECK_ALLOC( p );
*file = (byte*) p;
}
//dprintf( "Patch offset: 0x%04X, size: 0x%04X\n", (int) offset, (int) size );
if ( offset < 0 || *file_size < offset + size )
return "IPS tried to patch past end of file";
// read/fill data
if ( fill < 0 )
RETURN_ERR( patch.read( *file + offset, size ) );
else
memset( *file + offset, fill, size );
}
return 0;
}
blargg_err_t Nes_Cart::load_patched_ines( Auto_File_Reader in, Auto_File_Reader patch )
{
RETURN_ERR( in.open() );
RETURN_ERR( patch.open() );
// read file into memory
long size = in->remain();
byte* ines = (byte*) malloc( size );
CHECK_ALLOC( ines );
const char* err = in->read( ines, size );
// apply patch
if ( !err )
err = apply_ips_patch( *patch, &ines, &size );
// load patched file
if ( !err )
{
Mem_File_Reader patched( ines, size );
err = load_ines( patched );
}
free( ines );
return err;
}
blargg_err_t Nes_Cart::apply_ips_to_prg( Auto_File_Reader patch )
{
RETURN_ERR( patch.open() );
long size = prg_size();
byte* prg_copy = (byte*) malloc( size );
CHECK_ALLOC( prg_copy );
memcpy( prg_copy, prg(), size );
const char* err = apply_ips_patch( *patch, &prg_copy, &size );
if ( !err )
{
resize_prg( size );
memcpy( prg(), prg_copy, size );
}
free( prg_copy );
return err;
}
blargg_err_t Nes_Cart::apply_ips_to_chr( Auto_File_Reader patch )
{
RETURN_ERR( patch.open() );
long size = chr_size();
byte* chr_copy = (byte*) malloc( size );
CHECK_ALLOC( chr_copy );
memcpy( chr_copy, chr(), size );
const char* err = apply_ips_patch( *patch, &chr_copy, &size );
if ( !err )
{
resize_chr( size );
memcpy( chr(), chr_copy, size );
}
free( chr_copy );
return err;
}

View File

@ -1,93 +0,0 @@
// NES cartridge data (PRG, CHR, mapper)
// Nes_Emu 0.7.0
#ifndef NES_CART_H
#define NES_CART_H
#include "blargg_common.h"
#include "abstract_file.h"
class Nes_Cart {
typedef BOOST::uint8_t byte;
public:
Nes_Cart();
~Nes_Cart();
// Load iNES file
blargg_err_t load_ines( Auto_File_Reader );
static const char not_ines_file [];
// Load iNES file and apply IPS patch
blargg_err_t load_patched_ines( Auto_File_Reader, Auto_File_Reader ips_patch );
// Apply IPS patches to specific parts
blargg_err_t apply_ips_to_prg( Auto_File_Reader ips_patch );
blargg_err_t apply_ips_to_chr( Auto_File_Reader ips_patch );
// to do: support UNIF?
// True if data is currently loaded
bool loaded() const { return prg_ != NULL; }
// Free data
void clear();
// True if cartridge claims to have battery-backed memory
bool has_battery_ram() const;
// Size of PRG data
long prg_size() const { return prg_size_; }
// Size of CHR data
long chr_size() const { return chr_size_; }
// Change size of PRG (code) data
blargg_err_t resize_prg( long );
// Change size of CHR (graphics) data
blargg_err_t resize_chr( long );
// Set mapper and information bytes. LSB and MSB are the standard iNES header
// bytes at offsets 6 and 7.
void set_mapper( int mapper_lsb, int mapper_msb );
unsigned mapper_data() const { return mapper; }
// Initial mirroring setup
int mirroring() const { return mapper & 0x09; }
// iNES mapper code
int mapper_code() const;
// Pointer to beginning of PRG data
byte * prg() { return prg_; }
byte const* prg() const { return prg_; }
// Pointer to beginning of CHR data
byte * chr() { return chr_; }
byte const* chr() const { return chr_; }
// End of public interface
private:
enum { bank_size = 8 * 1024L }; // bank sizes must be a multiple of this
byte* prg_;
byte* chr_;
long prg_size_;
long chr_size_;
unsigned mapper;
long round_to_bank_size( long n );
};
inline bool Nes_Cart::has_battery_ram() const { return mapper & 0x02; }
inline void Nes_Cart::set_mapper( int mapper_lsb, int mapper_msb )
{
mapper = mapper_msb * 0x100 + mapper_lsb;
}
inline int Nes_Cart::mapper_code() const { return ((mapper >> 8) & 0xf0) | ((mapper >> 4) & 0x0f); }
#endif

View File

@ -1,572 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Core.h"
#include <string.h>
#include "Nes_Mapper.h"
#include "Nes_State.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
extern const char unsupported_mapper [] = "Unsupported mapper";
bool const wait_states_enabled = true;
bool const single_instruction_mode = false; // for debugging irq/nmi timing issues
const int unmapped_fill = Nes_Cpu::page_wrap_opcode;
unsigned const low_ram_size = 0x800;
unsigned const low_ram_end = 0x2000;
unsigned const sram_end = 0x8000;
Nes_Core::Nes_Core() : ppu( this )
{
cart = NULL;
impl = NULL;
mapper = NULL;
memset( &nes, 0, sizeof nes );
memset( &joypad, 0, sizeof joypad );
}
blargg_err_t Nes_Core::init()
{
if ( !impl )
{
CHECK_ALLOC( impl = BLARGG_NEW impl_t );
impl->apu.dmc_reader( read_dmc, this );
impl->apu.irq_notifier( apu_irq_changed, this );
}
return 0;
}
void Nes_Core::close()
{
// check that nothing modified unmapped page
#ifndef NDEBUG
//if ( cart && mem_differs( impl->unmapped_page, unmapped_fill, sizeof impl->unmapped_page ) )
// dprintf( "Unmapped code page was written to\n" );
#endif
cart = NULL;
delete mapper;
mapper = NULL;
ppu.close_chr();
disable_rendering();
}
blargg_err_t Nes_Core::open( Nes_Cart const* new_cart )
{
close();
RETURN_ERR( init() );
mapper = Nes_Mapper::create( new_cart, this );
if ( !mapper )
return unsupported_mapper;
RETURN_ERR( ppu.open_chr( new_cart->chr(), new_cart->chr_size() ) );
cart = new_cart;
memset( impl->unmapped_page, unmapped_fill, sizeof impl->unmapped_page );
reset( true, true );
return 0;
}
Nes_Core::~Nes_Core()
{
close();
delete impl;
}
void Nes_Core::save_state( Nes_State_* out ) const
{
out->clear();
out->nes = nes;
out->nes_valid = true;
*out->cpu = cpu::r;
out->cpu_valid = true;
*out->joypad = joypad;
out->joypad_valid = true;
impl->apu.save_state( out->apu );
out->apu_valid = true;
ppu.save_state( out );
memcpy( out->ram, cpu::low_mem, out->ram_size );
out->ram_valid = true;
out->sram_size = 0;
if ( sram_present )
{
out->sram_size = sizeof impl->sram;
memcpy( out->sram, impl->sram, out->sram_size );
}
out->mapper->size = 0;
mapper->save_state( *out->mapper );
out->mapper_valid = true;
}
void Nes_Core::save_state( Nes_State* out ) const
{
save_state( reinterpret_cast<Nes_State_*>(out) );
}
void Nes_Core::load_state( Nes_State_ const& in )
{
require( cart );
disable_rendering();
error_count = 0;
if ( in.nes_valid )
nes = in.nes;
// always use frame count
ppu.burst_phase = 0; // avoids shimmer when seeking to same time over and over
nes.frame_count = in.nes.frame_count;
if ( (frame_count_t) nes.frame_count == invalid_frame_count )
nes.frame_count = 0;
if ( in.cpu_valid )
cpu::r = *in.cpu;
if ( in.joypad_valid )
joypad = *in.joypad;
if ( in.apu_valid )
{
impl->apu.load_state( *in.apu );
// prevent apu from running extra at beginning of frame
impl->apu.end_frame( -(int) nes.timestamp / ppu_overclock );
}
else
{
impl->apu.reset();
}
ppu.load_state( in );
if ( in.ram_valid )
memcpy( cpu::low_mem, in.ram, in.ram_size );
sram_present = false;
if ( in.sram_size )
{
sram_present = true;
memcpy( impl->sram, in.sram, min( (int) in.sram_size, (int) sizeof impl->sram ) );
enable_sram( true ); // mapper can override (read-only, unmapped, etc.)
}
if ( in.mapper_valid ) // restore last since it might reconfigure things
mapper->load_state( *in.mapper );
}
void Nes_Core::enable_prg_6000()
{
sram_writable = 0;
sram_readable = 0;
lrom_readable = 0x8000;
}
void Nes_Core::enable_sram( bool b, bool read_only )
{
sram_writable = 0;
if ( b )
{
if ( !sram_present )
{
sram_present = true;
memset( impl->sram, 0xFF, impl->sram_size );
}
sram_readable = sram_end;
if ( !read_only )
sram_writable = sram_end;
cpu::map_code( 0x6000, impl->sram_size, impl->sram );
}
else
{
sram_readable = 0;
for ( int i = 0; i < impl->sram_size; i += cpu::page_size )
cpu::map_code( 0x6000 + i, cpu::page_size, impl->unmapped_page );
}
}
// Unmapped memory
#if !defined (NDEBUG) && 0
static nes_addr_t last_unmapped_addr;
#endif
void Nes_Core::log_unmapped( nes_addr_t addr, int data )
{
#if !defined (NDEBUG) && 0
if ( last_unmapped_addr != addr )
{
last_unmapped_addr = addr;
if ( data < 0 )
dprintf( "Read unmapped %04X\n", addr );
else
dprintf( "Write unmapped %04X <- %02X\n", addr, data );
}
#endif
}
inline void Nes_Core::cpu_adjust_time( int n )
{
ppu_2002_time -= n;
cpu_time_offset += n;
cpu::reduce_limit( n );
}
// I/O and sound
int Nes_Core::read_dmc( void* data, nes_addr_t addr )
{
Nes_Core* emu = (Nes_Core*) data;
int result = *emu->cpu::get_code( addr );
if ( wait_states_enabled )
emu->cpu_adjust_time( 4 );
return result;
}
void Nes_Core::apu_irq_changed( void* emu )
{
((Nes_Core*) emu)->irq_changed();
}
void Nes_Core::write_io( nes_addr_t addr, int data )
{
// sprite dma
if ( addr == 0x4014 )
{
ppu.dma_sprites( clock(), cpu::get_code( data * 0x100 ) );
cpu_adjust_time( 513 );
return;
}
// joypad strobe
if ( addr == 0x4016 )
{
// if strobe goes low, latch data
if ( joypad.w4016 & 1 & ~data )
{
joypad_read_count++;
joypad.joypad_latches [0] = current_joypad [0];
joypad.joypad_latches [1] = current_joypad [1];
}
joypad.w4016 = data;
return;
}
// apu
if ( unsigned (addr - impl->apu.start_addr) <= impl->apu.end_addr - impl->apu.start_addr )
{
impl->apu.write_register( clock(), addr, data );
if ( wait_states_enabled )
{
if ( addr == 0x4010 || (addr == 0x4015 && (data & 0x10)) )
{
impl->apu.run_until( clock() + 1 );
event_changed();
}
}
return;
}
#ifndef NDEBUG
log_unmapped( addr, data );
#endif
}
int Nes_Core::read_io( nes_addr_t addr )
{
if ( (addr & 0xFFFE) == 0x4016 )
{
// to do: to aid with recording, doesn't emulate transparent latch,
// so a game that held strobe at 1 and read $4016 or $4017 would not get
// the current A status as occurs on a NES
int32_t result = joypad.joypad_latches [addr & 1];
if ( !(joypad.w4016 & 1) )
joypad.joypad_latches [addr & 1] = result >> 1; // ASR is intentional
return result & 1;
}
if ( addr == Nes_Apu::status_addr )
return impl->apu.read_status( clock() );
#ifndef NDEBUG
log_unmapped( addr );
#endif
return addr >> 8; // simulate open bus
}
// CPU
const int irq_inhibit_mask = 0x04;
nes_addr_t Nes_Core::read_vector( nes_addr_t addr )
{
byte const* p = cpu::get_code( addr );
return p [1] * 0x100 + p [0];
}
void Nes_Core::reset( bool full_reset, bool erase_battery_ram )
{
require( cart );
if ( full_reset )
{
cpu::reset( impl->unmapped_page );
cpu_time_offset = -1;
clock_ = 0;
// Low RAM
memset( cpu::low_mem, 0xFF, low_ram_size );
cpu::low_mem [8] = 0xf7;
cpu::low_mem [9] = 0xef;
cpu::low_mem [10] = 0xdf;
cpu::low_mem [15] = 0xbf;
// SRAM
lrom_readable = 0;
sram_present = true;
enable_sram( false );
if ( !cart->has_battery_ram() || erase_battery_ram )
memset( impl->sram, 0xFF, impl->sram_size );
joypad.joypad_latches [0] = 0;
joypad.joypad_latches [1] = 0;
nes.frame_count = 0;
}
// to do: emulate partial reset
ppu.reset( full_reset );
impl->apu.reset();
mapper->reset();
cpu::r.pc = read_vector( 0xFFFC );
cpu::r.sp = 0xfd;
cpu::r.a = 0;
cpu::r.x = 0;
cpu::r.y = 0;
cpu::r.status = irq_inhibit_mask;
nes.timestamp = 0;
error_count = 0;
}
void Nes_Core::vector_interrupt( nes_addr_t vector )
{
cpu::push_byte( cpu::r.pc >> 8 );
cpu::push_byte( cpu::r.pc & 0xFF );
cpu::push_byte( cpu::r.status | 0x20 ); // reserved bit is set
cpu_adjust_time( 7 );
cpu::r.status |= irq_inhibit_mask;
cpu::r.pc = read_vector( vector );
}
inline nes_time_t Nes_Core::earliest_irq( nes_time_t present )
{
return min( impl->apu.earliest_irq( present ), mapper->next_irq( present ) );
}
void Nes_Core::irq_changed()
{
cpu_set_irq_time( earliest_irq( cpu_time() ) );
}
inline nes_time_t Nes_Core::ppu_frame_length( nes_time_t present )
{
nes_time_t t = ppu.frame_length();
if ( t > present )
return t;
ppu.render_bg_until( clock() ); // to do: why this call to clock() rather than using present?
return ppu.frame_length();
}
inline nes_time_t Nes_Core::earliest_event( nes_time_t present )
{
// PPU frame
nes_time_t t = ppu_frame_length( present );
// DMC
if ( wait_states_enabled )
t = min( t, impl->apu.next_dmc_read_time() + 1 );
// NMI
t = min( t, ppu.nmi_time() );
if ( single_instruction_mode )
t = min( t, present + 1 );
return t;
}
void Nes_Core::event_changed()
{
cpu_set_end_time( earliest_event( cpu_time() ) );
}
#undef NES_EMU_CPU_HOOK
#ifndef NES_EMU_CPU_HOOK
#define NES_EMU_CPU_HOOK( cpu, end_time ) cpu::run( end_time )
#endif
nes_time_t Nes_Core::emulate_frame_()
{
Nes_Cpu::result_t last_result = cpu::result_cycles;
int extra_instructions = 0;
while ( true )
{
// Add DMC wait-states to CPU time
if ( wait_states_enabled )
{
impl->apu.run_until( cpu_time() );
clock_ = cpu_time_offset;
}
nes_time_t present = cpu_time();
if ( present >= ppu_frame_length( present ) )
{
if ( ppu.nmi_time() <= present )
{
// NMI will occur next, so delayed CLI and SEI don't need to be handled.
// If NMI will occur normally ($2000.7 and $2002.7 set), let it occur
// next frame, otherwise vector it now.
if ( !(ppu.w2000 & 0x80 & ppu.r2002) )
{
dprintf( "vectored NMI at end of frame\n" );
vector_interrupt( 0xFFFA );
present += 7;
}
return present;
}
if ( extra_instructions > 2 )
{
check( last_result != cpu::result_sei && last_result != cpu::result_cli );
check( ppu.nmi_time() >= 0x10000 || (ppu.w2000 & 0x80 & ppu.r2002) );
return present;
}
if ( last_result != cpu::result_cli && last_result != cpu::result_sei &&
(ppu.nmi_time() >= 0x10000 || (ppu.w2000 & 0x80 & ppu.r2002)) )
return present;
dprintf( "Executing extra instructions for frame\n" );
extra_instructions++; // execute one more instruction
}
// NMI
if ( present >= ppu.nmi_time() )
{
ppu.acknowledge_nmi();
vector_interrupt( 0xFFFA );
last_result = cpu::result_cycles; // most recent sei/cli won't be delayed now
}
// IRQ
nes_time_t irq_time = earliest_irq( present );
cpu_set_irq_time( irq_time );
if ( present >= irq_time && (!(cpu::r.status & irq_inhibit_mask) ||
last_result == cpu::result_sei) )
{
if ( last_result != cpu::result_cli )
{
//dprintf( "%6d IRQ vectored\n", present );
mapper->run_until( present );
vector_interrupt( 0xFFFE );
}
else
{
// CLI delays IRQ
cpu_set_irq_time( present + 1 );
check( false ); // rare event
}
}
// CPU
nes_time_t end_time = earliest_event( present );
if ( extra_instructions )
end_time = present + 1;
unsigned long cpu_error_count = cpu::error_count();
last_result = NES_EMU_CPU_HOOK( cpu, end_time - cpu_time_offset - 1 );
cpu_adjust_time( cpu::time() );
clock_ = cpu_time_offset;
error_count += cpu::error_count() - cpu_error_count;
}
}
nes_time_t Nes_Core::emulate_frame()
{
require( cart );
joypad_read_count = 0;
cpu_time_offset = ppu.begin_frame( nes.timestamp ) - 1;
ppu_2002_time = 0;
clock_ = cpu_time_offset;
check( cpu_time() == (int) nes.timestamp / ppu_overclock );
check( 1 && impl->apu.last_time == cpu_time() );
// TODO: clean this fucking mess up
impl->apu.run_until_( emulate_frame_() );
clock_ = cpu_time_offset;
impl->apu.run_until_( cpu_time() );
check( 2 && clock_ == cpu_time_offset );
check( 3 && impl->apu.last_time == cpu_time() );
nes_time_t ppu_frame_length = ppu.frame_length();
nes_time_t length = cpu_time();
nes.timestamp = ppu.end_frame( length );
mapper->end_frame( length );
impl->apu.end_frame( ppu_frame_length );
check( 4 && cpu_time() == length );
check( 5 && impl->apu.last_time == length - ppu_frame_length );
disable_rendering();
nes.frame_count++;
return ppu_frame_length;
}
void Nes_Core::add_mapper_intercept( nes_addr_t addr, unsigned size, bool read, bool write )
{
require( addr >= 0x4000 );
require( addr + size <= 0x10000 );
int end = (addr + size + (page_size - 1)) >> page_bits;
for ( int page = addr >> page_bits; page < end; page++ )
{
data_reader_mapped [page] |= read;
data_writer_mapped [page] |= write;
}
}

View File

@ -1,117 +0,0 @@
// Internal NES emulator
// Nes_Emu 0.7.0
#ifndef NES_CORE_H
#define NES_CORE_H
#include "blargg_common.h"
#include "Nes_Apu.h"
#include "Nes_Cpu.h"
#include "Nes_Ppu.h"
class Nes_Mapper;
class Nes_Cart;
class Nes_State;
class Nes_Core : private Nes_Cpu {
typedef Nes_Cpu cpu;
public:
Nes_Core();
~Nes_Core();
blargg_err_t init();
blargg_err_t open( Nes_Cart const* );
void reset( bool full_reset = true, bool erase_battery_ram = false );
blip_time_t emulate_frame();
void close();
void save_state( Nes_State* ) const;
void save_state( Nes_State_* ) const;
void load_state( Nes_State_ const& );
void irq_changed();
void event_changed();
public: private: friend class Nes_Emu;
struct impl_t
{
enum { sram_size = 0x2000 };
BOOST::uint8_t sram [sram_size];
Nes_Apu apu;
// extra byte allows CPU to always read operand of instruction, which
// might go past end of data
BOOST::uint8_t unmapped_page [::Nes_Cpu::page_size + 1];
};
impl_t* impl; // keep large arrays separate
unsigned long error_count;
bool sram_present;
public:
uint32_t current_joypad [2];
int joypad_read_count;
Nes_Cart const* cart;
Nes_Mapper* mapper;
nes_state_t nes;
Nes_Ppu ppu;
private:
// noncopyable
Nes_Core( const Nes_Core& );
Nes_Core& operator = ( const Nes_Core& );
// Timing
nes_time_t ppu_2002_time;
void disable_rendering() { clock_ = 0; }
nes_time_t earliest_irq( nes_time_t present );
nes_time_t ppu_frame_length( nes_time_t present );
nes_time_t earliest_event( nes_time_t present );
// APU and Joypad
joypad_state_t joypad;
int read_io( nes_addr_t );
void write_io( nes_addr_t, int data );
static int read_dmc( void* emu, nes_addr_t );
static void apu_irq_changed( void* emu );
// CPU
unsigned sram_readable;
unsigned sram_writable;
unsigned lrom_readable;
nes_time_t clock_;
nes_time_t cpu_time_offset;
nes_time_t emulate_frame_();
nes_addr_t read_vector( nes_addr_t );
void vector_interrupt( nes_addr_t );
static void log_unmapped( nes_addr_t addr, int data = -1 );
void cpu_set_irq_time( nes_time_t t ) { cpu::set_irq_time_( t - 1 - cpu_time_offset ); }
void cpu_set_end_time( nes_time_t t ) { cpu::set_end_time_( t - 1 - cpu_time_offset ); }
nes_time_t cpu_time() const { return clock_ + 1; }
void cpu_adjust_time( int offset );
public: private: friend class Nes_Ppu;
void set_ppu_2002_time( nes_time_t t ) { ppu_2002_time = t - 1 - cpu_time_offset; }
public: private: friend class Nes_Mapper;
void enable_prg_6000();
void enable_sram( bool enabled, bool read_only = false );
nes_time_t clock() const { return clock_; }
void add_mapper_intercept( nes_addr_t start, unsigned size, bool read, bool write );
public: private: friend class Nes_Cpu;
int cpu_read_ppu( nes_addr_t, nes_time_t );
int cpu_read( nes_addr_t, nes_time_t );
void cpu_write( nes_addr_t, int data, nes_time_t );
void cpu_write_2007( int data );
private:
unsigned char data_reader_mapped [page_count + 1]; // extra entry for overflow
unsigned char data_writer_mapped [page_count + 1];
};
int mem_differs( void const* p, int cmp, unsigned long s );
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,132 +0,0 @@
// NES 6502 CPU emulator
// Nes_Emu 0.7.0
#ifndef NES_CPU_H
#define NES_CPU_H
#include "blargg_common.h"
typedef long nes_time_t; // clock cycle count
typedef unsigned nes_addr_t; // 16-bit address
class Nes_Cpu {
public:
typedef BOOST::uint8_t uint8_t;
// Clear registers, unmap memory, and map code pages to unmapped_page.
void reset( void const* unmapped_page = 0 );
// Map code memory (memory accessed via the program counter). Start and size
// must be multiple of page_size.
enum { page_bits = 11 };
enum { page_count = 0x10000 >> page_bits };
enum { page_size = 1L << page_bits };
void map_code( nes_addr_t start, unsigned size, void const* code );
// Access memory as the emulated CPU does.
int read( nes_addr_t );
void write( nes_addr_t, int data );
uint8_t* get_code( nes_addr_t ); // non-const to allow debugger to modify code
// Push a byte on the stack
void push_byte( int );
// NES 6502 registers. *Not* kept updated during a call to run().
struct registers_t {
long pc; // more than 16 bits to allow overflow detection
BOOST::uint8_t a;
BOOST::uint8_t x;
BOOST::uint8_t y;
BOOST::uint8_t status;
BOOST::uint8_t sp;
};
//registers_t r;
// Reasons that run() returns
enum result_t {
result_cycles, // Requested number of cycles (or more) were executed
result_sei, // I flag just set and IRQ time would generate IRQ now
result_cli, // I flag just cleared but IRQ should occur *after* next instr
result_badop // unimplemented/illegal instruction
};
result_t run( nes_time_t end_time );
nes_time_t time() const { return clock_count; }
void reduce_limit( int offset );
void set_end_time_( nes_time_t t );
void set_irq_time_( nes_time_t t );
unsigned long error_count() const { return error_count_; }
// If PC exceeds 0xFFFF and encounters page_wrap_opcode, it will be silently wrapped.
enum { page_wrap_opcode = 0xF2 };
// One of the many opcodes that are undefined and stop CPU emulation.
enum { bad_opcode = 0xD2 };
void set_tracecb(void (*cb)(unsigned int *dest));
private:
uint8_t const* code_map [page_count + 1];
nes_time_t clock_limit;
nes_time_t clock_count;
nes_time_t irq_time_;
nes_time_t end_time_;
unsigned long error_count_;
enum { irq_inhibit = 0x04 };
void set_code_page( int, uint8_t const* );
void update_clock_limit();
void (*tracecb)(unsigned int *dest);
public:
registers_t r;
// low_mem is a full page size so it can be mapped with code_map
uint8_t low_mem [page_size > 0x800 ? page_size : 0x800];
};
inline BOOST::uint8_t* Nes_Cpu::get_code( nes_addr_t addr )
{
return (uint8_t*) code_map [addr >> page_bits] + addr;
}
inline void Nes_Cpu::update_clock_limit()
{
nes_time_t t = end_time_;
if ( t > irq_time_ && !(r.status & irq_inhibit) )
t = irq_time_;
clock_limit = t;
}
inline void Nes_Cpu::set_end_time_( nes_time_t t )
{
end_time_ = t;
update_clock_limit();
}
inline void Nes_Cpu::set_irq_time_( nes_time_t t )
{
irq_time_ = t;
update_clock_limit();
}
inline void Nes_Cpu::reduce_limit( int offset )
{
clock_limit -= offset;
end_time_ -= offset;
irq_time_ -= offset;
}
inline void Nes_Cpu::push_byte( int data )
{
int sp = r.sp;
r.sp = (sp - 1) & 0xFF;
low_mem [0x100 + sp] = data;
}
#endif

View File

@ -1,84 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/libs/
#include "Nes_Effects_Buffer.h"
#include "Nes_Apu.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Effects_Buffer::Nes_Effects_Buffer() :
Effects_Buffer( true ) // nes never uses stereo channels
{
config_t c;
c.effects_enabled = false;
config( c );
}
Nes_Effects_Buffer::~Nes_Effects_Buffer() { }
Multi_Buffer* set_apu( Nes_Effects_Buffer* buf, Nes_Apu* apu )
{
buf->set_apu( apu );
return buf;
}
void Nes_Effects_Buffer::enable_nonlinearity( bool b )
{
if ( b )
clear();
Nes_Apu* apu = nonlin.enable( b, channel( 2 ).center );
apu->osc_output( 0, channel( 0 ).center );
apu->osc_output( 1, channel( 1 ).center );
}
void Nes_Effects_Buffer::config( const config_t& in )
{
config_t c = in;
if ( !c.effects_enabled )
{
// effects must always be enabled to keep separate buffers, so
// set parameters to be equivalent to disabled
c.pan_1 = 0;
c.pan_2 = 0;
c.echo_level = 0;
c.reverb_level = 0;
c.effects_enabled = true;
}
Effects_Buffer::config( c );
}
blargg_err_t Nes_Effects_Buffer::set_sample_rate( long rate, int msec )
{
enable_nonlinearity( nonlin.enabled ); // reapply
return Effects_Buffer::set_sample_rate( rate, msec );
}
void Nes_Effects_Buffer::clear()
{
nonlin.clear();
Effects_Buffer::clear();
}
Nes_Effects_Buffer::channel_t Nes_Effects_Buffer::channel( int i )
{
return Effects_Buffer::channel( (2 <= i && i <= 4) ? 2 : i & 1 );
}
long Nes_Effects_Buffer::read_samples( blip_sample_t* out, long count )
{
count = 2 * nonlin.make_nonlinear( *channel( 2 ).center, count / 2 );
return Effects_Buffer::read_samples( out, count );
}

View File

@ -1,38 +0,0 @@
// Effects_Buffer with non-linear sound
// Nes_Emu 0.7.0
#ifndef NES_EFFECTS_BUFFER_H
#define NES_EFFECTS_BUFFER_H
#include "Nes_Buffer.h"
#include "Effects_Buffer.h"
// Effects_Buffer uses several buffers and outputs stereo sample pairs.
class Nes_Effects_Buffer : public Effects_Buffer {
public:
Nes_Effects_Buffer();
~Nes_Effects_Buffer();
// Setup APU for use with buffer, including setting its output to this buffer.
// If you're using Nes_Emu, this is automatically called for you.
void set_apu( Nes_Apu* apu ) { nonlin.set_apu( apu ); }
// Enable/disable non-linear output
void enable_nonlinearity( bool = true );
// See Effects_Buffer.h for reference
blargg_err_t set_sample_rate( long rate, int msec = blip_default_length );
void config( const config_t& );
void clear();
channel_t channel( int );
long read_samples( blip_sample_t*, long );
private:
Nes_Nonlinearizer nonlin;
friend Multi_Buffer* set_apu( Nes_Effects_Buffer*, Nes_Apu* );
};
#endif

View File

@ -1,506 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Emu.h"
#include <string.h>
#include "Nes_State.h"
#include "Nes_Mapper.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const sound_fade_size = 384;
// Constants are manually duplicated in Nes_Emu so their value can be seen
// directly, rather than having to look in Nes_Ppu.h. "0 +" converts to int.
BOOST_STATIC_ASSERT( Nes_Emu::image_width == 0 + Nes_Ppu::image_width );
BOOST_STATIC_ASSERT( Nes_Emu::image_height == 0 + Nes_Ppu::image_height );
Nes_Emu::equalizer_t const Nes_Emu::nes_eq = { -1.0, 80 };
Nes_Emu::equalizer_t const Nes_Emu::famicom_eq = { -15.0, 80 };
Nes_Emu::equalizer_t const Nes_Emu::tv_eq = { -12.0, 180 };
Nes_Emu::Nes_Emu()
{
frame_ = &single_frame;
buffer_height_ = Nes_Ppu::buffer_height + 2;
default_sound_buf = NULL;
sound_buf = &silent_buffer;
sound_buf_changed_count = 0;
equalizer_ = nes_eq;
channel_count_ = 0;
sound_enabled = false;
host_pixels = NULL;
single_frame.pixels = 0;
single_frame.top = 0;
init_called = false;
set_palette_range( 0 );
memset( single_frame.palette, 0, sizeof single_frame.palette );
host_pixel_buff = new char[buffer_width * buffer_height()];
set_pixels(host_pixel_buff, buffer_width);
}
Nes_Emu::~Nes_Emu()
{
delete default_sound_buf;
delete[] host_pixel_buff;
}
blargg_err_t Nes_Emu::init_()
{
return emu.init();
}
inline blargg_err_t Nes_Emu::auto_init()
{
if ( !init_called )
{
RETURN_ERR( init_() );
init_called = true;
}
return 0;
}
inline void Nes_Emu::clear_sound_buf()
{
fade_sound_out = false;
fade_sound_in = true;
sound_buf->clear();
}
// Emulation
void Nes_Emu::close()
{
if ( cart() )
{
emu.close();
private_cart.clear();
}
}
blargg_err_t Nes_Emu::set_cart( Nes_Cart const* new_cart )
{
close();
RETURN_ERR( auto_init() );
RETURN_ERR( emu.open( new_cart ) );
channel_count_ = Nes_Apu::osc_count + emu.mapper->channel_count();
RETURN_ERR( sound_buf->set_channel_count( channel_count() ) );
set_equalizer( equalizer_ );
enable_sound( true );
reset();
return 0;
}
void Nes_Emu::reset( bool full_reset, bool erase_battery_ram )
{
require( cart() );
clear_sound_buf();
set_timestamp( 0 );
emu.reset( full_reset, erase_battery_ram );
}
void Nes_Emu::set_palette_range( int begin, int end )
{
require( (unsigned) end <= 0x100 );
// round up to alignment
emu.ppu.palette_begin = (begin + palette_alignment - 1) & ~(palette_alignment - 1);
host_palette_size = end - emu.ppu.palette_begin;
require( host_palette_size >= palette_alignment );
}
blargg_err_t Nes_Emu::emulate_frame( const uint32_t joypad1, const uint32_t joypad2 )
{
emu.current_joypad [0] = joypad1;
emu.current_joypad [1] = joypad2;
emu.ppu.host_pixels = NULL;
unsigned changed_count = sound_buf->channels_changed_count();
bool new_enabled = (frame_ != NULL);
if ( sound_buf_changed_count != changed_count || sound_enabled != new_enabled )
{
sound_buf_changed_count = changed_count;
sound_enabled = new_enabled;
enable_sound( sound_enabled );
}
frame_t* f = frame_;
if ( f )
{
emu.ppu.max_palette_size = host_palette_size;
emu.ppu.host_palette = f->palette + emu.ppu.palette_begin;
// add black and white for emulator to use (unless emulator uses entire
// palette for frame)
f->palette [252] = 0x0F;
f->palette [254] = 0x30;
f->palette [255] = 0x0F;
if ( host_pixels )
emu.ppu.host_pixels = (BOOST::uint8_t*) host_pixels +
emu.ppu.host_row_bytes * f->top;
if ( sound_buf->samples_avail() )
clear_sound_buf();
nes_time_t frame_len = emu.emulate_frame();
sound_buf->end_frame( frame_len, false );
f = frame_;
f->sample_count = sound_buf->samples_avail();
f->chan_count = sound_buf->samples_per_frame();
f->palette_begin = emu.ppu.palette_begin;
f->palette_size = emu.ppu.palette_size;
f->joypad_read_count = emu.joypad_read_count;
f->burst_phase = emu.ppu.burst_phase;
f->pitch = emu.ppu.host_row_bytes;
f->pixels = emu.ppu.host_pixels + f->left;
}
else
{
emu.ppu.max_palette_size = 0;
emu.emulate_frame();
}
return 0;
}
// Extras
blargg_err_t Nes_Emu::load_ines( Auto_File_Reader in )
{
close();
RETURN_ERR( private_cart.load_ines( in ) );
return set_cart( &private_cart );
}
blargg_err_t Nes_Emu::save_battery_ram( Auto_File_Writer out )
{
RETURN_ERR( out.open() );
return out->write( emu.impl->sram, emu.impl->sram_size );
}
blargg_err_t Nes_Emu::load_battery_ram( Auto_File_Reader in )
{
RETURN_ERR( in.open() );
emu.sram_present = true;
return in->read( emu.impl->sram, emu.impl->sram_size );
}
void Nes_Emu::load_state( Nes_State_ const& in )
{
clear_sound_buf();
emu.load_state( in );
}
void Nes_Emu::load_state( Nes_State const& in )
{
loading_state( in );
load_state( STATIC_CAST(Nes_State_ const&,in) );
}
blargg_err_t Nes_Emu::load_state( Auto_File_Reader in )
{
Nes_State* state = BLARGG_NEW Nes_State;
CHECK_ALLOC( state );
blargg_err_t err = state->read( in );
if ( !err )
load_state( *state );
delete state;
return err;
}
blargg_err_t Nes_Emu::save_state( Auto_File_Writer out ) const
{
Nes_State* state = BLARGG_NEW Nes_State;
CHECK_ALLOC( state );
save_state( state );
blargg_err_t err = state->write( out );
delete state;
return err;
}
void Nes_Emu::write_chr( void const* p, long count, long offset )
{
require( (unsigned long) offset <= (unsigned long) chr_size() );
long end = offset + count;
require( (unsigned long) end <= (unsigned long) chr_size() );
memcpy( (byte*) chr_mem() + offset, p, count );
emu.ppu.rebuild_chr( offset, end );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, class Nes_Buffer* buf )
{
extern Multi_Buffer* set_apu( class Nes_Buffer*, Nes_Apu* );
RETURN_ERR( auto_init() );
return set_sample_rate( rate, set_apu( buf, &emu.impl->apu ) );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, class Nes_Effects_Buffer* buf )
{
extern Multi_Buffer* set_apu( class Nes_Effects_Buffer*, Nes_Apu* );
RETURN_ERR( auto_init() );
return set_sample_rate( rate, set_apu( buf, &emu.impl->apu ) );
}
// Sound
void Nes_Emu::set_frame_rate( double rate )
{
sound_buf->clock_rate( (long) (1789773 / 60.0 * rate) );
}
blargg_err_t Nes_Emu::set_sample_rate( long rate, Multi_Buffer* new_buf )
{
require( new_buf );
RETURN_ERR( auto_init() );
emu.impl->apu.volume( 1.0 ); // cancel any previous non-linearity
RETURN_ERR( new_buf->set_sample_rate( rate, 1200 / frame_rate ) );
sound_buf = new_buf;
sound_buf_changed_count = 0;
if ( new_buf != default_sound_buf )
{
delete default_sound_buf;
default_sound_buf = NULL;
}
set_frame_rate( frame_rate );
return 0;
}
blargg_err_t Nes_Emu::set_sample_rate( long rate )
{
if ( !default_sound_buf )
CHECK_ALLOC( default_sound_buf = BLARGG_NEW Mono_Buffer );
return set_sample_rate( rate, default_sound_buf );
}
void Nes_Emu::set_equalizer( equalizer_t const& eq )
{
equalizer_ = eq;
if ( cart() )
{
blip_eq_t blip_eq( eq.treble, 0, sound_buf->sample_rate() );
emu.impl->apu.treble_eq( blip_eq );
emu.mapper->set_treble( blip_eq );
sound_buf->bass_freq( equalizer_.bass );
}
}
void Nes_Emu::enable_sound( bool enabled )
{
if ( enabled )
{
for ( int i = channel_count(); i-- > 0; )
{
Blip_Buffer* buf = sound_buf->channel( i ).center;
int mapper_index = i - Nes_Apu::osc_count;
if ( mapper_index < 0 )
emu.impl->apu.osc_output( i, buf );
else
emu.mapper->set_channel_buf( mapper_index, buf );
}
}
else
{
emu.impl->apu.output( NULL );
for ( int i = channel_count() - Nes_Apu::osc_count; i-- > 0; )
emu.mapper->set_channel_buf( i, NULL );
}
}
void Nes_Emu::fade_samples( blip_sample_t* p, int size, int step )
{
if ( size >= sound_fade_size )
{
if ( step < 0 )
p += size - sound_fade_size;
int const shift = 15;
int mul = (1 - step) << (shift - 1);
step *= (1 << shift) / sound_fade_size;
for ( int n = sound_fade_size; n--; )
{
*p = (*p * mul) >> 15;
++p;
mul += step;
}
}
}
long Nes_Emu::read_samples( short* out, long out_size )
{
require( out_size >= sound_buf->samples_avail() );
long count = sound_buf->read_samples( out, out_size );
if ( fade_sound_in )
{
fade_sound_in = false;
fade_samples( out, count, 1 );
}
if ( fade_sound_out )
{
fade_sound_out = false;
fade_sound_in = true; // next buffer should be faded in
fade_samples( out, count, -1 );
}
return count;
}
Nes_Emu::rgb_t const Nes_Emu::nes_colors [color_table_size] =
{
// generated with nes_ntsc default settings
{102,102,102},{ 0, 42,136},{ 20, 18,168},{ 59, 0,164},
{ 92, 0,126},{110, 0, 64},{108, 7, 0},{ 87, 29, 0},
{ 52, 53, 0},{ 12, 73, 0},{ 0, 82, 0},{ 0, 79, 8},
{ 0, 64, 78},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{174,174,174},{ 21, 95,218},{ 66, 64,254},{118, 39,255},
{161, 27,205},{184, 30,124},{181, 50, 32},{153, 79, 0},
{108,110, 0},{ 56,135, 0},{ 13,148, 0},{ 0,144, 50},
{ 0,124,142},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{254,254,254},{100,176,254},{147,144,254},{199,119,254},
{243,106,254},{254,110,205},{254,130,112},{235,159, 35},
{189,191, 0},{137,217, 0},{ 93,229, 48},{ 69,225,130},
{ 72,206,223},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{254,254,254},{193,224,254},{212,211,254},{233,200,254},
{251,195,254},{254,197,235},{254,205,198},{247,217,166},
{229,230,149},{208,240,151},{190,245,171},{180,243,205},
{181,236,243},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{114, 83, 79},{ 0, 23,113},{ 32, 0,145},{ 71, 0,141},
{104, 0,103},{122, 0, 41},{120, 0, 0},{ 99, 10, 0},
{ 64, 34, 0},{ 24, 54, 0},{ 0, 63, 0},{ 0, 60, 0},
{ 0, 45, 54},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{190,148,143},{ 37, 69,187},{ 83, 38,228},{134, 13,224},
{177, 1,174},{200, 4, 92},{198, 24, 1},{170, 53, 0},
{124, 84, 0},{ 73,109, 0},{ 30,122, 0},{ 6,118, 19},
{ 9, 98,110},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{254,222,215},{122,142,254},{168,110,254},{220, 85,254},
{254, 72,247},{254, 76,164},{254, 96, 71},{254,125, 0},
{210,157, 0},{158,183, 0},{114,195, 7},{ 90,191, 89},
{ 93,172,182},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{254,222,215},{214,190,233},{233,177,250},{254,166,248},
{254,161,228},{254,163,194},{254,171,157},{254,183,125},
{250,196,108},{229,206,110},{211,211,130},{201,210,164},
{203,202,202},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 75,106, 64},{ 0, 46, 98},{ 0, 22,130},{ 32, 3,126},
{ 65, 0, 88},{ 82, 0, 26},{ 80, 11, 0},{ 59, 34, 0},
{ 24, 58, 0},{ 0, 77, 0},{ 0, 86, 0},{ 0, 83, 0},
{ 0, 68, 39},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{136,180,122},{ 0,101,166},{ 29, 69,208},{ 80, 44,203},
{123, 32,153},{146, 36, 72},{144, 55, 0},{116, 84, 0},
{ 70,116, 0},{ 19,141, 0},{ 0,153, 0},{ 0,149, 0},
{ 0,130, 90},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{207,254,188},{ 51,183,233},{ 98,151,254},{150,126,254},
{193,113,220},{217,117,137},{214,137, 45},{186,166, 0},
{140,198, 0},{ 88,224, 0},{ 44,236, 0},{ 20,232, 63},
{ 23,213,155},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{207,254,188},{144,231,207},{163,218,224},{184,207,222},
{201,202,201},{211,204,168},{210,212,130},{198,224, 99},
{180,237, 81},{159,247, 83},{141,252,104},{131,251,137},
{132,243,175},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 83, 83, 55},{ 0, 23, 89},{ 0, 0,121},{ 40, 0,117},
{ 73, 0, 79},{ 90, 0, 17},{ 88, 0, 0},{ 67, 10, 0},
{ 32, 34, 0},{ 0, 53, 0},{ 0, 63, 0},{ 0, 60, 0},
{ 0, 45, 30},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{147,148,110},{ 0, 69,154},{ 40, 38,196},{ 91, 12,191},
{134, 0,141},{157, 4, 60},{155, 23, 0},{127, 52, 0},
{ 81, 84, 0},{ 30,109, 0},{ 0,121, 0},{ 0,117, 0},
{ 0, 98, 78},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{221,222,173},{ 65,142,217},{112,110,254},{164, 84,255},
{208, 72,204},{231, 76,122},{229, 95, 29},{200,125, 0},
{154,157, 0},{102,182, 0},{ 58,195, 0},{ 34,191, 47},
{ 37,171,140},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{221,222,173},{158,189,191},{177,176,208},{198,166,206},
{216,161,185},{225,163,152},{224,171,114},{213,183, 83},
{194,195, 66},{173,206, 68},{155,211, 88},{145,209,122},
{146,201,159},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 87, 87,133},{ 0, 26,167},{ 5, 2,198},{ 44, 0,195},
{ 77, 0,157},{ 95, 0, 94},{ 93, 0, 25},{ 71, 14, 0},
{ 36, 38, 0},{ 0, 57, 0},{ 0, 66, 0},{ 0, 63, 38},
{ 0, 49,108},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{153,153,216},{ 0, 74,254},{ 46, 43,254},{ 97, 17,254},
{140, 5,247},{164, 9,165},{161, 28, 74},{133, 57, 0},
{ 87, 89, 0},{ 36,114, 0},{ 0,126, 10},{ 0,122, 92},
{ 0,103,183},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{229,228,254},{ 74,148,254},{120,116,254},{172, 91,254},
{216, 78,254},{239, 82,254},{237,102,166},{208,131, 89},
{162,163, 46},{110,189, 51},{ 66,201,102},{ 42,197,184},
{ 45,178,254},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{229,228,254},{166,196,254},{185,183,254},{206,172,254},
{224,167,254},{233,169,254},{232,177,252},{221,189,220},
{202,202,203},{181,212,205},{163,217,226},{153,216,254},
{154,208,254},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 90, 71, 97},{ 0, 11,130},{ 8, 0,162},{ 47, 0,158},
{ 80, 0,120},{ 98, 0, 58},{ 96, 0, 0},{ 74, 0, 0},
{ 39, 22, 0},{ 0, 42, 0},{ 0, 51, 0},{ 0, 48, 2},
{ 0, 33, 72},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{158,132,166},{ 4, 53,210},{ 50, 22,252},{101, 0,247},
{144, 0,197},{168, 0,116},{165, 7, 25},{137, 36, 0},
{ 91, 68, 0},{ 40, 93, 0},{ 0,105, 0},{ 0,101, 42},
{ 0, 82,134},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{234,201,246},{ 79,121,254},{125, 89,254},{177, 63,254},
{221, 51,254},{245, 55,195},{242, 74,102},{214,104, 24},
{167,136, 0},{115,161, 0},{ 71,174, 37},{ 48,170,120},
{ 50,150,213},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{234,201,246},{171,168,254},{190,155,254},{211,145,254},
{229,140,254},{239,142,225},{237,150,187},{226,162,156},
{207,174,139},{186,185,141},{168,190,161},{159,188,195},
{160,180,232},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 66, 85, 88},{ 0, 25,121},{ 0, 1,153},{ 23, 0,149},
{ 56, 0,111},{ 74, 0, 49},{ 72, 0, 0},{ 51, 12, 0},
{ 16, 36, 0},{ 0, 55, 0},{ 0, 65, 0},{ 0, 62, 0},
{ 0, 47, 63},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{125,151,154},{ 0, 72,198},{ 17, 40,240},{ 69, 15,235},
{112, 3,185},{135, 7,104},{132, 26, 12},{104, 55, 0},
{ 59, 87, 0},{ 7,112, 0},{ 0,124, 0},{ 0,120, 30},
{ 0,101,121},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{192,225,230},{ 37,145,254},{ 83,114,254},{135, 88,254},
{179, 76,254},{202, 80,179},{200, 99, 86},{171,129, 8},
{125,160, 0},{ 73,186, 0},{ 29,198, 21},{ 5,194,104},
{ 8,175,197},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{192,225,230},{129,193,248},{148,180,254},{169,170,254},
{187,165,242},{196,166,209},{195,174,171},{184,186,140},
{165,199,123},{144,209,125},{126,214,145},{116,213,179},
{118,205,216},{184,184,184},{ 0, 0, 0},{ 0, 0, 0},
{ 69, 69, 69},{ 0, 16,110},{ 0, 0,142},{ 33, 0,138},
{ 66, 0,100},{ 84, 0, 38},{ 82, 0, 0},{ 60, 3, 0},
{ 25, 27, 0},{ 0, 46, 0},{ 0, 56, 0},{ 0, 53, 0},
{ 0, 38, 51},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{134,134,134},{ 0, 64,187},{ 35, 32,228},{ 86, 7,223},
{129, 0,174},{153, 0, 92},{150, 18, 1},{122, 47, 0},
{ 76, 79, 0},{ 25,104, 0},{ 0,116, 0},{ 0,112, 19},
{ 0, 93,110},{ 0, 0, 0},{ 0, 0, 0},{ 0, 0, 0},
{207,207,207},{ 60,136,254},{107,104,254},{159, 79,254},
{203, 66,248},{226, 70,165},{224, 90, 72},{195,119, 0},
{149,151, 0},{ 97,177, 0},{ 53,189, 8},{ 29,185, 91},
{ 32,166,183},{ 79, 79, 79},{ 0, 0, 0},{ 0, 0, 0},
{207,207,207},{148,178,229},{166,165,246},{188,155,244},
{205,150,224},{215,152,190},{214,159,152},{202,171,121},
{183,184,104},{162,195,106},{145,200,126},{135,198,160},
{136,190,197},{184,184,184},{ 0, 0, 0},{ 0, 0, 0}
};
void Nes_Emu::get_regs(unsigned int *dest) const
{
dest[0] = emu.r.a;
dest[1] = emu.r.x;
dest[2] = emu.r.y;
dest[3] = emu.r.sp;
dest[4] = emu.r.pc;
dest[5] = emu.r.status;
}

View File

@ -1,284 +0,0 @@
// NES video game console emulator with snapshot support
// Nes_Emu 0.7.0
#ifndef NES_EMU_H
#define NES_EMU_H
#include "blargg_common.h"
#include "Multi_Buffer.h"
#include "Nes_Cart.h"
#include "Nes_Core.h"
class Nes_State;
// Register optional mappers included with Nes_Emu
void register_optional_mappers();
extern const char unsupported_mapper []; // returned when cartridge uses unsupported mapper
class Nes_Emu {
public:
Nes_Emu();
virtual ~Nes_Emu();
// Basic setup
// Load iNES file into emulator and clear recording
blargg_err_t load_ines( Auto_File_Reader );
// Set sample rate for sound generation
blargg_err_t set_sample_rate( long );
// Size and depth of graphics buffer required for rendering. Note that this
// is larger than the actual image, with a temporary area around the edge
// that gets filled with junk. Its height is many times larger in Nes_Recorder
// to allow caching of multiple images.
enum { buffer_width = Nes_Ppu::buffer_width };
int buffer_height() const { return buffer_height_; }
enum { bits_per_pixel = 8 };
private:
// Set graphics buffer to render pixels to. Pixels points to top-left pixel and
// row_bytes is the number of bytes to get to the next line (positive or negative).
void set_pixels( void* pixels, long row_bytes );
public:
// Size of image generated in graphics buffer
enum { image_width = 256 };
enum { image_height = 240 };
// Basic emulation
// Emulate one video frame using joypad1 and joypad2 as input. Afterwards, image
// and sound are available for output using the accessors below.
// A connected controller should have 0xffffff** in the high bits, or 0x000000**
// if emulating an incorrectly made third party controller. A disconnected controller
// should be 0x00000000 exactly.
virtual blargg_err_t emulate_frame( uint32_t joypad1, uint32_t joypad2 );
// Maximum size of palette that can be generated
enum { max_palette_size = 256 };
// Result of current frame
struct frame_t
{
int joypad_read_count; // number of times joypads were strobed (read)
int burst_phase; // NTSC burst phase for frame (0, 1, or 2)
int sample_count; // number of samples (always a multiple of chan_count)
int chan_count; // 1: mono, 2: stereo
int top; // top-left position of image in graphics buffer
enum { left = 8 };
unsigned char* pixels; // pointer to top-left pixel of image
long pitch; // number of bytes to get to next row of image
int palette_begin; // first host palette entry, as set by set_palette_range()
int palette_size; // number of entries used for current frame
short palette [max_palette_size]; // [palette_begin to palette_begin+palette_size-1]
};
frame_t const& frame() const { return *frame_; }
// Read samples for the current frame. Returns number of samples read into buffer.
// Currently all samples must be read in one call.
virtual long read_samples( short* out, long max_samples );
// Additional features
// Use already-loaded cartridge. Retains pointer, so it must be kept around until
// closed. A cartridge can be shared among multiple emulators. After opening,
// cartridge's CHR data shouldn't be modified since a copy is cached internally.
blargg_err_t set_cart( Nes_Cart const* );
// Pointer to current cartridge, or NULL if none is loaded
Nes_Cart const* cart() const { return emu.cart; }
// Free any memory and close cartridge, if one was currently open. A new cartridge
// must be opened before further emulation can take place.
void close();
// Emulate powering NES off and then back on. If full_reset is false, emulates
// pressing the reset button only, which doesn't affect memory, otherwise
// emulates powering system off then on.
virtual void reset( bool full_reset = true, bool erase_battery_ram = false );
// Number of undefined CPU instructions encountered. Cleared after reset() and
// load_state(). A non-zero value indicates that cartridge is probably
// incompatible.
unsigned long error_count() const { return emu.error_count; }
// Sound
// Set sample rate and use a custom sound buffer instead of the default
// mono buffer, i.e. Nes_Buffer, Effects_Buffer, etc..
blargg_err_t set_sample_rate( long rate, Multi_Buffer* );
// Adjust effective frame rate by changing how many samples are generated each frame.
// Allows fine tuning of frame rate to improve synchronization.
void set_frame_rate( double rate );
// Number of sound channels for current cartridge
int channel_count() const { return channel_count_; }
// Frequency equalizer parameters
struct equalizer_t {
double treble; // 5.0 = extra-crisp, -200.0 = muffled
long bass; // 0 = deep, 20000 = tinny
};
// Current frequency equalization
equalizer_t const& equalizer() const { return equalizer_; }
// Change frequency equalization
void set_equalizer( equalizer_t const& );
// Equalizer presets
static equalizer_t const nes_eq; // NES
static equalizer_t const famicom_eq; // Famicom
static equalizer_t const tv_eq; // TV speaker
// File save/load
// Save emulator state
void save_state( Nes_State* s ) const { emu.save_state( s ); }
blargg_err_t save_state( Auto_File_Writer ) const;
// Load state into emulator
void load_state( Nes_State const& );
blargg_err_t load_state( Auto_File_Reader );
// True if current cartridge claims it uses battery-backed memory
bool has_battery_ram() const { return cart()->has_battery_ram(); }
// Save current battery RAM
blargg_err_t save_battery_ram( Auto_File_Writer );
// Load battery RAM from file. Best called just after reset() or loading cartridge.
blargg_err_t load_battery_ram( Auto_File_Reader );
// Graphics
// Number of frames generated per second
enum { frame_rate = 60 };
// Size of fixed NES color table (including the 8 color emphasis modes)
enum { color_table_size = 8 * 64 };
// NES color lookup table based on standard NTSC TV decoder. Use nes_ntsc.h to
// generate a palette with custom parameters.
struct rgb_t { unsigned char red, green, blue; };
static rgb_t const nes_colors [color_table_size];
// Hide/show/enhance sprites. Sprite mode does not affect emulation accuracy.
enum sprite_mode_t {
sprites_hidden = 0,
sprites_visible = 8, // limit of 8 sprites per scanline as on NES (default)
sprites_enhanced = 64 // unlimited sprites per scanline (no flickering)
};
void set_sprite_mode( sprite_mode_t n ) { emu.ppu.sprite_limit = n; }
// Set range of host palette entries to use in graphics buffer; default uses
// all of them. Begin will be rounded up to next multiple of palette_alignment.
// Use frame().palette_begin to find the adjusted beginning entry used.
enum { palette_alignment = 64 };
void set_palette_range( int begin, int end = 256 );
// Access to emulated memory, for viewer/cheater/debugger
// CHR
byte const* chr_mem();
long chr_size() const;
void write_chr( void const*, long count, long offset );
// Nametable
byte* nametable_mem() { return emu.ppu.impl->nt_ram; }
long nametable_size() const { return 0x1000; }
// Built-in 2K memory
enum { low_mem_size = 0x800 };
byte* low_mem() { return emu.low_mem; }
// Optional 8K memory
enum { high_mem_size = 0x2000 };
byte* high_mem() { return emu.impl->sram; }
// Prg peek/poke for debuggin
byte peek_prg(nes_addr_t addr) const { return *static_cast<Nes_Cpu>(emu).get_code(addr); }
void poke_prg(nes_addr_t addr, byte value) { *static_cast<Nes_Cpu>(emu).get_code(addr) = value; }
byte peek_ppu(int addr) { return emu.ppu.peekaddr(addr); }
void get_regs(unsigned int *dest) const;
byte get_ppu2000() const { return emu.ppu.w2000; }
byte* pal_mem() { return emu.ppu.palette; }
byte* oam_mem() { return emu.ppu.spr_ram; }
void set_tracecb(void (*cb)(unsigned int *dest)) { emu.set_tracecb(cb); }
// End of public interface
public:
blargg_err_t set_sample_rate( long rate, class Nes_Buffer* );
blargg_err_t set_sample_rate( long rate, class Nes_Effects_Buffer* );
void irq_changed() { emu.irq_changed(); }
private:
friend class Nes_Recorder;
frame_t* frame_;
int buffer_height_;
bool fade_sound_in;
bool fade_sound_out;
virtual blargg_err_t init_();
virtual void loading_state( Nes_State const& ) { }
void load_state( Nes_State_ const& );
void save_state( Nes_State_* s ) const { emu.save_state( s ); }
int joypad_read_count() const { return emu.joypad_read_count; }
long timestamp() const { return emu.nes.frame_count; }
void set_timestamp( long t ) { emu.nes.frame_count = t; }
private:
// noncopyable
Nes_Emu( const Nes_Emu& );
Nes_Emu& operator = ( const Nes_Emu& );
// sound
Multi_Buffer* default_sound_buf;
Multi_Buffer* sound_buf;
unsigned sound_buf_changed_count;
Silent_Buffer silent_buffer;
equalizer_t equalizer_;
int channel_count_;
bool sound_enabled;
void enable_sound( bool );
void clear_sound_buf();
void fade_samples( blip_sample_t*, int size, int step );
char* host_pixel_buff;
char* host_pixels;
int host_palette_size;
frame_t single_frame;
Nes_Cart private_cart;
Nes_Core emu; // large; keep at end
bool init_called;
blargg_err_t auto_init();
};
inline void Nes_Emu::set_pixels( void* p, long n )
{
host_pixels = (char*) p + n;
emu.ppu.host_row_bytes = n;
}
inline byte const* Nes_Emu::chr_mem()
{
return cart()->chr_size() ? (byte*) cart()->chr() : emu.ppu.impl->chr_ram;
}
inline long Nes_Emu::chr_size() const
{
return cart()->chr_size() ? cart()->chr_size() : emu.ppu.chr_addr_size;
}
#endif

View File

@ -1,226 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_File.h"
#include "blargg_endian.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// Nes_File_Writer
Nes_File_Writer::Nes_File_Writer()
{
write_remain = 0;
depth_ = 0;
}
Nes_File_Writer::~Nes_File_Writer()
{
}
blargg_err_t Nes_File_Writer::begin( Auto_File_Writer dw, nes_tag_t tag )
{
require( !out );
out = dw;
RETURN_ERR( out.open_comp() );
return begin_group( tag );
}
blargg_err_t Nes_File_Writer::begin_group( nes_tag_t tag )
{
depth_++;
return write_header( tag, group_begin_size );
}
blargg_err_t Nes_File_Writer::write_header( nes_tag_t tag, long size )
{
nes_block_t h;
h.tag = tag;
h.size = size;
h.swap();
return out->write( &h, sizeof h );
}
blargg_err_t Nes_File_Writer::write_block( nes_tag_t tag, void const* data, long size )
{
RETURN_ERR( write_block_header( tag, size ) );
return write( data, size );
}
blargg_err_t Nes_File_Writer::write_block_header( nes_tag_t tag, long size )
{
require( !write_remain );
write_remain = size;
return write_header( tag, size );
}
Nes_File_Writer::error_t Nes_File_Writer::write( void const* p, long s )
{
write_remain -= s;
require( write_remain >= 0 );
return out->write( p, s );
}
blargg_err_t Nes_File_Writer::end()
{
require( depth_ == 1 );
return end_group();
}
blargg_err_t Nes_File_Writer::end_group()
{
require( depth_ > 0 );
depth_--;
return write_header( group_end_tag, 0 );
}
// Nes_File_Reader
Nes_File_Reader::Nes_File_Reader()
{
h.tag = 0;
h.size = 0;
block_type_ = invalid;
depth_ = -1;
}
Nes_File_Reader::~Nes_File_Reader()
{
}
blargg_err_t Nes_File_Reader::read_block_data( void* p, long s )
{
long extra = remain();
if ( s > extra )
s = extra;
extra -= s;
RETURN_ERR( read( p, s ) );
if ( extra )
RETURN_ERR( skip( extra ) );
return 0;
}
blargg_err_t Nes_File_Reader::begin( Auto_File_Reader dr )
{
require( !in );
RETURN_ERR( dr.open() );
in = dr;
RETURN_ERR( read_header() );
if ( block_type() != group_begin )
return "File is wrong type";
return enter_group();
}
blargg_err_t Nes_File_Reader::read_header()
{
RETURN_ERR( in->read( &h, sizeof h ) );
h.swap();
block_type_ = data_block;
if ( h.size == group_begin_size )
{
block_type_ = group_begin;
h.size = 0;
}
if ( (long) h.tag == group_end_tag )
{
block_type_ = group_end;
h.tag = 0;
}
set_remain( h.size );
return 0;
}
blargg_err_t Nes_File_Reader::next_block()
{
require( depth() >= 0 );
switch ( block_type() )
{
case group_end:
require( false );
return "Tried to go past end of blocks";
case group_begin: {
int d = 1;
do
{
RETURN_ERR( skip( h.size ) );
RETURN_ERR( read_header() );
if ( block_type() == group_begin )
d++;
if ( block_type() == group_end )
d--;
}
while ( d > 0);
break;
}
case data_block:
RETURN_ERR( skip( h.size ) );
break;
case invalid:
break;
}
return read_header();
}
blargg_err_t Nes_File_Reader::enter_group()
{
require( block_type() == group_begin );
block_type_ = invalid; // cause next_block() not to skip group
depth_++;
return 0;
}
blargg_err_t Nes_File_Reader::exit_group()
{
require( depth() > 0 );
int d = 1;
while ( true )
{
if ( block_type() == group_end )
d--;
if ( block_type() == group_begin )
d++;
if ( d == 0 )
break;
RETURN_ERR( skip( h.size ) );
RETURN_ERR( read_header() );
}
block_type_ = invalid; // cause next_block() to read past end block
depth_--;
return 0;
}
blargg_err_t Nes_File_Reader::skip_v( int s )
{
require( block_type() == data_block );
if ( (unsigned long) s > h.size )
return "Tried to skip past end of data";
h.size -= s;
set_remain( h.size );
return in->skip( s );
}
blargg_err_t Nes_File_Reader::read_v( void* p, int n )
{
require( block_type() == data_block );
if ( (unsigned long) n > h.size )
n = h.size;
h.size -= n;
set_remain( h.size );
return in->read( p, n );
}

View File

@ -1,128 +0,0 @@
// NES block-oriented file access
// Nes_Emu 0.7.0
#ifndef NES_FILE_H
#define NES_FILE_H
#include "blargg_common.h"
#include "abstract_file.h"
#include "nes_data.h"
// Writes a structured file
class Nes_File_Writer : public Data_Writer {
public:
Nes_File_Writer();
~Nes_File_Writer();
// Begin writing file with specified signature tag
blargg_err_t begin( Auto_File_Writer, nes_tag_t );
// Begin tagged group
blargg_err_t begin_group( nes_tag_t );
// Write tagged block
blargg_err_t write_block( nes_tag_t, void const*, long size );
// Write tagged block header. 'Size' bytes must be written before next block.
blargg_err_t write_block_header( nes_tag_t, long size );
// Write data to current block
error_t write( void const*, long );
// End tagged group
blargg_err_t end_group();
// End file
blargg_err_t end();
private:
Auto_File_Writer out;
long write_remain;
int depth_;
blargg_err_t write_header( nes_tag_t tag, long size );
};
// Reads a structured file
class Nes_File_Reader : public Data_Reader {
public:
Nes_File_Reader();
~Nes_File_Reader();
// If true, verify checksums of any blocks that have them
void enable_checksums( bool = true );
// Begin reading file. Until next_block() is called, block_tag() yields tag for file.
blargg_err_t begin( Auto_File_Reader );
// Read header of next block in current group
blargg_err_t next_block();
// Type of current block
enum block_type_t {
data_block,
group_begin,
group_end,
invalid
};
block_type_t block_type() const { return block_type_; }
// Tag of current block
nes_tag_t block_tag() const { return h.tag; }
// Read at most s bytes from block and skip any remaining bytes
blargg_err_t read_block_data( void*, long s );
// Read at most 's' bytes from current block and return number of bytes actually read
virtual blargg_err_t read_v( void*, int n );
// Skip 's' bytes in current block
virtual blargg_err_t skip_v( int s );
// Read first sub-block of current group block
blargg_err_t enter_group();
// Skip past current group
blargg_err_t exit_group();
// Current depth, where 0 is top-level in file and higher is deeper
int depth() const { return depth_; }
// True if all data has been read
bool done() const { return depth() == 0 && block_type() == group_end; }
private:
Auto_File_Reader in;
nes_block_t h;
block_type_t block_type_;
int depth_;
blargg_err_t read_header();
};
template<class T>
inline blargg_err_t read_nes_state( Nes_File_Reader& in, T* out )
{
blargg_err_t err = in.read_block_data( out, sizeof *out );
out->swap();
return err;
}
template<class T>
inline blargg_err_t write_nes_state( Nes_File_Writer& out, T& in )
{
in.swap();
blargg_err_t err = out.write_block( in.tag, &in, sizeof in );
in.swap();
return err;
}
template<class T>
inline blargg_err_t write_nes_state( Nes_File_Writer& out, const T& in )
{
T copy = in;
copy.swap();
return out.write_block( copy.tag, &copy, sizeof copy );
}
#endif

View File

@ -1,120 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Fme7_Apu.h"
#include <string.h>
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
void Nes_Fme7_Apu::reset()
{
last_time = 0;
for ( int i = 0; i < osc_count; i++ )
oscs [i].last_amp = 0;
fme7_apu_state_t* state = this;
memset( state, 0, sizeof *state );
}
unsigned char Nes_Fme7_Apu::amp_table [16] =
{
#define ENTRY( n ) (unsigned char) (n * amp_range + 0.5)
ENTRY(0.0000), ENTRY(0.0078), ENTRY(0.0110), ENTRY(0.0156),
ENTRY(0.0221), ENTRY(0.0312), ENTRY(0.0441), ENTRY(0.0624),
ENTRY(0.0883), ENTRY(0.1249), ENTRY(0.1766), ENTRY(0.2498),
ENTRY(0.3534), ENTRY(0.4998), ENTRY(0.7070), ENTRY(1.0000)
#undef ENTRY
};
void Nes_Fme7_Apu::run_until( blip_time_t end_time )
{
require( end_time >= last_time );
for ( int index = 0; index < osc_count; index++ )
{
int mode = regs [7] >> index;
int vol_mode = regs [010 + index];
int volume = amp_table [vol_mode & 0x0f];
if ( !oscs [index].output )
continue;
// check for unsupported mode
#ifndef NDEBUG
if ( (mode & 011) <= 001 && vol_mode & 0x1f )
dprintf( "FME7 used unimplemented sound mode: %02X, vol_mode: %02X\n",
mode, vol_mode & 0x1f );
#endif
if ( (mode & 001) | (vol_mode & 0x10) )
volume = 0; // noise and envelope aren't supported
// period
int const period_factor = 16;
unsigned period = (regs [index * 2 + 1] & 0x0f) * 0x100 * period_factor +
regs [index * 2] * period_factor;
if ( period < 50 ) // around 22 kHz
{
volume = 0;
if ( !period ) // on my AY-3-8910A, period doesn't have extra one added
period = period_factor;
}
// current amplitude
int amp = volume;
if ( !phases [index] )
amp = 0;
int delta = amp - oscs [index].last_amp;
if ( delta )
{
oscs [index].last_amp = amp;
synth.offset( last_time, delta, oscs [index].output );
}
blip_time_t time = last_time + delays [index];
if ( time < end_time )
{
Blip_Buffer* const osc_output = oscs [index].output;
int delta = amp * 2 - volume;
if ( volume )
{
do
{
delta = -delta;
synth.offset_inline( time, delta, osc_output );
time += period;
}
while ( time < end_time );
oscs [index].last_amp = (delta + volume) >> 1;
phases [index] = (delta > 0);
}
else
{
// maintain phase when silent
int count = (end_time - time + period - 1) / period;
phases [index] ^= count & 1;
time += (long) count * period;
}
}
delays [index] = time - end_time;
}
last_time = end_time;
}

View File

@ -1,135 +0,0 @@
// Sunsoft FME-7 sound emulator
// Nes_Emu 0.7.0
#ifndef NES_FME7_APU_H
#define NES_FME7_APU_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
struct fme7_apu_state_t
{
enum { reg_count = 14 };
BOOST::uint8_t regs [reg_count];
BOOST::uint8_t phases [3]; // 0 or 1
BOOST::uint8_t latch;
BOOST::uint16_t delays [3]; // a, b, c
};
BOOST_STATIC_ASSERT( sizeof (fme7_apu_state_t) == 24 );
class Nes_Fme7_Apu : private fme7_apu_state_t {
public:
Nes_Fme7_Apu();
// See Nes_Apu.h for reference
void reset();
void volume( double );
void treble_eq( blip_eq_t const& );
void output( Blip_Buffer* );
enum { osc_count = 3 };
void osc_output( int index, Blip_Buffer* );
void end_frame( blip_time_t );
void save_state( fme7_apu_state_t* ) const;
void load_state( fme7_apu_state_t const& );
// Mask and addresses of registers
enum { addr_mask = 0xe000 };
enum { data_addr = 0xe000 };
enum { latch_addr = 0xc000 };
// (addr & addr_mask) == latch_addr
void write_latch( int );
// (addr & addr_mask) == data_addr
void write_data( blip_time_t, int data );
// End of public interface
private:
// noncopyable
Nes_Fme7_Apu( const Nes_Fme7_Apu& );
Nes_Fme7_Apu& operator = ( const Nes_Fme7_Apu& );
static unsigned char amp_table [16];
struct {
Blip_Buffer* output;
int last_amp;
} oscs [osc_count];
blip_time_t last_time;
enum { amp_range = 192 }; // can be any value; this gives best error/quality tradeoff
Blip_Synth<blip_good_quality,1> synth;
void run_until( blip_time_t );
};
inline void Nes_Fme7_Apu::volume( double v )
{
synth.volume( 0.38 / amp_range * v ); // to do: fine-tune
}
inline void Nes_Fme7_Apu::treble_eq( blip_eq_t const& eq )
{
synth.treble_eq( eq );
}
inline void Nes_Fme7_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline void Nes_Fme7_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
inline Nes_Fme7_Apu::Nes_Fme7_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
inline void Nes_Fme7_Apu::write_latch( int data ) { latch = data; }
inline void Nes_Fme7_Apu::write_data( blip_time_t time, int data )
{
if ( (unsigned) latch >= reg_count )
{
#ifdef dprintf
dprintf( "FME7 write to %02X (past end of sound registers)\n", (int) latch );
#endif
return;
}
run_until( time );
regs [latch] = data;
}
inline void Nes_Fme7_Apu::end_frame( blip_time_t time )
{
if ( time > last_time )
run_until( time );
assert( last_time >= time );
last_time -= time;
}
inline void Nes_Fme7_Apu::save_state( fme7_apu_state_t* out ) const
{
*out = *this;
}
inline void Nes_Fme7_Apu::load_state( fme7_apu_state_t const& in )
{
reset();
fme7_apu_state_t* state = this;
*state = in;
}
#endif

View File

@ -1,222 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Mapper::Nes_Mapper()
{
emu_ = NULL;
static char c;
state = &c; // TODO: state must not be null?
state_size = 0;
}
Nes_Mapper::~Nes_Mapper()
{
}
// Sets mirroring, maps first 8K CHR in, first and last 16K of PRG,
// intercepts writes to upper half of memory, and clears registered state.
void Nes_Mapper::default_reset_state()
{
int mirroring = cart_->mirroring();
if ( mirroring & 8 )
mirror_full();
else if ( mirroring & 1 )
mirror_vert();
else
mirror_horiz();
set_chr_bank( 0, bank_8k, 0 );
set_prg_bank( 0x8000, bank_16k, 0 );
set_prg_bank( 0xC000, bank_16k, last_bank );
intercept_writes( 0x8000, 0x8000 );
memset( state, 0, state_size );
}
void Nes_Mapper::reset()
{
default_reset_state();
reset_state();
apply_mapping();
}
void mapper_state_t::write( const void* p, unsigned long s )
{
require( s <= max_mapper_state_size );
require( !size );
size = s;
memcpy( data, p, s );
}
int mapper_state_t::read( void* p, unsigned long s ) const
{
if ( (long) s > size )
s = size;
memcpy( p, data, s );
return s;
}
void Nes_Mapper::save_state( mapper_state_t& out )
{
out.write( state, state_size );
}
void Nes_Mapper::load_state( mapper_state_t const& in )
{
default_reset_state();
read_state( in );
apply_mapping();
}
void Nes_Mapper::read_state( mapper_state_t const& in )
{
memset( state, 0, state_size );
in.read( state, state_size );
apply_mapping();
}
// Timing
void Nes_Mapper::irq_changed() { emu_->irq_changed(); }
nes_time_t Nes_Mapper::next_irq( nes_time_t ) { return no_irq; }
void Nes_Mapper::a12_clocked() { }
void Nes_Mapper::run_until( nes_time_t ) { }
void Nes_Mapper::end_frame( nes_time_t ) { }
bool Nes_Mapper::ppu_enabled() const { return emu().ppu.w2001 & 0x08; }
// Sound
int Nes_Mapper::channel_count() const { return 0; }
void Nes_Mapper::set_channel_buf( int, Blip_Buffer* ) { require( false ); }
void Nes_Mapper::set_treble( blip_eq_t const& ) { }
// Memory mapping
void Nes_Mapper::set_prg_bank( nes_addr_t addr, bank_size_t bs, int bank )
{
require( addr >= 0x2000 ); // can't remap low-memory
int bank_size = 1 << bs;
require( addr % bank_size == 0 ); // must be aligned
int bank_count = cart_->prg_size() >> bs;
if ( bank < 0 )
bank += bank_count;
if ( bank >= bank_count )
{
check( !(cart_->prg_size() & (cart_->prg_size() - 1)) ); // ensure PRG size is power of 2
bank %= bank_count;
}
emu().map_code( addr, bank_size, cart_->prg() + (bank << bs) );
if ( unsigned (addr - 0x6000) < 0x2000 )
emu().enable_prg_6000();
}
void Nes_Mapper::set_chr_bank( nes_addr_t addr, bank_size_t bs, int bank )
{
emu().ppu.render_until( emu().clock() );
emu().ppu.set_chr_bank( addr, 1 << bs, bank << bs );
}
void Nes_Mapper::set_chr_bank_ex( nes_addr_t addr, bank_size_t bs, int bank )
{
emu().ppu.render_until( emu().clock() );
emu().ppu.set_chr_bank_ex( addr, 1 << bs, bank << bs );
}
void Nes_Mapper::mirror_manual( int page0, int page1, int page2, int page3 )
{
emu().ppu.render_bg_until( emu().clock() );
emu().ppu.set_nt_banks( page0, page1, page2, page3 );
}
#ifndef NDEBUG
int Nes_Mapper::handle_bus_conflict( nes_addr_t addr, int data )
{
if ( emu().Nes_Cpu::get_code( addr ) [0] != data )
dprintf( "Mapper write had bus conflict\n" );
return data;
}
#endif
// Mapper registration
int const max_mappers = 32;
Nes_Mapper::mapping_t Nes_Mapper::mappers [max_mappers] =
{
{ 0, Nes_Mapper::make_nrom },
{ 1, Nes_Mapper::make_mmc1 },
{ 2, Nes_Mapper::make_unrom },
{ 3, Nes_Mapper::make_cnrom },
{ 4, Nes_Mapper::make_mmc3 },
{ 7, Nes_Mapper::make_aorom }
};
static int mapper_count = 6; // to do: keep synchronized with pre-supplied mappers above
Nes_Mapper::creator_func_t Nes_Mapper::get_mapper_creator( int code )
{
for ( int i = 0; i < mapper_count; i++ )
{
if ( mappers [i].code == code )
return mappers [i].func;
}
return NULL;
}
void Nes_Mapper::register_mapper( int code, creator_func_t func )
{
// Catch attempted registration of a different creation function for same mapper code
require( !get_mapper_creator( code ) || get_mapper_creator( code ) == func );
require( mapper_count < max_mappers ); // fixed liming on number of registered mappers
mapping_t& m = mappers [mapper_count++];
m.code = code;
m.func = func;
}
Nes_Mapper* Nes_Mapper::create( Nes_Cart const* cart, Nes_Core* emu )
{
Nes_Mapper::creator_func_t func = get_mapper_creator( cart->mapper_code() );
if ( !func )
return NULL;
// to do: out of memory will be reported as unsupported mapper
Nes_Mapper* mapper = func();
if ( mapper )
{
mapper->cart_ = cart;
mapper->emu_ = emu;
}
return mapper;
}

View File

@ -1,235 +0,0 @@
// NES mapper interface
// Nes_Emu 0.7.0
#ifndef NES_MAPPER
#define NES_MAPPER
#include "Nes_Cart.h"
#include "Nes_Cpu.h"
#include "nes_data.h"
#include "Nes_Core.h"
class Blip_Buffer;
class blip_eq_t;
class Nes_Core;
class Nes_Mapper {
public:
// Register function that creates mapper for given code.
typedef Nes_Mapper* (*creator_func_t)();
static void register_mapper( int code, creator_func_t );
// Register optional mappers included with Nes_Emu
void register_optional_mappers();
// Create mapper appropriate for cartridge. Returns NULL if it uses unsupported mapper.
static Nes_Mapper* create( Nes_Cart const*, Nes_Core* );
virtual ~Nes_Mapper();
// Reset mapper to power-up state.
virtual void reset();
// Save snapshot of mapper state. Default saves registered state.
virtual void save_state( mapper_state_t& );
// Resets mapper, loads state, then applies it
virtual void load_state( mapper_state_t const& );
// I/O
// Read from memory
virtual int read( nes_time_t, nes_addr_t );
// Write to memory
virtual void write( nes_time_t, nes_addr_t, int data ) = 0;
// Write to memory below 0x8000 (returns false if mapper didn't handle write)
virtual bool write_intercepted( nes_time_t, nes_addr_t, int data );
// Timing
// Time returned when current mapper state won't ever cause an IRQ
enum { no_irq = LONG_MAX / 2 };
// Time next IRQ will occur at
virtual nes_time_t next_irq( nes_time_t present );
// Run mapper until given time
virtual void run_until( nes_time_t );
// End video frame of given length
virtual void end_frame( nes_time_t length );
// Sound
// Number of sound channels
virtual int channel_count() const;
// Set sound buffer for channel to output to, or NULL to silence channel.
virtual void set_channel_buf( int index, Blip_Buffer* );
// Set treble equalization
virtual void set_treble( blip_eq_t const& );
// Misc
// Called when bit 12 of PPU's VRAM address changes from 0 to 1 due to
// $2006 and $2007 accesses (but not due to PPU scanline rendering).
virtual void a12_clocked();
protected:
// Services provided for derived mapper classes
Nes_Mapper();
// Register state data to automatically save and load. Be sure the binary
// layout is suitable for use in a file, including any byte-order issues.
// Automatically cleared to zero by default reset().
void register_state( void*, unsigned );
// Enable 8K of RAM at 0x6000-0x7FFF, optionally read-only.
void enable_sram( bool enabled = true, bool read_only = false );
// Cause CPU writes within given address range to call mapper's write() function.
// Might map a larger address range, which the mapper can ignore and pass to
// Nes_Mapper::write(). The range 0x8000-0xffff is always intercepted by the mapper.
void intercept_writes( nes_addr_t addr, unsigned size );
// Cause CPU reads within given address range to call mapper's read() function.
// Might map a larger address range, which the mapper can ignore and pass to
// Nes_Mapper::read(). CPU opcode/operand reads and low-memory reads always
// go directly to memory and cannot be intercepted.
void intercept_reads( nes_addr_t addr, unsigned size );
// Bank sizes for mapping
enum bank_size_t { // 1 << bank_Xk = X * 1024
bank_1k = 10,
bank_2k = 11,
bank_4k = 12,
bank_8k = 13,
bank_16k = 14,
bank_32k = 15
};
// Index of last PRG/CHR bank. Last_bank selects last bank, last_bank - 1
// selects next-to-last bank, etc.
enum { last_bank = -1 };
// Map 'size' bytes from 'PRG + bank * size' to CPU address space starting at 'addr'
void set_prg_bank( nes_addr_t addr, bank_size_t size, int bank );
// Map 'size' bytes from 'CHR + bank * size' to PPU address space starting at 'addr'
void set_chr_bank( nes_addr_t addr, bank_size_t size, int bank );
void set_chr_bank_ex( nes_addr_t addr, bank_size_t size, int bank ); // mmc24 only
// Set PPU mirroring. All mappings implemented using mirror_manual().
void mirror_manual( int page0, int page1, int page2, int page3 );
void mirror_single( int page );
void mirror_horiz( int page = 0 );
void mirror_vert( int page = 0 );
void mirror_full();
// True if PPU rendering is enabled. Some mappers watch PPU memory accesses to determine
// when scanlines occur, and can only do this when rendering is enabled.
bool ppu_enabled() const;
// Cartridge being emulated
Nes_Cart const& cart() const { return *cart_; }
// Must be called when next_irq()'s return value is earlier than previous,
// current CPU run can be stopped earlier. Best to call whenever time may
// have changed (no performance impact if called even when time didn't change).
void irq_changed();
// Handle data written to mapper that doesn't handle bus conflict arising due to
// PRG also reading data. Returns data that mapper should act as if were
// written. Currently always returns 'data' and just checks that data written is
// the same as byte in PRG at same address and writes debug message if it doesn't.
int handle_bus_conflict( nes_addr_t addr, int data );
// Reference to emulator that uses this mapper.
Nes_Core& emu() const { return *emu_; }
protected:
// Services derived classes provide
// Read state from snapshot. Default reads data into registered state, then calls
// apply_mapping().
virtual void read_state( mapper_state_t const& );
// Apply current mapping state to hardware. Called after reading mapper state
// from a snapshot.
virtual void apply_mapping() = 0;
// Called by default reset() before apply_mapping() is called.
virtual void reset_state() { }
// End of general interface
private:
Nes_Core* emu_;
void* state;
unsigned state_size;
Nes_Cart const* cart_;
void default_reset_state();
struct mapping_t {
int code;
Nes_Mapper::creator_func_t func;
};
static mapping_t mappers [];
static creator_func_t get_mapper_creator( int code );
// built-in mappers
static Nes_Mapper* make_nrom();
static Nes_Mapper* make_unrom();
static Nes_Mapper* make_aorom();
static Nes_Mapper* make_cnrom();
static Nes_Mapper* make_mmc1();
static Nes_Mapper* make_mmc3();
};
template<class T>
struct register_mapper {
/*void*/ register_mapper( int code ) { Nes_Mapper::register_mapper( code, create ); }
static Nes_Mapper* create() { return BLARGG_NEW T; }
};
#ifdef NDEBUG
inline int Nes_Mapper::handle_bus_conflict( nes_addr_t addr, int data ) { return data; }
#endif
inline void Nes_Mapper::mirror_horiz( int p ) { mirror_manual( p, p, p ^ 1, p ^ 1 ); }
inline void Nes_Mapper::mirror_vert( int p ) { mirror_manual( p, p ^ 1, p, p ^ 1 ); }
inline void Nes_Mapper::mirror_single( int p ) { mirror_manual( p, p, p, p ); }
inline void Nes_Mapper::mirror_full() { mirror_manual( 0, 1, 2, 3 ); }
inline void Nes_Mapper::register_state( void* p, unsigned s )
{
assert( s <= max_mapper_state_size );
state = p;
state_size = s;
}
inline bool Nes_Mapper::write_intercepted( nes_time_t, nes_addr_t, int ) { return false; }
inline int Nes_Mapper::read( nes_time_t, nes_addr_t ) { return -1; } // signal to caller
inline void Nes_Mapper::intercept_reads( nes_addr_t addr, unsigned size )
{
emu().add_mapper_intercept( addr, size, true, false );
}
inline void Nes_Mapper::intercept_writes( nes_addr_t addr, unsigned size )
{
emu().add_mapper_intercept( addr, size, false, true );
}
inline void Nes_Mapper::enable_sram( bool enabled, bool read_only )
{
emu_->enable_sram( enabled, read_only );
}
#endif

View File

@ -1,123 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
class Mapper_Mmc1 : public Nes_Mapper, mmc1_state_t {
public:
Mapper_Mmc1()
{
mmc1_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
regs [0] = 0x0f;
regs [1] = 0x00;
regs [2] = 0x01;
regs [3] = 0x00;
}
void register_changed( int );
virtual void apply_mapping()
{
enable_sram(); // early MMC1 always had SRAM enabled
register_changed( 0 );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
if ( !(data & 0x80) )
{
buf |= (data & 1) << bit;
bit++;
if ( bit >= 5 )
{
int reg = addr >> 13 & 3;
regs [reg] = buf & 0x1f;
bit = 0;
buf = 0;
register_changed( reg );
}
}
else
{
bit = 0;
buf = 0;
regs [0] |= 0x0c;
register_changed( 0 );
}
}
};
void Mapper_Mmc1::register_changed( int reg )
{
// Mirroring
if ( reg == 0 )
{
int mode = regs [0] & 3;
if ( mode < 2 )
mirror_single( mode & 1 );
else if ( mode == 2 )
mirror_vert();
else
mirror_horiz();
}
// CHR
if ( reg < 3 && cart().chr_size() > 0 )
{
if ( regs [0] & 0x10 )
{
set_chr_bank( 0x0000, bank_4k, regs [1] );
set_chr_bank( 0x1000, bank_4k, regs [2] );
}
else
{
set_chr_bank( 0, bank_8k, regs [1] >> 1 );
}
}
// PRG
int bank = (regs [1] & 0x10) | (regs [3] & 0x0f);
if ( !(regs [0] & 0x08) )
{
set_prg_bank( 0x8000, bank_32k, bank >> 1 );
}
else if ( regs [0] & 0x04 )
{
set_prg_bank( 0x8000, bank_16k, bank );
set_prg_bank( 0xC000, bank_16k, bank | 0x0f );
}
else
{
set_prg_bank( 0x8000, bank_16k, bank & ~0x0f );
set_prg_bank( 0xC000, bank_16k, bank );
}
}
Nes_Mapper* Nes_Mapper::make_mmc1()
{
return BLARGG_NEW Mapper_Mmc1;
}

View File

@ -1,252 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
#include <string.h>
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// 264 or less breaks Gargoyle's Quest II
// 267 or less breaks Magician
int const irq_fine_tune = 268;
nes_time_t const first_scanline = 20 * Nes_Ppu::scanline_len + irq_fine_tune;
nes_time_t const last_scanline = first_scanline + 240 * Nes_Ppu::scanline_len;
class Mapper_Mmc3 : public Nes_Mapper, mmc3_state_t {
nes_time_t next_time;
int counter_just_clocked; // used only for debugging
public:
Mapper_Mmc3()
{
mmc3_state_t* state = this;
register_state( state, sizeof *state );
}
virtual void reset_state()
{
memcpy( banks, "\0\2\4\5\6\7\0\1", sizeof banks );
counter_just_clocked = 0;
next_time = 0;
mirror = 1;
if ( cart().mirroring() & 1 )
{
mirror = 0;
//dprintf( "cart specified vertical mirroring\n" );
}
}
void update_chr_banks();
void update_prg_banks();
void write_irq( nes_addr_t addr, int data );
void write( nes_time_t, nes_addr_t, int );
void start_frame() { next_time = first_scanline; }
virtual void apply_mapping()
{
write( 0, 0xA000, mirror );
write( 0, 0xA001, sram_mode );
update_chr_banks();
update_prg_banks();
start_frame();
}
void clock_counter()
{
if ( counter_just_clocked )
counter_just_clocked--;
if ( !irq_ctr-- )
{
irq_ctr = irq_latch;
//if ( !irq_latch )
//dprintf( "MMC3 IRQ counter reloaded with 0\n" );
}
//dprintf( "%6d MMC3 IRQ clocked\n", time / ppu_overclock );
if ( irq_ctr == 0 )
{
//if ( irq_enabled && !irq_flag )
//dprintf( "%6d MMC3 IRQ triggered: %f\n", time / ppu_overclock, time / scanline_len.0 - 20 );
irq_flag = irq_enabled;
}
}
virtual void run_until( nes_time_t );
virtual void a12_clocked()
{
clock_counter();
if ( irq_enabled )
irq_changed();
}
virtual void end_frame( nes_time_t end_time )
{
run_until( end_time );
start_frame();
}
virtual nes_time_t next_irq( nes_time_t present )
{
run_until( present );
if ( !irq_enabled )
return no_irq;
if ( irq_flag )
return 0;
if ( !ppu_enabled() )
return no_irq;
int remain = irq_ctr - 1;
if ( remain < 0 )
remain = irq_latch;
assert( remain >= 0 );
long time = remain * 341L + next_time;
if ( time > last_scanline )
return no_irq;
return time / ppu_overclock + 1;
}
};
void Mapper_Mmc3::run_until( nes_time_t end_time )
{
bool bg_enabled = ppu_enabled();
end_time *= ppu_overclock;
while ( next_time < end_time && next_time <= last_scanline )
{
if ( bg_enabled )
clock_counter();
next_time += Nes_Ppu::scanline_len;
}
}
void Mapper_Mmc3::update_chr_banks()
{
int chr_xor = (mode >> 7 & 1) * 0x1000;
set_chr_bank( 0x0000 ^ chr_xor, bank_2k, banks [0] >> 1 );
set_chr_bank( 0x0800 ^ chr_xor, bank_2k, banks [1] >> 1 );
set_chr_bank( 0x1000 ^ chr_xor, bank_1k, banks [2] );
set_chr_bank( 0x1400 ^ chr_xor, bank_1k, banks [3] );
set_chr_bank( 0x1800 ^ chr_xor, bank_1k, banks [4] );
set_chr_bank( 0x1c00 ^ chr_xor, bank_1k, banks [5] );
}
void Mapper_Mmc3::update_prg_banks()
{
set_prg_bank( 0xA000, bank_8k, banks [7] );
nes_addr_t addr = 0x8000 + 0x4000 * (mode >> 6 & 1);
set_prg_bank( addr, bank_8k, banks [6] );
set_prg_bank( addr ^ 0x4000, bank_8k, last_bank - 1 );
}
void Mapper_Mmc3::write_irq( nes_addr_t addr, int data )
{
switch ( addr & 0xE001 )
{
case 0xC000:
irq_latch = data;
break;
case 0xC001:
if ( counter_just_clocked == 1 )
dprintf( "MMC3 IRQ counter pathological behavior triggered\n" );
counter_just_clocked = 2;
irq_ctr = 0;
break;
case 0xE000:
irq_flag = false;
irq_enabled = false;
break;
case 0xE001:
irq_enabled = true;
break;
}
if ( irq_enabled )
irq_changed();
}
void Mapper_Mmc3::write( nes_time_t time, nes_addr_t addr, int data )
{
check( !(addr & ~0xe001) ); // writes to mirrored registers are rare
//dprintf( "%6d %02X->%04X\n", time, data, addr );
switch ( addr & 0xE001 )
{
case 0x8000: {
int changed = mode ^ data;
mode = data;
// avoid unnecessary bank updates
if ( changed & 0x80 )
update_chr_banks();
if ( changed & 0x40 )
update_prg_banks();
break;
}
case 0x8001: {
int bank = mode & 7;
banks [bank] = data;
if ( bank < 6 )
update_chr_banks();
else
update_prg_banks();
break;
}
case 0xA000:
mirror = data;
if ( !(cart().mirroring() & 0x08) )
{
if ( mirror & 1 )
mirror_horiz();
else
mirror_vert();
}
break;
case 0xA001:
sram_mode = data;
//dprintf( "%02X->%04X\n", data, addr );
// Startropics 1 & 2 use MMC6 and always enable low 512 bytes of SRAM
if ( (data & 0x3F) == 0x30 )
enable_sram( true );
else
enable_sram( data & 0x80, data & 0x40 );
break;
default:
run_until( time );
write_irq( addr, data );
break;
}
}
Nes_Mapper* Nes_Mapper::make_mmc3()
{
return BLARGG_NEW Mapper_Mmc3;
}

View File

@ -1,149 +0,0 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Namco_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Namco_Apu::Nes_Namco_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
Nes_Namco_Apu::~Nes_Namco_Apu()
{
}
void Nes_Namco_Apu::reset()
{
last_time = 0;
addr_reg = 0;
int i;
for ( i = 0; i < reg_count; i++ )
reg [i] = 0;
for ( i = 0; i < osc_count; i++ )
{
Namco_Osc& osc = oscs [i];
osc.delay = 0;
osc.last_amp = 0;
osc.wave_pos = 0;
}
}
void Nes_Namco_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
/*
void Nes_Namco_Apu::reflect_state( Tagged_Data& data )
{
reflect_int16( data, 'ADDR', &addr_reg );
static const char hex [17] = "0123456789ABCDEF";
int i;
for ( i = 0; i < reg_count; i++ )
reflect_int16( data, 'RG\0\0' + hex [i >> 4] * 0x100 + hex [i & 15], &reg [i] );
for ( i = 0; i < osc_count; i++ )
{
reflect_int32( data, 'DLY0' + i, &oscs [i].delay );
reflect_int16( data, 'POS0' + i, &oscs [i].wave_pos );
}
}
*/
void Nes_Namco_Apu::end_frame( nes_time_t time )
{
if ( time > last_time )
run_until( time );
assert( last_time >= time );
last_time -= time;
}
void Nes_Namco_Apu::run_until( nes_time_t nes_end_time )
{
int active_oscs = (reg [0x7F] >> 4 & 7) + 1;
for ( int i = osc_count - active_oscs; i < osc_count; i++ )
{
Namco_Osc& osc = oscs [i];
Blip_Buffer* output = osc.output;
if ( !output )
continue;
blip_resampled_time_t time =
output->resampled_time( last_time ) + osc.delay;
blip_resampled_time_t end_time = output->resampled_time( nes_end_time );
osc.delay = 0;
if ( time < end_time )
{
const BOOST::uint8_t* osc_reg = &reg [i * 8 + 0x40];
if ( !(osc_reg [4] & 0xE0) )
continue;
int volume = osc_reg [7] & 15;
if ( !volume )
continue;
long freq = (osc_reg [4] & 3) * 0x10000 + osc_reg [2] * 0x100L + osc_reg [0];
if ( freq < 64 * active_oscs )
continue; // prevent low frequencies from excessively delaying freq changes
blip_resampled_time_t period =
output->resampled_duration( 983040 ) / freq * active_oscs;
int wave_size = 32 - (osc_reg [4] >> 2 & 7) * 4;
if ( !wave_size )
continue;
int last_amp = osc.last_amp;
int wave_pos = osc.wave_pos;
do
{
// read wave sample
int addr = wave_pos + osc_reg [6];
int sample = reg [addr >> 1] >> (addr << 2 & 4);
wave_pos++;
sample = (sample & 15) * volume;
// output impulse if amplitude changed
int delta = sample - last_amp;
if ( delta )
{
last_amp = sample;
synth.offset_resampled( time, delta, output );
}
// next sample
time += period;
if ( wave_pos >= wave_size )
wave_pos = 0;
}
while ( time < end_time );
osc.wave_pos = wave_pos;
osc.last_amp = last_amp;
}
osc.delay = time - end_time;
}
last_time = nes_end_time;
}

View File

@ -1,104 +0,0 @@
// Namco 106 sound chip emulator
// Nes_Snd_Emu 0.1.7
#ifndef NES_NAMCO_APU_H
#define NES_NAMCO_APU_H
#include "Nes_Apu.h"
struct namco_state_t;
class Nes_Namco_Apu {
public:
Nes_Namco_Apu();
~Nes_Namco_Apu();
// See Nes_Apu.h for reference.
void volume( double );
void treble_eq( const blip_eq_t& );
void output( Blip_Buffer* );
enum { osc_count = 8 };
void osc_output( int index, Blip_Buffer* );
void reset();
void end_frame( nes_time_t );
// Read/write data register is at 0x4800
enum { data_reg_addr = 0x4800 };
void write_data( nes_time_t, int );
int read_data();
// Write-only address register is at 0xF800
enum { addr_reg_addr = 0xF800 };
void write_addr( int );
// to do: implement save/restore
void save_state( namco_state_t* out ) const;
void load_state( namco_state_t const& );
private:
// noncopyable
Nes_Namco_Apu( const Nes_Namco_Apu& );
Nes_Namco_Apu& operator = ( const Nes_Namco_Apu& );
struct Namco_Osc {
long delay;
Blip_Buffer* output;
short last_amp;
short wave_pos;
};
Namco_Osc oscs [osc_count];
nes_time_t last_time;
int addr_reg;
enum { reg_count = 0x80 };
BOOST::uint8_t reg [reg_count];
Blip_Synth<blip_good_quality,15> synth;
BOOST::uint8_t& access();
void run_until( nes_time_t );
};
/*
struct namco_state_t
{
BOOST::uint8_t regs [0x80];
BOOST::uint8_t addr;
BOOST::uint8_t unused;
BOOST::uint8_t positions [8];
BOOST::uint32_t delays [8];
};
*/
inline BOOST::uint8_t& Nes_Namco_Apu::access()
{
int addr = addr_reg & 0x7f;
if ( addr_reg & 0x80 )
addr_reg = (addr + 1) | 0x80;
return reg [addr];
}
inline void Nes_Namco_Apu::volume( double v ) { synth.volume( 0.10 / osc_count * v ); }
inline void Nes_Namco_Apu::treble_eq( const blip_eq_t& eq ) { synth.treble_eq( eq ); }
inline void Nes_Namco_Apu::write_addr( int v ) { addr_reg = v; }
inline int Nes_Namco_Apu::read_data() { return access(); }
inline void Nes_Namco_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline void Nes_Namco_Apu::write_data( nes_time_t time, int data )
{
run_until( time );
access() = data;
}
#endif

View File

@ -1,545 +0,0 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
// Nes_Osc
void Nes_Osc::clock_length( int halt_mask )
{
if ( length_counter && !(regs [0] & halt_mask) )
length_counter--;
}
void Nes_Envelope::clock_envelope()
{
int period = regs [0] & 15;
if ( reg_written [3] ) {
reg_written [3] = false;
env_delay = period;
envelope = 15;
}
else if ( --env_delay < 0 ) {
env_delay = period;
if ( envelope | (regs [0] & 0x20) )
envelope = (envelope - 1) & 15;
}
}
int Nes_Envelope::volume() const
{
return length_counter == 0 ? 0 : (regs [0] & 0x10) ? (regs [0] & 15) : envelope;
}
// Nes_Square
void Nes_Square::clock_sweep( int negative_adjust )
{
int sweep = regs [1];
if ( --sweep_delay < 0 )
{
reg_written [1] = true;
int period = this->period();
int shift = sweep & shift_mask;
if ( shift && (sweep & 0x80) && period >= 8 )
{
int offset = period >> shift;
if ( sweep & negate_flag )
offset = negative_adjust - offset;
if ( period + offset < 0x800 )
{
period += offset;
// rewrite period
regs [2] = period & 0xff;
regs [3] = (regs [3] & ~7) | ((period >> 8) & 7);
}
}
}
if ( reg_written [1] ) {
reg_written [1] = false;
sweep_delay = (sweep >> 4) & 7;
}
}
// TODO: clean up
inline nes_time_t Nes_Square::maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period )
{
long remain = end_time - time;
if ( remain > 0 )
{
int count = (remain + timer_period - 1) / timer_period;
phase = (phase + count) & (phase_range - 1);
time += (long) count * timer_period;
}
return time;
}
void Nes_Square::run( nes_time_t time, nes_time_t end_time )
{
const int period = this->period();
const int timer_period = (period + 1) * 2;
if ( !output )
{
delay = maintain_phase( time + delay, end_time, timer_period ) - end_time;
return;
}
int offset = period >> (regs [1] & shift_mask);
if ( regs [1] & negate_flag )
offset = 0;
const int volume = this->volume();
if ( volume == 0 || period < 8 || (period + offset) >= 0x800 )
{
if ( last_amp ) {
synth.offset( time, -last_amp, output );
last_amp = 0;
}
time += delay;
time = maintain_phase( time, end_time, timer_period );
}
else
{
// handle duty select
int duty_select = (regs [0] >> 6) & 3;
int duty = 1 << duty_select; // 1, 2, 4, 2
int amp = 0;
if ( duty_select == 3 ) {
duty = 2; // negated 25%
amp = volume;
}
if ( phase < duty )
amp ^= volume;
int delta = update_amp( amp );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
Blip_Buffer* const output = this->output;
const Synth& synth = this->synth;
int delta = amp * 2 - volume;
int phase = this->phase;
do {
phase = (phase + 1) & (phase_range - 1);
if ( phase == 0 || phase == duty ) {
delta = -delta;
synth.offset_inline( time, delta, output );
}
time += timer_period;
}
while ( time < end_time );
last_amp = (delta + volume) >> 1;
this->phase = phase;
}
}
delay = time - end_time;
}
// Nes_Triangle
void Nes_Triangle::clock_linear_counter()
{
if ( reg_written [3] )
linear_counter = regs [0] & 0x7f;
else if ( linear_counter )
linear_counter--;
if ( !(regs [0] & 0x80) )
reg_written [3] = false;
}
inline int Nes_Triangle::calc_amp() const
{
int amp = phase_range - phase;
if ( amp < 0 )
amp = phase - (phase_range + 1);
return amp;
}
// TODO: clean up
inline nes_time_t Nes_Triangle::maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period )
{
long remain = end_time - time;
if ( remain > 0 )
{
int count = (remain + timer_period - 1) / timer_period;
phase = ((unsigned) phase + 1 - count) & (phase_range * 2 - 1);
phase++;
time += (long) count * timer_period;
}
return time;
}
void Nes_Triangle::run( nes_time_t time, nes_time_t end_time )
{
const int timer_period = period() + 1;
if ( !output )
{
time += delay;
delay = 0;
if ( length_counter && linear_counter && timer_period >= 3 )
delay = maintain_phase( time, end_time, timer_period ) - end_time;
return;
}
// to do: track phase when period < 3
// to do: Output 7.5 on dac when period < 2? More accurate, but results in more clicks.
int delta = update_amp( calc_amp() );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( length_counter == 0 || linear_counter == 0 || timer_period < 3 )
{
time = end_time;
}
else if ( time < end_time )
{
Blip_Buffer* const output = this->output;
int phase = this->phase;
int volume = 1;
if ( phase > phase_range ) {
phase -= phase_range;
volume = -volume;
}
do {
if ( --phase == 0 ) {
phase = phase_range;
volume = -volume;
}
else {
synth.offset_inline( time, volume, output );
}
time += timer_period;
}
while ( time < end_time );
if ( volume < 0 )
phase += phase_range;
this->phase = phase;
last_amp = calc_amp();
}
delay = time - end_time;
}
// Nes_Dmc
void Nes_Dmc::reset()
{
address = 0;
dac = 0;
buf = 0;
bits_remain = 1;
bits = 0;
buf_full = false;
silence = true;
next_irq = Nes_Apu::no_irq;
irq_flag = false;
irq_enabled = false;
Nes_Osc::reset();
period = 0x1ac;
}
void Nes_Dmc::recalc_irq()
{
nes_time_t irq = Nes_Apu::no_irq;
if ( irq_enabled && length_counter )
irq = apu->last_dmc_time + delay +
((length_counter - 1) * 8 + bits_remain - 1) * nes_time_t (period) + 1;
if ( irq != next_irq ) {
next_irq = irq;
apu->irq_changed();
}
}
int Nes_Dmc::count_reads( nes_time_t time, nes_time_t* last_read ) const
{
if ( last_read )
*last_read = time;
if ( length_counter == 0 )
return 0; // not reading
long first_read = next_read_time();
long avail = time - first_read;
if ( avail <= 0 )
return 0;
int count = (avail - 1) / (period * 8) + 1;
if ( !(regs [0] & loop_flag) && count > length_counter )
count = length_counter;
if ( last_read ) {
*last_read = first_read + (count - 1) * (period * 8) + 1;
assert( *last_read <= time );
assert( count == count_reads( *last_read, NULL ) );
assert( count - 1 == count_reads( *last_read - 1, NULL ) );
}
return count;
}
static const short dmc_period_table [2] [16] = {
{0x1ac, 0x17c, 0x154, 0x140, 0x11e, 0x0fe, 0x0e2, 0x0d6, // NTSC
0x0be, 0x0a0, 0x08e, 0x080, 0x06a, 0x054, 0x048, 0x036},
{0x18e, 0x161, 0x13c, 0x129, 0x10a, 0x0ec, 0x0d2, 0x0c7, // PAL (totally untested)
0x0b1, 0x095, 0x084, 0x077, 0x062, 0x04e, 0x043, 0x032} // to do: verify PAL periods
};
inline void Nes_Dmc::reload_sample()
{
address = 0x4000 + regs [2] * 0x40;
length_counter = regs [3] * 0x10 + 1;
}
static const unsigned char dac_table [128] =
{
0, 1, 2, 3, 4, 5, 6, 7, 7, 8, 9,10,11,12,13,14,
15,15,16,17,18,19,20,20,21,22,23,24,24,25,26,27,
27,28,29,30,31,31,32,33,33,34,35,36,36,37,38,38,
39,40,41,41,42,43,43,44,45,45,46,47,47,48,48,49,
50,50,51,52,52,53,53,54,55,55,56,56,57,58,58,59,
59,60,60,61,61,62,63,63,64,64,65,65,66,66,67,67,
68,68,69,70,70,71,71,72,72,73,73,74,74,75,75,75,
76,76,77,77,78,78,79,79,80,80,81,81,82,82,82,83,
};
void Nes_Dmc::write_register( int addr, int data )
{
if ( addr == 0 )
{
period = dmc_period_table [pal_mode] [data & 15];
irq_enabled = (data & 0xc0) == 0x80; // enabled only if loop disabled
irq_flag &= irq_enabled;
recalc_irq();
}
else if ( addr == 1 )
{
int old_dac = dac;
dac = data & 0x7F;
// adjust last_amp so that "pop" amplitude will be properly non-linear
// with respect to change in dac
int faked_nonlinear = dac - (dac_table [dac] - dac_table [old_dac]);
if ( !nonlinear )
last_amp = faked_nonlinear;
}
}
void Nes_Dmc::start()
{
reload_sample();
fill_buffer();
recalc_irq();
}
void Nes_Dmc::fill_buffer()
{
if ( !buf_full && length_counter )
{
require( prg_reader ); // prg_reader must be set
buf = prg_reader( prg_reader_data, 0x8000u + address );
address = (address + 1) & 0x7FFF;
buf_full = true;
if ( --length_counter == 0 )
{
if ( regs [0] & loop_flag ) {
reload_sample();
}
else {
apu->osc_enables &= ~0x10;
irq_flag = irq_enabled;
next_irq = Nes_Apu::no_irq;
apu->irq_changed();
}
}
}
}
void Nes_Dmc::run( nes_time_t time, nes_time_t end_time )
{
int delta = update_amp( dac );
if ( !output )
silence = true;
else if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
int bits_remain = this->bits_remain;
if ( silence && !buf_full )
{
int count = (end_time - time + period - 1) / period;
bits_remain = (bits_remain - 1 + 8 - (count % 8)) % 8 + 1;
time += count * period;
}
else
{
Blip_Buffer* const output = this->output;
const int period = this->period;
int bits = this->bits;
int dac = this->dac;
do
{
if ( !silence )
{
int step = (bits & 1) * 4 - 2;
bits >>= 1;
if ( unsigned (dac + step) <= 0x7F ) {
dac += step;
synth.offset_inline( time, step, output );
}
}
time += period;
if ( --bits_remain == 0 )
{
bits_remain = 8;
if ( !buf_full ) {
silence = true;
}
else {
silence = false;
bits = buf;
buf_full = false;
if ( !output )
silence = true;
fill_buffer();
}
}
}
while ( time < end_time );
this->dac = dac;
this->last_amp = dac;
this->bits = bits;
}
this->bits_remain = bits_remain;
}
delay = time - end_time;
}
// Nes_Noise
static const short noise_period_table [16] = {
0x004, 0x008, 0x010, 0x020, 0x040, 0x060, 0x080, 0x0A0,
0x0CA, 0x0FE, 0x17C, 0x1FC, 0x2FA, 0x3F8, 0x7F2, 0xFE4
};
void Nes_Noise::run( nes_time_t time, nes_time_t end_time )
{
int period = noise_period_table [regs [2] & 15];
#if NES_APU_NOISE_LOW_CPU
if ( period < 8 )
{
period = 8;
}
#endif
if ( !output )
{
// TODO: clean up
time += delay;
delay = time + (end_time - time + period - 1) / period * period - end_time;
return;
}
const int volume = this->volume();
int amp = (noise & 1) ? volume : 0;
int delta = update_amp( amp );
if ( delta )
synth.offset( time, delta, output );
time += delay;
if ( time < end_time )
{
const int mode_flag = 0x80;
if ( !volume )
{
// round to next multiple of period
time += (end_time - time + period - 1) / period * period;
// approximate noise cycling while muted, by shuffling up noise register
// to do: precise muted noise cycling?
if ( !(regs [2] & mode_flag) ) {
int feedback = (noise << 13) ^ (noise << 14);
noise = (feedback & 0x4000) | (noise >> 1);
}
}
else
{
Blip_Buffer* const output = this->output;
// using resampled time avoids conversion in synth.offset()
blip_resampled_time_t rperiod = output->resampled_duration( period );
blip_resampled_time_t rtime = output->resampled_time( time );
int noise = this->noise;
int delta = amp * 2 - volume;
const int tap = (regs [2] & mode_flag ? 8 : 13);
do {
int feedback = (noise << tap) ^ (noise << 14);
time += period;
if ( (noise + 1) & 2 ) {
// bits 0 and 1 of noise differ
delta = -delta;
synth.offset_resampled( rtime, delta, output );
}
rtime += rperiod;
noise = (feedback & 0x4000) | (noise >> 1);
}
while ( time < end_time );
last_amp = (delta + volume) >> 1;
this->noise = noise;
}
}
delay = time - end_time;
}

View File

@ -1,150 +0,0 @@
// Private oscillators used by Nes_Apu
// Nes_Snd_Emu 0.1.7
#ifndef NES_OSCS_H
#define NES_OSCS_H
#include "blargg_common.h"
#include "Blip_Buffer.h"
class Nes_Apu;
struct Nes_Osc
{
unsigned char regs [4];
bool reg_written [4];
Blip_Buffer* output;
int length_counter;// length counter (0 if unused by oscillator)
int delay; // delay until next (potential) transition
int last_amp; // last amplitude oscillator was outputting
void clock_length( int halt_mask );
int period() const {
return (regs [3] & 7) * 0x100 + (regs [2] & 0xff);
}
void reset() {
delay = 0;
last_amp = 0;
}
int update_amp( int amp ) {
int delta = amp - last_amp;
last_amp = amp;
return delta;
}
};
struct Nes_Envelope : Nes_Osc
{
int envelope;
int env_delay;
void clock_envelope();
int volume() const;
void reset() {
envelope = 0;
env_delay = 0;
Nes_Osc::reset();
}
};
// Nes_Square
struct Nes_Square : Nes_Envelope
{
enum { negate_flag = 0x08 };
enum { shift_mask = 0x07 };
enum { phase_range = 8 };
int phase;
int sweep_delay;
typedef Blip_Synth<blip_good_quality,1> Synth;
Synth const& synth; // shared between squares
Nes_Square( Synth const* s ) : synth( *s ) { }
void clock_sweep( int adjust );
void run( nes_time_t, nes_time_t );
void reset() {
sweep_delay = 0;
Nes_Envelope::reset();
}
nes_time_t maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period );
};
// Nes_Triangle
struct Nes_Triangle : Nes_Osc
{
enum { phase_range = 16 };
int phase;
int linear_counter;
Blip_Synth<blip_med_quality,1> synth;
int calc_amp() const;
void run( nes_time_t, nes_time_t );
void clock_linear_counter();
void reset() {
linear_counter = 0;
phase = 1;
Nes_Osc::reset();
}
nes_time_t maintain_phase( nes_time_t time, nes_time_t end_time,
nes_time_t timer_period );
};
// Nes_Noise
struct Nes_Noise : Nes_Envelope
{
int noise;
Blip_Synth<blip_med_quality,1> synth;
void run( nes_time_t, nes_time_t );
void reset() {
noise = 1 << 14;
Nes_Envelope::reset();
}
};
// Nes_Dmc
struct Nes_Dmc : Nes_Osc
{
int address; // address of next byte to read
int period;
//int length_counter; // bytes remaining to play (already defined in Nes_Osc)
int buf;
int bits_remain;
int bits;
bool buf_full;
bool silence;
enum { loop_flag = 0x40 };
int dac;
nes_time_t next_irq;
bool irq_enabled;
bool irq_flag;
bool pal_mode;
bool nonlinear;
int (*prg_reader)( void*, nes_addr_t ); // needs to be initialized to prg read function
void* prg_reader_data;
Nes_Apu* apu;
Blip_Synth<blip_med_quality,1> synth;
void start();
void write_register( int, int );
void run( nes_time_t, nes_time_t );
void recalc_irq();
void fill_buffer();
void reload_sample();
void reset();
int count_reads( nes_time_t, nes_time_t* ) const;
nes_time_t next_read_time() const;
};
#endif

View File

@ -1,669 +0,0 @@
// Timing and behavior of PPU
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu.h"
#include <string.h>
#include "Nes_State.h"
#include "Nes_Mapper.h"
#include "Nes_Core.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
// to do: remove unnecessary run_until() calls
#include "blargg_source.h"
// Timing
ppu_time_t const scanline_len = Nes_Ppu::scanline_len;
// if non-zero, report sprite max at fixed time rather than calculating it
nes_time_t const fixed_sprite_max_time = 0; // 1 * ((21 + 164) * scanline_len + 100) / ppu_overclock;
int const sprite_max_cpu_offset = 2420 + 3;
ppu_time_t const t_to_v_time = 20 * scanline_len + 302;
ppu_time_t const even_odd_time = 20 * scanline_len + 328;
ppu_time_t const first_scanline_time = 21 * scanline_len + 60; // this can be varied
ppu_time_t const first_hblank_time = 21 * scanline_len + 252;
ppu_time_t const earliest_sprite_max = sprite_max_cpu_offset * ppu_overclock;
ppu_time_t const earliest_sprite_hit = 21 * scanline_len + 339; // needs to be 22 * scanline_len when fixed_sprite_max_time is set
nes_time_t const vbl_end_time = 2272;
ppu_time_t const max_frame_length = 262 * scanline_len;
//ppu_time_t const max_frame_length = 320 * scanline_len; // longer frame for testing movie resync
nes_time_t const earliest_vbl_end_time = max_frame_length / ppu_overclock - 10;
// Scanline rendering
void Nes_Ppu::render_bg_until_( nes_time_t cpu_time )
{
ppu_time_t time = ppu_time( cpu_time );
ppu_time_t const frame_duration = scanline_len * 261;
if ( time > frame_duration )
time = frame_duration;
// one-time events
if ( frame_phase <= 1 )
{
if ( frame_phase < 1 )
{
// vtemp->vaddr
frame_phase = 1;
if ( w2001 & 0x08 )
vram_addr = vram_temp;
}
// variable-length scanline
if ( time <= even_odd_time )
{
next_bg_time = nes_time( even_odd_time );
return;
}
frame_phase = 2;
if ( !(w2001 & 0x08) || emu.nes.frame_count & 1 )
{
if ( --frame_length_extra < 0 )
{
frame_length_extra = 2;
frame_length_++;
}
burst_phase--;
}
burst_phase = (burst_phase + 2) % 3;
}
// scanlines
if ( scanline_time < time )
{
int count = (time - scanline_time + scanline_len) / scanline_len;
// hblank before next scanline
if ( hblank_time < scanline_time )
{
hblank_time += scanline_len;
run_hblank( 1 );
}
scanline_time += count * scanline_len;
hblank_time += scanline_len * (count - 1);
int saved_vaddr = vram_addr;
int start = scanline_count;
scanline_count += count;
draw_background( start, count );
vram_addr = saved_vaddr; // to do: this is cheap
run_hblank( count - 1 );
}
// hblank after current scanline
ppu_time_t next_ppu_time = hblank_time;
if ( hblank_time < time )
{
hblank_time += scanline_len;
run_hblank( 1 );
next_ppu_time = scanline_time; // scanline will run next
}
assert( time <= hblank_time );
// either hblank or scanline comes next
next_bg_time = nes_time( next_ppu_time );
}
void Nes_Ppu::render_until_( nes_time_t time )
{
// render bg scanlines then render sprite scanlines up to wherever bg was rendered to
render_bg_until( time );
next_sprites_time = nes_time( scanline_time );
if ( host_pixels )
{
int start = next_sprites_scanline;
int count = scanline_count - start;
if ( count > 0 )
{
next_sprites_scanline += count;
draw_sprites( start, count );
}
}
}
// Frame events
inline void Nes_Ppu::end_vblank()
{
// clear VBL, sprite hit, and max sprites flags first time after 20 scanlines
r2002 &= end_vbl_mask;
end_vbl_mask = ~0;
}
inline void Nes_Ppu::run_end_frame( nes_time_t time )
{
if ( !frame_ended )
{
// update frame_length
render_bg_until( time );
// set VBL when end of frame is reached
nes_time_t len = frame_length();
if ( time >= len )
{
r2002 |= 0x80;
frame_ended = true;
if ( w2000 & 0x80 )
nmi_time_ = len + 2 - (frame_length_extra >> 1);
}
}
}
// Sprite max
inline void Nes_Ppu::invalidate_sprite_max_()
{
next_sprite_max_run = earliest_sprite_max / ppu_overclock;
sprite_max_set_time = 0;
}
void Nes_Ppu::run_sprite_max_( nes_time_t cpu_time )
{
end_vblank(); // might get run outside $2002 handler
// 577.0 / 0x10000 ~= 1.0 / 113.581, close enough to accurately calculate which scanline it is
int start_scanline = next_sprite_max_scanline;
next_sprite_max_scanline = unsigned ((cpu_time - sprite_max_cpu_offset) * 577) / 0x10000u;
assert( next_sprite_max_scanline >= 0 && next_sprite_max_scanline <= last_sprite_max_scanline );
if ( !sprite_max_set_time )
{
if ( !(w2001 & 0x18) )
return;
long t = recalc_sprite_max( start_scanline );
sprite_max_set_time = indefinite_time;
if ( t > 0 )
sprite_max_set_time = t / 3 + sprite_max_cpu_offset;
next_sprite_max_run = sprite_max_set_time;
//dprintf( "sprite_max_set_time: %d\n", sprite_max_set_time );
}
if ( cpu_time > sprite_max_set_time )
{
r2002 |= 0x20;
//dprintf( "Sprite max flag set: %d\n", sprite_max_set_time );
next_sprite_max_run = indefinite_time;
}
}
inline void Nes_Ppu::run_sprite_max( nes_time_t t )
{
if ( !fixed_sprite_max_time && t > next_sprite_max_run )
run_sprite_max_( t );
}
inline void Nes_Ppu::invalidate_sprite_max( nes_time_t t )
{
if ( !fixed_sprite_max_time && !(r2002 & 0x20) )
{
run_sprite_max( t );
invalidate_sprite_max_();
}
}
// Sprite 0 hit
inline int Nes_Ppu_Impl::first_opaque_sprite_line() /*const*/
{
// advance earliest time if sprite has blank lines at beginning
byte const* p = map_chr( sprite_tile_index( spr_ram ) * 16 );
int twice = w2000 >> 5 & 1; // loop twice if double height is set
int line = 0;
do
{
for ( int n = 8; n--; p++ )
{
if ( p [0] | p [8] )
return line;
line++;
}
p += 8;
}
while ( !--twice );
return line;
}
void Nes_Ppu::update_sprite_hit( nes_time_t cpu_time )
{
ppu_time_t earliest = earliest_sprite_hit + spr_ram [0] * scanline_len + spr_ram [3];
//ppu_time_t latest = earliest + sprite_height() * scanline_len;
earliest += first_opaque_sprite_line() * scanline_len;
ppu_time_t time = ppu_time( cpu_time );
next_sprite_hit_check = indefinite_time;
if ( false )
if ( earliest < time )
{
r2002 |= 0x40;
return;
}
if ( time < earliest )
{
next_sprite_hit_check = nes_time( earliest );
return;
}
// within possible range; render scanline and compare pixels
int count_needed = 2 + (time - earliest_sprite_hit - spr_ram [3]) / scanline_len;
if ( count_needed > 240 )
count_needed = 240;
while ( scanline_count < count_needed )
render_bg_until( max( cpu_time, next_bg_time + 1 ) );
if ( sprite_hit_found < 0 )
return; // sprite won't hit
if ( !sprite_hit_found )
{
// check again next scanline
next_sprite_hit_check = nes_time( earliest_sprite_hit + spr_ram [3] +
(scanline_count - 1) * scanline_len );
}
else
{
// hit found
ppu_time_t hit_time = earliest_sprite_hit + sprite_hit_found - scanline_len;
if ( time < hit_time )
{
next_sprite_hit_check = nes_time( hit_time );
return;
}
//dprintf( "Sprite hit x: %d, y: %d, scanline_count: %d\n",
// sprite_hit_found % 341, sprite_hit_found / 341, scanline_count );
r2002 |= 0x40;
}
}
// $2002
inline void Nes_Ppu::query_until( nes_time_t time )
{
end_vblank();
// sprite hit
if ( time > next_sprite_hit_check )
update_sprite_hit( time );
// sprite max
if ( !fixed_sprite_max_time )
run_sprite_max( time );
else if ( time >= fixed_sprite_max_time )
r2002 |= (w2001 << 1 & 0x20) | (w2001 << 2 & 0x20);
}
int Nes_Ppu::read_2002( nes_time_t time )
{
nes_time_t next = next_status_event;
next_status_event = vbl_end_time;
int extra_clock = extra_clocks ? (extra_clocks - 1) >> 2 & 1 : 0;
if ( time > next && time > vbl_end_time + extra_clock )
{
query_until( time );
next_status_event = next_sprite_hit_check;
nes_time_t const next_max = fixed_sprite_max_time ?
fixed_sprite_max_time : next_sprite_max_run;
if ( next_status_event > next_max )
next_status_event = next_max;
if ( time > earliest_open_bus_decay() )
{
next_status_event = earliest_open_bus_decay();
update_open_bus( time );
}
if ( time > earliest_vbl_end_time )
{
if ( next_status_event > earliest_vbl_end_time )
next_status_event = earliest_vbl_end_time;
run_end_frame( time );
// special vbl behavior when read is just before or at clock when it's set
if ( extra_clocks != 1 )
{
if ( time == frame_length() )
{
nmi_time_ = indefinite_time;
//dprintf( "Suppressed NMI\n" );
}
}
else if ( time == frame_length() - 1 )
{
r2002 &= ~0x80;
frame_ended = true;
nmi_time_ = indefinite_time;
//dprintf( "Suppressed NMI\n" );
}
}
}
emu.set_ppu_2002_time( next_status_event );
int result = r2002;
second_write = false;
r2002 = result & ~0x80;
poke_open_bus( time, result, 0xE0 );
update_open_bus( time );
return ( result & 0xE0 ) | ( open_bus & 0x1F );
}
void Nes_Ppu::dma_sprites( nes_time_t time, void const* in )
{
//dprintf( "%d sprites written\n", time );
render_until( time );
invalidate_sprite_max( time );
// catch anything trying to dma while rendering is enabled
check( time + 513 <= vbl_end_time || !(w2001 & 0x18) );
memcpy( spr_ram + w2003, in, 0x100 - w2003 );
memcpy( spr_ram, (char*) in + 0x100 - w2003, w2003 );
}
// Read
inline int Nes_Ppu_Impl::read_2007( int addr )
{
int result = r2007;
if ( addr < 0x2000 )
{
r2007 = *map_chr( addr );
}
else
{
r2007 = get_nametable( addr ) [addr & 0x3ff];
if ( addr >= 0x3f00 )
{
return palette [map_palette( addr )] | ( open_bus & 0xC0 );
}
}
return result;
}
int Nes_Ppu::read( unsigned addr, nes_time_t time )
{
if ( addr & ~0x2007 )
dprintf( "Read from mirrored PPU register 0x%04X\n", addr );
switch ( addr & 7 )
{
// status
case 2: // handled inline
return read_2002( time );
// sprite ram
case 4: {
int result = spr_ram [w2003];
if ( (w2003 & 3) == 2 )
result &= 0xe3;
poke_open_bus( time, result, ~0 );
return result;
}
// video ram
case 7: {
render_bg_until( time );
int addr = vram_addr;
int new_addr = addr + addr_inc;
vram_addr = new_addr;
if ( ~addr & new_addr & vaddr_clock_mask )
{
emu.mapper->a12_clocked();
addr = vram_addr - addr_inc; // avoid having to save across func call
}
int result = read_2007( addr & 0x3fff );
poke_open_bus( time, result, ( ( addr & 0x3fff ) >= 0x3f00 ) ? 0x3F : ~0 );
return result;
}
default:
dprintf( "Read from unimplemented PPU register 0x%04X\n", addr );
break;
}
update_open_bus( time );
return open_bus;
}
// Write
void Nes_Ppu::write( nes_time_t time, unsigned addr, int data )
{
if ( addr & ~0x2007 )
dprintf( "Wrote to mirrored PPU register 0x%04X\n", addr );
switch ( addr & 7 )
{
case 0:{// control
int changed = w2000 ^ data;
if ( changed & 0x28 )
render_until( time ); // obj height or pattern addr changed
else if ( changed & 0x10 )
render_bg_until( time ); // bg pattern addr changed
else if ( ((data << 10) ^ vram_temp) & 0x0C00 )
render_bg_until( time ); // nametable changed
if ( changed & 0x80 )
{
if ( time > vbl_end_time + ((extra_clocks - 1) >> 2 & 1) )
end_vblank(); // to do: clean this up
if ( data & 0x80 & r2002 )
{
nmi_time_ = time + 2;
emu.event_changed();
}
if ( time >= earliest_vbl_end_time )
run_end_frame( time - 1 + (extra_clocks & 1) );
}
// nametable select
vram_temp = (vram_temp & ~0x0C00) | ((data & 3) * 0x400);
if ( changed & 0x20 ) // sprite height changed
invalidate_sprite_max( time );
w2000 = data;
addr_inc = data & 4 ? 32 : 1;
break;
}
case 1:{// sprites, bg enable
int changed = w2001 ^ data;
if ( changed & 0xE1 )
{
render_until( time + 1 ); // emphasis/monochrome bits changed
palette_changed = 0x18;
}
if ( changed & 0x14 )
render_until( time + 1 ); // sprite enable/clipping changed
else if ( changed & 0x0A )
render_bg_until( time + 1 ); // bg enable/clipping changed
if ( changed & 0x08 ) // bg enabled changed
emu.mapper->run_until( time );
if ( !(w2001 & 0x18) != !(data & 0x18) )
invalidate_sprite_max( time ); // all rendering just turned on or off
w2001 = data;
if ( changed & 0x08 )
emu.irq_changed();
break;
}
case 3: // spr addr
w2003 = data;
poke_open_bus( time, w2003, ~0 );
break;
case 4:
//dprintf( "%d sprites written\n", time );
if ( time > first_scanline_time / ppu_overclock )
{
render_until( time );
invalidate_sprite_max( time );
}
spr_ram [w2003] = data;
w2003 = (w2003 + 1) & 0xff;
break;
case 5:
render_bg_until( time );
if ( (second_write ^= 1) )
{
pixel_x = data & 7;
vram_temp = (vram_temp & ~0x1f) | (data >> 3);
}
else
{
vram_temp = (vram_temp & ~0x73e0) |
(data << 12 & 0x7000) | (data << 2 & 0x03e0);
}
break;
case 6:
render_bg_until( time );
if ( (second_write ^= 1) )
{
vram_temp = (vram_temp & 0xff) | (data << 8 & 0x3f00);
}
else
{
int changed = ~vram_addr & vram_temp;
vram_addr = vram_temp = (vram_temp & 0xff00) | data;
if ( changed & vaddr_clock_mask )
emu.mapper->a12_clocked();
}
break;
default:
dprintf( "Wrote to unimplemented PPU register 0x%04X\n", addr );
break;
}
poke_open_bus( time, data, ~0 );
}
// Frame begin/end
nes_time_t Nes_Ppu::begin_frame( ppu_time_t timestamp )
{
// current time
int cpu_timestamp = timestamp / ppu_overclock;
extra_clocks = timestamp - cpu_timestamp * ppu_overclock;
// frame end
ppu_time_t const frame_end = max_frame_length - 1 - extra_clocks;
frame_length_ = (frame_end + (ppu_overclock - 1)) / ppu_overclock;
frame_length_extra = frame_length_ * ppu_overclock - frame_end;
assert( (unsigned) frame_length_extra < 3 );
// nmi
nmi_time_ = indefinite_time;
if ( w2000 & 0x80 & r2002 )
nmi_time_ = 2 - (extra_clocks >> 1);
// bg rendering
frame_phase = 0;
scanline_count = 0;
hblank_time = first_hblank_time;
scanline_time = first_scanline_time;
next_bg_time = nes_time( t_to_v_time );
// sprite rendering
next_sprites_scanline = 0;
next_sprites_time = 0;
// status register
frame_ended = false;
end_vbl_mask = ~0xE0;
next_status_event = 0;
sprite_hit_found = 0;
next_sprite_hit_check = 0;
next_sprite_max_scanline = 0;
invalidate_sprite_max_();
decay_low += cpu_timestamp;
decay_high += cpu_timestamp;
base::begin_frame();
//dprintf( "cpu_timestamp: %d\n", cpu_timestamp );
return cpu_timestamp;
}
ppu_time_t Nes_Ppu::end_frame( nes_time_t end_time )
{
render_bg_until( end_time );
render_until( end_time );
query_until( end_time );
run_end_frame( end_time );
update_open_bus( end_time );
decay_low -= end_time;
decay_high -= end_time;
// to do: do more PPU RE to get exact behavior
if ( w2001 & 0x08 )
{
unsigned a = vram_addr + 2;
if ( (vram_addr & 0xff) >= 0xfe )
a = (vram_addr ^ 0x400) - 0x1e;
vram_addr = a;
}
if ( w2001 & 0x10 )
w2003 = 0;
suspend_rendering();
return (end_time - frame_length_) * ppu_overclock + frame_length_extra;
}
void Nes_Ppu::poke_open_bus( nes_time_t time, int data, int mask )
{
open_bus = ( open_bus & ~mask ) | ( data & mask );
if ( mask & 0x1F ) decay_low = time + scanline_len * 100 / ppu_overclock;
if ( mask & 0xE0 ) decay_high = time + scanline_len * 100 / ppu_overclock;
}
const nes_time_t Nes_Ppu::earliest_open_bus_decay() const
{
return ( decay_low < decay_high ) ? decay_low : decay_high;
}

View File

@ -1,141 +0,0 @@
// NES PPU emulator
// Nes_Emu 0.7.0
#ifndef NES_PPU_H
#define NES_PPU_H
#include "Nes_Ppu_Rendering.h"
class Nes_Mapper;
class Nes_Core;
typedef long nes_time_t;
typedef long ppu_time_t; // ppu_time_t = nes_time_t * ppu_overclock
ppu_time_t const ppu_overclock = 3; // PPU clocks for each CPU clock
class Nes_Ppu : public Nes_Ppu_Rendering {
typedef Nes_Ppu_Rendering base;
public:
Nes_Ppu( Nes_Core* );
// Begin PPU frame and return beginning CPU timestamp
nes_time_t begin_frame( ppu_time_t );
nes_time_t nmi_time() { return nmi_time_; }
void acknowledge_nmi() { nmi_time_ = LONG_MAX / 2 + 1; }
int read_2002( nes_time_t );
int read( unsigned addr, nes_time_t );
void write( nes_time_t, unsigned addr, int );
void render_bg_until( nes_time_t );
void render_until( nes_time_t );
// CPU time that frame will have ended by
int frame_length() const { return frame_length_; }
// End frame rendering and return PPU timestamp for next frame
ppu_time_t end_frame( nes_time_t );
// Do direct memory copy to sprite RAM
void dma_sprites( nes_time_t, void const* in );
int burst_phase;
private:
Nes_Core& emu;
enum { indefinite_time = LONG_MAX / 2 + 1 };
void suspend_rendering();
int read_( unsigned addr, nes_time_t ); // note swapped arguments!
// NES<->PPU time conversion
int extra_clocks;
ppu_time_t ppu_time( nes_time_t t ) const { return t * ppu_overclock + extra_clocks; }
nes_time_t nes_time( ppu_time_t t ) const { return (t - extra_clocks) / ppu_overclock; }
// frame
nes_time_t nmi_time_;
int end_vbl_mask;
int frame_length_;
int frame_length_extra;
bool frame_ended;
void end_vblank();
void run_end_frame( nes_time_t );
// bg rendering
nes_time_t next_bg_time;
ppu_time_t scanline_time;
ppu_time_t hblank_time;
int scanline_count;
int frame_phase;
void render_bg_until_( nes_time_t );
void run_scanlines( int count );
// sprite rendering
ppu_time_t next_sprites_time;
int next_sprites_scanline;
void render_until_( nes_time_t );
// $2002 status register
nes_time_t next_status_event;
void query_until( nes_time_t );
// sprite hit
nes_time_t next_sprite_hit_check;
void update_sprite_hit( nes_time_t );
// open bus decay
void update_open_bus( nes_time_t );
void poke_open_bus( nes_time_t, int, int mask );
const nes_time_t earliest_open_bus_decay() const;
// sprite max
nes_time_t next_sprite_max_run; // doesn't need to run until this time
nes_time_t sprite_max_set_time; // if 0, needs to be recalculated
int next_sprite_max_scanline;
void run_sprite_max_( nes_time_t );
void run_sprite_max( nes_time_t );
void invalidate_sprite_max_();
void invalidate_sprite_max( nes_time_t );
friend int nes_cpu_read_likely_ppu( class Nes_Core*, unsigned, nes_time_t );
};
inline void Nes_Ppu::suspend_rendering()
{
next_bg_time = indefinite_time;
next_sprites_time = indefinite_time;
extra_clocks = 0;
}
inline Nes_Ppu::Nes_Ppu( Nes_Core* e ) : emu( *e )
{
burst_phase = 0;
suspend_rendering();
}
inline void Nes_Ppu::render_until( nes_time_t t )
{
if ( t > next_sprites_time )
render_until_( t );
}
inline void Nes_Ppu::render_bg_until( nes_time_t t )
{
if ( t > next_bg_time )
render_bg_until_( t );
}
inline void Nes_Ppu::update_open_bus( nes_time_t time )
{
if ( time >= decay_low ) open_bus &= ~0x1F;
if ( time >= decay_high ) open_bus &= ~0xE0;
}
#endif

View File

@ -1,68 +0,0 @@
while ( true )
{
while ( count-- )
{
int attrib = attr_table [addr >> 2 & 0x07];
attrib >>= (addr >> 4 & 4) | (addr & 2);
unsigned long offset = (attrib & 3) * attrib_factor + this->palette_offset;
// draw one tile
cache_t const* lines = this->get_bg_tile( nametable [addr] + bg_bank );
byte* p = pixels;
addr++;
pixels += 8; // next tile
if ( !clipped )
{
// optimal case: no clipping
for ( int n = 4; n--; )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
p += row_bytes;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
}
else
{
lines += fine_y >> 1;
if ( fine_y & 1 )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
for ( int n = height >> 1; n--; )
{
unsigned long line = *lines++;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
p += row_bytes;
((uint32_t*) p) [0] = (line >> 6 & mask) + offset;
((uint32_t*) p) [1] = (line >> 2 & mask) + offset;
p += row_bytes;
}
if ( height & 1 )
{
unsigned long line = *lines;
((uint32_t*) p) [0] = (line >> 4 & mask) + offset;
((uint32_t*) p) [1] = (line & mask) + offset;
}
}
}
count = count2;
count2 = 0;
addr -= 32;
attr_table = attr_table - nametable + nametable2;
nametable = nametable2;
if ( !count )
break;
}

View File

@ -1,520 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu_Impl.h"
#include <string.h>
#include "blargg_endian.h"
#include "Nes_State.h"
#include <stdint.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int const cache_line_size = 128; // tile cache is kept aligned to this boundary
Nes_Ppu_Impl::Nes_Ppu_Impl()
{
impl = NULL;
chr_data = NULL;
chr_size = 0;
tile_cache = NULL;
host_palette = NULL;
max_palette_size = 0;
tile_cache_mem = NULL;
ppu_state_t::unused = 0;
mmc24_enabled = false;
mmc24_latched[0] = 0;
mmc24_latched[1] = 0;
#ifndef NDEBUG
// verify that unaligned accesses work
static unsigned char b [19] = { 0 };
static unsigned char b2 [19] = { 1,2,3,4,0,5,6,7,8,0,9,0,1,2,0,3,4,5,6 };
for ( int i = 0; i < 19; i += 5 )
*(volatile BOOST::uint32_t*) &b [i] = *(volatile BOOST::uint32_t*) &b2 [i];
assert( !memcmp( b, b2, 19 ) );
#endif
}
Nes_Ppu_Impl::~Nes_Ppu_Impl()
{
close_chr();
delete impl;
}
int Nes_Ppu_Impl::peekaddr(int addr)
{
if (addr < 0x2000)
return chr_data[map_chr_addr_peek(addr)];
else
return get_nametable(addr)[addr & 0x3ff];
}
void Nes_Ppu_Impl::all_tiles_modified()
{
any_tiles_modified = true;
memset( modified_tiles, ~0, sizeof modified_tiles );
}
blargg_err_t Nes_Ppu_Impl::open_chr( byte const* new_chr, long chr_data_size )
{
close_chr();
if ( !impl )
{
impl = BLARGG_NEW impl_t;
CHECK_ALLOC( impl );
chr_ram = impl->chr_ram;
}
chr_data = new_chr;
chr_size = chr_data_size;
chr_is_writable = false;
if ( chr_data_size == 0 )
{
// CHR RAM
chr_data = impl->chr_ram;
chr_size = sizeof impl->chr_ram;
chr_is_writable = true;
}
// allocate aligned memory for cache
assert( chr_size % chr_addr_size == 0 );
long tile_count = chr_size / bytes_per_tile;
tile_cache_mem = BLARGG_NEW byte [tile_count * sizeof (cached_tile_t) * 2 + cache_line_size];
CHECK_ALLOC( tile_cache_mem );
tile_cache = (cached_tile_t*) (tile_cache_mem + cache_line_size -
(uintptr_t) tile_cache_mem % cache_line_size);
flipped_tiles = tile_cache + tile_count;
// rebuild cache
all_tiles_modified();
if ( !chr_is_writable )
{
any_tiles_modified = false;
rebuild_chr( 0, chr_size );
}
return 0;
}
void Nes_Ppu_Impl::close_chr()
{
delete [] tile_cache_mem;
tile_cache_mem = NULL;
}
void Nes_Ppu_Impl::set_chr_bank( int addr, int size, long data )
{
check( !chr_is_writable || addr == data ); // to do: is CHR RAM ever bank-switched?
//dprintf( "Tried to set CHR RAM bank at %04X to CHR+%04X\n", addr, data );
if ( data + size > chr_size )
data %= chr_size;
int count = (unsigned) size / chr_page_size;
assert( chr_page_size * count == size );
assert( addr + size <= chr_addr_size );
int page = (unsigned) addr / chr_page_size;
while ( count-- )
{
chr_pages [page] = data - page * chr_page_size;
page++;
data += chr_page_size;
}
}
void Nes_Ppu_Impl::set_chr_bank_ex( int addr, int size, long data )
{
mmc24_enabled = true;
check( !chr_is_writable || addr == data ); // to do: is CHR RAM ever bank-switched?
//dprintf( "Tried to set CHR RAM bank at %04X to CHR+%04X\n", addr, data );
if ( data + size > chr_size )
data %= chr_size;
int count = (unsigned) size / chr_page_size;
assert( chr_page_size * count == size );
assert( addr + size <= chr_addr_size );
int page = (unsigned) addr / chr_page_size;
while ( count-- )
{
chr_pages_ex [page] = data - page * chr_page_size;
page++;
data += chr_page_size;
}
}
void Nes_Ppu_Impl::save_state( Nes_State_* out ) const
{
*out->ppu = *this;
out->ppu_valid = true;
memcpy( out->spr_ram, spr_ram, out->spr_ram_size );
out->spr_ram_valid = true;
out->nametable_size = 0x800;
memcpy( out->nametable, impl->nt_ram, 0x800 );
if ( nt_banks [3] >= &impl->nt_ram [0xC00] )
{
// save extra nametable data in chr
out->nametable_size = 0x1000;
memcpy( out->chr, &impl->nt_ram [0x800], 0x800 );
}
out->chr_size = 0;
if ( chr_is_writable )
{
out->chr_size = chr_size;
check( out->nametable_size <= 0x800 );
assert( out->nametable_size <= 0x800 );
assert( out->chr_size <= out->chr_max );
memcpy( out->chr, impl->chr_ram, out->chr_size );
}
}
void Nes_Ppu_Impl::load_state( Nes_State_ const& in )
{
set_nt_banks( 0, 0, 0, 0 );
set_chr_bank( 0, 0x2000, 0 );
if ( in.ppu_valid )
STATIC_CAST(ppu_state_t&,*this) = *in.ppu;
if ( in.spr_ram_valid )
memcpy( spr_ram, in.spr_ram, sizeof spr_ram );
assert( in.nametable_size <= (int) sizeof impl->nt_ram );
if ( in.nametable_size >= 0x800 )
{
if ( in.nametable_size > 0x800 )
memcpy( &impl->nt_ram [0x800], in.chr, 0x800 );
memcpy( impl->nt_ram, in.nametable, 0x800 );
}
if ( chr_is_writable && in.chr_size )
{
assert( in.chr_size <= (int) sizeof impl->chr_ram );
memcpy( impl->chr_ram, in.chr, in.chr_size );
all_tiles_modified();
}
}
static BOOST::uint8_t const initial_palette [0x20] =
{
0x0f,0x01,0x00,0x01,0x00,0x02,0x02,0x0D,0x08,0x10,0x08,0x24,0x00,0x00,0x04,0x2C,
0x00,0x01,0x34,0x03,0x00,0x04,0x00,0x14,0x00,0x3A,0x00,0x02,0x00,0x20,0x2C,0x08
};
void Nes_Ppu_Impl::reset( bool full_reset )
{
w2000 = 0;
w2001 = 0;
r2002 = 0x80;
r2007 = 0;
open_bus = 0;
decay_low = 0;
decay_high = 0;
second_write = false;
vram_temp = 0;
pixel_x = 0;
if ( full_reset )
{
vram_addr = 0;
w2003 = 0;
memset( impl->chr_ram, 0xff, sizeof impl->chr_ram );
memset( impl->nt_ram, 0xff, sizeof impl->nt_ram );
memcpy( palette, initial_palette, sizeof palette );
}
set_nt_banks( 0, 0, 0, 0 );
set_chr_bank( 0, chr_addr_size, 0 );
memset( spr_ram, 0xff, sizeof spr_ram );
all_tiles_modified();
if ( max_palette_size > 0 )
memset( host_palette, 0, max_palette_size * sizeof *host_palette );
}
void Nes_Ppu_Impl::capture_palette()
{
if ( palette_size + palette_increment <= max_palette_size )
{
palette_offset = (palette_begin + palette_size) * 0x01010101;
short* out = host_palette + palette_size;
palette_size += palette_increment;
int i;
int emph = w2001 << 1 & 0x1C0;
int mono = (w2001 & 1 ? 0x30 : 0x3F);
for ( i = 0; i < 32; i++ )
out [i] = (palette [i] & mono) | emph;
int bg = out [0];
for ( i = 4; i < 32; i += 4 )
out [i] = bg;
memcpy( out + 32, out, 32 * sizeof *out );
}
}
void Nes_Ppu_Impl::run_hblank( int count )
{
require( count >= 0 );
long addr = (vram_addr & 0x7be0) + (vram_temp & 0x41f) + (count * 0x1000);
if ( w2001 & 0x08 )
{
while ( addr >= 0x8000 )
{
int y = (addr + 0x20) & 0x3e0;
addr = (addr - 0x8000) & ~0x3e0;
if ( y == 30 * 0x20 )
y = 0x800;
addr ^= y;
}
vram_addr = addr;
}
}
#ifdef __MWERKS__
#pragma ppc_unroll_factor_limit 1 // messes up calc_sprite_max_scanlines loop
static int zero = 0;
#else
const int zero = 0;
#endif
// Tile cache
inline unsigned long reorder( unsigned long n )
{
n |= n << 7;
return ((n << 14) | n);
}
inline void Nes_Ppu_Impl::update_tile( int index )
{
const byte* in = chr_data + (index) * bytes_per_tile;
byte* out = (byte*) tile_cache [index];
byte* flipped_out = (byte*) flipped_tiles [index];
unsigned long bit_mask = 0x11111111 + zero;
for ( int n = 4; n--; )
{
// Reorder two lines of two-bit pixels. No bits are wasted, so
// reordered version is also four bytes.
//
// 12345678 to A0E4B1F5C2G6D3H7
// ABCDEFGH
unsigned long c =
((reorder( in [0] ) & bit_mask) << 0) |
((reorder( in [8] ) & bit_mask) << 1) |
((reorder( in [1] ) & bit_mask) << 2) |
((reorder( in [9] ) & bit_mask) << 3);
in += 2;
SET_BE32( out, c );
out += 4;
// make horizontally-flipped version
c = ((c >> 28) & 0x000f) |
((c >> 20) & 0x00f0) |
((c >> 12) & 0x0f00) |
((c >> 4) & 0xf000) |
((c & 0xf000) << 4) |
((c & 0x0f00) << 12) |
((c & 0x00f0) << 20) |
((c & 0x000f) << 28);
SET_BE32( flipped_out, c );
flipped_out += 4;
}
}
void Nes_Ppu_Impl::rebuild_chr( unsigned long begin, unsigned long end )
{
unsigned end_index = (end + bytes_per_tile - 1) / bytes_per_tile;
for ( unsigned index = begin / bytes_per_tile; index < end_index; index++ )
update_tile( index );
}
void Nes_Ppu_Impl::update_tiles( int first_tile )
{
int chunk = 0;
do
{
if ( !(uint32_t&) modified_tiles [chunk] )
{
chunk += 4;
}
else
{
do
{
int modified = modified_tiles [chunk];
if ( modified )
{
modified_tiles [chunk] = 0;
int index = first_tile + chunk * 8;
do
{
if ( modified & 1 )
update_tile( index );
index++;
}
while ( (modified >>= 1) != 0 );
}
}
while ( ++chunk & 3 );
}
}
while ( chunk < chr_tile_count / 8 );
}
// Sprite max
template<int height>
struct calc_sprite_max_scanlines
{
static unsigned long func( byte const* sprites, byte* scanlines, int begin )
{
typedef BOOST::uint32_t uint32_t;
unsigned long any_hits = 0;
unsigned long const offset = 0x01010101 + zero;
unsigned limit = 239 + height - begin;
for ( int n = 64; n; --n )
{
int top = *sprites;
sprites += 4;
byte* p = scanlines + top;
if ( (unsigned) (239 - top) < limit )
{
unsigned long p0 = (uint32_t&) p [0] + offset;
unsigned long p4 = (uint32_t&) p [4] + offset;
(uint32_t&) p [0] = p0;
any_hits |= p0;
(uint32_t&) p [4] = p4;
any_hits |= p4;
if ( height > 8 )
{
unsigned long p0 = (uint32_t&) p [ 8] + offset;
unsigned long p4 = (uint32_t&) p [12] + offset;
(uint32_t&) p [ 8] = p0;
any_hits |= p0;
(uint32_t&) p [12] = p4;
any_hits |= p4;
}
}
}
return any_hits;
}
};
long Nes_Ppu_Impl::recalc_sprite_max( int scanline )
{
int const max_scanline_count = image_height;
byte sprite_max_scanlines [256 + 16];
// recalculate sprites per scanline
memset( sprite_max_scanlines + scanline, 0x78, last_sprite_max_scanline - scanline );
unsigned long any_hits;
if ( w2000 & 0x20 )
any_hits = calc_sprite_max_scanlines<16>::func( spr_ram, sprite_max_scanlines, scanline );
else
any_hits = calc_sprite_max_scanlines<8 >::func( spr_ram, sprite_max_scanlines, scanline );
// cause search to terminate past max_scanline_count if none have 8 or more sprites
(uint32_t&) sprite_max_scanlines [max_scanline_count] = 0;
sprite_max_scanlines [max_scanline_count + 3] = 0x80;
// avoid scan if no possible hits
if ( !(any_hits & 0x80808080) )
return 0;
// find soonest scanline with 8 or more sprites
while ( true )
{
unsigned long const mask = 0x80808080 + zero;
// check four at a time
byte* pos = &sprite_max_scanlines [scanline];
unsigned long n = (uint32_t&) *pos;
while ( 1 )
{
unsigned long x = n & mask;
pos += 4;
n = (uint32_t&) *pos;
if ( x )
break;
}
int height = sprite_height();
int remain = 8;
int i = 0;
// find which of the four
pos -= 3 + (pos [-4] >> 7 & 1);
pos += 1 - (*pos >> 7 & 1);
pos += 1 - (*pos >> 7 & 1);
assert( *pos & 0x80 );
scanline = pos - sprite_max_scanlines;
if ( scanline >= max_scanline_count )
break;
// find time that max sprites flag is set (or that it won't be set)
do
{
int relative = scanline - spr_ram [i];
i += 4;
if ( (unsigned) relative < (unsigned) height && !--remain )
{
// now use screwey search for 9th sprite
int offset = 0;
while ( i < 0x100 )
{
int relative = scanline - spr_ram [i + offset];
//dprintf( "Checking sprite %d [%d]\n", i / 4, offset );
i += 4;
offset = (offset + 1) & 3;
if ( (unsigned) relative < (unsigned) height )
{
//dprintf( "sprite max on scanline %d\n", scanline );
return scanline * scanline_len + (unsigned) i / 2;
}
}
break;
}
}
while ( i < 0x100 );
scanline++;
}
return 0;
}

View File

@ -1,230 +0,0 @@
// NES PPU misc functions and setup
// Nes_Emu 0.7.0
#ifndef NES_PPU_IMPL_H
#define NES_PPU_IMPL_H
#include "nes_data.h"
class Nes_State_;
class Nes_Ppu_Impl : public ppu_state_t {
public:
typedef BOOST::uint8_t byte;
typedef BOOST::uint32_t uint32_t;
Nes_Ppu_Impl();
~Nes_Ppu_Impl();
void reset( bool full_reset );
// Setup
blargg_err_t open_chr( const byte*, long size );
void rebuild_chr( unsigned long begin, unsigned long end );
void close_chr();
void save_state( Nes_State_* out ) const;
void load_state( Nes_State_ const& );
enum { image_width = 256 };
enum { image_height = 240 };
enum { image_left = 8 };
enum { buffer_width = image_width + 16 };
enum { buffer_height = image_height };
int write_2007( int );
int peekaddr(int);
// Host palette
enum { palette_increment = 64 };
short* host_palette;
int palette_begin;
int max_palette_size;
int palette_size; // set after frame is rendered
// Mapping
enum { vaddr_clock_mask = 0x1000 };
void set_nt_banks( int bank0, int bank1, int bank2, int bank3 );
void set_chr_bank( int addr, int size, long data );
void set_chr_bank_ex( int addr, int size, long data ); // mmc24 only
// Nametable and CHR RAM
enum { nt_ram_size = 0x1000 };
enum { chr_addr_size = 0x2000 };
enum { bytes_per_tile = 16 };
enum { chr_tile_count = chr_addr_size / bytes_per_tile };
enum { mini_offscreen_height = 16 }; // double-height sprite
struct impl_t
{
byte nt_ram [nt_ram_size];
byte chr_ram [chr_addr_size];
union {
BOOST::uint32_t clip_buf [256 * 2];
byte mini_offscreen [buffer_width * mini_offscreen_height];
};
};
impl_t* impl;
enum { scanline_len = 341 };
byte spr_ram [0x100];
protected:
void begin_frame();
void run_hblank( int );
int sprite_height() const { return (w2000 >> 2 & 8) + 8; }
protected: //friend class Nes_Ppu; private:
int addr_inc; // pre-calculated $2007 increment (based on w2001 & 0x04)
int read_2007( int addr );
enum { last_sprite_max_scanline = 240 };
long recalc_sprite_max( int scanline );
int first_opaque_sprite_line() /*const*/;
protected: //friend class Nes_Ppu_Rendering; private:
unsigned long palette_offset;
int palette_changed;
void capture_palette();
bool any_tiles_modified;
bool chr_is_writable;
void update_tiles( int first_tile );
typedef uint32_t cache_t;
typedef cache_t cached_tile_t [4];
cached_tile_t const& get_bg_tile( int index ) /*const*/;
cached_tile_t const& get_sprite_tile( byte const* sprite ) /*const*/;
byte* get_nametable( int addr ) { return nt_banks [addr >> 10 & 3]; };
private:
static int map_palette( int addr );
int sprite_tile_index( byte const* sprite ) const;
// Mapping
enum { chr_page_size = 0x400 };
long chr_pages [chr_addr_size / chr_page_size];
long chr_pages_ex [chr_addr_size / chr_page_size]; // mmc24 only
long map_chr_addr_peek( unsigned a ) const
{
return chr_pages[a / chr_page_size] + a;
}
long map_chr_addr( unsigned a ) /*const*/
{
if (!mmc24_enabled)
return chr_pages [a / chr_page_size] + a;
// mmc24 calculations
int page = a >> 12 & 1;
// can't check against bit 3 of address, because quicknes never actually fetches those
int newval0 = (a & 0xff0) != 0xfd0;
int newval1 = (a & 0xff0) == 0xfe0;
long ret;
if (mmc24_latched[page])
ret = chr_pages_ex [a / chr_page_size] + a;
else
ret = chr_pages [a / chr_page_size] + a;
mmc24_latched[page] &= newval0;
mmc24_latched[page] |= newval1;
return ret;
}
byte* nt_banks [4];
bool mmc24_enabled; // true if mmc24 regs need to be latched and checked
byte mmc24_latched [2]; // current latch value for the first\second 4k of memory
// CHR data
byte const* chr_data; // points to chr ram when there is no read-only data
byte* chr_ram; // always points to impl->chr_ram; makes write_2007() faster
long chr_size;
byte const* map_chr( int addr ) /*const*/ { return &chr_data [map_chr_addr( addr )]; }
// CHR cache
cached_tile_t* tile_cache;
cached_tile_t* flipped_tiles;
byte* tile_cache_mem;
union {
byte modified_tiles [chr_tile_count / 8];
uint32_t align_;
};
void all_tiles_modified();
void update_tile( int index );
};
inline void Nes_Ppu_Impl::set_nt_banks( int bank0, int bank1, int bank2, int bank3 )
{
byte* nt_ram = impl->nt_ram;
nt_banks [0] = &nt_ram [bank0 * 0x400];
nt_banks [1] = &nt_ram [bank1 * 0x400];
nt_banks [2] = &nt_ram [bank2 * 0x400];
nt_banks [3] = &nt_ram [bank3 * 0x400];
}
inline int Nes_Ppu_Impl::map_palette( int addr )
{
if ( (addr & 3) == 0 )
addr &= 0x0f; // 0x10, 0x14, 0x18, 0x1c map to 0x00, 0x04, 0x08, 0x0c
return addr & 0x1f;
}
inline int Nes_Ppu_Impl::sprite_tile_index( byte const* sprite ) const
{
int tile = sprite [1] + (w2000 << 5 & 0x100);
if ( w2000 & 0x20 )
tile = (tile & 1) * 0x100 + (tile & 0xfe);
return tile;
}
inline int Nes_Ppu_Impl::write_2007( int data )
{
int addr = vram_addr;
byte* chr_ram = this->chr_ram; // pre-read
int changed = addr + addr_inc;
unsigned const divisor = bytes_per_tile * 8;
int mod_index = (unsigned) addr / divisor % (0x4000 / divisor);
vram_addr = changed;
changed ^= addr;
addr &= 0x3fff;
// use index into modified_tiles [] since it's calculated sooner than addr is masked
if ( (unsigned) mod_index < 0x2000 / divisor )
{
// Avoid overhead of checking for read-only CHR; if that is the case,
// this modification will be ignored.
int mod = modified_tiles [mod_index];
chr_ram [addr] = data;
any_tiles_modified = true;
modified_tiles [mod_index] = mod | (1 << ((unsigned) addr / bytes_per_tile % 8));
}
else if ( addr < 0x3f00 )
{
get_nametable( addr ) [addr & 0x3ff] = data;
}
else
{
data &= 0x3f;
byte& entry = palette [map_palette( addr )];
int changed = entry ^ data;
entry = data;
if ( changed )
palette_changed = 0x18;
}
return changed;
}
inline void Nes_Ppu_Impl::begin_frame()
{
palette_changed = 0x18;
palette_size = 0;
palette_offset = palette_begin * 0x01010101;
addr_inc = w2000 & 4 ? 32 : 1;
}
#endif

View File

@ -1,496 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Ppu_Rendering.h"
#include <string.h>
#include <stddef.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#ifdef BLARGG_ENABLE_OPTIMIZER
#include BLARGG_ENABLE_OPTIMIZER
#endif
#ifdef __MWERKS__
static unsigned zero = 0; // helps CodeWarrior optimizer when added to constants
#else
const unsigned zero = 0; // compile-time constant on other compilers
#endif
// Nes_Ppu_Impl
inline Nes_Ppu_Impl::cached_tile_t const&
Nes_Ppu_Impl::get_sprite_tile( byte const* sprite ) /*const*/
{
cached_tile_t* tiles = tile_cache;
if ( sprite [2] & 0x40 )
tiles = flipped_tiles;
int index = sprite_tile_index( sprite );
// use index directly, since cached tile is same size as native tile
BOOST_STATIC_ASSERT( sizeof (cached_tile_t) == bytes_per_tile );
return *(Nes_Ppu_Impl::cached_tile_t*)
((byte*) tiles + map_chr_addr( index * bytes_per_tile ));
}
inline Nes_Ppu_Impl::cached_tile_t const& Nes_Ppu_Impl::get_bg_tile( int index ) /*const*/
{
// use index directly, since cached tile is same size as native tile
BOOST_STATIC_ASSERT( sizeof (cached_tile_t) == bytes_per_tile );
return *(Nes_Ppu_Impl::cached_tile_t*)
((byte*) tile_cache + map_chr_addr( index * bytes_per_tile ));
}
// Fill
void Nes_Ppu_Rendering::fill_background( int count )
{
ptrdiff_t const next_line = scanline_row_bytes - image_width;
uint32_t* pixels = (uint32_t*) scanline_pixels;
unsigned long fill = palette_offset;
if ( (vram_addr & 0x3f00) == 0x3f00 )
{
// PPU uses current palette entry if addr is within palette ram
int color = vram_addr & 0x1f;
if ( !(color & 3) )
color &= 0x0f;
fill += color * 0x01010101;
}
for ( int n = count; n--; )
{
for ( int n = image_width / 16; n--; )
{
pixels [0] = fill;
pixels [1] = fill;
pixels [2] = fill;
pixels [3] = fill;
pixels += 4;
}
pixels = (uint32_t*) ((byte*) pixels + next_line);
}
}
void Nes_Ppu_Rendering::clip_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* p = scanline_pixels;
unsigned long fill = palette_offset;
for ( int n = count; n--; )
{
((uint32_t*) p) [0] = fill;
((uint32_t*) p) [1] = fill;
p += next_line;
}
}
void Nes_Ppu_Rendering::save_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* in = scanline_pixels;
uint32_t* out = impl->clip_buf;
for ( int n = count; n--; )
{
unsigned long in0 = ((uint32_t*) in) [0];
unsigned long in1 = ((uint32_t*) in) [1];
in += next_line;
out [0] = in0;
out [1] = in1;
out += 2;
}
}
void Nes_Ppu_Rendering::restore_left( int count )
{
ptrdiff_t next_line = scanline_row_bytes;
byte* out = scanline_pixels;
uint32_t* in = impl->clip_buf;
for ( int n = count; n--; )
{
unsigned long in0 = in [0];
unsigned long in1 = in [1];
in += 2;
((uint32_t*) out) [0] = in0;
((uint32_t*) out) [1] = in1;
out += next_line;
}
}
// Background
void Nes_Ppu_Rendering::draw_background_( int remain )
{
// Draws 'remain' background scanlines. Does not modify vram_addr.
int vram_addr = this->vram_addr & 0x7fff;
byte* row_pixels = scanline_pixels - pixel_x;
int left_clip = (w2001 >> 1 & 1) ^ 1;
row_pixels += left_clip * 8;
do
{
// scanlines until next row
int height = 8 - (vram_addr >> 12);
if ( height > remain )
height = remain;
// handle hscroll change before next scanline
int hscroll_changed = (vram_addr ^ vram_temp) & 0x41f;
int addr = vram_addr;
if ( hscroll_changed )
{
vram_addr ^= hscroll_changed;
height = 1; // hscroll will change after first line
}
remain -= height;
// increment address for next row
vram_addr += height << 12;
assert( vram_addr < 0x10000 );
if ( vram_addr & 0x8000 )
{
int y = (vram_addr + 0x20) & 0x3e0;
vram_addr &= 0x7fff & ~0x3e0;
if ( y == 30 * 0x20 )
y = 0x800; // toggle vertical nametable
vram_addr ^= y;
}
// nametable change usually occurs in middle of row
byte const* nametable = get_nametable( addr );
byte const* nametable2 = get_nametable( addr ^ 0x400 );
int count2 = addr & 31;
int count = 32 - count2 - left_clip;
// this conditional is commented out because of mmc2\4
// normally, the extra row of pixels is only fetched when pixel_ x is not 0, which makes sense
// but here, we need a correct fetch pattern to pick up 0xfd\0xfe tiles off the edge of the display
// this doesn't cause any problems with buffer overflow because the framebuffer we're rendering to is
// already guarded (width = 272)
// this doesn't give us a fully correct ppu fetch pattern, but it's close enough for punch out
//if ( pixel_x )
count2++;
byte const* attr_table = &nametable [0x3c0 | (addr >> 4 & 0x38)];
int bg_bank = (w2000 << 4) & 0x100;
addr += left_clip;
// output pixels
ptrdiff_t const row_bytes = scanline_row_bytes;
byte* pixels = row_pixels;
row_pixels += height * row_bytes;
unsigned long const mask = 0x03030303 + zero;
unsigned long const attrib_factor = 0x04040404 + zero;
if ( height == 8 )
{
// unclipped
assert( (addr >> 12) == 0 );
addr &= 0x03ff;
int const fine_y = 0;
int const clipped = false;
#include "Nes_Ppu_Bg.h"
}
else
{
// clipped
int const fine_y = addr >> 12;
addr &= 0x03ff;
height -= fine_y & 1;
int const clipped = true;
#include "Nes_Ppu_Bg.h"
}
}
while ( remain );
}
// Sprites
void Nes_Ppu_Rendering::draw_sprites_( int begin, int end )
{
// Draws sprites on scanlines begin through end - 1. Handles clipping.
int const sprite_height = this->sprite_height();
int end_minus_one = end - 1;
int begin_minus_one = begin - 1;
int index = 0;
do
{
byte const* sprite = &spr_ram [index];
index += 4;
// find if sprite is visible
int top_minus_one = sprite [0];
int visible = end_minus_one - top_minus_one;
if ( visible <= 0 )
continue; // off bottom
// quickly determine whether sprite is unclipped
int neg_vis = visible - sprite_height;
int neg_skip = top_minus_one - begin_minus_one;
if ( (neg_skip | neg_vis) >= 0 ) // neg_skip >= 0 && neg_vis >= 0
{
// unclipped
#ifndef NDEBUG
int top = sprite [0] + 1;
assert( (top + sprite_height) > begin && top < end );
assert( begin <= top && top + sprite_height <= end );
#endif
int const skip = 0;
int visible = sprite_height;
#define CLIPPED 0
#include "Nes_Ppu_Sprites.h"
}
else
{
// clipped
if ( neg_vis > 0 )
visible -= neg_vis;
if ( neg_skip > 0 )
neg_skip = 0;
visible += neg_skip;
if ( visible <= 0 )
continue; // off top
// visible and clipped
#ifndef NDEBUG
int top = sprite [0] + 1;
assert( (top + sprite_height) > begin && top < end );
assert( top < begin || top + sprite_height > end );
#endif
int skip = -neg_skip;
//dprintf( "begin: %d, end: %d, top: %d, skip: %d, visible: %d\n",
// begin, end, top_minus_one + 1, skip, visible );
#define CLIPPED 1
#include "Nes_Ppu_Sprites.h"
}
}
while ( index < 0x100 );
}
void Nes_Ppu_Rendering::check_sprite_hit( int begin, int end )
{
// Checks for sprite 0 hit on scanlines begin through end - 1.
// Updates sprite_hit_found. Background (but not sprites) must have
// already been rendered for the scanlines.
// clip
int top = spr_ram [0] + 1;
int skip = begin - top;
if ( skip < 0 )
skip = 0;
top += skip;
int visible = end - top;
if ( visible <= 0 )
return; // not visible
int height = sprite_height();
if ( visible >= height )
{
visible = height;
sprite_hit_found = -1; // signal that no more hit checking will take place
}
// pixels
ptrdiff_t next_row = this->scanline_row_bytes;
byte const* bg = this->scanline_pixels + spr_ram [3] + (top - begin) * next_row;
cache_t const* lines = get_sprite_tile( spr_ram );
// left edge clipping
int start_x = 0;
if ( spr_ram [3] < 8 && (w2001 & 0x01e) != 0x1e )
{
if ( spr_ram [3] == 0 )
return; // won't hit
start_x = 8 - spr_ram [3];
}
// vertical flip
int final = skip + visible;
if ( spr_ram [2] & 0x80 )
{
skip += height - 1;
final = skip - visible;
}
// check each line
unsigned long const mask = 0x01010101 + zero;
do
{
// get pixels for line
unsigned long line = lines [skip >> 1];
unsigned long hit0 = ((uint32_t*) bg) [0];
unsigned long hit1 = ((uint32_t*) bg) [1];
bg += next_row;
line >>= skip << 1 & 2;
line |= line >> 1;
// check for hits
hit0 = ((hit0 >> 1) | hit0) & (line >> 4);
hit1 = ((hit1 >> 1) | hit1) & line;
if ( (hit0 | hit1) & mask )
{
// write to memory to avoid endian issues
uint32_t quads [3];
quads [0] = hit0;
quads [1] = hit1;
// find which pixel hit
int x = start_x;
do
{
if ( ((byte*) quads) [x] & 1 )
{
x += spr_ram [3];
if ( x >= 255 )
break; // ignore right edge
if ( spr_ram [2] & 0x80 )
skip = height - 1 - skip; // vertical flip
int y = spr_ram [0] + 1 + skip;
sprite_hit_found = y * scanline_len + x;
return;
}
}
while ( x++ < 7 );
}
if ( skip > final )
skip -= 2;
skip++;
}
while ( skip != final );
}
// Draw scanlines
inline bool Nes_Ppu_Rendering::sprite_hit_possible( int scanline ) const
{
return !sprite_hit_found && spr_ram [0] <= scanline && (w2001 & 0x18) == 0x18;
}
void Nes_Ppu_Rendering::draw_scanlines( int start, int count,
byte* pixels, long pitch, int mode )
{
assert( start + count <= image_height );
assert( pixels );
scanline_pixels = pixels + image_left;
scanline_row_bytes = pitch;
int const obj_mask = 2;
int const bg_mask = 1;
int draw_mode = (w2001 >> 3) & 3;
int clip_mode = (~w2001 >> 1) & draw_mode;
if ( !(draw_mode & bg_mask) )
{
// no background
clip_mode |= bg_mask; // avoid unnecessary save/restore
if ( mode & bg_mask )
fill_background( count );
}
if ( start == 0 && mode & 1 )
memset( sprite_scanlines, max_sprites - sprite_limit, 240 );
if ( (draw_mode &= mode) )
{
// sprites and/or background are being rendered
if ( any_tiles_modified && chr_is_writable )
{
any_tiles_modified = false;
update_tiles( 0 );
}
if ( draw_mode & bg_mask )
{
//dprintf( "bg %3d-%3d\n", start, start + count - 1 );
draw_background_( count );
if ( clip_mode == bg_mask )
clip_left( count );
if ( sprite_hit_possible( start + count ) )
check_sprite_hit( start, start + count );
}
if ( draw_mode & obj_mask )
{
// when clipping just sprites, save left strip then restore after drawing them
if ( clip_mode == obj_mask )
save_left( count );
//dprintf( "obj %3d-%3d\n", start, start + count - 1 );
draw_sprites_( start, start + count );
if ( clip_mode == obj_mask )
restore_left( count );
if ( clip_mode == (obj_mask | bg_mask) )
clip_left( count );
}
}
scanline_pixels = NULL;
}
void Nes_Ppu_Rendering::draw_background( int start, int count )
{
// always capture palette at least once per frame
if ( (start + count >= 240 && !palette_size) || (w2001 & palette_changed) )
{
palette_changed = false;
capture_palette();
}
if ( host_pixels )
{
draw_scanlines( start, count, host_pixels + host_row_bytes * start, host_row_bytes, 1 );
}
else if ( sprite_hit_possible( start + count ) )
{
// not rendering, but still handle sprite hit using mini graphics buffer
int y = spr_ram [0] + 1;
int skip = min( count, max( y - start, 0 ) );
int visible = min( count - skip, sprite_height() );
assert( skip + visible <= count );
assert( visible <= mini_offscreen_height );
if ( visible > 0 )
{
run_hblank( skip );
draw_scanlines( start + skip, visible, impl->mini_offscreen, buffer_width, 3 );
}
}
}

View File

@ -1,63 +0,0 @@
// NES PPU emulator graphics rendering
// Nes_Emu 0.7.0
#ifndef NES_PPU_RENDERING_H
#define NES_PPU_RENDERING_H
#include "Nes_Ppu_Impl.h"
class Nes_Ppu_Rendering : public Nes_Ppu_Impl {
typedef Nes_Ppu_Impl base;
public:
Nes_Ppu_Rendering();
int sprite_limit;
byte* host_pixels;
long host_row_bytes;
protected:
long sprite_hit_found; // -1: sprite 0 didn't hit, 0: no hit so far, > 0: y * 341 + x
void draw_background( int start, int count );
void draw_sprites( int start, int count );
private:
void draw_scanlines( int start, int count, byte* pixels, long pitch, int mode );
void draw_background_( int count );
// destination for draw functions; avoids extra parameters
byte* scanline_pixels;
long scanline_row_bytes;
// fill/copy
void fill_background( int count );
void clip_left( int count );
void save_left( int count );
void restore_left( int count );
// sprites
enum { max_sprites = 64 };
byte sprite_scanlines [image_height]; // number of sprites on each scanline
void draw_sprites_( int start, int count );
bool sprite_hit_possible( int scanline ) const;
void check_sprite_hit( int begin, int end );
};
inline Nes_Ppu_Rendering::Nes_Ppu_Rendering()
{
sprite_limit = 8;
host_pixels = NULL;
}
inline void Nes_Ppu_Rendering::draw_sprites( int start, int count )
{
assert( host_pixels );
draw_scanlines( start, count, host_pixels + host_row_bytes * start, host_row_bytes, 2 );
}
#endif

View File

@ -1,132 +0,0 @@
int sprite_2 = sprite [2];
// pixels
ptrdiff_t next_row = this->scanline_row_bytes;
byte* out = this->scanline_pixels + sprite [3] +
(top_minus_one + skip - begin_minus_one) * next_row;
cache_t const* lines = get_sprite_tile( sprite );
int dir = 1;
byte* scanlines = this->sprite_scanlines + 1 + top_minus_one + skip;
if ( sprite_2 & 0x80 )
{
// vertical flip
out -= next_row;
out += visible * next_row;
next_row = -next_row;
dir = -1;
scanlines += visible - 1;
#if CLIPPED
int height = this->sprite_height();
skip = height - skip - visible;
assert( skip + visible <= height );
#endif
}
// attributes
unsigned long offset = (sprite_2 & 3) * 0x04040404 + (this->palette_offset + 0x10101010);
unsigned long const mask = 0x03030303 + zero;
unsigned long const maskgen = 0x80808080 + zero;
#define DRAW_PAIR( shift ) { \
int sprite_count = *scanlines; \
CALC_FOUR( ((uint32_t*) out) [0], (line >> (shift + 4)), out0 ) \
CALC_FOUR( ((uint32_t*) out) [1], (line >> shift), out1 ) \
if ( sprite_count < this->max_sprites ) { \
((uint32_t*) out) [0] = out0; \
((uint32_t*) out) [1] = out1; \
} \
if ( CLIPPED ) visible--; \
out += next_row; \
*scanlines = sprite_count + 1; \
scanlines += dir; \
if ( CLIPPED && !visible ) break; \
}
if ( !(sprite_2 & 0x20) )
{
// front
unsigned long const maskgen2 = 0x7f7f7f7f + zero;
#define CALC_FOUR( in, line, out ) \
unsigned long out; \
{ \
unsigned long bg = in; \
unsigned long sp = line & mask; \
unsigned long bgm = maskgen2 + ((bg >> 4) & mask); \
unsigned long spm = (maskgen - sp) & maskgen2; \
unsigned long m = (bgm & spm) >> 2; \
out = (bg & ~m) | ((sp + offset) & m); \
}
#if CLIPPED
lines += skip >> 1;
unsigned long line = *lines++;
if ( skip & 1 )
goto front_skip;
while ( true )
{
DRAW_PAIR( 0 )
front_skip:
DRAW_PAIR( 2 )
line = *lines++;
}
#else
for ( int n = visible >> 1; n--; )
{
unsigned long line = *lines++;
DRAW_PAIR( 0 )
DRAW_PAIR( 2 )
}
#endif
#undef CALC_FOUR
}
else
{
// behind
unsigned long const omask = 0x20202020 + zero;
unsigned long const bg_or = 0xc3c3c3c3 + zero;
#define CALC_FOUR( in, line, out ) \
unsigned long out; \
{ \
unsigned long bg = in; \
unsigned long sp = line & mask; \
unsigned long bgm = maskgen - (bg & mask); \
unsigned long spm = maskgen - sp; \
out = (bg & (bgm | bg_or)) | (spm & omask) | \
(((offset & spm) + sp) & ~(bgm >> 2)); \
}
#if CLIPPED
lines += skip >> 1;
unsigned long line = *lines++;
if ( skip & 1 )
goto back_skip;
while ( true )
{
DRAW_PAIR( 0 )
back_skip:
DRAW_PAIR( 2 )
line = *lines++;
}
#else
for ( int n = visible >> 1; n--; )
{
unsigned long line = *lines++;
DRAW_PAIR( 0 )
DRAW_PAIR( 2 )
}
#endif
#undef CALC_FOUR
}
#undef CLIPPED
#undef DRAW_PAIR

View File

@ -1,293 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_State.h"
#include <stdlib.h>
#include <string.h>
#include "blargg_endian.h"
#include "Nes_Emu.h"
#include "Nes_Mapper.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
int mem_differs( void const* p, int cmp, unsigned long s )
{
unsigned char const* cp = (unsigned char*) p;
while ( s-- )
{
if ( *cp++ != cmp )
return 1;
}
return 0;
}
Nes_State::Nes_State()
{
Nes_State_::cpu = &this->cpu;
Nes_State_::joypad = &this->joypad;
Nes_State_::apu = &this->apu;
Nes_State_::ppu = &this->ppu;
Nes_State_::mapper = &this->mapper;
Nes_State_::ram = this->ram;
Nes_State_::sram = this->sram;
Nes_State_::spr_ram = this->spr_ram;
Nes_State_::nametable = this->nametable;
Nes_State_::chr = this->chr;
}
void Nes_State_::clear()
{
memset( &nes, 0, sizeof nes );
nes.frame_count = static_cast<unsigned>(invalid_frame_count);
nes_valid = false;
cpu_valid = false;
joypad_valid = false;
apu_valid = false;
ppu_valid = false;
mapper_valid = false;
ram_valid = false;
sram_size = 0;
spr_ram_valid = false;
nametable_size = 0;
chr_size = 0;
}
// write
blargg_err_t Nes_State_Writer::end( Nes_Emu const& emu )
{
Nes_State* state = BLARGG_NEW Nes_State;
CHECK_ALLOC( state );
emu.save_state( state );
blargg_err_t err = end( *state );
delete state;
return err;
}
blargg_err_t Nes_State_Writer::end( Nes_State const& ss )
{
RETURN_ERR( ss.write_blocks( *this ) );
return Nes_File_Writer::end();
}
blargg_err_t Nes_State::write( Auto_File_Writer out ) const
{
Nes_State_Writer writer;
RETURN_ERR( writer.begin( out ) );
return writer.end( *this );
}
blargg_err_t Nes_State_::write_blocks( Nes_File_Writer& out ) const
{
if ( nes_valid )
{
nes_state_t s = nes;
s.timestamp *= 5;
RETURN_ERR( write_nes_state( out, s ) );
}
if ( cpu_valid )
{
cpu_state_t s;
memset( &s, 0, sizeof s );
s.pc = cpu->pc;
s.s = cpu->sp;
s.a = cpu->a;
s.x = cpu->x;
s.y = cpu->y;
s.p = cpu->status;
RETURN_ERR( write_nes_state( out, s ) );
}
if ( ppu_valid )
{
ppu_state_t s = *ppu;
RETURN_ERR( write_nes_state( out, s ) );
}
if ( apu_valid )
{
apu_state_t s = *apu;
RETURN_ERR( write_nes_state( out, s ) );
}
if ( joypad_valid )
{
joypad_state_t s = *joypad;
RETURN_ERR( write_nes_state( out, s ) );
}
if ( mapper_valid )
RETURN_ERR( out.write_block( FOUR_CHAR('MAPR'), mapper->data, mapper->size ) );
if ( ram_valid )
RETURN_ERR( out.write_block( FOUR_CHAR('LRAM'), ram, ram_size ) );
if ( spr_ram_valid )
RETURN_ERR( out.write_block( FOUR_CHAR('SPRT'), spr_ram, spr_ram_size ) );
if ( nametable_size )
{
check( nametable_size == 0x800 || nametable_size == 0x1000 );
RETURN_ERR( out.write_block_header( FOUR_CHAR('NTAB'), nametable_size ) );
RETURN_ERR( out.write( nametable, 0x800 ) );
if ( nametable_size > 0x800 )
RETURN_ERR( out.write( chr, 0x800 ) );
}
if ( chr_size )
RETURN_ERR( out.write_block( FOUR_CHAR('CHRR'), chr, chr_size ) );
#ifdef __LIBRETRO__ // Maintain constant save state size.
if ( sram_size )
RETURN_ERR( out.write_block( FOUR_CHAR('SRAM'), sram, sram_size ) );
#else
// only save sram if it's been modified
if ( sram_size && mem_differs( sram, 0xff, sram_size ) )
RETURN_ERR( out.write_block( FOUR_CHAR('SRAM'), sram, sram_size ) );
#endif
return 0;
}
// read
Nes_State_Reader::Nes_State_Reader() { state_ = 0; owned = 0; }
Nes_State_Reader::~Nes_State_Reader() { delete owned; }
blargg_err_t Nes_State_Reader::begin( Auto_File_Reader dr, Nes_State* out )
{
state_ = out;
if ( !out )
CHECK_ALLOC( state_ = owned = BLARGG_NEW Nes_State );
RETURN_ERR( Nes_File_Reader::begin( dr ) );
if ( block_tag() != state_file_tag )
return "Not a state snapshot file";
return 0;
}
blargg_err_t Nes_State::read( Auto_File_Reader in )
{
Nes_State_Reader reader;
RETURN_ERR( reader.begin( in, this ) );
while ( !reader.done() )
RETURN_ERR( reader.next_block() );
return 0;
}
blargg_err_t Nes_State_Reader::next_block()
{
if ( depth() != 0 )
return Nes_File_Reader::next_block();
return state_->read_blocks( *this );
}
void Nes_State_::set_nes_state( nes_state_t const& s )
{
nes = s;
nes.timestamp /= 5;
nes_valid = true;
}
blargg_err_t Nes_State_::read_blocks( Nes_File_Reader& in )
{
while ( true )
{
RETURN_ERR( in.next_block() );
switch ( in.block_tag() )
{
case nes_state_t::tag:
memset( &nes, 0, sizeof nes );
RETURN_ERR( read_nes_state( in, &nes ) );
set_nes_state( nes );
break;
case cpu_state_t::tag: {
cpu_state_t s;
memset( &s, 0, sizeof s );
RETURN_ERR( read_nes_state( in, &s ) );
cpu->pc = s.pc;
cpu->sp = s.s;
cpu->a = s.a;
cpu->x = s.x;
cpu->y = s.y;
cpu->status = s.p;
cpu_valid = true;
break;
}
case ppu_state_t::tag:
memset( ppu, 0, sizeof *ppu );
RETURN_ERR( read_nes_state( in, ppu ) );
ppu_valid = true;
break;
case apu_state_t::tag:
memset( apu, 0, sizeof *apu );
RETURN_ERR( read_nes_state( in, apu ) );
apu_valid = true;
break;
case joypad_state_t::tag:
memset( joypad, 0, sizeof *joypad );
RETURN_ERR( read_nes_state( in, joypad ) );
joypad_valid = true;
break;
case FOUR_CHAR('MAPR'):
mapper->size = in.remain();
RETURN_ERR( in.read_block_data( mapper->data, sizeof mapper->data ) );
mapper_valid = true;
break;
case FOUR_CHAR('SPRT'):
spr_ram_valid = true;
RETURN_ERR( in.read_block_data( spr_ram, spr_ram_size ) );
break;
case FOUR_CHAR('NTAB'):
nametable_size = in.remain();
check( nametable_size == 0x800 || nametable_size == 0x1000 );
RETURN_ERR( in.read( nametable, 0x800 ) );
if ( nametable_size > 0x800 )
RETURN_ERR( in.read( chr, 0x800 ) );
break;
case FOUR_CHAR('LRAM'):
ram_valid = true;
RETURN_ERR( in.read_block_data( ram, ram_size ) );
break;
case FOUR_CHAR('CHRR'):
chr_size = in.remain();
RETURN_ERR( in.read_block_data( chr, chr_max ) );
break;
case FOUR_CHAR('SRAM'):
sram_size = in.remain();
RETURN_ERR( in.read_block_data( sram, sram_max ) );
break;
default:
return 0;
}
}
}

View File

@ -1,142 +0,0 @@
// NES state snapshot for saving and restoring emulator state
// Nes_Emu 0.7.0
#ifndef NES_STATE_H
#define NES_STATE_H
#include "Nes_File.h"
#include "Nes_Cpu.h"
class Nes_Emu;
class Nes_State;
typedef long frame_count_t;
// Writes state to a file
class Nes_State_Writer : public Nes_File_Writer {
public:
// Begin writing file
blargg_err_t begin( Auto_File_Writer );
// Write emulator's current state to file and end
blargg_err_t end( Nes_Emu const& );
// Write state to file and end
blargg_err_t end( Nes_State const& );
};
// Reads state from a file
class Nes_State_Reader : public Nes_File_Reader {
public:
// Begin reading state snapshot from file
blargg_err_t begin( Auto_File_Reader, Nes_State* = 0 );
// Go to next unrecognized block in file
blargg_err_t next_block();
// State as read from file. Only valid after all blocks have been read.
Nes_State const& state() const;
public:
Nes_State_Reader();
~Nes_State_Reader();
private:
Nes_State* owned;
Nes_State* state_;
};
class Nes_State_ {
public:
blargg_err_t write_blocks( Nes_File_Writer& ) const;
void set_nes_state( nes_state_t const& );
blargg_err_t read_blocks( Nes_File_Reader& );
enum { ram_size = 0x800 };
enum { sram_max = 0x2000 };
enum { spr_ram_size = 0x100 };
enum { nametable_max = 0x800 };
enum { chr_max = 0x2000 };
BOOST::uint8_t *ram, *sram, *spr_ram, *nametable, *chr;
nes_state_t nes;
Nes_Cpu::registers_t* cpu;
joypad_state_t* joypad;
apu_state_t* apu;
ppu_state_t* ppu;
mapper_state_t* mapper;
bool nes_valid, cpu_valid, joypad_valid, apu_valid, ppu_valid;
bool mapper_valid, ram_valid, spr_ram_valid;
short sram_size, nametable_size, chr_size;
// Invalidate all state
void clear();
// Change timestamp
void set_timestamp( frame_count_t );
// Timestamp snapshot was taken at
frame_count_t timestamp() const;
};
// Snapshot of emulator state
class Nes_State : private Nes_State_ {
public:
Nes_State();
#if 0 // What is this?
Nes_State_::set_timestamp;
Nes_State_::timestamp;
Nes_State_::clear;
#endif
// Write snapshot to file
blargg_err_t write( Auto_File_Writer ) const;
// Read snapshot from file
blargg_err_t read( Auto_File_Reader );
private:
Nes_Cpu::registers_t cpu;
joypad_state_t joypad;
apu_state_t apu;
ppu_state_t ppu;
mapper_state_t mapper;
BOOST::uint8_t ram [ram_size];
BOOST::uint8_t sram [sram_max];
BOOST::uint8_t spr_ram [spr_ram_size];
BOOST::uint8_t nametable [nametable_max];
BOOST::uint8_t chr [chr_max];
friend class Nes_Emu;
friend class Nes_State_Writer;
friend class Nes_State_Reader;
friend class Nes_Recorder;
public:
blargg_err_t read_sta_file( Auto_File_Reader );
};
frame_count_t const invalid_frame_count = LONG_MAX / 2 + 1; // a large positive value
int mem_differs( void const* in, int compare, unsigned long count );
inline Nes_State const& Nes_State_Reader::state() const
{
assert( depth() == 0 && block_type() == group_end );
return *state_;
}
inline blargg_err_t Nes_State_Writer::begin( Auto_File_Writer dw )
{
return Nes_File_Writer::begin( dw, state_file_tag );
}
inline void Nes_State_::set_timestamp( frame_count_t t ) { nes.frame_count = t; }
inline frame_count_t Nes_State_::timestamp() const { return nes.frame_count; }
#endif

View File

@ -1,217 +0,0 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/
#include "Nes_Vrc6_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
Nes_Vrc6_Apu::Nes_Vrc6_Apu()
{
output( NULL );
volume( 1.0 );
reset();
}
Nes_Vrc6_Apu::~Nes_Vrc6_Apu()
{
}
void Nes_Vrc6_Apu::reset()
{
last_time = 0;
for ( int i = 0; i < osc_count; i++ )
{
Vrc6_Osc& osc = oscs [i];
for ( int j = 0; j < reg_count; j++ )
osc.regs [j] = 0;
osc.delay = 0;
osc.last_amp = 0;
osc.phase = 1;
osc.amp = 0;
}
}
void Nes_Vrc6_Apu::output( Blip_Buffer* buf )
{
for ( int i = 0; i < osc_count; i++ )
osc_output( i, buf );
}
void Nes_Vrc6_Apu::run_until( nes_time_t time )
{
require( time >= last_time );
run_square( oscs [0], time );
run_square( oscs [1], time );
run_saw( time );
last_time = time;
}
void Nes_Vrc6_Apu::write_osc( nes_time_t time, int osc_index, int reg, int data )
{
require( (unsigned) osc_index < osc_count );
require( (unsigned) reg < reg_count );
run_until( time );
oscs [osc_index].regs [reg] = data;
}
void Nes_Vrc6_Apu::end_frame( nes_time_t time )
{
if ( time > last_time )
run_until( time );
assert( last_time >= time );
last_time -= time;
}
void Nes_Vrc6_Apu::save_state( vrc6_apu_state_t* out ) const
{
out->saw_amp = oscs [2].amp;
for ( int i = 0; i < osc_count; i++ )
{
Vrc6_Osc const& osc = oscs [i];
for ( int r = 0; r < reg_count; r++ )
out->regs [i] [r] = osc.regs [r];
out->delays [i] = osc.delay;
out->phases [i] = osc.phase;
}
}
void Nes_Vrc6_Apu::load_state( vrc6_apu_state_t const& in )
{
reset();
oscs [2].amp = in.saw_amp;
for ( int i = 0; i < osc_count; i++ )
{
Vrc6_Osc& osc = oscs [i];
for ( int r = 0; r < reg_count; r++ )
osc.regs [r] = in.regs [i] [r];
osc.delay = in.delays [i];
osc.phase = in.phases [i];
}
if ( !oscs [2].phase )
oscs [2].phase = 1;
}
void Nes_Vrc6_Apu::run_square( Vrc6_Osc& osc, nes_time_t end_time )
{
Blip_Buffer* output = osc.output;
if ( !output )
return;
int volume = osc.regs [0] & 15;
if ( !(osc.regs [2] & 0x80) )
volume = 0;
int gate = osc.regs [0] & 0x80;
int duty = ((osc.regs [0] >> 4) & 7) + 1;
int delta = ((gate || osc.phase < duty) ? volume : 0) - osc.last_amp;
nes_time_t time = last_time;
if ( delta )
{
osc.last_amp += delta;
square_synth.offset( time, delta, output );
}
time += osc.delay;
osc.delay = 0;
int period = osc.period();
if ( volume && !gate && period > 4 )
{
if ( time < end_time )
{
int phase = osc.phase;
do
{
phase++;
if ( phase == 16 )
{
phase = 0;
osc.last_amp = volume;
square_synth.offset( time, volume, output );
}
if ( phase == duty )
{
osc.last_amp = 0;
square_synth.offset( time, -volume, output );
}
time += period;
}
while ( time < end_time );
osc.phase = phase;
}
osc.delay = time - end_time;
}
}
void Nes_Vrc6_Apu::run_saw( nes_time_t end_time )
{
Vrc6_Osc& osc = oscs [2];
Blip_Buffer* output = osc.output;
if ( !output )
return;
int amp = osc.amp;
int amp_step = osc.regs [0] & 0x3F;
nes_time_t time = last_time;
int last_amp = osc.last_amp;
if ( !(osc.regs [2] & 0x80) || !(amp_step | amp) )
{
osc.delay = 0;
int delta = (amp >> 3) - last_amp;
last_amp = amp >> 3;
saw_synth.offset( time, delta, output );
}
else
{
time += osc.delay;
if ( time < end_time )
{
int period = osc.period() * 2;
int phase = osc.phase;
do
{
if ( --phase == 0 )
{
phase = 7;
amp = 0;
}
int delta = (amp >> 3) - last_amp;
if ( delta )
{
last_amp = amp >> 3;
saw_synth.offset( time, delta, output );
}
time += period;
amp = (amp + amp_step) & 0xFF;
}
while ( time < end_time );
osc.phase = phase;
osc.amp = amp;
}
osc.delay = time - end_time;
}
osc.last_amp = last_amp;
}

View File

@ -1,99 +0,0 @@
// Konami VRC6 sound chip emulator
// Nes_Snd_Emu 0.1.7
#ifndef NES_VRC6_APU_H
#define NES_VRC6_APU_H
#include "Nes_Apu.h"
#include "Blip_Buffer.h"
struct vrc6_apu_state_t;
class Nes_Vrc6_Apu {
public:
Nes_Vrc6_Apu();
~Nes_Vrc6_Apu();
// See Nes_Apu.h for reference
void reset();
void volume( double );
void treble_eq( blip_eq_t const& );
void output( Blip_Buffer* );
enum { osc_count = 3 };
void osc_output( int index, Blip_Buffer* );
void end_frame( nes_time_t );
void save_state( vrc6_apu_state_t* ) const;
void load_state( vrc6_apu_state_t const& );
// Oscillator 0 write-only registers are at $9000-$9002
// Oscillator 1 write-only registers are at $A000-$A002
// Oscillator 2 write-only registers are at $B000-$B002
enum { reg_count = 3 };
enum { base_addr = 0x9000 };
enum { addr_step = 0x1000 };
void write_osc( nes_time_t, int osc, int reg, int data );
private:
// noncopyable
Nes_Vrc6_Apu( const Nes_Vrc6_Apu& );
Nes_Vrc6_Apu& operator = ( const Nes_Vrc6_Apu& );
struct Vrc6_Osc
{
BOOST::uint8_t regs [3];
Blip_Buffer* output;
int delay;
int last_amp;
int phase;
int amp; // only used by saw
int period() const
{
return (regs [2] & 0x0f) * 0x100L + regs [1] + 1;
}
};
Vrc6_Osc oscs [osc_count];
nes_time_t last_time;
Blip_Synth<blip_med_quality,1> saw_synth;
Blip_Synth<blip_good_quality,1> square_synth;
void run_until( nes_time_t );
void run_square( Vrc6_Osc& osc, nes_time_t );
void run_saw( nes_time_t );
};
struct vrc6_apu_state_t
{
BOOST::uint8_t regs [3] [3];
BOOST::uint8_t saw_amp;
BOOST::uint16_t delays [3];
BOOST::uint8_t phases [3];
BOOST::uint8_t unused;
};
BOOST_STATIC_ASSERT( sizeof (vrc6_apu_state_t) == 20 );
inline void Nes_Vrc6_Apu::osc_output( int i, Blip_Buffer* buf )
{
assert( (unsigned) i < osc_count );
oscs [i].output = buf;
}
inline void Nes_Vrc6_Apu::volume( double v )
{
double const factor = 0.0967 * 2;
saw_synth.volume( factor / 31 * v );
square_synth.volume( factor * 0.5 / 15 * v );
}
inline void Nes_Vrc6_Apu::treble_eq( blip_eq_t const& eq )
{
saw_synth.treble_eq( eq );
square_synth.treble_eq( eq );
}
#endif

View File

@ -1,308 +0,0 @@
#include "abstract_file.h"
#include "blargg_config.h"
#include <assert.h>
#include <string.h>
#include <stdlib.h>
/* Copyright (C) 2005-2006 Shay Green. Permission is hereby granted, free of
charge, to any person obtaining a copy of this software module and associated
documentation files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use, copy, modify,
merge, publish, distribute, sublicense, and/or sell copies of the Software, and
to permit persons to whom the Software is furnished to do so, subject to the
following conditions: The above copyright notice and this permission notice
shall be included in all copies or substantial portions of the Software. THE
SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
// to do: remove?
#ifndef RAISE_ERROR
#define RAISE_ERROR( str ) return str
#endif
typedef blargg_err_t error_t;
error_t Data_Writer::write( const void*, long ) { return 0; }
void Data_Writer::satisfy_lame_linker_() { }
// Std_File_Writer
Std_File_Writer::Std_File_Writer() : file_( 0 ) {
}
Std_File_Writer::~Std_File_Writer() {
close();
}
error_t Std_File_Writer::open( const char* path )
{
close();
file_ = fopen( path, "wb" );
if ( !file_ )
RAISE_ERROR( "Couldn't open file for writing" );
// to do: increase file buffer size
//setvbuf( file_, 0, _IOFBF, 32 * 1024L );
return 0;
}
error_t Std_File_Writer::write( const void* p, long s )
{
long result = (long) fwrite( p, 1, s, file_ );
if ( result != s )
RAISE_ERROR( "Couldn't write to file" );
return 0;
}
void Std_File_Writer::close()
{
if ( file_ ) {
fclose( file_ );
file_ = 0;
}
}
// Mem_Writer
Mem_Writer::Mem_Writer( void* p, long s, int b )
{
data_ = (char*) p;
size_ = 0;
allocated = s;
mode = b ? ignore_excess : fixed;
}
Mem_Writer::Mem_Writer()
{
data_ = 0;
size_ = 0;
allocated = 0;
mode = expanding;
}
Mem_Writer::~Mem_Writer()
{
if ( mode == expanding )
free( data_ );
}
error_t Mem_Writer::write( const void* p, long s )
{
long remain = allocated - size_;
if ( s > remain )
{
if ( mode == fixed )
RAISE_ERROR( "Tried to write more data than expected" );
if ( mode == ignore_excess )
{
s = remain;
}
else // expanding
{
long new_allocated = size_ + s;
new_allocated += (new_allocated >> 1) + 2048;
void* p = realloc( data_, new_allocated );
if ( !p )
RAISE_ERROR( "Out of memory" );
data_ = (char*) p;
allocated = new_allocated;
}
}
assert( size_ + s <= allocated );
memcpy( data_ + size_, p, s );
size_ += s;
return 0;
}
// Null_Writer
error_t Null_Writer::write( const void*, long )
{
return 0;
}
// Auto_File_Reader
#ifndef STD_AUTO_FILE_WRITER
#define STD_AUTO_FILE_WRITER Std_File_Writer
#endif
#ifdef HAVE_ZLIB_H
#ifndef STD_AUTO_FILE_READER
#define STD_AUTO_FILE_READER Gzip_File_Reader
#endif
#ifndef STD_AUTO_FILE_COMP_WRITER
#define STD_AUTO_FILE_COMP_WRITER Gzip_File_Writer
#endif
#else
#ifndef STD_AUTO_FILE_READER
#define STD_AUTO_FILE_READER Std_File_Reader
#endif
#ifndef STD_AUTO_FILE_COMP_WRITER
#define STD_AUTO_FILE_COMP_WRITER Std_File_Writer
#endif
#endif
const char* Auto_File_Reader::open()
{
#ifdef DISABLE_AUTO_FILE
return 0;
#else
if ( data )
return 0;
STD_AUTO_FILE_READER* d = new STD_AUTO_FILE_READER;
if ( !d )
RAISE_ERROR( "Out of memory" );
data = d;
return d->open( path );
#endif
}
Auto_File_Reader::~Auto_File_Reader()
{
if ( path )
delete data;
}
// Auto_File_Writer
const char* Auto_File_Writer::open()
{
#ifdef DISABLE_AUTO_FILE
return 0;
#else
if ( data )
return 0;
STD_AUTO_FILE_WRITER* d = new STD_AUTO_FILE_WRITER;
if ( !d )
RAISE_ERROR( "Out of memory" );
data = d;
return d->open( path );
#endif
}
const char* Auto_File_Writer::open_comp( int level )
{
#ifdef DISABLE_AUTO_FILE
return 0;
#else
if ( data )
return 0;
STD_AUTO_FILE_COMP_WRITER* d = new STD_AUTO_FILE_COMP_WRITER;
if ( !d )
RAISE_ERROR( "Out of memory" );
data = d;
return d->open( path, level );
#endif
}
Auto_File_Writer::~Auto_File_Writer()
{
#ifndef DISABLE_AUTO_FILE
if ( path )
delete data;
#endif
}
#ifndef __LIBRETRO__
#ifdef HAVE_ZLIB_H
#include "zlib.h"
static const char* get_gzip_eof( FILE* file, long* eof )
{
unsigned char buf [4];
if ( !fread( buf, 2, 1, file ) )
RAISE_ERROR( "Couldn't read from file" );
if ( buf [0] == 0x1F && buf [1] == 0x8B )
{
if ( fseek( file, -4, SEEK_END ) )
RAISE_ERROR( "Couldn't seek in file" );
if ( !fread( buf, 4, 1, file ) )
RAISE_ERROR( "Couldn't read from file" );
*eof = buf [3] * 0x1000000L + buf [2] * 0x10000L + buf [1] * 0x100L + buf [0];
}
else
{
if ( fseek( file, 0, SEEK_END ) )
RAISE_ERROR( "Couldn't seek in file" );
*eof = ftell( file );
}
return 0;
}
const char* get_gzip_eof( const char* path, long* eof )
{
FILE* file = fopen( path, "rb" );
if ( !file )
return "Couldn't open file";
const char* error = get_gzip_eof( file, eof );
fclose( file );
return error;
}
// Gzip_File_Writer
Gzip_File_Writer::Gzip_File_Writer() : file_( 0 )
{
}
Gzip_File_Writer::~Gzip_File_Writer()
{
close();
}
Gzip_File_Writer::error_t Gzip_File_Writer::open( const char* path, int level )
{
close();
char mode [4] = { 'w', 'b', 0, 0 };
if ( level >= 0 )
mode [2] = level + '0';
file_ = gzopen( path, mode );
if ( !file_ )
return "Couldn't open file for writing";
return 0;
}
Gzip_File_Writer::error_t Gzip_File_Writer::write( const void* p, long s )
{
long result = (long) gzwrite( (gzFile) file_ , (void*) p, s );
if ( result != s )
return "Couldn't write to file";
return 0;
}
void Gzip_File_Writer::close()
{
if ( file_ )
{
gzclose( (gzFile) file_ );
file_ = 0;
}
}
#endif
#endif

View File

@ -1,162 +0,0 @@
// Abstract file access interfaces
#ifndef ABSTRACT_FILE_H
#define ABSTRACT_FILE_H
#undef BLARGG_CONFIG_H
#include <fex/Data_Reader.h>
#include <stdio.h>
// Supports writing
class Data_Writer {
public:
Data_Writer() { }
virtual ~Data_Writer() { }
typedef blargg_err_t error_t;
// Write 'n' bytes. NULL on success, otherwise error string.
virtual error_t write( const void*, long n ) = 0;
void satisfy_lame_linker_();
private:
// noncopyable
Data_Writer( const Data_Writer& );
Data_Writer& operator = ( const Data_Writer& );
};
class Std_File_Writer : public Data_Writer {
public:
Std_File_Writer();
~Std_File_Writer();
error_t open( const char* );
FILE* file() const { return file_; }
// Forward writes to file. Caller must close file later.
//void forward( FILE* );
error_t write( const void*, long );
void close();
protected:
void reset( FILE* f ) { file_ = f; }
private:
FILE* file_;
error_t open( const char* path, int ignored ) { return open( path ); }
friend class Auto_File_Writer;
};
// Write data to memory
class Mem_Writer : public Data_Writer {
char* data_;
long size_;
long allocated;
enum { expanding, fixed, ignore_excess } mode;
public:
// Keep all written data in expanding block of memory
Mem_Writer();
// Write to fixed-size block of memory. If ignore_excess is false, returns
// error if more than 'size' data is written, otherwise ignores any excess.
Mem_Writer( void*, long size, int ignore_excess = 0 );
error_t write( const void*, long );
// Pointer to beginning of written data
char* data() { return data_; }
// Number of bytes written
long size() const { return size_; }
~Mem_Writer();
};
// Written data is ignored
class Null_Writer : public Data_Writer {
public:
error_t write( const void*, long );
};
// Auto_File to use in place of Data_Reader&/Data_Writer&, allowing a normal
// file path to be used in addition to a Data_Reader/Data_Writer.
class Auto_File_Reader {
public:
Auto_File_Reader() : data( 0 ), path( 0 ) { }
Auto_File_Reader( Data_Reader& r ) : data( &r ), path( 0 ) { }
#ifndef DISABLE_AUTO_FILE
Auto_File_Reader( const char* path_ ) : data( 0 ), path( path_ ) { }
#endif
Auto_File_Reader( Auto_File_Reader const& );
Auto_File_Reader& operator = ( Auto_File_Reader const& );
~Auto_File_Reader();
const char* open();
int operator ! () const { return !data; }
Data_Reader* operator -> () const { return data; }
Data_Reader& operator * () const { return *data; }
private:
/* mutable */ Data_Reader* data;
const char* path;
};
class Auto_File_Writer {
public:
Auto_File_Writer() : data( 0 ), path( 0 ) { }
Auto_File_Writer( Data_Writer& r ) : data( &r ), path( 0 ) { }
#ifndef DISABLE_AUTO_FILE
Auto_File_Writer( const char* path_ ) : data( 0 ), path( path_ ) { }
#endif
Auto_File_Writer( Auto_File_Writer const& );
Auto_File_Writer& operator = ( Auto_File_Writer const& );
~Auto_File_Writer();
const char* open();
const char* open_comp( int level = -1 ); // compress output if possible
int operator ! () const { return !data; }
Data_Writer* operator -> () const { return data; }
Data_Writer& operator * () const { return *data; }
private:
/* mutable */ Data_Writer* data;
const char* path;
};
inline Auto_File_Reader& Auto_File_Reader::operator = ( Auto_File_Reader const& r )
{
data = r.data;
path = r.path;
((Auto_File_Reader*) &r)->data = 0;
return *this;
}
inline Auto_File_Reader::Auto_File_Reader( Auto_File_Reader const& r ) { *this = r; }
inline Auto_File_Writer& Auto_File_Writer::operator = ( Auto_File_Writer const& r )
{
data = r.data;
path = r.path;
((Auto_File_Writer*) &r)->data = 0;
return *this;
}
inline Auto_File_Writer::Auto_File_Writer( Auto_File_Writer const& r ) { *this = r; }
#ifndef __LIBRETRO__
class Gzip_File_Writer : public Data_Writer {
void* file_;
public:
Gzip_File_Writer();
~Gzip_File_Writer();
error_t open( const char*, int compression = -1 );
error_t write( const void*, long );
void close();
};
#endif
#endif

View File

@ -1,132 +0,0 @@
// Nes_Snd_Emu 0.1.7. http://www.slack.net/~ant/libs/
#include "apu_state.h"
#include "Nes_Apu.h"
/* Copyright (C) 2003-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
template<int mode>
struct apu_reflection
{
#define REFLECT( apu, state ) (mode ? void (apu = state) : void (state = apu))
static void reflect_env( apu_state_t::env_t* state, Nes_Envelope& osc )
{
REFLECT( (*state) [0], osc.env_delay );
REFLECT( (*state) [1], osc.envelope );
REFLECT( (*state) [2], osc.reg_written [3] );
}
static void reflect_square( apu_state_t::square_t& state, Nes_Square& osc )
{
reflect_env( &state.env, osc );
REFLECT( state.delay, osc.delay );
REFLECT( state.length_counter, osc.length_counter );
REFLECT( state.phase, osc.phase );
REFLECT( state.swp_delay, osc.sweep_delay );
REFLECT( state.swp_reset, osc.reg_written [1] );
}
static void reflect_triangle( apu_state_t::triangle_t& state, Nes_Triangle& osc )
{
REFLECT( state.delay, osc.delay );
REFLECT( state.length_counter, osc.length_counter );
REFLECT( state.linear_counter, osc.linear_counter );
REFLECT( state.linear_mode, osc.reg_written [3] );
}
static void reflect_noise( apu_state_t::noise_t& state, Nes_Noise& osc )
{
reflect_env( &state.env, osc );
REFLECT( state.delay, osc.delay );
REFLECT( state.length_counter, osc.length_counter );
REFLECT( state.shift_reg, osc.noise );
}
static void reflect_dmc( apu_state_t::dmc_t& state, Nes_Dmc& osc )
{
REFLECT( state.delay, osc.delay );
REFLECT( state.remain, osc.length_counter );
REFLECT( state.buf, osc.buf );
REFLECT( state.bits_remain, osc.bits_remain );
REFLECT( state.bits, osc.bits );
REFLECT( state.buf_full, osc.buf_full );
REFLECT( state.silence, osc.silence );
REFLECT( state.irq_flag, osc.irq_flag );
if ( mode )
state.addr = osc.address | 0x8000;
else
osc.address = state.addr & 0x7fff;
}
};
void Nes_Apu::save_state( apu_state_t* state ) const
{
for ( int i = 0; i < osc_count * 4; i++ )
{
int index = i >> 2;
state->apu.w40xx [i] = oscs [index]->regs [i & 3];
//if ( index < 4 )
// state->length_counters [index] = oscs [index]->length_counter;
}
state->apu.w40xx [0x11] = dmc.dac;
state->apu.w4015 = osc_enables;
state->apu.w4017 = frame_mode;
state->apu.frame_delay = frame_delay;
state->apu.frame_step = frame;
state->apu.irq_flag = irq_flag;
typedef apu_reflection<1> refl;
Nes_Apu& apu = *(Nes_Apu*) this; // const_cast
refl::reflect_square ( state->square1, apu.square1 );
refl::reflect_square ( state->square2, apu.square2 );
refl::reflect_triangle( state->triangle, apu.triangle );
refl::reflect_noise ( state->noise, apu.noise );
refl::reflect_dmc ( state->dmc, apu.dmc );
}
void Nes_Apu::load_state( apu_state_t const& state )
{
reset();
write_register( 0, 0x4017, state.apu.w4017 );
write_register( 0, 0x4015, state.apu.w4015 );
osc_enables = state.apu.w4015; // DMC clears bit 4
for ( int i = 0; i < osc_count * 4; i++ )
{
int n = state.apu.w40xx [i];
int index = i >> 2;
oscs [index]->regs [i & 3] = n;
write_register( 0, 0x4000 + i, n );
//if ( index < 4 )
// oscs [index]->length_counter = state.length_counters [index];
}
frame_delay = state.apu.frame_delay;
frame = state.apu.frame_step;
irq_flag = state.apu.irq_flag;
typedef apu_reflection<0> refl;
apu_state_t& st = (apu_state_t&) state; // const_cast
refl::reflect_square ( st.square1, square1 );
refl::reflect_square ( st.square2, square2 );
refl::reflect_triangle( st.triangle, triangle );
refl::reflect_noise ( st.noise, noise );
refl::reflect_dmc ( st.dmc, dmc );
dmc.recalc_irq();
}

View File

@ -1,79 +0,0 @@
// NES APU state snapshot support
// Nes_Snd_Emu 0.1.7
#ifndef APU_STATE_H
#define APU_STATE_H
#include "blargg_common.h"
struct apu_state_t
{
typedef BOOST::uint8_t byte;
typedef byte env_t [3];
/*struct env_t {
byte delay;
byte env;
byte written;
};*/
struct apu_t {
byte w40xx [0x14]; // $4000-$4013
byte w4015; // enables
byte w4017; // mode
BOOST::uint16_t frame_delay;
byte frame_step;
byte irq_flag;
} apu;
struct square_t {
BOOST::uint16_t delay;
env_t env;
byte length_counter;
byte phase;
byte swp_delay;
byte swp_reset;
byte unused2 [1];
};
square_t square1;
square_t square2;
struct triangle_t {
BOOST::uint16_t delay;
byte length_counter;
byte phase;
byte linear_counter;
byte linear_mode;
} triangle;
struct noise_t {
BOOST::uint16_t delay;
env_t env;
byte length_counter;
BOOST::uint16_t shift_reg;
} noise;
struct dmc_t {
BOOST::uint16_t delay;
BOOST::uint16_t remain;
BOOST::uint16_t addr;
byte buf;
byte bits_remain;
byte bits;
byte buf_full;
byte silence;
byte irq_flag;
} dmc;
//byte length_counters [4];
enum { tag = 0x41505552 }; // 'APUR'
void swap();
};
BOOST_STATIC_ASSERT( sizeof (apu_state_t) == 72 );
#endif

View File

@ -1,164 +0,0 @@
// Sets up common environment for Shay Green's libraries.
//
// To change configuration options, modify blargg_config.h, not this file.
#ifndef BLARGG_COMMON_H
#define BLARGG_COMMON_H
#include <stddef.h>
#include <stdlib.h>
#include <assert.h>
#include <limits.h>
// User configuration (allow it to #include "blargg_common.h" normally)
#undef BLARGG_COMMON_H
#include "blargg_config.h"
#define BLARGG_COMMON_H
/* BLARGG_COMPILER_HAS_BOOL: If 0, provides bool support for old compiler. If 1,
compiler is assumed to support bool. If undefined, availability is determined.
If errors occur here, add the following line to your config.h file:
#define BLARGG_COMPILER_HAS_BOOL 1
*/
#ifndef BLARGG_COMPILER_HAS_BOOL
#if defined (__MWERKS__)
#if !__option(bool)
#define BLARGG_COMPILER_HAS_BOOL 0
#endif
#elif defined (_MSC_VER)
#if _MSC_VER < 1100
#define BLARGG_COMPILER_HAS_BOOL 0
#endif
#elif defined (__GNUC__)
// supports bool
#elif __cplusplus < 199711
#define BLARGG_COMPILER_HAS_BOOL 0
#endif
#endif
#if defined (BLARGG_COMPILER_HAS_BOOL) && !BLARGG_COMPILER_HAS_BOOL
typedef int bool;
const bool true = 1;
const bool false = 0;
#endif
// BLARGG_NEW is used in place of 'new' to create objects. By default, plain new is used.
// To prevent an exception if out of memory, #define BLARGG_NEW new (std::nothrow)
#ifndef BLARGG_NEW
#define BLARGG_NEW new
#endif
// BOOST::int8_t etc.
// HAVE_STDINT_H: If defined, use <stdint.h> for int8_t etc.
#if defined (HAVE_STDINT_H)
#include <stdint.h>
#define BOOST
// HAVE_INTTYPES_H: If defined, use <stdint.h> for int8_t etc.
#elif defined (HAVE_INTTYPES_H)
#include <inttypes.h>
#define BOOST
#else
struct BOOST
{
#if UCHAR_MAX == 0xFF && SCHAR_MAX == 0x7F
typedef signed char int8_t;
typedef unsigned char uint8_t;
#else
// No suitable 8-bit type available
typedef struct see_blargg_common_h int8_t;
typedef struct see_blargg_common_h uint8_t;
#endif
#if USHRT_MAX == 0xFFFF
typedef short int16_t;
typedef unsigned short uint16_t;
#else
// No suitable 16-bit type available
typedef struct see_blargg_common_h int16_t;
typedef struct see_blargg_common_h uint16_t;
#endif
#if ULONG_MAX == 0xFFFFFFFF
typedef long int32_t;
typedef unsigned long uint32_t;
#elif UINT_MAX == 0xFFFFFFFF
typedef int int32_t;
typedef unsigned int uint32_t;
#else
// No suitable 32-bit type available
typedef struct see_blargg_common_h int32_t;
typedef struct see_blargg_common_h uint32_t;
#endif
};
#endif
#ifdef _WIN32
typedef wchar_t blargg_wchar_t;
#else
#include <stdint.h>
typedef uint16_t blargg_wchar_t;
#endif
// BOOST_STATIC_ASSERT( expr ): Generates compile error if expr is 0.
#ifndef BOOST_STATIC_ASSERT
#ifdef _MSC_VER
// MSVC6 (_MSC_VER < 1300) fails for use of __LINE__ when /Zl is specified
#define BOOST_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / !!(expr) - 1] )
#else
// Some other compilers fail when declaring same function multiple times in class,
// so differentiate them by line
#define BOOST_STATIC_ASSERT( expr ) \
void blargg_failed_( int (*arg) [2 / !!(expr) - 1] [__LINE__] )
#endif
#endif
// In case compiler doesn't support these properly. Used rarely.
#define STATIC_CAST(T,expr) static_cast<T> (expr)
#define CONST_CAST( T,expr) const_cast<T> (expr)
// blargg_err_t (0 on success, otherwise error string)
#ifndef blargg_err_t
typedef const char* blargg_err_t;
#endif
// Success; no error
blargg_err_t const blargg_ok = 0;
/* Pure virtual functions cause a vtable entry to a "called pure virtual"
error handler, requiring linkage to the C++ runtime library. This macro is
used in place of the "= 0", and simply expands to its argument. During
development, it expands to "= 0", allowing detection of missing overrides. */
#define BLARGG_PURE( def ) def
/* My code is not written with exceptions in mind, so either uses new (nothrow)
OR overrides operator new in my classes. The former is best since clients
creating objects will get standard exceptions on failure, but that causes it
to require the standard C++ library. So, when the client is using the C
interface, I override operator new to use malloc. */
// BLARGG_DISABLE_NOTHROW is put inside classes
#ifndef BLARGG_DISABLE_NOTHROW
// throw spec mandatory in ISO C++ if NULL can be returned
#if __cplusplus >= 199711 || __GNUC__ >= 3 || _MSC_VER >= 1300
#define BLARGG_THROWS_NOTHING throw ()
#else
#define BLARGG_THROWS_NOTHING
#endif
#define BLARGG_DISABLE_NOTHROW \
void* operator new ( size_t s ) BLARGG_THROWS_NOTHING { return malloc( s ); }\
void operator delete( void* p ) BLARGG_THROWS_NOTHING { free( p ); }
#define BLARGG_NEW new
#else
// BLARGG_NEW is used in place of new in library code
#include <new>
#define BLARGG_NEW new (std::nothrow)
#endif
#endif

View File

@ -1,33 +0,0 @@
// Nes_Emu 0.7.0 user configuration file. Don't replace when updating library.
#ifndef BLARGG_CONFIG_H
#define BLARGG_CONFIG_H
// Uncomment to transparently decompress files using zlib
#define HAVE_ZLIB_H
// Uncomment to enable platform-specific (and possibly non-portable) optimizations.
#define BLARGG_NONPORTABLE 1
// Uncomment if automatic byte-order determination doesn't work
//#define BLARGG_BIG_ENDIAN 1
// Uncomment if you get errors in the bool section of blargg_common.h
//#define BLARGG_COMPILER_HAS_BOOL 1
// Uncomment to disable out-of-memory exceptions
//#include <memory>
//#define BLARGG_NEW new (std::nothrow)
#define DISABLE_AUTO_FILE 1
#define HAVE_STDINT_H
// Use standard config.h if present
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#endif

View File

@ -1,159 +0,0 @@
// CPU Byte Order Utilities
// Nes_Emu 0.7.0
#ifndef BLARGG_ENDIAN
#define BLARGG_ENDIAN
#include "blargg_common.h"
// BLARGG_CPU_CISC: Defined if CPU has very few general-purpose registers (< 16)
#if defined (_M_IX86) || defined (_M_IA64) || defined (__i486__) || \
defined (__x86_64__) || defined (__ia64__)
#define BLARGG_CPU_X86 1
#define BLARGG_CPU_CISC 1
#endif
#if defined (__powerpc__) || defined (__ppc__) || defined (__POWERPC__) || defined (__powerc)
#define BLARGG_CPU_POWERPC 1
#endif
// BLARGG_BIG_ENDIAN, BLARGG_LITTLE_ENDIAN: Determined automatically, otherwise only
// one must be #defined to 1. Only needed if something actually depends on byte order.
#if !defined (BLARGG_BIG_ENDIAN) && !defined (BLARGG_LITTLE_ENDIAN)
#ifdef __GLIBC__
// GCC handles this for us
#include <endian.h>
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define BLARGG_LITTLE_ENDIAN 1
#elif __BYTE_ORDER == __BIG_ENDIAN
#define BLARGG_BIG_ENDIAN 1
#endif
#else
#if defined (LSB_FIRST) || defined (__LITTLE_ENDIAN__) || BLARGG_CPU_X86 || \
(defined (LITTLE_ENDIAN) && LITTLE_ENDIAN+0 != 1234)
#define BLARGG_LITTLE_ENDIAN 1
#endif
#if defined (MSB_FIRST) || defined (__BIG_ENDIAN__) || defined (WORDS_BIGENDIAN) || \
defined (__mips__) || defined (__sparc__) || BLARGG_CPU_POWERPC || \
(defined (BIG_ENDIAN) && BIG_ENDIAN+0 != 4321)
#define BLARGG_BIG_ENDIAN 1
#else
// Assume little-endian, since it's most common
#define BLARGG_LITTLE_ENDIAN 1
#endif
#endif
#endif
#if BLARGG_LITTLE_ENDIAN && BLARGG_BIG_ENDIAN
#undef BLARGG_LITTLE_ENDIAN
#undef BLARGG_BIG_ENDIAN
#endif
inline void blargg_verify_byte_order()
{
#ifndef NDEBUG
#if BLARGG_BIG_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i == 0 );
#elif BLARGG_LITTLE_ENDIAN
volatile int i = 1;
assert( *(volatile char*) &i != 0 );
#endif
#endif
}
inline unsigned get_le16( void const* p ) {
return ((unsigned char*) p) [1] * 0x100u +
((unsigned char*) p) [0];
}
inline unsigned get_be16( void const* p ) {
return ((unsigned char*) p) [0] * 0x100u +
((unsigned char*) p) [1];
}
inline unsigned long get_le32( void const* p ) {
return ((unsigned char*) p) [3] * 0x01000000ul +
((unsigned char*) p) [2] * 0x00010000ul +
((unsigned char*) p) [1] * 0x00000100ul +
((unsigned char*) p) [0];
}
inline unsigned long get_be32( void const* p ) {
return ((unsigned char*) p) [0] * 0x01000000ul +
((unsigned char*) p) [1] * 0x00010000ul +
((unsigned char*) p) [2] * 0x00000100ul +
((unsigned char*) p) [3];
}
inline void set_le16( void* p, unsigned n ) {
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [0] = (unsigned char) n;
}
inline void set_be16( void* p, unsigned n ) {
((unsigned char*) p) [0] = (unsigned char) (n >> 8);
((unsigned char*) p) [1] = (unsigned char) n;
}
inline void set_le32( void* p, unsigned long n ) {
((unsigned char*) p) [3] = (unsigned char) (n >> 24);
((unsigned char*) p) [2] = (unsigned char) (n >> 16);
((unsigned char*) p) [1] = (unsigned char) (n >> 8);
((unsigned char*) p) [0] = (unsigned char) n;
}
inline void set_be32( void* p, unsigned long n ) {
((unsigned char*) p) [0] = (unsigned char) (n >> 24);
((unsigned char*) p) [1] = (unsigned char) (n >> 16);
((unsigned char*) p) [2] = (unsigned char) (n >> 8);
((unsigned char*) p) [3] = (unsigned char) n;
}
#if BLARGG_NONPORTABLE
// Optimized implementation if byte order is known
#if BLARGG_LITTLE_ENDIAN
#define GET_LE16( addr ) (*(BOOST::uint16_t*) (addr))
#define GET_LE32( addr ) (*(BOOST::uint32_t*) (addr))
#define SET_LE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_LE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#elif BLARGG_BIG_ENDIAN
#define GET_BE16( addr ) (*(BOOST::uint16_t*) (addr))
#define GET_BE32( addr ) (*(BOOST::uint32_t*) (addr))
#define SET_BE16( addr, data ) (void) (*(BOOST::uint16_t*) (addr) = (data))
#define SET_BE32( addr, data ) (void) (*(BOOST::uint32_t*) (addr) = (data))
#endif
#if BLARGG_CPU_POWERPC && defined (__MWERKS__)
// PowerPC has special byte-reversed instructions
// to do: assumes that PowerPC is running in big-endian mode
// to do: implement for other compilers which don't support these macros
#define GET_LE16( addr ) (__lhbrx( (addr), 0 ))
#define GET_LE32( addr ) (__lwbrx( (addr), 0 ))
#define SET_LE16( addr, data ) (__sthbrx( (data), (addr), 0 ))
#define SET_LE32( addr, data ) (__stwbrx( (data), (addr), 0 ))
#endif
#endif
#ifndef GET_LE16
#define GET_LE16( addr ) get_le16( addr )
#define GET_LE32( addr ) get_le32( addr )
#define SET_LE16( addr, data ) set_le16( addr, data )
#define SET_LE32( addr, data ) set_le32( addr, data )
#endif
#ifndef GET_BE16
#define GET_BE16( addr ) get_be16( addr )
#define GET_BE32( addr ) get_be32( addr )
#define SET_BE16( addr, data ) set_be16( addr, data )
#define SET_BE32( addr, data ) set_be32( addr, data )
#endif
// auto-selecting versions
inline void set_le( BOOST::uint16_t* p, unsigned n ) { SET_LE16( p, n ); }
inline void set_le( BOOST::uint32_t* p, unsigned long n ) { SET_LE32( p, n ); }
inline void set_be( BOOST::uint16_t* p, unsigned n ) { SET_BE16( p, n ); }
inline void set_be( BOOST::uint32_t* p, unsigned long n ) { SET_BE32( p, n ); }
inline unsigned get_le( BOOST::uint16_t* p ) { return GET_LE16( p ); }
inline unsigned long get_le( BOOST::uint32_t* p ) { return GET_LE32( p ); }
inline unsigned get_be( BOOST::uint16_t* p ) { return GET_BE16( p ); }
inline unsigned long get_be( BOOST::uint32_t* p ) { return GET_BE32( p ); }
#endif

View File

@ -1,76 +0,0 @@
// Included at the beginning of library source files, after all other #include lines
#ifndef BLARGG_SOURCE_H
#define BLARGG_SOURCE_H
// If debugging is enabled, abort program if expr is false. Meant for checking
// internal state and consistency. A failed assertion indicates a bug in the module.
// void assert( bool expr );
#include <assert.h>
// If debugging is enabled and expr is false, abort program. Meant for checking
// caller-supplied parameters and operations that are outside the control of the
// module. A failed requirement indicates a bug outside the module.
// void require( bool expr );
#undef require
#define require( expr ) assert( expr )
// Like printf() except output goes to debug log file. Might be defined to do
// nothing (not even evaluate its arguments).
// void dprintf( const char* format, ... );
inline void blargg_dprintf_( const char*, ... ) { }
#undef dprintf
#define dprintf (1) ? (void) 0 : blargg_dprintf_
// If enabled, evaluate expr and if false, make debug log entry with source file
// and line. Meant for finding situations that should be examined further, but that
// don't indicate a problem. In all cases, execution continues normally.
#undef check
#define check( expr ) ((void) 0)
// If expr yields error string, return it from current function, otherwise continue.
#undef RETURN_ERR
#define RETURN_ERR( expr ) do { \
blargg_err_t blargg_return_err_ = (expr); \
if ( blargg_return_err_ ) return blargg_return_err_; \
} while ( 0 )
// If ptr is 0, return out of memory error string.
#undef CHECK_ALLOC
#define CHECK_ALLOC( ptr ) do { if ( (ptr) == 0 ) return "Out of memory"; } while ( 0 )
// Avoid any macros which evaluate their arguments multiple times
#undef min
#undef max
// using const references generates crappy code, and I am currenly only using these
// for built-in types, so they take arguments by value
template<class T>
inline T min( T x, T y )
{
if ( x < y )
return x;
return y;
}
template<class T>
inline T max( T x, T y )
{
if ( x < y )
return y;
return x;
}
// deprecated
#define BLARGG_CHECK_ALLOC CHECK_ALLOC
#define BLARGG_RETURN_ERR RETURN_ERR
// BLARGG_SOURCE_BEGIN: If defined, #included, allowing redefition of dprintf and check
#ifdef BLARGG_SOURCE_BEGIN
#include BLARGG_SOURCE_BEGIN
#endif
#endif

View File

@ -1,348 +0,0 @@
// Optional less-common simple mappers
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// Nina-1 (Deadly Towers only)
class Mapper_Nina1 : public Nes_Mapper {
byte bank;
public:
Mapper_Nina1()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
write( 0, 0, bank );
}
virtual void write( nes_time_t, nes_addr_t, int data )
{
bank = data;
set_prg_bank( 0x8000, bank_32k, bank );
}
};
// GNROM
class Mapper_Gnrom : public Nes_Mapper {
byte bank;
public:
Mapper_Gnrom()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
int b = bank;
bank = ~b;
write( 0, 0, b );
}
virtual void write( nes_time_t, nes_addr_t, int data )
{
int changed = bank ^ data;
bank = data;
if ( changed & 0x30 )
set_prg_bank( 0x8000, bank_32k, bank >> 4 & 3 );
if ( changed & 0x03 )
set_chr_bank( 0, bank_8k, bank & 3 );
}
};
// Color Dreams
class Mapper_Color_Dreams : public Nes_Mapper {
byte bank;
public:
Mapper_Color_Dreams()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
int b = bank;
bank = ~b;
write( 0, 0, b );
}
virtual void write( nes_time_t, nes_addr_t, int data )
{
int changed = bank ^ data;
bank = data;
if ( changed & 0x0f )
set_prg_bank( 0x8000, bank_32k, bank & 0x0f );
if ( changed & 0xf0 )
set_chr_bank( 0, bank_8k, bank >> 4 );
}
};
// Jaleco/Konami
class Mapper_87 : public Nes_Mapper {
byte bank;
public:
Mapper_87()
{
register_state( &bank, 1 );
}
void apply_mapping()
{
intercept_writes( 0x6000, 1 );
write( 0, 0x6000, bank );
}
bool write_intercepted( nes_time_t, nes_addr_t addr, int data )
{
if ( addr != 0x6000 )
return false;
bank = data;
set_chr_bank( 0, bank_8k, data >> 1 );
return true;
}
void write( nes_time_t, nes_addr_t, int ) { }
};
// Camerica
class Mapper_Camerica : public Nes_Mapper {
byte regs [3];
public:
Mapper_Camerica()
{
register_state( regs, sizeof regs );
}
virtual void apply_mapping()
{
write( 0, 0xc000, regs [0] );
if ( regs [1] & 0x80 )
write( 0, 0x9000, regs [1] );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
if ( addr >= 0xc000 )
{
regs [0] = data;
set_prg_bank( 0x8000, bank_16k, data );
}
else if ( (addr & 0xf000) == 0x9000 )
{
regs [1] = 0x80 | data;
mirror_single( (data >> 4) & 1 );
}
}
};
// Quattro
class Mapper_Quattro : public Nes_Mapper {
byte regs [2];
public:
Mapper_Quattro()
{
register_state( regs, sizeof regs );
}
virtual void reset_state()
{
regs [0] = 0;
regs [1] = 3;
}
virtual void apply_mapping()
{
int bank = regs [0] >> 1 & 0x0c;
set_prg_bank( 0x8000, bank_16k, bank + (regs [1] & 3) );
set_prg_bank( 0xC000, bank_16k, bank + 3 );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
if ( addr < 0xc000 )
regs [0] = data;
else
regs [1] = data;
Mapper_Quattro::apply_mapping();
}
};
class Mapper_78 : public Nes_Mapper {
// lower 8 bits are the reg at 8000:ffff
// next two bits are autodetecting type
// 0 = unknown 1 = cosmo carrier 2 = holy diver
int reg;
void writeinternal(int data, int changed)
{
reg &= 0x300;
reg |= data;
if (changed & 0x07)
set_prg_bank(0x8000, bank_16k, reg & 0x07);
if (changed & 0xf0)
set_chr_bank(0x0000, bank_8k, (reg >> 4) & 0x0f);
if (changed & 0x08)
{
// set mirroring based on memorized board type
if (reg & 0x100)
{
mirror_single((reg >> 3) & 1);
}
else if (reg & 0x200)
{
if (reg & 0x08)
mirror_vert();
else
mirror_horiz();
}
else
{
// if you don't set something here, holy diver dumps with 4sc set will
// savestate as 4k NTRAM. then when you later set H\V mapping, state size mismatch.
mirror_single(1);
}
}
}
public:
Mapper_78()
{
register_state(&reg, 4);
}
virtual void reset_state()
{
reg = 0;
}
virtual void apply_mapping()
{
writeinternal(reg, 0xff);
}
virtual void write( nes_time_t, nes_addr_t addr, int data)
{
// heuristic: if the first write ever to the register is 0,
// we're on holy diver, otherwise, carrier. it works for these two games...
if (!(reg & 0x300))
{
reg |= data ? 0x100 : 0x200;
writeinternal(data, 0xff);
}
else
{
writeinternal(data, reg ^ data);
}
}
};
class Mapper_212 : public Nes_Mapper {
// something about this doesn't work right?
// TODO: fix me
int reg;
void writeinternal(int data, int changed)
{
reg = data;
if (changed & 0x0007)
{
set_chr_bank(0x0000, bank_8k, reg & 0x0007);
}
if (changed & 0x0008)
{
if (reg & 0x0008)
{
mirror_horiz();
}
else
{
mirror_vert();
}
}
if (changed & 0x4007)
{
if (reg & 0x4000)
{
set_prg_bank(0x8000, bank_32k, reg >> 1 & 0x0003);
}
else
{
set_prg_bank(0x8000, bank_16k, reg & 0x0007);
set_prg_bank(0xc000, bank_16k, reg & 0x0007);
}
}
}
public:
Mapper_212()
{
register_state(&reg, 4);
}
virtual void reset_state()
{
reg = 0xffff;
}
virtual void apply_mapping()
{
//intercept_reads(0xe000, 0x2000); // some sort of bus conflict or anti-piracy bs
writeinternal(reg, 0xffff);
}
/*
// as written. this will never be hit. what's going on?
virtual int read( nes_time_t time, nes_addr_t addr )
{
int ret = Nes_Mapper::read(time, addr);
if ((addr & 0xe010) == 0x6000)
ret |= 0x80;
return ret;
}*/
virtual void write( nes_time_t, nes_addr_t addr, int data)
{
writeinternal(addr, addr ^ reg);
}
};
void register_misc_mappers();
void register_misc_mappers()
{
register_mapper<Mapper_Color_Dreams>( 11 );
register_mapper<Mapper_Nina1>( 34 );
register_mapper<Mapper_Gnrom>( 66 );
register_mapper<Mapper_Camerica>( 71 );
register_mapper<Mapper_87>( 87 );
register_mapper<Mapper_Quattro>( 232 );
register_mapper<Mapper_78>( 78 );
// register_mapper<Mapper_212>( 212 );
}

View File

@ -1,144 +0,0 @@
#include "Nes_Core.h"
#include "Nes_Mapper.h"
#include "blargg_source.h"
int Nes_Core::cpu_read( nes_addr_t addr, nes_time_t time )
{
//LOG_FREQ( "cpu_read", 16, addr >> 12 );
{
int result = cpu::low_mem [addr & 0x7FF];
if ( !(addr & 0xE000) )
return result;
}
{
int result = *cpu::get_code( addr );
if ( addr > 0x7FFF )
return result;
}
time += cpu_time_offset;
if ( addr < 0x4000 )
return ppu.read( addr, time );
clock_ = time;
if ( data_reader_mapped [addr >> page_bits] )
{
int result = mapper->read( time, addr );
if ( result >= 0 )
return result;
}
if ( addr < 0x6000 )
return read_io( addr );
if ( addr < sram_readable )
return impl->sram [addr & (impl_t::sram_size - 1)];
if ( addr < lrom_readable )
return *cpu::get_code( addr );
#ifndef NDEBUG
log_unmapped( addr );
#endif
return addr >> 8; // simulate open bus
}
inline int Nes_Core::cpu_read_ppu( nes_addr_t addr, nes_time_t time )
{
//LOG_FREQ( "cpu_read_ppu", 16, addr >> 12 );
// Read of status register (0x2002) is heavily optimized since many games
// poll it hundreds of times per frame.
nes_time_t next = ppu_2002_time;
int result = ppu.r2002;
if ( addr == 0x2002 )
{
ppu.second_write = false;
if ( time >= next )
result = ppu.read_2002( time + cpu_time_offset );
}
else
{
result = cpu::low_mem [addr & 0x7FF];
if ( addr >= 0x2000 )
result = cpu_read( addr, time );
}
return result;
}
void Nes_Core::cpu_write_2007( int data )
{
// ppu.write_2007() is inlined
if ( ppu.write_2007( data ) & Nes_Ppu::vaddr_clock_mask )
mapper->a12_clocked();
}
void Nes_Core::cpu_write( nes_addr_t addr, int data, nes_time_t time )
{
//LOG_FREQ( "cpu_write", 16, addr >> 12 );
if ( !(addr & 0xE000) )
{
cpu::low_mem [addr & 0x7FF] = data;
return;
}
time += cpu_time_offset;
if ( addr < 0x4000 )
{
if ( (addr & 7) == 7 )
cpu_write_2007( data );
else
ppu.write( time, addr, data );
return;
}
clock_ = time;
if ( data_writer_mapped [addr >> page_bits] && mapper->write_intercepted( time, addr, data ) )
return;
if ( addr < 0x6000 )
{
write_io( addr, data );
return;
}
if ( addr < sram_writable )
{
impl->sram [addr & (impl_t::sram_size - 1)] = data;
return;
}
if ( addr > 0x7FFF )
{
mapper->write( clock_, addr, data );
return;
}
#ifndef NDEBUG
log_unmapped( addr, data );
#endif
}
#define NES_CPU_READ_PPU( cpu, addr, time ) \
STATIC_CAST(Nes_Core&,*cpu).cpu_read_ppu( addr, time )
#define NES_CPU_READ( cpu, addr, time ) \
STATIC_CAST(Nes_Core&,*cpu).cpu_read( addr, time )
#define NES_CPU_WRITEX( cpu, addr, data, time ){\
STATIC_CAST(Nes_Core&,*cpu).cpu_write( addr, data, time );\
}
#define NES_CPU_WRITE( cpu, addr, data, time ){\
if ( addr < 0x800 ) cpu->low_mem [addr] = data;\
else if ( addr == 0x2007 ) STATIC_CAST(Nes_Core&,*cpu).cpu_write_2007( data );\
else STATIC_CAST(Nes_Core&,*cpu).cpu_write( addr, data, time );\
}

View File

@ -1,75 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "nes_data.h"
#include "blargg_endian.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
#define SWAP_BE( n ) (void) (set_be( &(n), (n) ))
#define SWAP_LE( n ) (void) (set_le( &(n), (n) ))
void nes_block_t::swap()
{
SWAP_BE( tag );
SWAP_LE( size );
}
void nes_state_t::swap()
{
SWAP_LE( timestamp );
SWAP_LE( frame_count );
}
void cpu_state_t::swap()
{
SWAP_LE( pc );
}
void ppu_state_t::swap()
{
SWAP_LE( vram_addr );
SWAP_LE( vram_temp );
SWAP_LE( decay_low );
SWAP_LE( decay_high );
}
void apu_state_t::swap()
{
SWAP_LE( apu.frame_delay );
SWAP_LE( square1.delay );
SWAP_LE( square2.delay );
SWAP_LE( triangle.delay );
SWAP_LE( noise.delay );
SWAP_LE( noise.shift_reg );
SWAP_LE( dmc.delay );
SWAP_LE( dmc.remain );
SWAP_LE( dmc.addr );
}
void joypad_state_t::swap()
{
SWAP_LE( joypad_latches [0] );
SWAP_LE( joypad_latches [1] );
}
void movie_info_t::swap()
{
SWAP_LE( begin );
SWAP_LE( length );
SWAP_LE( period );
SWAP_LE( extra );
}

View File

@ -1,174 +0,0 @@
// NES data file block formats
// Nes_Emu 0.7.0
#ifndef NES_DATA_H
#define NES_DATA_H
#include "blargg_common.h"
#include "apu_state.h"
typedef long nes_tag_t;
#if 'ABCD' == '\101\102\103\104'
#define FOUR_CHAR( c ) (\
((c) / '\1\0\0\0' % 0x100 * 0x01000000L) +\
((c) / '\0\1\0\0' % 0x100 * 0x00010000L) +\
((c) / '\0\0\1\0' % 0x100 * 0x00000100L) +\
((c) / '\0\0\0\1' % 0x100 * 0x00000001L)\
)
#else
#if 'ABCD' == 0x41424344
#define FOUR_CHAR( c ) c
#else
#define FOUR_CHAR( c ) (\
((c) / 0x01000000 % 0x100 * 0x00000001) +\
((c) / 0x00010000 % 0x100 * 0x00000100) +\
((c) / 0x00000100 % 0x100 * 0x00010000) +\
((c) / 0x00000001 % 0x100 * 0x01000000)\
)
#endif
#endif
typedef BOOST::uint8_t byte;
// Binary format of save state blocks. All multi-byte values are stored in little-endian.
nes_tag_t const state_file_tag = FOUR_CHAR('NESS');
nes_tag_t const movie_file_tag = FOUR_CHAR('NMOV');
// Name of cartridge file in 8-bit characters (UTF-8 preferred) with ".nes" etc *removed*,
// no NUL termination. Yes: "Castlevania (U)". No: "Strider (U).nes".
nes_tag_t const cart_name_tag = FOUR_CHAR('romn');
// CRC-32 of cartridge's PRG and CHR data combined
nes_tag_t const cart_checksum_tag = FOUR_CHAR('csum');
struct nes_block_t
{
BOOST::uint32_t tag; // ** stored in big-endian
BOOST::uint32_t size;
void swap();
};
BOOST_STATIC_ASSERT( sizeof (nes_block_t) == 8 );
unsigned long const group_begin_size = 0xffffffff; // group block has this size
nes_tag_t const group_end_tag = FOUR_CHAR('gend'); // group end block has this tag
struct movie_info_t
{
BOOST::uint32_t begin;
BOOST::uint32_t length;
BOOST::uint16_t period;
BOOST::uint16_t extra;
byte joypad_count;
byte has_joypad_sync;
byte unused [2];
enum { tag = FOUR_CHAR('INFO') };
void swap();
};
BOOST_STATIC_ASSERT( sizeof (movie_info_t) == 16 );
struct nes_state_t
{
BOOST::uint16_t timestamp; // CPU clocks * 15 (for NTSC)
byte pal;
byte unused [1];
BOOST::uint32_t frame_count; // number of frames emulated since power-up
enum { tag = FOUR_CHAR('TIME') };
void swap();
};
BOOST_STATIC_ASSERT( sizeof (nes_state_t) == 8 );
struct joypad_state_t
{
uint32_t joypad_latches [2]; // joypad 1 & 2 shift registers
byte w4016; // strobe
byte unused [3];
enum { tag = FOUR_CHAR('CTRL') };
void swap();
};
BOOST_STATIC_ASSERT( sizeof (joypad_state_t) == 12 );
// Increase this (and let me know) if your mapper requires more state. This only
// sets the size of the in-memory buffer; it doesn't affect the file format at all.
unsigned const max_mapper_state_size = 256;
struct mapper_state_t
{
int size;
union {
double align;
byte data [max_mapper_state_size];
};
void write( const void* p, unsigned long s );
int read( void* p, unsigned long s ) const;
};
struct cpu_state_t
{
BOOST::uint16_t pc;
byte s;
byte p;
byte a;
byte x;
byte y;
byte unused [1];
enum { tag = FOUR_CHAR('CPUR') };
void swap();
};
BOOST_STATIC_ASSERT( sizeof (cpu_state_t) == 8 );
struct ppu_state_t
{
byte w2000; // control
byte w2001; // control
byte r2002; // status
byte w2003; // sprite ram addr
byte r2007; // vram read buffer
byte second_write; // next write to $2005/$2006 is second since last $2002 read
BOOST::uint16_t vram_addr; // loopy_v
BOOST::uint16_t vram_temp; // loopy_t
byte pixel_x; // fine-scroll (0-7)
byte unused;
byte palette [0x20]; // entries $10, $14, $18, $1c should be ignored
BOOST::uint16_t decay_low;
BOOST::uint16_t decay_high;
byte open_bus;
byte unused2[3];
enum { tag = FOUR_CHAR('PPUR') };
void swap();
};
BOOST_STATIC_ASSERT( sizeof (ppu_state_t) == 20 + 0x20 );
struct mmc1_state_t
{
byte regs [4]; // current registers (5 bits each)
byte bit; // number of bits in buffer (0 to 4)
byte buf; // currently buffered bits (new bits added to bottom)
};
BOOST_STATIC_ASSERT( sizeof (mmc1_state_t) == 6 );
struct mmc3_state_t
{
byte banks [8]; // last writes to $8001 indexed by (mode & 7)
byte mode; // $8000
byte mirror; // $a000
byte sram_mode; // $a001
byte irq_ctr; // internal counter
byte irq_latch; // $c000
byte irq_enabled;// last write was to 0) $e000, 1) $e001
byte irq_flag;
};
BOOST_STATIC_ASSERT( sizeof (mmc3_state_t) == 15 );
#endif

View File

@ -1,117 +0,0 @@
// Common simple mappers
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "Nes_Mapper.h"
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// NROM
class Mapper_Nrom : public Nes_Mapper {
public:
Mapper_Nrom() { }
virtual void apply_mapping() { }
virtual void write( nes_time_t, nes_addr_t, int )
{
// empty
}
};
Nes_Mapper* Nes_Mapper::make_nrom() { return new Mapper_Nrom; }
// UNROM
class Mapper_Unrom : public Nes_Mapper {
byte bank;
public:
Mapper_Unrom()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
enable_sram(); // at least one UNROM game needs sram (Bomberman 2)
set_prg_bank( 0x8000, bank_16k, bank );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
bank = handle_bus_conflict( addr, data );
set_prg_bank( 0x8000, bank_16k, bank );
}
};
Nes_Mapper* Nes_Mapper::make_unrom() { return new Mapper_Unrom; }
// AOROM
class Mapper_Aorom : public Nes_Mapper {
byte bank;
public:
Mapper_Aorom()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
int b = bank;
bank = ~b; // force update
write( 0, 0, b );
}
virtual void write( nes_time_t, nes_addr_t, int data )
{
int changed = bank ^ data;
bank = data;
if ( changed & 0x10 )
mirror_single( bank >> 4 & 1 );
if ( changed & 0x0f )
set_prg_bank( 0x8000, bank_32k, bank & 7 );
}
};
Nes_Mapper* Nes_Mapper::make_aorom() { return new Mapper_Aorom; }
// CNROM
class Mapper_Cnrom : public Nes_Mapper {
byte bank;
public:
Mapper_Cnrom()
{
register_state( &bank, 1 );
}
virtual void apply_mapping()
{
set_chr_bank( 0, bank_8k, bank & 7 );
}
virtual void write( nes_time_t, nes_addr_t addr, int data )
{
bank = handle_bus_conflict( addr, data );
set_chr_bank( 0, bank_8k, bank & 7 );
}
};
Nes_Mapper* Nes_Mapper::make_cnrom() { return new Mapper_Cnrom; }

View File

@ -1,199 +0,0 @@
/* NES NTSC video filter */
/* nes_ntsc 0.2.0 */
#ifndef NES_NTSC_H
#define NES_NTSC_H
#ifdef __cplusplus
extern "C" {
#endif
/* Image parameters, ranging from -1.0 to 1.0. Actual internal values shown
in parenthesis and should remain fairly stable in future versions. */
typedef struct nes_ntsc_setup_t
{
/* Basic parameters */
double hue; /* -1 = -180 degrees +1 = +180 degrees */
double saturation; /* -1 = grayscale (0.0) +1 = oversaturated colors (2.0) */
double contrast; /* -1 = dark (0.5) +1 = light (1.5) */
double brightness; /* -1 = dark (0.5) +1 = light (1.5) */
double sharpness; /* edge contrast enhancement/blurring */
/* Advanced parameters */
double gamma; /* -1 = dark (1.5) +1 = light (0.5) */
double resolution; /* image resolution */
double artifacts; /* artifacts caused by color changes */
double fringing; /* color artifacts caused by brightness changes */
double bleed; /* color bleed (color resolution reduction) */
int merge_fields; /* if 1, merges even and odd fields together to reduce flicker */
float const* decoder_matrix; /* optional RGB decoder matrix, 6 elements */
unsigned char* palette_out; /* optional RGB palette out, 3 bytes per color */
} nes_ntsc_setup_t;
/* Video format presets */
extern nes_ntsc_setup_t const nes_ntsc_composite; /* color bleeding + artifacts */
extern nes_ntsc_setup_t const nes_ntsc_svideo; /* color bleeding only */
extern nes_ntsc_setup_t const nes_ntsc_rgb; /* crisp image */
extern nes_ntsc_setup_t const nes_ntsc_monochrome;/* desaturated + artifacts */
enum { nes_ntsc_palette_size = 64 };
enum { nes_ntsc_emph_palette_size = 64 * 8 };
/* Initialize and adjust parameters. Can be called multiple times on the same
nes_ntsc_t object. Can pass 0 for either parameter. */
typedef struct nes_ntsc_t nes_ntsc_t;
void nes_ntsc_init( nes_ntsc_t* ntsc, nes_ntsc_setup_t const* setup );
/* Filter one or more rows of pixels. Input pixels are 6-bit palette indicies.
In_row_width is the number of pixels to get to the next input row. Out_pitch
is the number of *bytes* to get to the next output row. Output pixel format
is set by NES_NTSC_OUT_DEPTH (defaults to 16-bit RGB). */
void nes_ntsc_blit( nes_ntsc_t const* ntsc, unsigned char const* nes_in,
long in_row_width, int burst_phase, int in_width, int in_height,
void* rgb_out, long out_pitch );
/* Equivalent functions with color emphasis support. Source pixels are
9-bit values with the upper 3 bits specifying the emphasis bits from
PPU register 0x2001. */
typedef struct nes_ntsc_emph_t nes_ntsc_emph_t;
void nes_ntsc_init_emph( nes_ntsc_emph_t* ntsc, nes_ntsc_setup_t const* setup );
void nes_ntsc_blit_emph( nes_ntsc_emph_t const* ntsc, unsigned short const* nes_in,
long in_row_width, int burst_phase, int in_width, int in_height,
void* rgb_out, long out_pitch );
/* Number of output pixels written by blitter for given input width. Width might
be rounded down slightly; use NES_NTSC_IN_WIDTH() on result to find rounded
value. Guaranteed not to round 256 down at all. */
#define NES_NTSC_OUT_WIDTH( in_width ) \
(((in_width) - 1) / nes_ntsc_in_chunk * nes_ntsc_out_chunk + nes_ntsc_out_chunk)
/* Number of input pixels that will fit within given output width. Might be
rounded down slightly; use NES_NTSC_OUT_WIDTH() on result to find rounded
value. */
#define NES_NTSC_IN_WIDTH( out_width ) \
((out_width) / nes_ntsc_out_chunk * nes_ntsc_in_chunk - nes_ntsc_in_chunk + 1)
/* Interface for user-defined custom blitters.
Can be used with nes_ntsc_t and nes_ntsc_emph_t */
enum { nes_ntsc_in_chunk = 3 }; /* number of input pixels read per chunk */
enum { nes_ntsc_out_chunk = 7 }; /* number of output pixels generated per chunk */
enum { nes_ntsc_black = 15 }; /* palette index for black */
enum { nes_ntsc_burst_count = 3 }; /* burst phase cycles through 0, 1, and 2 */
/* Begin outputting row and start three pixels. First pixel will be cut off a bit.
Use nes_ntsc_black for unused pixels. Declares variables, so must be before first
statement in a block (unless you're using C++). */
#define NES_NTSC_BEGIN_ROW( ntsc, burst, pixel0, pixel1, pixel2 ) \
char const* const ktable = \
(char*) (ntsc)->table + burst * (nes_ntsc_burst_size * sizeof (ntsc_rgb_t));\
NTSC_BEGIN_ROW_6_( pixel0, pixel1, pixel2, NES_NTSC_ENTRY_, ktable )
/* Begin input pixel */
#define NES_NTSC_COLOR_IN( in_index, color_in ) \
NTSC_COLOR_IN_( in_index, color_in, NES_NTSC_ENTRY_, ktable )
/* Generate output pixel. Bits can be 24, 16, 15, 32 (treated as 24), or 0:
24: RRRRRRRR GGGGGGGG BBBBBBBB
16: RRRRRGGG GGGBBBBB
15: RRRRRGG GGGBBBBB
0: xxxRRRRR RRRxxGGG GGGGGxxB BBBBBBBx (native internal format; x = junk bits) */
#define NES_NTSC_RGB_OUT( index, rgb_out, bits ) \
NTSC_RGB_OUT_14_( index, rgb_out, bits, 0 )
/* private */
enum { nes_ntsc_entry_size = 128 };
typedef unsigned long ntsc_rgb_t;
struct nes_ntsc_t {
ntsc_rgb_t table [nes_ntsc_palette_size * nes_ntsc_entry_size];
};
struct nes_ntsc_emph_t {
ntsc_rgb_t table [nes_ntsc_emph_palette_size * nes_ntsc_entry_size];
};
enum { nes_ntsc_burst_size = nes_ntsc_entry_size / nes_ntsc_burst_count };
#define NES_NTSC_ENTRY_( ktable, n ) \
(ntsc_rgb_t*) (ktable + (n) * (nes_ntsc_entry_size * sizeof (ntsc_rgb_t)))
/* deprecated */
#define NES_NTSC_RGB24_OUT( x, out ) NES_NTSC_RGB_OUT( x, out, 24 )
#define NES_NTSC_RGB16_OUT( x, out ) NES_NTSC_RGB_OUT( x, out, 16 )
#define NES_NTSC_RGB15_OUT( x, out ) NES_NTSC_RGB_OUT( x, out, 15 )
#define NES_NTSC_RAW_OUT( x, out ) NES_NTSC_RGB_OUT( x, out, 0 )
enum { nes_ntsc_min_in_width = 256 };
enum { nes_ntsc_min_out_width = NES_NTSC_OUT_WIDTH( nes_ntsc_min_in_width ) };
enum { nes_ntsc_640_in_width = 271 };
enum { nes_ntsc_640_out_width = NES_NTSC_OUT_WIDTH( nes_ntsc_640_in_width ) };
enum { nes_ntsc_640_overscan_left = 8 };
enum { nes_ntsc_640_overscan_right = nes_ntsc_640_in_width - 256 - nes_ntsc_640_overscan_left };
enum { nes_ntsc_full_in_width = 283 };
enum { nes_ntsc_full_out_width = NES_NTSC_OUT_WIDTH( nes_ntsc_full_in_width ) };
enum { nes_ntsc_full_overscan_left = 16 };
enum { nes_ntsc_full_overscan_right = nes_ntsc_full_in_width - 256 - nes_ntsc_full_overscan_left };
/* common 3->7 ntsc macros */
#define NTSC_BEGIN_ROW_6_( pixel0, pixel1, pixel2, ENTRY, table ) \
unsigned const ntsc_pixel0_ = (pixel0);\
ntsc_rgb_t const* kernel0 = ENTRY( table, ntsc_pixel0_ );\
unsigned const ntsc_pixel1_ = (pixel1);\
ntsc_rgb_t const* kernel1 = ENTRY( table, ntsc_pixel1_ );\
unsigned const ntsc_pixel2_ = (pixel2);\
ntsc_rgb_t const* kernel2 = ENTRY( table, ntsc_pixel2_ );\
ntsc_rgb_t const* kernelx0;\
ntsc_rgb_t const* kernelx1 = kernel0;\
ntsc_rgb_t const* kernelx2 = kernel0
#define NTSC_RGB_OUT_14_( x, rgb_out, bits, shift ) {\
ntsc_rgb_t raw_ =\
kernel0 [x ] + kernel1 [(x+12)%7+14] + kernel2 [(x+10)%7+28] +\
kernelx0 [(x+7)%14] + kernelx1 [(x+ 5)%7+21] + kernelx2 [(x+ 3)%7+35];\
NTSC_CLAMP_( raw_, shift );\
NTSC_RGB_OUT_( rgb_out, bits, shift );\
}
/* common ntsc macros */
#define ntsc_rgb_builder ((1L << 21) | (1 << 11) | (1 << 1))
#define ntsc_clamp_mask (ntsc_rgb_builder * 3 / 2)
#define ntsc_clamp_add (ntsc_rgb_builder * 0x101)
#define NTSC_CLAMP_( io, shift ) {\
ntsc_rgb_t sub = (io) >> (9-(shift)) & ntsc_clamp_mask;\
ntsc_rgb_t clamp = ntsc_clamp_add - sub;\
io |= clamp;\
clamp -= sub;\
io &= clamp;\
}
#define NTSC_COLOR_IN_( index, color, ENTRY, table ) {\
unsigned color_;\
kernelx##index = kernel##index;\
kernel##index = (color_ = (color), ENTRY( table, color_ ));\
}
/* x is always zero except in snes_ntsc library */
#define NTSC_RGB_OUT_( rgb_out, bits, x ) {\
if ( bits == 16 )\
rgb_out = (raw_>>(13-x)& 0xF800)|(raw_>>(8-x)&0x07E0)|(raw_>>(4-x)&0x001F);\
if ( bits == 24 || bits == 32 )\
rgb_out = (raw_>>(5-x)&0xFF0000)|(raw_>>(3-x)&0xFF00)|(raw_>>(1-x)&0xFF);\
if ( bits == 15 )\
rgb_out = (raw_>>(14-x)& 0x7C00)|(raw_>>(9-x)&0x03E0)|(raw_>>(4-x)&0x001F);\
if ( bits == 14 )\
rgb_out = (raw_>>(24-x)& 0x001F)|(raw_>>(9-x)&0x03E0)|(raw_<<(6+x)&0x7C00);\
if ( bits == 0 )\
rgb_out = raw_ << x;\
}
#ifdef __cplusplus
}
#endif
#endif

View File

@ -1,520 +0,0 @@
/* Common implementation of NTSC filters */
#include <assert.h>
#include <math.h>
/* Copyright (C) 2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#define DISABLE_CORRECTION 0
#ifndef gamma_size
#if NTSC_STANDARD_INIT
#define gamma_size 256
#else
#define gamma_size 1
#endif
#endif
#ifndef rgb_bits
#define rgb_bits 8
#endif
#ifndef LUMA_CUTOFF
#define LUMA_CUTOFF 0.20
#endif
#ifndef artifacts_max
#define artifacts_max (artifacts_mid * 1.5f)
#endif
#ifndef fringing_max
#define fringing_max (fringing_mid * 2)
#endif
#ifndef burst_count
#define burst_count 1
#endif
#ifndef rescale_in
#define rescale_in 1
#define rescale_out 1
#endif
#ifndef std_decoder_hue
#define std_decoder_hue 0
#endif
#define ext_decoder_hue (std_decoder_hue + 15)
#define NTSC_NAME2_( p, n ) p##_ntsc_##n
#define NTSC_NAME_( p, n ) NTSC_NAME2_( p, n )
#define NTSC_NAME( name ) NTSC_NAME_( ntsc_prefix, name )
#define rgb_unit (1 << rgb_bits)
#define burst_size (NTSC_NAME( entry_size ) / burst_count)
#define ntsc_pixels NTSC_NAME( pixels )
#define rgb_offset (rgb_unit * 2 + 0.5f)
#define NTSC_CLAMP( io ) \
NTSC_CLAMP_( io, (8 - rgb_bits) )
enum { kernel_half = 16 };
enum { kernel_size = kernel_half * 2 + 1 };
typedef struct ntsc_impl_t
{
float to_float [gamma_size];
float to_rgb [burst_count * 6];
float contrast;
float brightness;
float artifacts;
float fringing;
float hue_warping;
float kernel [rescale_out * kernel_size * 2];
} ntsc_impl_t;
#undef PI
#define PI 3.14159265358979323846f
#define ROTATE_IQ( i, q, sin_b, cos_b ) {\
float t;\
t = i * cos_b - q * sin_b;\
q = i * sin_b + q * cos_b;\
i = t;\
}
static void init_ntsc_filters( ntsc_impl_t* impl, NTSC_NAME( setup_t ) const* setup )
{
#if rescale_out > 1
float kernels [kernel_size * 2];
#else
float* const kernels = impl->kernel;
#endif
/* generate luma (y) filter using sinc kernel */
{
/* sinc with rolloff (dsf) */
float const rolloff = 1 + (float) setup->sharpness * (float) 0.032;
float const maxh = 32;
float const pow_a_n = (float) pow( rolloff, maxh );
float sum;
int i;
/* quadratic mapping to reduce negative (blurring) range */
float to_angle = (float) setup->resolution + 1;
to_angle = PI / maxh * (float) LUMA_CUTOFF * (to_angle * to_angle + 1);
kernels [kernel_size * 3 / 2] = maxh; /* default center value */
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
int x = i - kernel_half;
float angle = x * to_angle;
/* instability occurs at center point with rolloff very close to 1.0 */
if ( x || pow_a_n > (float) 1.056 || pow_a_n < (float) 0.981 )
{
float rolloff_cos_a = rolloff * (float) cos( angle );
float num = 1 - rolloff_cos_a -
pow_a_n * (float) cos( maxh * angle ) +
pow_a_n * rolloff * (float) cos( (maxh - 1) * angle );
float den = 1 - rolloff_cos_a - rolloff_cos_a + rolloff * rolloff;
float dsf = num / den;
kernels [kernel_size * 3 / 2 - kernel_half + i] = dsf - (float) 0.5;
}
}
/* apply blackman window and find sum */
sum = 0;
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
float x = PI * 2 / (kernel_half * 2) * i;
float blackman = 0.42f - 0.5f * (float) cos( x ) + 0.08f * (float) cos( x * 2 );
sum += (kernels [kernel_size * 3 / 2 - kernel_half + i] *= blackman);
}
/* normalize kernel */
sum = 1.0f / sum;
for ( i = 0; i < kernel_half * 2 + 1; i++ )
{
int x = kernel_size * 3 / 2 - kernel_half + i;
kernels [x] *= sum;
assert( kernels [x] == kernels [x] ); /* catch numerical instability */
}
}
/* generate chroma (iq) filter using gaussian kernel */
{
float const cutoff_factor = -0.03125f;
float cutoff = (float) setup->bleed;
int i;
if ( cutoff < 0 )
{
/* keep extreme value accessible only near upper end of scale (1.0) */
cutoff *= cutoff;
cutoff *= cutoff;
cutoff *= cutoff;
cutoff *= -30.0f / 0.65f;
}
cutoff = cutoff_factor - 0.65f * cutoff_factor * cutoff;
for ( i = -kernel_half; i <= kernel_half; i++ )
kernels [kernel_size / 2 + i] = (float) exp( i * i * cutoff );
/* normalize even and odd phases separately */
for ( i = 0; i < 2; i++ )
{
float sum = 0;
int x;
for ( x = i; x < kernel_size; x += 2 )
sum += kernels [x];
sum = 1.0f / sum;
for ( x = i; x < kernel_size; x += 2 )
{
kernels [x] *= sum;
assert( kernels [x] == kernels [x] ); /* catch numerical instability */
}
}
}
/*
printf( "luma:\n" );
for ( i = kernel_size; i < kernel_size * 2; i++ )
printf( "%f\n", kernels [i] );
printf( "chroma:\n" );
for ( i = 0; i < kernel_size; i++ )
printf( "%f\n", kernels [i] );
*/
/* generate linear rescale kernels */
#if rescale_out > 1
{
float weight = 1.0f;
float* out = impl->kernel;
do
{
float remain = 0;
int i;
weight -= 1.0f / rescale_in;
for ( i = 0; i < kernel_size * 2; i++ )
{
float cur = kernels [i];
float m = cur * weight;
*out++ = m + remain;
remain = cur - m;
}
}
while ( out < &impl->kernel [rescale_out * kernel_size * 2] );
}
#endif
}
static float const default_decoder [6] =
{ 0.956f, 0.621f, -0.272f, -0.647f, -1.105f, 1.702f };
static void init_ntsc_impl( ntsc_impl_t* impl, NTSC_NAME( setup_t ) const* setup )
{
impl->brightness = (float) setup->brightness * (0.5f * rgb_unit) + rgb_offset;
impl->contrast = (float) setup->contrast * (0.5f * rgb_unit) + rgb_unit;
impl->artifacts = (float) setup->artifacts;
if ( impl->artifacts > 0 )
impl->artifacts *= artifacts_max - artifacts_mid;
impl->artifacts = impl->artifacts * artifacts_mid + artifacts_mid;
impl->fringing = (float) setup->fringing;
if ( impl->fringing > 0 )
impl->fringing *= fringing_max - fringing_mid;
impl->fringing = impl->fringing * fringing_mid + fringing_mid;
init_ntsc_filters( impl, setup );
/* generate gamma table */
if ( gamma_size > 1 )
{
float const to_float = 1.0f / (gamma_size - (gamma_size > 1));
float const gamma = 1.1333f - (float) setup->gamma * 0.5f;
/* match common PC's 2.2 gamma to TV's 2.65 gamma */
int i;
for ( i = 0; i < gamma_size; i++ )
impl->to_float [i] =
(float) pow( i * to_float, gamma ) * impl->contrast + impl->brightness;
}
/* setup decoder matricies */
{
float hue = (float) setup->hue * PI + PI / 180 * ext_decoder_hue;
float sat = (float) setup->saturation + 1;
float const* decoder = setup->decoder_matrix;
if ( !decoder )
{
decoder = default_decoder;
hue += PI / 180 * (std_decoder_hue - ext_decoder_hue);
}
{
float s = (float) sin( hue ) * sat;
float c = (float) cos( hue ) * sat;
float* out = impl->to_rgb;
int n;
n = burst_count;
do
{
float const* in = decoder;
int n = 3;
do
{
float i = *in++;
float q = *in++;
*out++ = i * c - q * s;
*out++ = i * s + q * c;
}
while ( --n );
if ( burst_count <= 1 )
break;
ROTATE_IQ( s, c, 0.866025f, -0.5f ); /* +120 degrees */
}
while ( --n );
}
}
}
/* kernel generation */
#define RGB_TO_YIQ( r, g, b, y, i ) (\
(y = (r) * 0.299f + (g) * 0.587f + (b) * 0.114f),\
(i = (r) * 0.596f - (g) * 0.275f - (b) * 0.321f),\
((r) * 0.212f - (g) * 0.523f + (b) * 0.311f)\
)
#define YIQ_TO_RGB( y, i, q, to_rgb, type, r, g ) (\
r = (type) (y + to_rgb [0] * i + to_rgb [1] * q),\
g = (type) (y + to_rgb [2] * i + to_rgb [3] * q),\
(type) (y + to_rgb [4] * i + to_rgb [5] * q)\
)
#define PACK_RGB( r, g, b ) ((r) << 21 | (g) << 11 | (b) << 1)
enum { rgb_kernel_size = burst_size / alignment_count };
enum { ntsc_rgb_bias = rgb_unit * 2 * ntsc_rgb_builder };
typedef struct pixel_info_t
{
int offset;
float negate;
float kernel [4];
} pixel_info_t;
#if rescale_in > 1
#define PIXEL_OFFSET_( ntsc, scaled ) \
(kernel_size / 2 + ntsc + (scaled != 0) + (rescale_out - scaled) % rescale_out + \
(kernel_size * 2 * scaled))
#define PIXEL_OFFSET( ntsc, scaled ) \
PIXEL_OFFSET_( ((ntsc) - (scaled) / rescale_out * rescale_in),\
(((scaled) + rescale_out * 10) % rescale_out) ),\
(1.0f - (((ntsc) + 100) & 2))
#else
#define PIXEL_OFFSET( ntsc, scaled ) \
(kernel_size / 2 + (ntsc) - (scaled)),\
(1.0f - (((ntsc) + 100) & 2))
#endif
extern pixel_info_t const ntsc_pixels [alignment_count];
/* Generate pixel at all burst phases and column alignments */
static void gen_kernel( ntsc_impl_t* impl, float y, float i, float q, ntsc_rgb_t* out )
{
/* generate for each scanline burst phase */
float const* to_rgb = impl->to_rgb;
y -= rgb_offset;
do
{
/* Encode yiq into *two* composite signals (to allow control over artifacting).
Convolve these with kernels which: filter respective components, apply
sharpening, and rescale horizontally. Convert resulting yiq to rgb and pack
into integer. Based on algorithm by NewRisingSun. */
pixel_info_t const* pixel = ntsc_pixels;
do
{
/* negate is -1 when composite starts at odd multiple of 2 */
float const yy = y * impl->fringing * pixel->negate;
float const ic0 = (i + yy) * pixel->kernel [0];
float const qc1 = (q + yy) * pixel->kernel [1];
float const ic2 = (i - yy) * pixel->kernel [2];
float const qc3 = (q - yy) * pixel->kernel [3];
float const factor = impl->artifacts * pixel->negate;
float const ii = i * factor;
float const yc0 = (y + ii) * pixel->kernel [0];
float const yc2 = (y - ii) * pixel->kernel [2];
float const qq = q * factor;
float const yc1 = (y + qq) * pixel->kernel [1];
float const yc3 = (y - qq) * pixel->kernel [3];
float const* k = &impl->kernel [pixel->offset];
int n;
for ( n = rgb_kernel_size; n; --n )
{
float i = k[0]*ic0 + k[2]*ic2;
float q = k[1]*qc1 + k[3]*qc3;
float y = k[kernel_size+0]*yc0 + k[kernel_size+1]*yc1 +
k[kernel_size+2]*yc2 + k[kernel_size+3]*yc3 + rgb_offset;
if ( rescale_out <= 1 )
k--;
else if ( k >= &impl->kernel [kernel_size * 2 * (rescale_out - 1)] )
k -= kernel_size * 2 * (rescale_out - 1) + 2;
else
k += kernel_size * 2 - 1;
{
int r, g, b = YIQ_TO_RGB( y, i, q, to_rgb, int, r, g );
*out++ = PACK_RGB( r, g, b ) - ntsc_rgb_bias;
}
}
}
while ( pixel++ < &ntsc_pixels [alignment_count - 1] );
if ( burst_count <= 1 )
break;
to_rgb += 6;
ROTATE_IQ( i, q, -0.866025f, -0.5f ); /* -120 degrees */
}
while ( to_rgb < &impl->to_rgb [burst_count * 6] );
}
/* only used by NES/SNES filters */
static void merge_kernel_fields( ntsc_rgb_t* io )
{
if ( burst_count == 3 )
{
int n;
for ( n = burst_size; n; --n )
{
ntsc_rgb_t p0 = io [burst_size * 0] + ntsc_rgb_bias;
ntsc_rgb_t p1 = io [burst_size * 1] + ntsc_rgb_bias;
ntsc_rgb_t p2 = io [burst_size * 2] + ntsc_rgb_bias;
/* merge colors without losing precision */
io [burst_size * 0] =
((p0 + p1 - ((p0 ^ p1) & ntsc_rgb_builder)) >> 1) - ntsc_rgb_bias;
io [burst_size * 1] =
((p1 + p2 - ((p1 ^ p2) & ntsc_rgb_builder)) >> 1) - ntsc_rgb_bias;
io [burst_size * 2] =
((p2 + p0 - ((p2 ^ p0) & ntsc_rgb_builder)) >> 1) - ntsc_rgb_bias;
++io;
}
}
}
#if DISABLE_CORRECTION
#define CORRECT_ERROR( a ) { out [i] += ntsc_rgb_bias; }
#define DISTRIBUTE_ERROR( a, b, c ) { out [i] += ntsc_rgb_bias; }
#else
#define CORRECT_ERROR( a ) { out [a] += error; }
#define DISTRIBUTE_ERROR( a, b, c ) {\
ntsc_rgb_t fourth = (error + 2 * ntsc_rgb_builder) >> 2;\
fourth &= (ntsc_rgb_bias >> 1) - ntsc_rgb_builder;\
fourth -= ntsc_rgb_bias >> 2;\
out [a] += fourth;\
out [b] += fourth;\
out [c] += fourth;\
out [i] += error - (fourth * 3);\
}
#endif
static void correct_errors( ntsc_rgb_t color, ntsc_rgb_t* out );
/* only used by palette-based filters (TI, VIC2) */
#if NTSC_STANDARD_INIT
void NTSC_NAME( init )( NTSC_NAME( t )* ntsc, NTSC_NAME( setup_t ) const* setup )
{
ntsc_impl_t impl;
if ( !setup )
setup = &NTSC_NAME( composite );
init_ntsc_impl( &impl, setup );
{
int n = NTSC_NAME( palette_size );
ntsc_rgb_t* kernel_out = (ntsc ? ntsc->table [0] : 0);
unsigned char* palette_out = setup->palette_out;
unsigned char const* palette = setup->palette;
if ( !palette )
palette = default_palette [0];
do
{
float r = impl.to_float [*palette++];
float g = impl.to_float [*palette++];
float b = impl.to_float [*palette++];
float y, i, q = RGB_TO_YIQ( r, g, b, y, i );
{
int r, g, b = YIQ_TO_RGB( y, i, q, impl.to_rgb, int, r, g );
ntsc_rgb_t rgb = PACK_RGB( r, g, b );
if ( palette_out )
{
ntsc_rgb_t clamped = rgb;
NTSC_CLAMP( clamped );
*palette_out++ = (unsigned char) (clamped >> 21);
*palette_out++ = (unsigned char) (clamped >> 11);
*palette_out++ = (unsigned char) (clamped >> 1);
}
if ( kernel_out )
{
gen_kernel( &impl, y, i, q, kernel_out );
#if burst_count > 1
if ( setup->merge_fields )
merge_fields( kernel_out );
#endif
correct_errors( rgb, kernel_out );
kernel_out += burst_size;
}
}
}
while ( --n );
}
}
#endif
/* blitter related */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifndef restrict
#define restrict
#endif
#include <limits.h>
#if UINT_MAX == 0xFFFFFFFF
typedef unsigned int ntsc_uint32_t;
#elif ULONG_MAX == 0xFFFFFFFF
typedef unsigned long ntsc_uint32_t;
#else
#error "Need 32-bit int type"
#endif
#if USHRT_MAX == 0xFFFF
typedef unsigned short ntsc_uint16_t;
#else
#error "Need 16-bit int type"
#endif

View File

@ -1,211 +0,0 @@
// Nes_Emu 0.7.0. http://www.slack.net/~ant/
#include "nes_util.h"
#include "Nes_Cart.h"
#include "Nes_Emu.h"
#include <ctype.h>
#include <string.h>
/* Copyright (C) 2004-2006 Shay Green. This module is free software; you
can redistribute it and/or modify it under the terms of the GNU Lesser
General Public License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version. This
module is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for
more details. You should have received a copy of the GNU Lesser General
Public License along with this module; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#include "blargg_source.h"
// Joypad_Filter
Joypad_Filter::Joypad_Filter()
{
prev = 0;
mask = ~0x50;
times [0] = 0;
times [1] = 0;
set_a_rate( 0.75 );
set_b_rate( 0.75 );
}
void Joypad_Filter::enable_filtering( bool b )
{
bool enabled = (mask + 0x10) >> 5 & 1;
if ( enabled != b )
mask = b ? ~0x50 : ~0;
}
int Joypad_Filter::process( int joypad )
{
// prevent left+right and up+down (prefer most recent one pressed)
int changed = prev ^ joypad;
int hidden = joypad & ~mask;
prev = joypad;
int const x_axis = 0xC0;
int const y_axis = 0x30;
if ( changed & x_axis && hidden & x_axis )
mask ^= x_axis;
if ( changed & y_axis && hidden & y_axis )
mask ^= y_axis;
// reset turbo if button just pressed, to avoid delaying button press
if ( changed & 0x100 ) times [0] = 0;
if ( changed & 0x200 ) times [1] = 0;
mask |= changed & 0x300 & joypad;
// mask and combine turbo bits
joypad &= mask;
return (joypad >> 8 & 3) | (joypad & ~0x300);
}
void Joypad_Filter::clock_turbo()
{
for ( int i = 0; i < 2; i++ )
{
int t = times [i] + rates [i];
mask ^= (t & 0x100) << i;
times [i] = t & 0xFF;
}
}
// game_genie_patch_t
blargg_err_t game_genie_patch_t::decode( const char* in )
{
int const code_len = 8;
unsigned char result [code_len] = { 0 };
int in_len = strlen( in );
if ( in_len != 6 && in_len != 8 )
return "Game Genie code is wrong length";
for ( int i = 0; i < code_len; i++ )
{
char c = 'A';
if ( i < in_len )
c = toupper( in [i] );
static char const letters [17] = "AEPOZXLUGKISTVYN";
char const* p = strchr( (char*) letters, c );
if ( !p )
return "Game Genie code had invalid character";
int n = p - letters;
result [i] |= n >> 1;
result [(i + 1) % code_len] |= (n << 3) & 0x0f;
}
addr = result [3]<<12 | result [5]<<8 | result [2]<<4 | result [4];
change_to = result [1]<<4 | result [0];
compare_with = -1;
if ( addr & 0x8000 )
compare_with = result [7]<<4 | result [6];
addr |= 0x8000;
return 0;
}
int game_genie_patch_t::apply( Nes_Cart& cart ) const
{
// determine bank size
long bank_size = 32 * 1024L; // mappers 0, 2, 3, 7, 11, 34, 71, 87
switch ( cart.mapper_code() )
{
case 1: // MMC1
case 71: // Camerica
case 232: // Quattro
bank_size = 16 * 1024L;
break;
case 4: // MMC3
case 5: // MMC5
case 24: // VRC6
case 26: // VRC6
case 69: // FME7
bank_size = 8 * 1024L;
break;
}
// patch each bank (not very good, since it might patch banks that never occupy
// that address)
int mask = (compare_with >= 0 ? ~0 : 0);
BOOST::uint8_t* p = cart.prg() + addr % bank_size;
int count = 0;
for ( int n = cart.prg_size() / bank_size; n--; p += bank_size )
{
if ( !((*p ^ compare_with) & mask) )
{
*p = change_to;
count++;
}
}
return count;
}
// Cheat_Value_Finder
Cheat_Value_Finder::Cheat_Value_Finder()
{
emu = NULL;
}
void Cheat_Value_Finder::start( Nes_Emu* new_emu )
{
emu = new_emu;
pos = 0;
memcpy( original, emu->low_mem(), low_mem_size );
memset( changed, 0, low_mem_size );
}
void Cheat_Value_Finder::rescan()
{
byte const* low_mem = emu->low_mem();
for ( int i = 0; i < low_mem_size; i++ )
changed [i] |= original [i] ^ low_mem [i];
memcpy( original, emu->low_mem(), low_mem_size );
}
void Cheat_Value_Finder::search( int new_original, int new_changed )
{
require( new_original != new_changed );
original_value = new_original;
changed_value = new_changed;
pos = -1;
}
int Cheat_Value_Finder::next_match( int* addr )
{
byte const* low_mem = emu->low_mem();
while ( ++pos < low_mem_size )
{
if ( !changed [pos] )
{
int old = (original [pos] - original_value) & 0xff;
int cur = (low_mem [pos] - changed_value) & 0xff;
if ( old == cur )
{
if ( addr )
*addr = pos;
return (char) old; // sign-extend
}
}
}
return no_match;
}
int Cheat_Value_Finder::change_value( int new_value )
{
require( (unsigned) pos < low_mem_size );
int result = emu->low_mem() [pos];
emu->low_mem() [pos] = new_value;
return result;
}

View File

@ -1,90 +0,0 @@
// Experimental utilities for NES emulator
// Nes_Emu 0.7.0
#ifndef NES_UTIL_H
#define NES_UTIL_H
#include "blargg_common.h"
class Nes_Emu;
class Nes_Cart;
class Joypad_Filter {
public:
Joypad_Filter();
// Control filtering of simultaneous directions. Enabled by default.
void enable_filtering( bool = true );
// Prevents simultaneous left+right and up+down to avoid problems in some games.
// Also turns bits 8 and 9 into turbo A and B.
int process( int joypad );
// Set A and B turbo rates, where 1.0 is maximum and 0.0 disables them
void set_a_rate( double r ) { rates [0] = (int) (r * 0x100); }
void set_b_rate( double r ) { rates [1] = (int) (r * 0x100); }
// Call after each emulated frame for which Nes_Emu::frame().joypad_read_count
// is non-zero.
void clock_turbo();
private:
int prev;
int mask;
int times [2];
int rates [2];
};
struct game_genie_patch_t
{
unsigned addr; // always 0x8000 or greater
int change_to;
int compare_with; // if -1, always change byte
// Decode Game Genie code
blargg_err_t decode( const char* in );
// Apply patch to cartridge data. Might not work for some codes, since this really
// requires emulator support. Returns number of bytes changed, where 0
// means patch wasn't for that cartridge.
int apply( Nes_Cart& ) const;
};
class Cheat_Value_Finder {
public:
Cheat_Value_Finder();
// Start scanning emulator's memory for values that are constantly changing.
void start( Nes_Emu* );
// Rescan memory and eliminate any changed bytes from later matching.
// Should be called many times after begin_scan() and before begin_matching().
void rescan();
// Start search for any bytes which changed by difference between original and
// changed values.
void search( int original, int changed );
// Get next match and return its delta from changed value (closer to 0
// is more likely to be a match), or no_match if there are no more matches.
// Optionally returns address of matched byte.
enum { no_match = 0x100 };
int next_match( int* addr = NULL );
// Change current match to new value. Returns previous value.
int change_value( int new_value );
private:
typedef BOOST::uint8_t byte;
Nes_Emu* emu;
int original_value;
int changed_value;
int pos;
enum { low_mem_size = 0x800 };
byte original [low_mem_size];
byte changed [low_mem_size];
};
#endif

View File

@ -1425,7 +1425,7 @@ namespace BizHawk.Client.EmuHawk
=> GenericCoreConfig.DoDialogFor(
this,
settable,
"QuickNES Controller Settings",
CoreNames.QuickNes + " Controller Settings",
isMovieActive: MovieSession.Movie.IsActive(),
ignoreSettings: true);

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.8 KiB

After

Width:  |  Height:  |  Size: 1.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 592 B

After

Width:  |  Height:  |  Size: 514 B

View File

@ -7,11 +7,6 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
{
public abstract class LibQuickNES
{
/// <summary>
/// setup extra mappers. should be done before anything else
/// </summary>
[BizImport(CallingConvention.Cdecl)]
public abstract void qn_setup_mappers();
/// <summary>
/// create a new quicknes context
/// </summary>
@ -48,7 +43,7 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
/// <param name="pad2">pad 2 input</param>
/// <returns>string error</returns>
[BizImport(CallingConvention.Cdecl)]
public abstract IntPtr qn_emulate_frame(IntPtr e, int pad1, int pad2);
public abstract IntPtr qn_emulate_frame(IntPtr e, uint pad1, uint pad2);
/// <summary>
/// blit to rgb32
/// </summary>
@ -239,11 +234,11 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
|| s == " truncated file" // This is a garbage rom not worth anyone's time but at least NesHawk handles these better, and these occur before the core has a chance to assess an unsupported mapper
)
{
throw new Common.UnsupportedGameException("Quicknes unsupported mapper");
throw new Common.UnsupportedGameException(CoreNames.QuickNes + " unsupported mapper");
}
else
{
throw new InvalidOperationException("LibQuickNES error: " + s);
throw new InvalidOperationException($"{nameof(LibQuickNES)} error: {s}");
}
}
}

View File

@ -151,18 +151,32 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
}
}
public enum Port1PeripheralOption : byte
{
Unplugged = 0x0,
Gamepad = 0x1,
FourScore = 0x2,
//FourScore2 = 0x3, // not available for port 1
}
public enum Port2PeripheralOption : byte
{
Unplugged = 0x0,
Gamepad = 0x1,
//FourScore = 0x2, // not available for port 2
FourScore2 = 0x3,
}
[CoreSettings]
public class QuickNESSyncSettings
{
[DefaultValue(true)]
[DisplayName("Left Port Connected")]
[Description("Specifies whether or not the Left (Player 1) Controller is connected")]
public bool LeftPortConnected { get; set; }
[DefaultValue(Port1PeripheralOption.Gamepad)]
[DisplayName("Left Port Peripheral")]
public Port1PeripheralOption Port1 { get; set; } = Port1PeripheralOption.Gamepad;
[DefaultValue(false)]
[DisplayName("Right Port Connected")]
[Description("Specifies whether or not the Right (Player 2) Controller is connected")]
public bool RightPortConnected { get; set; }
[DefaultValue(Port2PeripheralOption.Unplugged)]
[DisplayName("Right Port Peripheral")]
public Port2PeripheralOption Port2 { get; set; } = Port2PeripheralOption.Unplugged;
public QuickNESSyncSettings()
{

View File

@ -12,7 +12,11 @@ using BizHawk.BizInvoke;
namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
{
[PortedCore(CoreNames.QuickNes, "", "0.7.0", "https://github.com/kode54/QuickNES")]
[PortedCore(
name: CoreNames.QuickNes,
author: "SergioMartin86, kode54, Blargg",
portedVersion: "1.0.0",
portedUrl: "https://github.com/SergioMartin86/quickerNES")]
[ServiceNotApplicable(new[] { typeof(IDriveLight) })]
public sealed partial class QuickNES : IEmulator, IVideoProvider, ISoundProvider, ISaveRam, IInputPollable,
IBoardInfo, IVideoLogicalOffsets, IStatable, IDebuggable,
@ -21,9 +25,8 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
static QuickNES()
{
var resolver = new DynamicLibraryImportResolver(
$"libquicknes{(OSTailoredCode.IsUnixHost ? ".dll.so.0.7.0" : ".dll")}", hasLimitedLifetime: false);
$"libquicknes{(OSTailoredCode.IsUnixHost ? ".so" : ".dll")}", hasLimitedLifetime: false);
QN = BizInvoker.GetInvoker<LibQuickNES>(resolver, CallingConventionAdapters.Native);
QN.qn_setup_mappers();
}
[CoreConstructor(VSystemID.Raw.NES, Priority = CorePriority.Low)]
@ -48,7 +51,7 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
int mapper = 0;
string mappername = Marshal.PtrToStringAnsi(QN.qn_get_mapper(Context, ref mapper));
Console.WriteLine("QuickNES: Booted with Mapper #{0} \"{1}\"", mapper, mappername);
Console.WriteLine($"{CoreNames.QuickNes}: Booted with Mapper #{mapper} \"{mappername}\"");
BoardName = mappername;
PutSettings(settings ?? new QuickNESSettings());
@ -80,64 +83,137 @@ namespace BizHawk.Emulation.Cores.Consoles.Nintendo.QuickNES
private void SetControllerDefinition()
{
ControllerDefinition def = new("NES Controller");
if (_syncSettings.LeftPortConnected || _syncSettings.RightPortConnected)
def.BoolButtons.AddRange(PadP1.Select(p => p.Name));
if (_syncSettings.LeftPortConnected && _syncSettings.RightPortConnected)
def.BoolButtons.AddRange(PadP2.Select(p => p.Name));
void AddButtons(IEnumerable<(string PrefixedName, uint Bitmask)> entries)
=> def.BoolButtons.AddRange(entries.Select(static p => p.PrefixedName));
AddButtons(_syncSettings.Port1 switch
{
Port1PeripheralOption.Gamepad => GamepadButtons[0],
Port1PeripheralOption.FourScore => FourScoreButtons[0],
_ => Enumerable.Empty<(string PrefixedName, uint Bitmask)>()
});
AddButtons(_syncSettings.Port2 switch
{
Port2PeripheralOption.Gamepad => GamepadButtons[1],
Port2PeripheralOption.FourScore2 => FourScoreButtons[1],
_ => Enumerable.Empty<(string PrefixedName, uint Bitmask)>()
});
def.BoolButtons.AddRange(new[] { "Reset", "Power" }); // console buttons
ControllerDefinition = def.MakeImmutable();
}
private struct PadEnt
private static readonly (string PrefixedName, uint Bitmask)[][] GamepadButtons = new[]
{
public readonly string Name;
public readonly int Mask;
public PadEnt(string Name, int Mask)
{
this.Name = Name;
this.Mask = Mask;
}
}
private static PadEnt[] GetPadList(int player)
{
string prefix = $"P{player} ";
return PadNames.Zip(PadMasks, (s, i) => new PadEnt(prefix + s, i)).ToArray();
}
private static readonly string[] PadNames =
{
"Up", "Down", "Left", "Right", "Start", "Select", "B", "A"
};
private static readonly int[] PadMasks =
{
16, 32, 64, 128, 8, 4, 2, 1
new[] {
("P1 Up", 0b0000_0000_0000_0000_0000_0000_0001_0000u),
("P1 Down", 0b0000_0000_0000_0000_0000_0000_0010_0000u),
("P1 Left", 0b0000_0000_0000_0000_0000_0000_0100_0000u),
("P1 Right", 0b0000_0000_0000_0000_0000_0000_1000_0000u),
("P1 Start", 0b0000_0000_0000_0000_0000_0000_0000_1000u),
("P1 Select", 0b0000_0000_0000_0000_0000_0000_0000_0100u),
("P1 B", 0b0000_0000_0000_0000_0000_0000_0000_0010u),
("P1 A", 0b0000_0000_0000_0000_0000_0000_0000_0001u),
},
new[] {
("P2 Up", 0b0000_0000_0000_0000_0000_0000_0001_0000u),
("P2 Down", 0b0000_0000_0000_0000_0000_0000_0010_0000u),
("P2 Left", 0b0000_0000_0000_0000_0000_0000_0100_0000u),
("P2 Right", 0b0000_0000_0000_0000_0000_0000_1000_0000u),
("P2 Start", 0b0000_0000_0000_0000_0000_0000_0000_1000u),
("P2 Select", 0b0000_0000_0000_0000_0000_0000_0000_0100u),
("P2 B", 0b0000_0000_0000_0000_0000_0000_0000_0010u),
("P2 A", 0b0000_0000_0000_0000_0000_0000_0000_0001u),
},
};
private static readonly PadEnt[] PadP1 = GetPadList(1);
private static readonly PadEnt[] PadP2 = GetPadList(2);
private int GetPad(IController controller, IEnumerable<PadEnt> buttons)
private static readonly (string PrefixedName, uint Bitmask)[][] FourScoreButtons = new[]
{
int ret = 0;
foreach (var b in buttons)
new[] {
("P1 Up", 0b0000_0000_0000_0000_0000_0000_0001_0000u),
("P1 Down", 0b0000_0000_0000_0000_0000_0000_0010_0000u),
("P1 Left", 0b0000_0000_0000_0000_0000_0000_0100_0000u),
("P1 Right", 0b0000_0000_0000_0000_0000_0000_1000_0000u),
("P1 Start", 0b0000_0000_0000_0000_0000_0000_0000_1000u),
("P1 Select", 0b0000_0000_0000_0000_0000_0000_0000_0100u),
("P1 B", 0b0000_0000_0000_0000_0000_0000_0000_0010u),
("P1 A", 0b0000_0000_0000_0000_0000_0000_0000_0001u),
("P3 Up", 0b0000_0000_0000_0000_0001_0000_0000_0000u),
("P3 Down", 0b0000_0000_0000_0000_0010_0000_0000_0000u),
("P3 Left", 0b0000_0000_0000_0000_0100_0000_0000_0000u),
("P3 Right", 0b0000_0000_0000_0000_1000_0000_0000_0000u),
("P3 Start", 0b0000_0000_0000_0000_0000_1000_0000_0000u),
("P3 Select", 0b0000_0000_0000_0000_0000_0100_0000_0000u),
("P3 B", 0b0000_0000_0000_0000_0000_0010_0000_0000u),
("P3 A", 0b0000_0000_0000_0000_0000_0001_0000_0000u),
},
new[] {
("P2 Up", 0b0000_0000_0000_0000_0000_0000_0001_0000u),
("P2 Down", 0b0000_0000_0000_0000_0000_0000_0010_0000u),
("P2 Left", 0b0000_0000_0000_0000_0000_0000_0100_0000u),
("P2 Right", 0b0000_0000_0000_0000_0000_0000_1000_0000u),
("P2 Start", 0b0000_0000_0000_0000_0000_0000_0000_1000u),
("P2 Select", 0b0000_0000_0000_0000_0000_0000_0000_0100u),
("P2 B", 0b0000_0000_0000_0000_0000_0000_0000_0010u),
("P2 A", 0b0000_0000_0000_0000_0000_0000_0000_0001u),
("P4 Up", 0b0000_0000_0000_0000_0001_0000_0000_0000u),
("P4 Down", 0b0000_0000_0000_0000_0010_0000_0000_0000u),
("P4 Left", 0b0000_0000_0000_0000_0100_0000_0000_0000u),
("P4 Right", 0b0000_0000_0000_0000_1000_0000_0000_0000u),
("P4 Start", 0b0000_0000_0000_0000_0000_1000_0000_0000u),
("P4 Select", 0b0000_0000_0000_0000_0000_0100_0000_0000u),
("P4 B", 0b0000_0000_0000_0000_0000_0010_0000_0000u),
("P4 A", 0b0000_0000_0000_0000_0000_0001_0000_0000u),
},
};
private void SetPads(IController controller, out uint j1, out uint j2)
{
static uint PackGamepadButtonsFor(int portNumber, IController controller)
{
if (controller.IsPressed(b.Name))
ret |= b.Mask;
uint ret = unchecked(0xFFFFFF00u);
foreach (var (prefixedName, bitmask) in GamepadButtons[portNumber])
{
if (controller.IsPressed(prefixedName)) ret |= bitmask;
}
return ret;
}
return ret;
}
private void SetPads(IController controller, out int j1, out int j2)
{
if (_syncSettings.LeftPortConnected)
j1 = GetPad(controller, PadP1) | unchecked((int)0xffffff00);
else
j1 = 0;
if (_syncSettings.RightPortConnected)
j2 = GetPad(controller, _syncSettings.LeftPortConnected ? PadP2 : PadP1) | unchecked((int)0xffffff00);
else
j2 = 0;
static uint PackFourscoreButtonsFor(int portNumber, IController controller)
{
uint ret = 0;
if (portNumber == 0) ret |= 0b1111_1111_0000_1000_0000_0000_0000_0000u;
if (portNumber == 1) ret |= 0b1111_1111_0000_0100_0000_0000_0000_0000u;
foreach (var (prefixedName, bitmask) in FourScoreButtons[portNumber])
{
if (controller.IsPressed(prefixedName)) ret |= bitmask;
}
return ret;
}
j1 = 0;
j2 = 0;
switch (_syncSettings.Port1)
{
case Port1PeripheralOption.Gamepad:
j1 = PackGamepadButtonsFor(0, controller);
break;
case Port1PeripheralOption.FourScore:
j1 = PackFourscoreButtonsFor(0, controller);
break;
}
switch (_syncSettings.Port2)
{
case Port2PeripheralOption.Gamepad:
j2 = PackGamepadButtonsFor(1, controller);
break;
case Port2PeripheralOption.FourScore2:
j2 = PackFourscoreButtonsFor(1, controller);
break;
}
}
public bool FrameAdvance(IController controller, bool render, bool rendersound = true)

View File

@ -46,7 +46,7 @@ namespace BizHawk.Emulation.Cores
public const string Octoshock = "Octoshock";
public const string PceHawk = "PCEHawk";
public const string PicoDrive = "PicoDrive";
public const string QuickNes = "QuickNes";
public const string QuickNes = "quickerNES";
public const string Sameboy = "SameBoy";
public const string Saturnus = "Saturnus";
public const string SMSHawk = "SMSHawk";

Some files were not shown because too many files have changed in this diff Show More