delete old 7800 stuff

This commit is contained in:
goyuken 2012-12-12 19:40:42 +00:00
parent 1e40bc9082
commit 77b1d2e207
67 changed files with 0 additions and 11512 deletions

View File

@ -1,154 +0,0 @@
/*
* AddressSpace.cs
*
* The class representing the memory map or address space of a machine.
*
* Copyright © 2003, 2011 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class AddressSpace
{
public MachineBase M { get; private set; }
readonly int AddrSpaceShift;
readonly int AddrSpaceSize;
readonly int AddrSpaceMask;
readonly int PageShift;
readonly int PageSize;
readonly IDevice[] MemoryMap;
IDevice Snooper;
public byte DataBusState { get; private set; }
public override string ToString()
{
return "AddressSpace";
}
public byte this[ushort addr]
{
get
{
if (Snooper != null)
{
// here DataBusState is just facilitating a dummy read to the snooper device
// the read operation may have important side effects within the device
DataBusState = Snooper[addr];
}
var pageno = (addr & AddrSpaceMask) >> PageShift;
var dev = MemoryMap[pageno];
DataBusState = dev[addr];
return DataBusState;
}
set
{
DataBusState = value;
if (Snooper != null)
{
Snooper[addr] = DataBusState;
}
var pageno = (addr & AddrSpaceMask) >> PageShift;
var dev = MemoryMap[pageno];
dev[addr] = DataBusState;
}
}
public void Map(ushort basea, ushort size, IDevice device)
{
if (device == null)
throw new ArgumentNullException("device");
for (int addr = basea; addr < basea + size; addr += PageSize)
{
var pageno = (addr & AddrSpaceMask) >> PageShift;
MemoryMap[pageno] = device;
}
LogDebug("{0}: Mapped {1} to ${2:x4}:${3:x4}", this, device, basea, basea + size - 1);
}
public void Map(ushort basea, ushort size, Cart cart)
{
if (cart == null)
throw new ArgumentNullException("cart");
cart.Attach(M);
var device = (IDevice)cart;
if (cart.RequestSnooping)
{
Snooper = device;
}
Map(basea, size, device);
}
#region Constructors
private AddressSpace()
{
}
public AddressSpace(MachineBase m, int addrSpaceShift, int pageShift)
{
if (m == null)
throw new ArgumentNullException("m");
M = m;
AddrSpaceShift = addrSpaceShift;
AddrSpaceSize = 1 << AddrSpaceShift;
AddrSpaceMask = AddrSpaceSize - 1;
PageShift = pageShift;
PageSize = 1 << PageShift;
MemoryMap = new IDevice[1 << addrSpaceShift >> PageShift];
IDevice nullDev = new NullDevice(M);
for (var pageno=0; pageno < MemoryMap.Length; pageno++)
{
MemoryMap[pageno] = nullDev;
}
}
#endregion
#region Serialization Members
public AddressSpace(DeserializationContext input, MachineBase m, int addrSpaceShift, int pageShift) : this(m, addrSpaceShift, pageShift)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
DataBusState = input.ReadByte();
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(DataBusState);
}
#endregion
#region Helpers
[System.Diagnostics.Conditional("DEBUG")]
void LogDebug(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
#endregion
}
}

View File

@ -1,65 +0,0 @@
/*
* BIOS7800.cs
*
* The BIOS of the Atari 7800.
*
* Copyright © 2004 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class Bios7800 : IDevice
{
readonly byte[] ROM;
readonly ushort Mask;
public ushort Size { get { return (ushort)ROM.Length; } }
public void Reset() { }
public byte this[ushort addr]
{
get { return ROM[addr & Mask]; }
set { }
}
public Bios7800(byte[] rom)
{
if (rom == null)
throw new ArgumentNullException("rom");
if (rom.Length != 4096 && rom.Length != 16384)
throw new ArgumentException("ROM size not 4096 or 16384", "rom");
ROM = rom;
Mask = (ushort)ROM.Length;
Mask--;
}
#region Serialization Members
public Bios7800(DeserializationContext input)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
ROM = input.ReadExpectedBytes(4096, 16384);
Mask = (ushort)ROM.Length;
Mask--;
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,55 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Frames are composed of <see cref="BufferElement"/>s,
/// that group bytes into machine words for efficient array processing.
/// Bytes are packed in logical little endian order.
/// </summary>
public struct BufferElement
{
/// <summary>
/// The number of bytes contained within a <see cref="BufferElement"/>.
/// </summary>
public const int SIZE = 4; // 2^SHIFT
/// <summary>
/// The mask value applied against a byte array index to access the individual bytes within a <see cref="BufferElement"/>.
/// </summary>
public const int MASK = 3; // SIZE - 1
/// <summary>
/// The left shift value to convert a byte array index to a <see cref="BufferElement"/> array index.
/// </summary>
public const int SHIFT = 2;
uint _data;
/// <summary>
/// A convenience accessor for reading/writing individual bytes within this <see cref="BufferElement"/>.
/// </summary>
/// <param name="offset"></param>
public byte this[int offset]
{
get
{
var i = (offset & MASK) << 3;
return (byte)(_data >> i);
}
set
{
var i = (offset & MASK) << 3;
var d = (uint)value << i;
var di = (uint)0xff << i;
_data = _data & ~di | d;
}
}
/// <summary>
/// Zeros out all bytes of this <see cref="BufferElement"/>.
/// </summary>
public void ClearAll()
{
_data = 0;
}
}
}

View File

@ -1,170 +0,0 @@
/*
* Cart.cs
*
* An abstraction of a game cart. Attributable to Kevin Horton's Bankswitching
* document, the Stella source code, and Eckhard Stolberg's 7800 Bankswitching Guide.
*
* Copyright Š 2003, 2004, 2010, 2011 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public abstract class Cart : IDevice
{
static int _multicartBankSelector;
protected MachineBase M { get; set; }
protected internal byte[] ROM { get; set; }
#region IDevice Members
public virtual void Reset() { }
public abstract byte this[ushort addr] { get; set; }
#endregion
public virtual void Attach(MachineBase m)
{
if (m == null)
throw new ArgumentNullException("m");
if (M != null && M != m)
throw new InvalidOperationException("Cart already attached to a different machine.");
M = m;
}
public virtual void StartFrame()
{
}
public virtual void EndFrame()
{
}
protected internal virtual bool RequestSnooping
{
get { return false; }
}
/// <summary>
/// Creates an instance of the specified cart.
/// </summary>
/// <param name="romBytes"></param>
/// <param name="cartType"></param>
/// <exception cref="Emu7800Exception">Specified CartType is unexpected.</exception>
public static Cart Create(byte[] romBytes, CartType cartType)
{
if (cartType == CartType.None)
{
switch (romBytes.Length)
{
case 2048:
cartType = CartType.A2K;
break;
case 4096:
cartType = CartType.A4K;
break;
case 8192:
cartType = CartType.A8K;
break;
case 16384:
cartType = CartType.A16K;
break;
case 32768:
cartType = CartType.A32K;
break;
}
}
switch (cartType)
{
case CartType.A2K: return new CartA2K(romBytes);
case CartType.A4K: return new CartA4K(romBytes);
case CartType.A8K: return new CartA8K(romBytes);
case CartType.A8KR: return new CartA8KR(romBytes);
case CartType.A16K: return new CartA16K(romBytes);
case CartType.A16KR: return new CartA16KR(romBytes);
case CartType.DC8K: return new CartDC8K(romBytes);
case CartType.PB8K: return new CartPB8K(romBytes);
case CartType.TV8K: return new CartTV8K(romBytes);
case CartType.CBS12K: return new CartCBS12K(romBytes);
case CartType.A32K: return new CartA32K(romBytes);
case CartType.A32KR: return new CartA32KR(romBytes);
case CartType.MN16K: return new CartMN16K(romBytes);
case CartType.DPC: return new CartDPC(romBytes);
case CartType.M32N12K: return new CartA2K(romBytes, _multicartBankSelector++);
case CartType.A7808: return new Cart7808(romBytes);
case CartType.A7816: return new Cart7816(romBytes);
case CartType.A7832P: return new Cart7832P(romBytes);
case CartType.A7832: return new Cart7832(romBytes);
case CartType.A7848: return new Cart7848(romBytes);
case CartType.A78SGP: return new Cart78SGP(romBytes);
case CartType.A78SG: return new Cart78SG(romBytes, false);
case CartType.A78SGR: return new Cart78SG(romBytes, true);
case CartType.A78S9: return new Cart78S9(romBytes);
case CartType.A78S4: return new Cart78S4(romBytes, false);
case CartType.A78S4R: return new Cart78S4(romBytes, true);
case CartType.A78AB: return new Cart78AB(romBytes);
case CartType.A78AC: return new Cart78AC(romBytes);
default:
throw new Emu7800Exception("Unexpected CartType: " + cartType);
}
}
protected void LoadRom(byte[] romBytes, int multicartBankSize, int multicartBankNo)
{
if (romBytes == null)
throw new ArgumentNullException("romBytes");
ROM = new byte[multicartBankSize];
Buffer.BlockCopy(romBytes, multicartBankSize*multicartBankNo, ROM, 0, multicartBankSize);
}
protected void LoadRom(byte[] romBytes, int minSize)
{
if (romBytes == null)
throw new ArgumentNullException("romBytes");
if (romBytes.Length >= minSize)
{
ROM = romBytes;
}
else
{
ROM = new byte[minSize];
Buffer.BlockCopy(romBytes, 0, ROM, 0, romBytes.Length);
}
}
protected void LoadRom(byte[] romBytes)
{
LoadRom(romBytes, romBytes.Length);
}
protected Cart()
{
}
#region Serialization Members
protected Cart(DeserializationContext input)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
}
public virtual void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
}
#endregion
}
}

View File

@ -1,50 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 non-bankswitched 8KB cartridge
/// </summary>
public sealed class Cart7808 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x0000:0x2000 0xE000:0x2000 (repeated downward to 0x4000)
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[addr & 0x1fff]; }
set { }
}
#endregion
private Cart7808()
{
}
public Cart7808(byte[] romBytes)
{
LoadRom(romBytes, 0x2000);
}
#region Serialization Members
public Cart7808(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2000), 0x2000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,50 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 non-bankswitched 16KB cartridge
/// </summary>
public sealed class Cart7816 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x0000:0x4000 0xC000:0x4000 (repeated downward to 0x4000)
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[addr & 0x3fff]; }
set { }
}
#endregion
private Cart7816()
{
}
public Cart7816(byte[] romBytes)
{
LoadRom(romBytes, 0x4000);
}
#region Serialization Members
public Cart7816(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x4000), 0x4000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,50 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 non-bankswitched 32KB cartridge
/// </summary>
public sealed class Cart7832 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x0000:0x8000 0x8000:0x8000 (repeated downward until 0x4000)
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[addr & 0x7fff]; }
set { }
}
#endregion
private Cart7832()
{
}
public Cart7832(byte[] romBytes)
{
LoadRom(romBytes, 0x8000);
}
#region Serialization Members
public Cart7832(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x8000), 0x8000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,90 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 non-bankswitched 32KB cartridge w/Pokey
/// </summary>
public sealed class Cart7832P : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x4000:0x4000 Pokey
// 0x0000:0x8000 0x8000:0x8000
//
PokeySound _pokeySound;
#region IDevice Members
public override void Reset()
{
base.Reset();
if (_pokeySound != null)
_pokeySound.Reset();
}
public override byte this[ushort addr]
{
get
{
return ((addr & 0xF000) == 0x4000 && _pokeySound != null) ? _pokeySound.Read(addr) : ROM[addr & 0x7fff];
}
set
{
if ((addr & 0xF000) == 0x4000 && _pokeySound != null)
_pokeySound.Update(addr, value);
}
}
#endregion
public override void Attach(MachineBase m)
{
base.Attach(m);
if (_pokeySound == null)
_pokeySound = new PokeySound(M);
}
public override void StartFrame()
{
if (_pokeySound != null)
_pokeySound.StartFrame();
}
public override void EndFrame()
{
if (_pokeySound != null)
_pokeySound.EndFrame();
}
private Cart7832P()
{
}
public Cart7832P(byte[] romBytes)
{
LoadRom(romBytes, 0x8000);
}
#region Serialization Members
public Cart7832P(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x8000), 0x8000);
_pokeySound = input.ReadOptionalPokeySound(m);
}
public override void GetObjectData(SerializationContext output)
{
if (_pokeySound == null)
throw new Emu7800SerializationException("Cart7832P must be attached before serialization.");
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.WriteOptional(_pokeySound);
}
#endregion
}
}

View File

@ -1,50 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 non-bankswitched 48KB cartridge
/// </summary>
public sealed class Cart7848 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x0000:0xc000 0x4000:0xc000
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[addr - 0x4000]; }
set { }
}
#endregion
private Cart7848()
{
}
public Cart7848(byte[] romBytes)
{
LoadRom(romBytes, 0xc000);
}
#region Serialization Members
public Cart7848(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0xc000), 0xc000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,67 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 Absolute bankswitched cartridge
/// </summary>
public sealed class Cart78AB : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0: 0x00000:0x4000
// Bank1: 0x04000:0x4000 0x4000:0x4000 Bank0-1 (0 on startup)
// Bank2: 0x08000:0x4000 0x8000:0x4000 Bank2
// Bank3: 0x0c000:0x4000 0xc000:0x4000 Bank3
//
readonly int[] Bank = new int[4];
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[ (Bank[addr >> 14] << 14) | (addr & 0x3fff) ]; }
set
{
if ((addr >> 14) == 2)
{
Bank[1] = (value - 1) & 1;
}
}
}
#endregion
private Cart78AB()
{
}
public Cart78AB(byte[] romBytes)
{
Bank[1] = 0;
Bank[2] = 2;
Bank[3] = 3;
LoadRom(romBytes, 0x10000);
}
#region Serialization Members
public Cart78AB(DeserializationContext input, MachineBase m) : base(input)
{
var version = input.CheckVersion(1, 2);
LoadRom(input.ReadBytes());
Bank = input.ReadIntegers(4);
if (version == 1)
input.ReadInt32();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(2);
output.Write(ROM);
output.Write(Bank);
}
#endregion
}
}

View File

@ -1,86 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 Activision bankswitched cartridge
/// </summary>
public sealed class Cart78AC : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0 : 0x00000:0x2000
// Bank1 : 0x02000:0x2000
// Bank2 : 0x04000:0x2000 0x4000:0x2000 Bank13
// Bank3 : 0x06000:0x2000 0x6000:0x2000 Bank12
// Bank4 : 0x08000:0x2000 0x8000:0x2000 Bank15
// Bank5 : 0x0a000:0x2000 0xa000:0x2000 Bank(2*n) n in [0-7], n=0 on startup
// Bank6 : 0x0c000:0x2000 0xc000:0x2000 Bank(2*n+1)
// Bank7 : 0x0e000:0x2000 0xe000:0x2000 Bank14
// Bank8 : 0x10000:0x2000
// Bank9 : 0x12000:0x2000
// Bank10: 0x14000:0x2000
// Bank11: 0x16000:0x2000
// Bank12: 0x18000:0x2000
// Bank13: 0x1a000:0x2000
// Bank14: 0x1c000:0x2000
// Bank15: 0x1e000:0x2000
//
// Banks are actually 16KB, but handled as 8KB for implementation ease.
//
readonly int[] Bank = new int[8];
#region IDevice Members
public override byte this[ushort addr]
{
get
{
return ROM[ (Bank[addr >> 13] << 13) | (addr & 0x1fff) ];
}
set
{
if ((addr & 0xfff0) == 0xff80)
{
Bank[5] = (addr & 7) << 1;
Bank[6] = Bank[5] + 1;
}
}
}
#endregion
private Cart78AC()
{
}
public Cart78AC(byte[] romBytes)
{
Bank[2] = 13;
Bank[3] = 12;
Bank[4] = 15;
Bank[5] = 0;
Bank[6] = 1;
Bank[7] = 14;
LoadRom(romBytes, 0x20000);
}
#region Serialization Members
public Cart78AC(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadBytes());
Bank = input.ReadIntegers(8);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(Bank);
}
#endregion
}
}

View File

@ -1,89 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 SuperGame S4 bankswitched cartridge
/// </summary>
public sealed class Cart78S4 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0: 0x00000:0x4000
// Bank1: 0x04000:0x4000 0x4000:0x4000 Bank2
// Bank2: 0x08000:0x4000 0x8000:0x4000 Bank0 (0 on startup)
// Bank3: 0x0c000:0x4000 0xc000:0x4000 Bank3
//
// Banks 0-3 are the same as banks 4-7
//
readonly byte[] RAM;
readonly int[] Bank = new int[4];
#region IDevice Members
public override byte this[ushort addr]
{
get
{
if (RAM != null && addr >= 0x6000 && addr <= 0x7fff)
{
return RAM[addr & 0x1fff];
}
return ROM[(Bank[addr >> 14] << 14) | (addr & 0x3fff)];
}
set
{
if (RAM != null && addr >= 0x6000 && addr <= 0x7fff)
{
RAM[addr & 0x1fff] = value;
}
else if ((addr >> 14) == 2)
{
Bank[2] = value & 3;
}
}
}
#endregion
private Cart78S4()
{
}
public Cart78S4(byte[] romBytes, bool needRAM)
{
if (needRAM)
{
RAM = new byte[0x2000];
}
LoadRom(romBytes, 0xffff);
Bank[1] = 2;
Bank[2] = 0;
Bank[3] = 3;
}
#region Serialization Members
public Cart78S4(DeserializationContext input, MachineBase m) : base(input)
{
var version = input.CheckVersion(1, 2);
LoadRom(input.ReadBytes());
Bank = input.ReadIntegers(4);
if (version == 1)
input.ReadInt32();
RAM = input.ReadOptionalBytes();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(2);
output.Write(ROM);
output.Write(Bank);
output.WriteOptional(RAM);
}
#endregion
}
}

View File

@ -1,70 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 SuperGame S9 bankswitched cartridge
/// </summary>
public sealed class Cart78S9 : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0: 0x00000:0x4000
// Bank1: 0x04000:0x4000 0x4000:0x4000 Bank0
// Bank2: 0x08000:0x4000 0x8000:0x4000 Bank0-8 (1 on startup)
// Bank3: 0x0c000:0x4000 0xc000:0x4000 Bank8
// Bank4: 0x10000:0x4000
// Bank5: 0x14000:0x4000
// Bank6: 0x18000:0x4000
// Bank7: 0x1c000:0x4000
// Bank8: 0x20000:0x4000
//
readonly int[] Bank = new int[4];
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[ (Bank[addr >> 14] << 14) | (addr & 0x3fff) ]; }
set
{
if ((addr >> 14) == 2 && value < 8)
{
Bank[2] = (value + 1);
}
}
}
#endregion
private Cart78S9()
{
}
public Cart78S9(byte[] romBytes)
{
Bank[1] = 0;
Bank[2] = 1;
Bank[3] = 8;
LoadRom(romBytes, 0x24000);
}
#region Serialization Members
public Cart78S9(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadBytes());
Bank = input.ReadIntegers(4);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(Bank);
}
#endregion
}
}

View File

@ -1,94 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 SuperGame bankswitched cartridge
/// </summary>
public sealed class Cart78SG : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0: 0x00000:0x4000
// Bank1: 0x04000:0x4000 0x4000:0x4000 Bank6
// Bank2: 0x08000:0x4000 0x8000:0x4000 Bank0-7 (0 on startup)
// Bank3: 0x0c000:0x4000 0xc000:0x4000 Bank7
// Bank4: 0x10000:0x4000
// Bank5: 0x14000:0x4000
// Bank6: 0x18000:0x4000
// Bank7: 0x1c000:0x4000
//
readonly int[] Bank = new int[4];
readonly byte[] RAM;
#region IDevice Members
public override byte this[ushort addr]
{
get
{
var bankNo = addr >> 14;
if (RAM != null && bankNo == 1)
{
return RAM[addr & 0x3fff];
}
return ROM[ (Bank[bankNo] << 14) | (addr & 0x3fff) ];
}
set
{
var bankNo = addr >> 14;
if (bankNo == 2)
{
Bank[2] = value & 7;
}
else if (RAM != null && bankNo == 1)
{
RAM[addr & 0x3fff] = value;
}
}
}
#endregion
private Cart78SG()
{
}
public Cart78SG(byte[] romBytes, bool needRAM)
{
if (needRAM)
{
// This works for titles that use 8KB instead of 16KB
RAM = new byte[0x4000];
}
Bank[1] = 6;
Bank[2] = 0;
Bank[3] = 7;
LoadRom(romBytes, 0x20000);
}
#region Serialization Members
public Cart78SG(DeserializationContext input, MachineBase m) : base(input)
{
var version = input.CheckVersion(1, 2);
LoadRom(input.ReadBytes());
Bank = input.ReadIntegers(4);
if (version == 1)
input.ReadInt32();
RAM = input.ReadOptionalBytes(0x4000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(2);
output.Write(ROM);
output.Write(Bank);
output.WriteOptional(RAM);
}
#endregion
}
}

View File

@ -1,118 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari 7800 SuperGame bankswitched cartridge w/Pokey
/// </summary>
public sealed class Cart78SGP : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank0: 0x00000:0x4000
// Bank1: 0x04000:0x4000 0x4000:0x4000 Pokey
// Bank2: 0x08000:0x4000 0x8000:0x4000 Bank0-7 (0 on startup)
// Bank3: 0x0c000:0x4000 0xc000:0x4000 Bank7
// Bank4: 0x10000:0x4000
// Bank5: 0x14000:0x4000
// Bank6: 0x18000:0x4000
// Bank7: 0x1c000:0x4000
//
readonly int[] _bank = new int[4];
PokeySound _pokeySound;
#region IDevice Members
public override void Reset()
{
base.Reset();
if (_pokeySound != null)
_pokeySound.Reset();
}
public override byte this[ushort addr]
{
get
{
var bankNo = addr >> 14;
switch (bankNo)
{
case 1:
return (_pokeySound != null) ? _pokeySound.Read(addr) : (byte)0;
default:
return ROM[(_bank[bankNo] << 14) | (addr & 0x3fff)];
}
}
set
{
var bankNo = addr >> 14;
switch (bankNo)
{
case 1:
if (_pokeySound != null)
_pokeySound.Update(addr, value);
break;
case 2:
_bank[2] = value & 7;
break;
}
}
}
#endregion
public override void Attach(MachineBase m)
{
base.Attach(m);
if (_pokeySound == null)
_pokeySound = new PokeySound(M);
}
public override void StartFrame()
{
if (_pokeySound != null)
_pokeySound.StartFrame();
}
public override void EndFrame()
{
if (_pokeySound != null)
_pokeySound.EndFrame();
}
private Cart78SGP()
{
}
public Cart78SGP(byte[] romBytes)
{
_bank[2] = 0;
_bank[3] = 7;
LoadRom(romBytes, 0x20000);
}
#region Serialization Members
public Cart78SGP(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadBytes());
_bank = input.ReadIntegers(4);
_pokeySound = input.ReadOptionalPokeySound(m);
}
public override void GetObjectData(SerializationContext output)
{
if (_pokeySound == null)
throw new Emu7800SerializationException("Cart78SGP must be attached before serialization.");
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(_bank);
output.WriteOptional(_pokeySound);
}
#endregion
}
}

View File

@ -1,86 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 16KB bankswitched carts
/// </summary>
public sealed class CartA16K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x1ff9-0x1ff9
// Bank2: 0x1000:0x1000
// Bank3: 0x2000:0x1000
// Bank4: 0x3000:0x1000
//
ushort BankBaseAddr;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 0;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
UpdateBank(addr);
}
}
#endregion
private CartA16K()
{
}
public CartA16K(byte[] romBytes)
{
LoadRom(romBytes, 0x4000);
Bank = 0;
}
void UpdateBank(ushort addr)
{
if (addr < 0x0ff6 || addr > 0x0ff9)
{}
else
{
Bank = addr - 0x0ff6;
}
}
#region Serialization Members
public CartA16K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x4000), 0x4000);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,100 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 16KB bankswitched carts with 128 bytes of RAM
/// </summary>
public sealed class CartA16KR : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x1ff9-0x1ff9
// Bank2: 0x1000:0x1000
// Bank3: 0x2000:0x1000
// Bank4: 0x3000:0x1000
// Shadows ROM
// 0x1000:0x0080 RAM write port
// 0x1080:0x0080 RAM read port
//
ushort BankBaseAddr;
readonly byte[] RAM;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 0;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
if (addr < 0x0100 && addr >= 0x0080)
{
return RAM[addr & 0x7f];
}
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
if (addr < 0x0080)
{
RAM[addr & 0x7f] = value;
return;
}
UpdateBank(addr);
}
}
#endregion
private CartA16KR()
{
}
public CartA16KR(byte[] romBytes)
{
LoadRom(romBytes, 0x4000);
Bank = 0;
RAM = new byte[0x80];
}
void UpdateBank(ushort addr)
{
if (addr < 0x0ff6 || addr > 0x0ff9)
{}
else
{
Bank = addr - 0x0ff6;
}
}
#region Serialization Members
public CartA16KR(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x4000), 0x4000);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,56 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 2KB carts (no bankswitching)
/// </summary>
public sealed class CartA2K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// 0x0000:0x0800 0x1000:0x0800
// 0x1800:0x0800 (1st 2k bank repeated)
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return ROM[addr & 0x07ff]; }
set { }
}
#endregion
private CartA2K()
{
}
public CartA2K(byte[] romBytes)
{
LoadRom(romBytes, 0x0800);
}
public CartA2K(byte[] romBytes, int multicartBankSelector)
{
LoadRom(romBytes, 0x800, multicartBankSelector & 0x1f);
}
#region Serialization Members
public CartA2K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x0800), 0x0800);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,88 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 32KB bankswitched carts
/// </summary>
public sealed class CartA32K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x0ff4-0x0ffc
// Bank2: 0x1000:0x1000
// Bank3: 0x2000:0x1000
// Bank4: 0x3000:0x1000
// Bank5: 0x4000:0x1000
// Bank6: 0x5000:0x1000
// Bank7: 0x6000:0x1000
// Bank8: 0x7000:0x1000
//
ushort BankBaseAddr;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 7;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
UpdateBank(addr);
}
}
#endregion
private CartA32K()
{
}
public CartA32K(byte[] romBytes)
{
LoadRom(romBytes, 0x8000);
Bank = 7;
}
void UpdateBank(ushort addr)
{
if (addr < 0x0ffc && addr >= 0x0ff4)
{
Bank = addr - 0x0ff4;
}
}
#region Serialization Members
public CartA32K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x8000), 0x8000);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,104 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 32KB bankswitched carts with 128 bytes of RAM
/// </summary>
public sealed class CartA32KR : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x0ff4-0x0ffc
// Bank2: 0x1000:0x1000
// Bank3: 0x2000:0x1000
// Bank4: 0x3000:0x1000
// Bank5: 0x4000:0x1000
// Bank6: 0x5000:0x1000
// Bank7: 0x6000:0x1000
// Bank8: 0x7000:0x1000
// Shadows ROM
// 0x1000:0x80 RAM write port
// 0x1080:0x80 RAM read port
//
ushort BankBaseAddr;
readonly byte[] RAM;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 7;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
if (addr >= 0x0080 && addr < 0x0100)
{
return RAM[addr & 0x007f];
}
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
if (addr < 0x0080)
{
RAM[addr & 0x007f] = value;
return;
}
UpdateBank(addr);
}
}
#endregion
private CartA32KR()
{
}
public CartA32KR(byte[] romBytes)
{
LoadRom(romBytes, 0x8000);
RAM = new byte[0x80];
Bank = 7;
}
void UpdateBank(ushort addr)
{
if (addr < 0x0ffc && addr >= 0x0ff4 )
{
Bank = addr - 0x0ff4;
}
}
#region Serialization Members
public CartA32KR(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x8000), 0x8000);
RAM = input.ReadExpectedBytes(0x80);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(RAM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,47 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 4KB carts (no bankswitching)
/// </summary>
public sealed class CartA4K : Cart
{
#region IDevice Members
public override void Reset() { }
public override byte this[ushort addr]
{
get { return ROM[addr & 0x0fff]; }
set { }
}
#endregion
private CartA4K()
{
}
public CartA4K(byte[] romBytes)
{
LoadRom(romBytes, 0x1000);
}
#region Serialization Members
public CartA4K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x1000), 0x1000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,87 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 8KB bankswitched carts
/// </summary>
public sealed class CartA8K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x1ff8,0x1ff9
// Bank2: 0x1000:0x1000
//
ushort BankBaseAddr;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 1;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
UpdateBank(addr);
}
}
#endregion
private CartA8K()
{
}
public CartA8K(byte[] romBytes)
{
LoadRom(romBytes, 0x2000);
Bank = 1;
}
void UpdateBank(ushort addr)
{
switch(addr)
{
case 0x0ff8:
Bank = 0;
break;
case 0x0ff9:
Bank = 1;
break;
}
}
#region Serialization Members
public CartA8K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2000), 0x2000);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,103 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Atari standard 8KB bankswitched carts with 128 bytes of RAM
/// </summary>
public sealed class CartA8KR : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x1ff8,0x1ff9
// Bank2: 0x1000:0x1000
// Shadows ROM
// 0x1000:0x0080 RAM write port
// 0x1080:0x0080 RAM read port
//
ushort BankBaseAddr;
readonly byte[] RAM;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 1;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
if (addr < 0x0100 && addr >= 0x0080)
{
return RAM[addr & 0x7f];
}
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
if (addr < 0x0080)
{
RAM[addr & 0x7f] = value;
return;
}
UpdateBank(addr);
}
}
#endregion
private CartA8KR()
{
}
public CartA8KR(byte[] romBytes)
{
LoadRom(romBytes, 0x2000);
Bank = 1;
RAM = new byte[0x80];
}
void UpdateBank(ushort addr)
{
switch(addr)
{
case 0x0ff8:
Bank = 0;
break;
case 0x0ff9:
Bank = 1;
break;
}
}
#region Serialization Members
public CartA8KR(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2000), 0x2000);
RAM = input.ReadExpectedBytes(0x80);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(RAM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,100 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// CBS RAM Plus 12KB bankswitched carts with 128 bytes of RAM.
/// </summary>
public sealed class CartCBS12K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 Bank1:0x1000:0x1000 Select Segment: 0ff8-0ffa
// Bank2: 0x1000:0x1000
// Bank3: 0x2000:0x1000
// Shadows ROM
// 0x1000:0x80 RAM write port
// 0x1080:0x80 RAM read port
//
ushort BankBaseAddr;
readonly byte[] RAM;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
#region IDevice Members
public override void Reset()
{
Bank = 2;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
if (addr < 0x0200 && addr >= 0x0100)
{
return RAM[addr & 0xff];
}
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
if (addr < 0x0100)
{
RAM[addr & 0xff] = value;
return;
}
UpdateBank(addr);
}
}
#endregion
private CartCBS12K()
{
}
public CartCBS12K(byte[] romBytes)
{
LoadRom(romBytes, 0x3000);
Bank = 2;
RAM = new byte[0x100];
}
void UpdateBank(ushort addr)
{
if (addr < 0x0ff8 || addr > 0x0ffa) { }
else
{
Bank = addr - 0x0ff8;
}
}
#region Serialization Members
public CartCBS12K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x3000), 0x3000);
RAM = input.ReadExpectedBytes(0x100);
BankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(RAM);
output.Write(BankBaseAddr);
}
#endregion
}
}

View File

@ -1,55 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Activison's Robot Tank and Decathlon 8KB bankswitching cart.
/// </summary>
public sealed class CartDC8K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by A13=0/1?
// Bank2: 0x1000:0x1000
//
// This does what the Stella code does, which is to follow A13 to determine
// the bank. Since A0-A12 are the only significant bits on the program
// counter, I am unsure how the cart/hardware could utilize this.
//
#region IDevice Members
public override byte this[ushort addr]
{
get { return (addr & 0x2000) == 0 ? ROM[addr & 0x0fff + 0x1000] : ROM[addr & 0x0fff]; }
set { }
}
#endregion
private CartDC8K()
{
}
public CartDC8K(byte[] romBytes)
{
LoadRom(romBytes, 0x2000);
}
#region Serialization Members
public CartDC8K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2000), 0x2000);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
}
#endregion
}
}

View File

@ -1,341 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Pitfall II cartridge.
/// There are two 4k banks, 2k display bank, and the DPC chip.
/// For complete details on the DPC chip see David P. Crane's United States Patent Number 4,644,495.
/// </summary>
public sealed class CartDPC : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Bank1: 0x0000:0x1000 0x1000:0x1000 Bank selected by accessing 0x1ff8,0x1ff9
// Bank2: 0x1000:0x1000
//
const ushort DisplayBaseAddr = 0x2000;
ushort BankBaseAddr;
readonly byte[] MusicAmplitudes = new byte[] { 0x00, 0x04, 0x05, 0x09, 0x06, 0x0a, 0x0b, 0x0f };
readonly byte[] Tops = new byte[8];
readonly byte[] Bots = new byte[8];
readonly ushort[] Counters = new ushort[8];
readonly byte[] Flags = new byte[8];
readonly bool[] MusicMode = new bool[3];
ulong LastSystemClock;
double FractionalClocks;
byte _ShiftRegister;
int Bank
{
set { BankBaseAddr = (ushort)(value * 0x1000); }
}
//
// Generate a sequence of pseudo-random numbers 255 numbers long
// by emulating an 8-bit shift register with feedback taps at
// bits 4, 3, 2, and 0.
byte ShiftRegister
{
get
{
var a = _ShiftRegister;
a &= (1 << 0);
var x = _ShiftRegister;
x &= (1 << 2);
x >>= 2;
a ^= x;
x = _ShiftRegister;
x &= (1 << 3);
x >>= 3;
a ^= x;
x = _ShiftRegister;
x &= (1 << 4);
x >>= 4;
a ^= x;
a <<= 7;
_ShiftRegister >>= 1;
_ShiftRegister |= a;
return _ShiftRegister;
}
set { _ShiftRegister = value; }
}
#region IDevice Members
public override void Reset()
{
Bank = 1;
LastSystemClock = 3*M.CPU.Clock;
FractionalClocks = 0.0;
ShiftRegister = 1;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
if (addr < 0x0040)
{
return ReadPitfall2Reg(addr);
}
UpdateBank(addr);
return ROM[BankBaseAddr + addr];
}
set
{
addr &= 0x0fff;
if (addr >= 0x0040 && addr < 0x0080)
{
WritePitfall2Reg(addr, value);
}
else
{
UpdateBank(addr);
}
}
}
#endregion
private CartDPC()
{
}
public CartDPC(byte[] romBytes)
{
LoadRom(romBytes, 0x2800);
Bank = 1;
}
void UpdateBank(ushort addr)
{
switch(addr)
{
case 0x0ff8:
Bank = 0;
break;
case 0x0ff9:
Bank = 1;
break;
}
}
byte ReadPitfall2Reg(ushort addr)
{
byte result;
var i = addr & 0x07;
var fn = (addr >> 3) & 0x07;
// Update flag register for selected data fetcher
if ((Counters[i] & 0x00ff) == Tops[i])
{
Flags[i] = 0xff;
}
else if ((Counters[i] & 0x00ff) == Bots[i])
{
Flags[i] = 0x00;
}
switch (fn)
{
case 0x00:
if (i < 4)
{
// This is a random number read
result = ShiftRegister;
break;
}
// Its a music read
UpdateMusicModeDataFetchers();
byte j = 0;
if (MusicMode[0] && Flags[5] != 0)
{
j |= 0x01;
}
if (MusicMode[1] && Flags[6] != 0)
{
j |= 0x02;
}
if (MusicMode[2] && Flags[7] != 0)
{
j |= 0x04;
}
result = MusicAmplitudes[j];
break;
// DFx display data read
case 0x01:
result = ROM[DisplayBaseAddr + 0x7ff - Counters[i]];
break;
// DFx display data read AND'd w/flag
case 0x02:
result = ROM[DisplayBaseAddr + 0x7ff - Counters[i]];
result &= Flags[i];
break;
// DFx flag
case 0x07:
result = Flags[i];
break;
default:
result = 0;
break;
}
// Clock the selected data fetcher's counter if needed
if (i < 5 || i >= 5 && MusicMode[i - 5] == false)
{
Counters[i]--;
Counters[i] &= 0x07ff;
}
return result;
}
void UpdateMusicModeDataFetchers()
{
var sysClockDelta = 3*M.CPU.Clock - LastSystemClock;
LastSystemClock = 3*M.CPU.Clock;
var OSCclocks = ((15750.0 * sysClockDelta) / 1193191.66666667) + FractionalClocks;
var wholeClocks = (int)OSCclocks;
FractionalClocks = OSCclocks - wholeClocks;
if (wholeClocks <= 0)
{
return;
}
for (var i=0; i < 3; i++)
{
var r = i + 5;
if (!MusicMode[i]) continue;
var top = Tops[r] + 1;
var newLow = Counters[r] & 0x00ff;
if (Tops[r] != 0)
{
newLow -= (wholeClocks % top);
if (newLow < 0)
{
newLow += top;
}
}
else
{
newLow = 0;
}
if (newLow <= Bots[r])
{
Flags[r] = 0x00;
}
else if (newLow <= Tops[r])
{
Flags[r] = 0xff;
}
Counters[r] = (ushort)((Counters[r] & 0x0700) | (ushort)newLow);
}
}
void WritePitfall2Reg(ushort addr, byte val)
{
var i = addr & 0x07;
var fn = (addr >> 3) & 0x07;
switch (fn)
{
// DFx top count
case 0x00:
Tops[i] = val;
Flags[i] = 0x00;
break;
// DFx bottom count
case 0x01:
Bots[i] = val;
break;
// DFx counter low
case 0x02:
Counters[i] &= 0x0700;
if (i >= 5 && MusicMode[i - 5])
{
// Data fetcher is in music mode so its low counter value
// should be loaded from the top register not the poked value
Counters[i] |= Tops[i];
}
else
{
// Data fetcher is either not a music mode data fetcher or it
// isn't in music mode so it's low counter value should be loaded
// with the poked value
Counters[i] |= val;
}
break;
// DFx counter high
case 0x03:
Counters[i] &= 0x00ff;
Counters[i] |= (ushort)((val & 0x07) << 8);
// Execute special code for music mode data fetchers
if (i >= 5)
{
MusicMode[i - 5] = (val & 0x10) != 0;
// NOTE: We are not handling the clock source input for
// the music mode data fetchers. We're going to assume
// they always use the OSC input.
}
break;
// Random Number Generator Reset
case 0x06:
ShiftRegister = 1;
break;
}
}
#region Serialization Members
public CartDPC(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2800), 0x2800);
BankBaseAddr = input.ReadUInt16();
Tops = input.ReadExpectedBytes(8);
Bots = input.ReadExpectedBytes(8);
Counters = input.ReadUnsignedShorts(8);
Flags = input.ReadExpectedBytes(8);
MusicMode = input.ReadBooleans(3);
LastSystemClock = input.ReadUInt64();
FractionalClocks = input.ReadDouble();
_ShiftRegister = input.ReadByte();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
output.Write(Tops);
output.Write(Bots);
output.Write(Counters);
output.Write(Flags);
output.Write(MusicMode);
output.Write(LastSystemClock);
output.Write(FractionalClocks);
output.Write(_ShiftRegister);
}
#endregion
}
}

View File

@ -1,136 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// M-Network 16KB bankswitched carts with 2KB RAM.
/// </summary>
public sealed class CartMN16K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Segment1: 0x0000:0x0800 Bank1:0x1000:0x0800 Select Seg: 1fe0-1fe6, 1fe7=RAM Seg1
// Segment2: 0x0800:0x0800 Bank2:0x1800:0x0800 Always Seg8
// Segment3: 0x1000:0x0800
// Segment4: 0x1800:0x0800
// Segment5: 0x2000:0x0800
// Segment6: 0x2800:0x0800
// Segment7: 0x3000:0x0800
// Segment8: 0x3800:0x0800
//
// RAM RAM Segment1 when 1fe7 select is accessed
// Segment1: 0x0000:0x0400 0x1000-0x13FF write port
// Segment2: 0x0400:0x0400 0x1400-0x17FF read port
//
// RAM Segment2: 1ff8-1ffb selects 256-byte block
// 0x1800-0x18ff write port
// 0x1900-0x19ff read port
//
ushort BankBaseAddr, BankBaseRAMAddr;
bool RAMBankOn;
readonly byte[] RAM;
int Bank
{
set
{
BankBaseAddr = (ushort)(value << 11); // multiply by 2048
RAMBankOn = (value == 0x07);
}
}
int BankRAM
{
set { BankBaseRAMAddr = (ushort) (value << 8); } // multiply by 256
}
#region IDevice Members
public override void Reset()
{
Bank = 0;
BankRAM = 0;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
UpdateBanks(addr);
if (RAMBankOn && addr >= 0x0400 && addr < 0x0800)
{
return RAM[addr & 0x03ff];
}
if (addr >= 0x0900 && addr < 0x0a00)
{
return RAM[0x400 + BankBaseRAMAddr + (addr & 0xff)];
}
return addr < 0x0800 ? ROM[BankBaseAddr + (addr & 0x07ff)] : ROM[0x3800 + (addr & 0x07ff)];
}
set
{
addr &= 0x0fff;
UpdateBanks(addr);
if (RAMBankOn && addr < 0x0400)
{
RAM[addr & 0x03ff] = value;
}
else if (addr >= 0x0800 && addr < 0x0900)
{
RAM[0x400 + BankBaseRAMAddr + (addr & 0xff)] = value;
}
}
}
#endregion
private CartMN16K()
{
}
public CartMN16K(byte[] romBytes)
{
LoadRom(romBytes, 0x4000);
RAM = new byte[0x800];
Bank = 0;
BankRAM = 0;
}
void UpdateBanks(ushort addr)
{
if (addr >= 0x0fe0 && addr < 0x0fe8)
{
Bank = addr & 0x07;
}
else if (addr >= 0x0fe8 && addr < 0x0fec)
{
BankRAM = addr & 0x03;
}
}
#region Serialization Members
public CartMN16K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x4000), 0x4000);
RAM = input.ReadExpectedBytes(0x800);
BankBaseAddr = input.ReadUInt16();
BankBaseRAMAddr = input.ReadUInt16();
RAMBankOn = input.ReadBoolean();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(RAM);
output.Write(BankBaseAddr);
output.Write(BankBaseRAMAddr);
output.Write(RAMBankOn);
}
#endregion
}
}

View File

@ -1,103 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Parker Brothers 8KB bankswitched carts.
/// </summary>
public sealed class CartPB8K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Segment1: 0x0000:0x0400 Bank1:0x1000:0x0400 Select Segment: 1fe0-1fe7
// Segment2: 0x0400:0x0400 Bank2:0x1400:0x0400 Select Segment: 1fe8-1ff0
// Segment3: 0x0800:0x0400 Bank3:0x1800:0x0400 Select Segment: 1ff0-1ff8
// Segment4: 0x0c00:0x0400 Bank4:0x1c00:0x0400 Always Segment8
// Segment5: 0x1000:0x0400
// Segment6: 0x1400:0x0400
// Segment7: 0x1800:0x0400
// Segment8: 0x1c00:0x0400
//
readonly ushort[] SegmentBase;
#region IDevice Members
public override void Reset()
{
SegmentBase[0] = ComputeSegmentBase(4);
SegmentBase[1] = ComputeSegmentBase(5);
SegmentBase[2] = ComputeSegmentBase(6);
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
UpdateSegmentBases(addr);
return ROM[SegmentBase[addr >> 10] + (addr & 0x03ff)];
}
set
{
addr &= 0x0fff;
UpdateSegmentBases(addr);
}
}
#endregion
private CartPB8K()
{
}
public CartPB8K(byte[] romBytes)
{
LoadRom(romBytes, 0x2000);
SegmentBase = new ushort[4];
SegmentBase[0] = ComputeSegmentBase(4);
SegmentBase[1] = ComputeSegmentBase(5);
SegmentBase[2] = ComputeSegmentBase(6);
SegmentBase[3] = ComputeSegmentBase(7);
}
static ushort ComputeSegmentBase(int slice)
{
return (ushort)(slice << 10); // multiply by 1024
}
void UpdateSegmentBases(ushort addr)
{
if (addr < 0xfe0 || addr >= 0x0ff8) { }
else if (addr >= 0x0fe0 && addr < 0x0fe8)
{
SegmentBase[0] = ComputeSegmentBase(addr & 0x07);
}
else if (addr >= 0x0fe8 && addr < 0x0ff0)
{
SegmentBase[1] = ComputeSegmentBase(addr & 0x07);
}
else if (addr >= 0x0ff0 && addr < 0x0ff8)
{
SegmentBase[2] = ComputeSegmentBase(addr & 0x07);
}
}
#region Serialization Members
public CartPB8K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x2000), 0x2000);
SegmentBase = input.ReadUnsignedShorts();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(SegmentBase);
}
#endregion
}
}

View File

@ -1,90 +0,0 @@
namespace EMU7800.Core
{
/// <summary>
/// Tigervision 8KB bankswitched carts
/// </summary>
public sealed class CartTV8K : Cart
{
//
// Cart Format Mapping to ROM Address Space
// Segment1: 0x0000:0x0800 0x1000:0x0800 Selected segment via $003F
// Segment2: 0x0800:0x0800 0x1800:0x0800 Always last segment
// Segment3: 0x1000:0x0800
// Segment4: 0x1800:0x0800
//
ushort BankBaseAddr;
readonly ushort LastBankBaseAddr;
byte Bank
{
set
{
BankBaseAddr = (ushort)(0x0800 * value);
BankBaseAddr %= (ushort)ROM.Length;
}
}
protected internal override bool RequestSnooping
{
get { return true; }
}
#region IDevice Members
public override void Reset()
{
Bank = 0;
}
public override byte this[ushort addr]
{
get
{
addr &= 0x0fff;
return addr < 0x0800 ? ROM[BankBaseAddr + (addr & 0x07ff)] : ROM[LastBankBaseAddr + (addr & 0x07ff)];
}
set
{
if (addr <= 0x003f)
{
Bank = value;
}
}
}
#endregion
private CartTV8K()
{
}
public CartTV8K(byte[] romBytes)
{
LoadRom(romBytes, 0x1000);
Bank = 0;
LastBankBaseAddr = (ushort)(ROM.Length - 0x0800);
}
#region Serialization Members
public CartTV8K(DeserializationContext input, MachineBase m) : base(input)
{
input.CheckVersion(1);
LoadRom(input.ReadExpectedBytes(0x1000), 0x1000);
BankBaseAddr = input.ReadUInt16();
LastBankBaseAddr = input.ReadUInt16();
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(ROM);
output.Write(BankBaseAddr);
output.Write(LastBankBaseAddr);
}
#endregion
}
}

View File

@ -1,43 +0,0 @@
/*
* CartType.cs
*
* Defines the set of all known Game Cartridges.
*
* 2010 Mike Murphy
*
*/
namespace EMU7800.Core
{
public enum CartType
{
None,
A2K, // Atari 2kb cart
TV8K, // Tigervision 8kb bankswitched cart
A4K, // Atari 4kb cart
PB8K, // Parker Brothers 8kb bankswitched cart
MN16K, // M-Network 16kb bankswitched cart
A16K, // Atari 16kb bankswitched cart
A16KR, // Atari 16kb bankswitched cart w/128 bytes RAM
A8K, // Atari 8KB bankswitched cart
A8KR, // Atari 8KB bankswitched cart w/128 bytes RAM
A32K, // Atari 32KB bankswitched cart
A32KR, // Atari 32KB bankswitched cart w/128 bytes RAM
CBS12K, // CBS' RAM Plus bankswitched cart w/256 bytes RAM
DC8K, // Special Activision cart (Robot Tank and Decathlon)
DPC, // Pitfall II DPC cart
M32N12K, // 32N1 Multicart: 32x2KB
A7808, // Atari7800 non-bankswitched 8KB cart
A7816, // Atari7800 non-bankswitched 16KB cart
A7832, // Atari7800 non-bankswitched 32KB cart
A7832P, // Atari7800 non-bankswitched 32KB cart w/Pokey
A7848, // Atari7800 non-bankswitched 48KB cart
A78SG, // Atari7800 SuperGame cart
A78SGP, // Atari7800 SuperGame cart w/Pokey
A78SGR, // Atari7800 SuperGame cart w/RAM
A78S9, // Atari7800 SuperGame cart, nine banks
A78S4, // Atari7800 SuperGame cart, four banks
A78S4R, // Atari7800 SuperGame cart, four banks, w/RAM
A78AB, // F18 Hornet cart (Absolute)
A78AC, // Double dragon cart (Activision)
};
}

View File

@ -1,11 +0,0 @@
namespace EMU7800.Core
{
internal enum ConsoleSwitch
{
GameReset,
GameSelect,
GameBW,
LeftDifficultyA,
RightDifficultyA,
}
}

View File

@ -1,14 +0,0 @@
namespace EMU7800.Core
{
public enum Controller
{
None,
Joystick,
Paddles,
Keypad,
Driving,
BoosterGrip,
ProLineJoystick,
Lightgun,
}
}

View File

@ -1,17 +0,0 @@
namespace EMU7800.Core
{
public enum ControllerAction
{
Up,
Down,
Left,
Right,
Trigger, // Interpretation: 7800 RFire; 2600 Fire, BoosterGrip top
Trigger2, // Interpretation: 7800 LFire, BoosterGrip trigger
Keypad1, Keypad2, Keypad3,
Keypad4, Keypad5, Keypad6,
Keypad7, Keypad8, Keypad9,
KeypadA, Keypad0, KeypadP,
Driving0, Driving1, Driving2, Driving3,
}
}

View File

@ -1,245 +0,0 @@
using System;
using System.IO;
using System.Linq;
namespace EMU7800.Core
{
/// <summary>
/// A context for deserializing <see cref="MachineBase"/> objects.
/// </summary>
public class DeserializationContext
{
#region Fields
readonly BinaryReader _binaryReader;
#endregion
public bool ReadBoolean()
{
return _binaryReader.ReadBoolean();
}
public byte ReadByte()
{
return _binaryReader.ReadByte();
}
public ushort ReadUInt16()
{
return _binaryReader.ReadUInt16();
}
public int ReadInt32()
{
return _binaryReader.ReadInt32();
}
public uint ReadUInt32()
{
return _binaryReader.ReadUInt32();
}
public long ReadInt64()
{
return _binaryReader.ReadInt64();
}
public ulong ReadUInt64()
{
return _binaryReader.ReadUInt64();
}
public double ReadDouble()
{
return _binaryReader.ReadDouble();
}
public BufferElement ReadBufferElement()
{
var be = new BufferElement();
for (var i = 0; i < BufferElement.SIZE; i++)
be[i] = ReadByte();
return be;
}
public byte[] ReadBytes()
{
var count = _binaryReader.ReadInt32();
if (count <= 0)
return new byte[0];
if (count > 0x40000)
throw new Emu7800SerializationException("Byte array length too large.");
return _binaryReader.ReadBytes(count);
}
public byte[] ReadExpectedBytes(params int[] expectedSizes)
{
var count = _binaryReader.ReadInt32();
if (!expectedSizes.Any(t => t == count))
throw new Emu7800SerializationException("Byte array length incorrect.");
return _binaryReader.ReadBytes(count);
}
public byte[] ReadOptionalBytes(params int[] expectedSizes)
{
var hasBytes = _binaryReader.ReadBoolean();
return (hasBytes) ? ReadExpectedBytes(expectedSizes) : null;
}
public ushort[] ReadUnsignedShorts(params int[] expectedSizes)
{
var bytes = ReadExpectedBytes(expectedSizes.Select(t => t << 1).ToArray());
var ushorts = new ushort[bytes.Length >> 1];
Buffer.BlockCopy(bytes, 0, ushorts, 0, bytes.Length);
return ushorts;
}
public int[] ReadIntegers(params int[] expectedSizes)
{
var bytes = ReadExpectedBytes(expectedSizes.Select(t => t << 2).ToArray());
var integers = new int[bytes.Length >> 2];
Buffer.BlockCopy(bytes, 0, integers, 0, bytes.Length);
return integers;
}
public uint[] ReadUnsignedIntegers(params int[] expectedSizes)
{
var bytes = ReadExpectedBytes(expectedSizes.Select(t => t << 2).ToArray());
var uints = new uint[bytes.Length >> 2];
Buffer.BlockCopy(bytes, 0, uints, 0, bytes.Length);
return uints;
}
public bool[] ReadBooleans(params int[] expectedSizes)
{
var bytes = ReadExpectedBytes(expectedSizes);
var booleans = new bool[bytes.Length];
for (var i = 0; i < bytes.Length; i++)
booleans[i] = (bytes[i] != 0);
return booleans;
}
public int CheckVersion(params int[] validVersions)
{
var magicNumber = _binaryReader.ReadInt32();
if (magicNumber != 0x78000087)
throw new Emu7800SerializationException("Magic number not found.");
var version = _binaryReader.ReadInt32();
if (!validVersions.Any(t => t == version))
throw new Emu7800SerializationException("Invalid version number found.");
return version;
}
public MachineBase ReadMachine()
{
var typeName = _binaryReader.ReadString();
if (string.IsNullOrWhiteSpace(typeName))
throw new Emu7800SerializationException("Invalid type name.");
var type = Type.GetType(typeName);
if (type == null)
throw new Emu7800SerializationException("Unable to resolve type name: " + typeName);
return (MachineBase)Activator.CreateInstance(type, new object[] { this });
}
public AddressSpace ReadAddressSpace(MachineBase m, int addrSpaceShift, int pageShift)
{
var addressSpace = new AddressSpace(this, m, addrSpaceShift, pageShift);
return addressSpace;
}
public M6502 ReadM6502(MachineBase m, int runClocksMultiple)
{
var cpu = new M6502(this, m, runClocksMultiple);
return cpu;
}
public Maria ReadMaria(Machine7800 m, int scanlines)
{
var maria = new Maria(this, m, scanlines);
return maria;
}
public PIA ReadPIA(MachineBase m)
{
var pia = new PIA(this, m);
return pia;
}
public TIA ReadTIA(MachineBase m)
{
var tia = new TIA(this, m);
return tia;
}
public TIASound ReadTIASound(MachineBase m, int cpuClocksPerSample)
{
var tiaSound = new TIASound(this, m, cpuClocksPerSample);
return tiaSound;
}
public RAM6116 ReadRAM6116()
{
var ram6116 = new RAM6116(this);
return ram6116;
}
public InputState ReadInputState()
{
var inputState = new InputState(this);
return inputState;
}
public HSC7800 ReadOptionalHSC7800()
{
var exist = ReadBoolean();
return exist ? new HSC7800(this) : null;
}
public Bios7800 ReadOptionalBios7800()
{
var exist = ReadBoolean();
return exist ? new Bios7800(this) : null;
}
public PokeySound ReadOptionalPokeySound(MachineBase m)
{
var exist = ReadBoolean();
return exist ? new PokeySound(this, m) : null;
}
public Cart ReadCart(MachineBase m)
{
var typeName = _binaryReader.ReadString();
if (string.IsNullOrWhiteSpace(typeName))
throw new Emu7800SerializationException("Invalid type name.");
var type = Type.GetType(typeName);
if (type == null)
throw new Emu7800SerializationException("Unable to resolve type name: " + typeName);
return (Cart)Activator.CreateInstance(type, new object[] { this, m });
}
#region Constructors
private DeserializationContext()
{
}
/// <summary>
/// Instantiates a new instance of <see cref="DeserializationContext"/>.
/// </summary>
/// <param name="binaryReader"/>
internal DeserializationContext(BinaryReader binaryReader)
{
if (binaryReader == null)
throw new ArgumentNullException("binaryReader");
_binaryReader = binaryReader;
}
#endregion
}
}

View File

@ -1,19 +0,0 @@
using System;
namespace EMU7800.Core
{
public class Emu7800Exception : Exception
{
internal Emu7800Exception()
{
}
internal Emu7800Exception(string message) : base(message)
{
}
internal Emu7800Exception(string message, Exception ex) : base(message, ex)
{
}
}
}

View File

@ -1,19 +0,0 @@
using System;
namespace EMU7800.Core
{
public class Emu7800SerializationException : Emu7800Exception
{
private Emu7800SerializationException()
{
}
internal Emu7800SerializationException(string message) : base(message)
{
}
internal Emu7800SerializationException(string message, Exception ex) : base(message, ex)
{
}
}
}

View File

@ -1,170 +0,0 @@
/*
* FontRenderer
*
* A simple font renderer for displaying text during emulation. Font data and
* rendering algorithm courtesy of Bradford W. Mott's Stella source.
*
* Copyright © 2004 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
/// <summary>
/// A simple font renderer for displaying text during emulation.
/// </summary>
public class FontRenderer
{
static readonly uint[] AlphaFontData =
{
0x699f999, // A
0xe99e99e, // B
0x6988896, // C
0xe99999e, // D
0xf88e88f, // E
0xf88e888, // F
0x698b996, // G
0x999f999, // H
0x7222227, // I
0x72222a4, // J
0x9accaa9, // K
0x888888f, // L
0x9ff9999, // M
0x9ddbb99, // N
0x6999996, // O
0xe99e888, // P
0x69999b7, // Q
0xe99ea99, // R
0x6986196, // S
0x7222222, // T
0x9999996, // U
0x9999966, // V
0x9999ff9, // W
0x99fff99, // X
0x9996244, // Y
0xf12488f // Z
};
static readonly uint[] DigitFontData =
{
0x69bd996, // 0
0x2622227, // 1
0x691248f, // 2
0x6916196, // 3
0xaaaf222, // 4
0xf88e11e, // 5
0x698e996, // 6
0xf112244, // 7
0x6996996, // 8
0x6997196 // 9
};
/// <summary>
/// Draw specified text at specified position using the specified foreground and background colors.
/// </summary>
/// <param name="frameBuffer"></param>
/// <param name="text"></param>
/// <param name="xoffset"></param>
/// <param name="yoffset"></param>
/// <param name="fore"></param>
/// <param name="back"></param>
/// <exception cref="ArgumentNullException">text must be non-null.</exception>
public void DrawText(FrameBuffer frameBuffer, string text, int xoffset, int yoffset, byte fore, byte back)
{
if (text == null)
throw new ArgumentNullException("text");
var textchars = text.ToUpper().ToCharArray();
for (var i = 0; i < text.Length + 1; i++)
{
for (var j = 0; j < 9; j++)
{
var pos = (j + yoffset) * frameBuffer.VisiblePitch + i * 5;
for (var k = 0; k < 5; k++)
{
while (pos >= frameBuffer.VideoBufferByteLength)
{
pos -= frameBuffer.VideoBufferByteLength;
}
while (pos < 0)
{
pos += frameBuffer.VideoBufferByteLength;
}
frameBuffer.VideoBuffer[pos >> BufferElement.SHIFT][pos++] = back;
}
}
}
for (var i = 0; i < text.Length; i++)
{
var c = textchars[i];
uint fdata;
switch (c)
{
case '/':
case '\\':
fdata = 0x0122448;
break;
case '(':
fdata = 0x2488842;
break;
case ')':
fdata = 0x4211124;
break;
case '.':
fdata = 0x0000066;
break;
case ':':
fdata = 0x0660660;
break;
case '-':
fdata = 0x0007000;
break;
default:
if (c >= 'A' && c <= 'Z')
{
fdata = AlphaFontData[c - 'A'];
}
else if (c >= '0' && c <= '9')
{
fdata = DigitFontData[c - '0'];
}
else
{
fdata = 0;
}
break;
}
var ypos = 8;
for (var j = 0; j < 32; j++)
{
var xpos = j & 3;
if (xpos == 0)
{
ypos--;
}
var pos = (ypos + yoffset) * frameBuffer.VisiblePitch + (4 - xpos) + xoffset;
while (pos >= frameBuffer.VideoBufferByteLength)
{
pos -= frameBuffer.VideoBufferByteLength;
}
while (pos < 0)
{
pos += frameBuffer.VideoBufferByteLength;
}
if (((fdata >> j) & 1) != 0)
{
frameBuffer.VideoBuffer[pos >> BufferElement.SHIFT][pos] = fore;
}
}
xoffset += 5;
}
}
}
}

View File

@ -1,79 +0,0 @@
using System;
namespace EMU7800.Core
{
public class FrameBuffer
{
/// <summary>
/// Number of visible pixels on a single horizontal line.
/// </summary>
public int VisiblePitch { get; private set; }
/// <summary>
/// Number of <see cref="BufferElement"/>s that represent <c>VisiblePitch</c>.
/// </summary>
public int VideoBufferElementVisiblePitch { get; private set; }
/// <summary>
/// Number of visible scan lines.
/// </summary>
public int Scanlines { get; private set; }
/// <summary>
/// The number of bytes contained by <c>VideoBuffer</c>.
/// </summary>
public int VideoBufferByteLength { get; private set; }
/// <summary>
/// The number of <see cref="BufferElement"/>s contained by <c>VideoBuffer</c>
/// </summary>
public int VideoBufferElementLength { get; private set; }
/// <summary>
/// The number of bytes contained by <c>SoundBuffer</c>.
/// </summary>
public int SoundBufferByteLength { get; private set; }
/// <summary>
/// The number of <see cref="BufferElement"/>s contained by <c>SoundBuffer</c>
/// </summary>
public int SoundBufferElementLength { get; private set; }
/// <summary>
/// The buffer containing computed pixel data.
/// </summary>
public BufferElement[] VideoBuffer { get; private set; }
/// <summary>
/// The buffer containing computed PCM audio data.
/// </summary>
public BufferElement[] SoundBuffer { get; private set; }
#region Constructors
private FrameBuffer()
{
}
internal FrameBuffer(int visiblePitch, int scanLines)
{
if (visiblePitch < 0)
throw new ArgumentException("visiblePitch must be non-negative.");
if (scanLines < 0)
throw new ArgumentException("scanLines must be non-negative.");
VisiblePitch = visiblePitch;
VideoBufferElementVisiblePitch = VisiblePitch >> BufferElement.SHIFT;
Scanlines = scanLines;
VideoBufferByteLength = VisiblePitch * Scanlines;
VideoBufferElementLength = VideoBufferElementVisiblePitch * Scanlines;
SoundBufferByteLength = Scanlines << 1;
SoundBufferElementLength = SoundBufferByteLength >> BufferElement.SHIFT;
VideoBuffer = new BufferElement[VideoBufferElementLength + (64 >> BufferElement.SHIFT)];
SoundBuffer = new BufferElement[SoundBufferElementLength + (64 >> BufferElement.SHIFT)];
}
#endregion
}
}

View File

@ -1,85 +0,0 @@
/*
* HSC7800.cs
*
* The 7800 High Score cartridge--courtesy of Matthias <matthias@atari8bit.de>.
*
*/
using System;
namespace EMU7800.Core
{
public sealed class HSC7800 : IDevice
{
readonly byte[] ROM;
readonly ushort Mask;
public static ushort Size { get; private set; }
#region IDevice Members
public void Reset()
{
}
public byte this[ushort addr]
{
get { return ROM[addr & Mask]; }
set { }
}
#endregion
public RAM6116 SRAM { get; private set; }
#region Constructors
private HSC7800()
{
}
public HSC7800(byte[] hscRom, byte[] ram)
{
if (hscRom == null)
throw new ArgumentNullException("hscRom");
if (ram == null)
throw new ArgumentNullException("ram");
if (hscRom.Length != 4096)
throw new ArgumentException("ROM size not 4096", "hscRom");
ROM = hscRom;
SRAM = new RAM6116(ram);
Size = Mask = (ushort)ROM.Length;
Mask--;
}
#endregion
#region Serialization Members
public HSC7800(DeserializationContext input)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
ROM = input.ReadExpectedBytes(4096);
SRAM = input.ReadRAM6116();
Size = Mask = (ushort)ROM.Length;
Mask--;
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(ROM);
output.Write(SRAM);
}
#endregion
}
}

View File

@ -1,16 +0,0 @@
/*
* IDevice.cs
*
* Defines interface for devices accessable via the AddressSpace class.
*
* Copyright © 2003, 2011 Mike Murphy
*
*/
namespace EMU7800.Core
{
public interface IDevice
{
void Reset();
byte this[ushort addr] { get; set; }
}
}

View File

@ -1,10 +0,0 @@
namespace EMU7800.Core
{
public interface ILogger
{
void WriteLine(string format, params object[] args);
void WriteLine(object value);
void Write(string format, params object[] args);
void Write(object value);
}
}

View File

@ -1,368 +0,0 @@
/*
* InputState.cs
*
* Class containing the input state of the console and its controllers,
* mapping emulator input devices to external input.
*
* Copyright © 2003-2010 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public class InputState
{
#region Fields
const int
PaddleOhmMin = 100000,
PaddleOhmMax = 800000;
const int
LeftControllerJackIndex = 0,
RightControllerJackIndex = 1,
ConsoleSwitchIndex = 2,
ControllerActionStateIndex = 3,
OhmsIndex = ControllerActionStateIndex + 4,
LightgunPositionIndex = ControllerActionStateIndex + 4,
InputStateSize = ControllerActionStateIndex + 8 + 1;
// For driving controllers
readonly byte[] _rotGrayCodes = new byte[] { 0x0f, 0x0d, 0x0c, 0x0e };
readonly int[] _rotState = new int[2];
readonly int[] _nextInputState = new int[InputStateSize];
readonly int[] _inputState = new int[InputStateSize];
#endregion
#region Public Members
/// <summary>
/// Enables the incoming input state buffer to be populated prior to the start of the frame.
/// Useful for input playback senarios.
/// </summary>
/// <return>Return value is ignored.</return>
public Func<int[], object> InputAdvancing { get; set; }
/// <summary>
/// Enables access to the input state buffer.
/// Useful for input recording senarios.
/// </summary>
/// <return>Return value is ignored.</return>
public Func<int[], object> InputAdvanced { get; set; }
public void CaptureInputState()
{
if (InputAdvancing != null)
InputAdvancing(_nextInputState);
Buffer.BlockCopy(_nextInputState, 0, _inputState, 0, InputStateSize * sizeof(int));
if (InputAdvanced != null)
InputAdvanced(_inputState);
}
public Controller LeftControllerJack
{
get { return (Controller)_nextInputState[LeftControllerJackIndex]; }
set { _nextInputState[LeftControllerJackIndex] = (int)value; }
}
public Controller RightControllerJack
{
get { return (Controller)_nextInputState[RightControllerJackIndex]; }
set { _nextInputState[RightControllerJackIndex] = (int)value; }
}
public bool IsGameBWConsoleSwitchSet
{
get { return (_nextInputState[ConsoleSwitchIndex] & (1 << (int) ConsoleSwitch.GameBW)) != 0; }
}
public bool IsLeftDifficultyAConsoleSwitchSet
{
get { return (_nextInputState[ConsoleSwitchIndex] & (1 << (int)ConsoleSwitch.LeftDifficultyA)) != 0; }
}
public bool IsRightDifficultyAConsoleSwitchSet
{
get { return (_nextInputState[ConsoleSwitchIndex] & (1 << (int)ConsoleSwitch.RightDifficultyA)) != 0; }
}
public void RaiseInput(int playerNo, MachineInput input, bool down)
{
switch (input)
{
case MachineInput.Fire:
SetControllerActionState(playerNo, ControllerAction.Trigger, down);
break;
case MachineInput.Fire2:
SetControllerActionState(playerNo, ControllerAction.Trigger2, down);
break;
case MachineInput.Left:
SetControllerActionState(playerNo, ControllerAction.Left, down);
if (down) SetControllerActionState(playerNo, ControllerAction.Right, false);
break;
case MachineInput.Up:
SetControllerActionState(playerNo, ControllerAction.Up, down);
if (down) SetControllerActionState(playerNo, ControllerAction.Down, false);
break;
case MachineInput.Right:
SetControllerActionState(playerNo, ControllerAction.Right, down);
if (down) SetControllerActionState(playerNo, ControllerAction.Left, false);
break;
case MachineInput.Down:
SetControllerActionState(playerNo, ControllerAction.Down, down);
if (down) SetControllerActionState(playerNo, ControllerAction.Up, false);
break;
case MachineInput.NumPad7:
SetControllerActionState(playerNo, ControllerAction.Keypad7, down);
break;
case MachineInput.NumPad8:
SetControllerActionState(playerNo, ControllerAction.Keypad8, down);
break;
case MachineInput.NumPad9:
SetControllerActionState(playerNo, ControllerAction.Keypad9, down);
break;
case MachineInput.NumPad4:
SetControllerActionState(playerNo, ControllerAction.Keypad4, down);
break;
case MachineInput.NumPad5:
SetControllerActionState(playerNo, ControllerAction.Keypad5, down);
break;
case MachineInput.NumPad6:
SetControllerActionState(playerNo, ControllerAction.Keypad6, down);
break;
case MachineInput.NumPad1:
SetControllerActionState(playerNo, ControllerAction.Keypad1, down);
break;
case MachineInput.NumPad2:
SetControllerActionState(playerNo, ControllerAction.Keypad2, down);
break;
case MachineInput.NumPad3:
SetControllerActionState(playerNo, ControllerAction.Keypad3, down);
break;
case MachineInput.NumPadMult:
SetControllerActionState(playerNo, ControllerAction.KeypadA, down);
break;
case MachineInput.NumPad0:
SetControllerActionState(playerNo, ControllerAction.Keypad0, down);
break;
case MachineInput.NumPadHash:
SetControllerActionState(playerNo, ControllerAction.KeypadP, down);
break;
case MachineInput.Driving0:
SetControllerActionState(playerNo, ControllerAction.Driving0, true);
SetControllerActionState(playerNo, ControllerAction.Driving1, false);
SetControllerActionState(playerNo, ControllerAction.Driving2, false);
SetControllerActionState(playerNo, ControllerAction.Driving3, false);
break;
case MachineInput.Driving1:
SetControllerActionState(playerNo, ControllerAction.Driving0, false);
SetControllerActionState(playerNo, ControllerAction.Driving1, true);
SetControllerActionState(playerNo, ControllerAction.Driving2, false);
SetControllerActionState(playerNo, ControllerAction.Driving3, false);
break;
case MachineInput.Driving2:
SetControllerActionState(playerNo, ControllerAction.Driving0, false);
SetControllerActionState(playerNo, ControllerAction.Driving1, false);
SetControllerActionState(playerNo, ControllerAction.Driving2, true);
SetControllerActionState(playerNo, ControllerAction.Driving3, false);
break;
case MachineInput.Driving3:
SetControllerActionState(playerNo, ControllerAction.Driving0, false);
SetControllerActionState(playerNo, ControllerAction.Driving1, false);
SetControllerActionState(playerNo, ControllerAction.Driving2, false);
SetControllerActionState(playerNo, ControllerAction.Driving3, true);
break;
case MachineInput.Reset:
SetConsoleSwitchState(ConsoleSwitch.GameReset, down);
break;
case MachineInput.Select:
SetConsoleSwitchState(ConsoleSwitch.GameSelect, down);
break;
case MachineInput.Color:
if (down) ToggleConsoleSwitchState(ConsoleSwitch.GameBW);
break;
case MachineInput.LeftDifficulty:
if (down) ToggleConsoleSwitchState(ConsoleSwitch.LeftDifficultyA);
break;
case MachineInput.RightDifficulty:
if (down) ToggleConsoleSwitchState(ConsoleSwitch.RightDifficultyA);
break;
}
}
public void RaisePaddleInput(int playerNo, int valMax, int val)
{
var ohms = PaddleOhmMax - (PaddleOhmMax - PaddleOhmMin) / valMax * val;
_nextInputState[OhmsIndex + (playerNo & 3)] = ohms;
}
public void RaiseLightgunPos(int playerNo, int scanline, int hpos)
{
var i = LightgunPositionIndex + ((playerNo & 1) << 1);
_nextInputState[i++] = scanline;
_nextInputState[i] = hpos;
}
public void ClearAllInput()
{
_nextInputState[ConsoleSwitchIndex] = 0;
ClearLeftJackInput();
ClearRightJackInput();
}
public void ClearInputByPlayer(int playerNo)
{
_nextInputState[OhmsIndex + (playerNo & 3)] = 0;
_nextInputState[ControllerActionStateIndex + (playerNo & 3)] = 0;
_nextInputState[LightgunPositionIndex + ((playerNo & 1) << 1)] = _nextInputState[LightgunPositionIndex + ((playerNo & 1) << 1) + 1] = 0;
}
public void ClearLeftJackInput()
{
_nextInputState[OhmsIndex] = _nextInputState[OhmsIndex + 1] = 0;
_nextInputState[ControllerActionStateIndex] = 0;
switch (LeftControllerJack)
{
case Controller.Paddles:
_nextInputState[ControllerActionStateIndex] = _nextInputState[ControllerActionStateIndex + 1] = 0;
break;
default:
_nextInputState[ControllerActionStateIndex] = 0;
break;
}
_nextInputState[LightgunPositionIndex] = _nextInputState[LightgunPositionIndex + 1] = 0;
}
public void ClearRightJackInput()
{
_nextInputState[OhmsIndex + 2] = _nextInputState[OhmsIndex + 3] = 0;
switch (RightControllerJack)
{
case Controller.Paddles:
_nextInputState[ControllerActionStateIndex + 2] = _nextInputState[ControllerActionStateIndex + 3] = 0;
break;
default:
_nextInputState[ControllerActionStateIndex + 1] = 0;
break;
}
_nextInputState[LightgunPositionIndex + 2] = _nextInputState[LightgunPositionIndex + 3] = 0;
}
#endregion
#region Serialization Members
public InputState()
{
}
public InputState(DeserializationContext input)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
_rotState = input.ReadIntegers(2);
_nextInputState = input.ReadIntegers(InputStateSize);
_inputState = input.ReadIntegers(InputStateSize);
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(_rotState);
output.Write(_nextInputState);
output.Write(_inputState);
}
#endregion
#region Internal Members
internal bool SampleCapturedConsoleSwitchState(ConsoleSwitch consoleSwitch)
{
return (_inputState[ConsoleSwitchIndex] & (1 << (int)consoleSwitch)) != 0;
}
internal bool SampleCapturedControllerActionState(int playerno, ControllerAction action)
{
return (_inputState[ControllerActionStateIndex + (playerno & 3)] & (1 << (int)action)) != 0;
}
internal int SampleCapturedOhmState(int playerNo)
{
return _inputState[OhmsIndex + (playerNo & 3)];
}
internal void SampleCapturedLightGunPosition(int playerNo, out int scanline, out int hpos)
{
var i = LightgunPositionIndex + ((playerNo & 1) << 1);
scanline = _inputState[i++];
hpos = _inputState[i];
}
internal byte SampleCapturedDrivingState(int playerNo)
{
if (SampleCapturedControllerActionState(playerNo, ControllerAction.Driving0))
_rotState[playerNo] = 0;
else if (SampleCapturedControllerActionState(playerNo, ControllerAction.Driving1))
_rotState[playerNo] = 1;
else if (SampleCapturedControllerActionState(playerNo, ControllerAction.Driving2))
_rotState[playerNo] = 2;
else if (SampleCapturedControllerActionState(playerNo, ControllerAction.Driving3))
_rotState[playerNo] = 3;
return _rotGrayCodes[_rotState[playerNo]];
}
#endregion
#region Object Overrides
public override string ToString()
{
return GetType().Name;
}
#endregion
#region Helpers
void SetControllerActionState(int playerNo, ControllerAction action, bool value)
{
if (value)
{
_nextInputState[ControllerActionStateIndex + (playerNo & 3)] |= (1 << (int)action);
}
else
{
_nextInputState[ControllerActionStateIndex + (playerNo & 3)] &= ~(1 << (int)action);
}
}
void SetConsoleSwitchState(ConsoleSwitch consoleSwitch, bool value)
{
if (value)
{
_nextInputState[ConsoleSwitchIndex] |= (byte)(1 << (byte)consoleSwitch);
}
else
{
_nextInputState[ConsoleSwitchIndex] &= (byte)~(1 << (byte)consoleSwitch);
}
}
void ToggleConsoleSwitchState(ConsoleSwitch consoleSwitch)
{
var consoleSwitchState = (_nextInputState[ConsoleSwitchIndex] & (1 << (int) consoleSwitch)) != 0;
SetConsoleSwitchState(consoleSwitch, !consoleSwitchState);
}
#endregion
}
}

View File

@ -1,339 +0,0 @@
GNU GENERAL PUBLIC LICENSE
Version 2, June 1991
Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.
For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.
We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.
Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.
Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.
The precise terms and conditions for copying, distribution and
modification follow.
GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.
1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.
You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:
a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.
b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.
c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)
These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.
In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.
3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:
a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,
b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,
c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)
The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.
If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.
5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.
6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.
7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.
It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.
This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.
10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.
NO WARRANTY
11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS
Appendix: How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111 USA
Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.
The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:
Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.
<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice
This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

File diff suppressed because it is too large Load Diff

View File

@ -1,242 +0,0 @@
/*
* M6502DASM.cs
*
* Provides disassembly services.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
using System;
using System.Text;
namespace EMU7800.Core
{
public static class M6502DASM
{
// Instruction Mnemonics
enum m : uint
{
ADC = 1, AND, ASL,
BIT, BCC, BCS, BEQ, BMI, BNE, BPL, BRK, BVC, BVS,
CLC, CLD, CLI, CLV, CMP, CPX, CPY,
DEC, DEX, DEY,
EOR,
INC, INX, INY,
JMP, JSR,
LDA, LDX, LDY, LSR,
NOP,
ORA,
PLA, PLP, PHA, PHP,
ROL, ROR, RTI, RTS,
SEC, SEI, STA, SBC, SED, STX, STY,
TAX, TAY, TSX, TXA, TXS, TYA,
// Illegal/undefined opcodes
isb,
kil,
lax,
rla,
sax,
top
}
// Addressing Modes
enum a : uint
{
REL, // Relative: $aa (branch instructions only)
ZPG, // Zero Page: $aa
ZPX, // Zero Page Indexed X: $aa,X
ZPY, // Zero Page Indexed Y: $aa,Y
ABS, // Absolute: $aaaa
ABX, // Absolute Indexed X: $aaaa,X
ABY, // Absolute Indexed Y: $aaaa,Y
IDX, // Indexed Indirect: ($aa,X)
IDY, // Indirect Indexed: ($aa),Y
IND, // Indirect Absolute: ($aaaa) (JMP only)
IMM, // Immediate: #aa
IMP, // Implied
ACC // Accumulator
}
static readonly m[] MnemonicMatrix = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
/*0*/ m.BRK, m.ORA, m.kil, 0, 0, m.ORA, m.ASL, 0, m.PHP, m.ORA, m.ASL, 0, m.top, m.ORA, m.ASL, 0,/*0*/
/*1*/ m.BPL, m.ORA, m.kil, 0, 0, m.ORA, m.ASL, 0, m.CLC, m.ORA, 0, 0, m.top, m.ORA, m.ASL, 0,/*1*/
/*2*/ m.JSR, m.AND, m.kil, 0, m.BIT, m.AND, m.ROL, 0, m.PLP, m.AND, m.ROL, 0, m.BIT, m.AND, m.ROL, 0,/*2*/
/*3*/ m.BMI, m.AND, m.kil, 0, 0, m.AND, m.ROL, 0, m.SEC, m.AND, 0, 0, m.top, m.AND, m.ROL, m.rla,/*3*/
/*4*/ m.RTI, m.EOR, m.kil, 0, 0, m.EOR, m.LSR, 0, m.PHA, m.EOR, m.LSR, 0, m.JMP, m.EOR, m.LSR, 0,/*4*/
/*5*/ m.BVC, m.EOR, m.kil, 0, 0, m.EOR, m.LSR, 0, m.CLI, m.EOR, 0, 0, m.top, m.EOR, m.LSR, 0,/*5*/
/*6*/ m.RTS, m.ADC, m.kil, 0, 0, m.ADC, m.ROR, 0, m.PLA, m.ADC, m.ROR, 0, m.JMP, m.ADC, m.ROR, 0,/*6*/
/*7*/ m.BVS, m.ADC, m.kil, 0, 0, m.ADC, m.ROR, 0, m.SEI, m.ADC, 0, 0, m.top, m.ADC, m.ROR, 0,/*7*/
/*8*/ 0, m.STA, 0, m.sax, m.STY, m.STA, m.STX, m.sax, m.DEY, 0, m.TXA, 0, m.STY, m.STA, m.STX, m.sax,/*8*/
/*9*/ m.BCC, m.STA, m.kil, 0, m.STY, m.STA, m.STX, m.sax, m.TYA, m.STA, m.TXS, 0, m.top, m.STA, 0, 0,/*9*/
/*A*/ m.LDY, m.LDA, m.LDX, m.lax, m.LDY, m.LDA, m.LDX, m.lax, m.TAY, m.LDA, m.TAX, 0, m.LDY, m.LDA, m.LDX, m.lax,/*A*/
/*B*/ m.BCS, m.LDA, m.kil, m.lax, m.LDY, m.LDA, m.LDX, m.lax, m.CLV, m.LDA, m.TSX, 0, m.LDY, m.LDA, m.LDX, m.lax,/*B*/
/*C*/ m.CPY, m.CMP, 0, 0, m.CPY, m.CMP, m.DEC, 0, m.INY, m.CMP, m.DEX, 0, m.CPY, m.CMP, m.DEC, 0,/*C*/
/*D*/ m.BNE, m.CMP, m.kil, 0, 0, m.CMP, m.DEC, 0, m.CLD, m.CMP, 0, 0, m.top, m.CMP, m.DEC, 0,/*D*/
/*E*/ m.CPX, m.SBC, 0, 0, m.CPX, m.SBC, m.INC, 0, m.INX, m.SBC, m.NOP, 0, m.CPX, m.SBC, m.INC, m.isb,/*E*/
/*F*/ m.BEQ, m.SBC, m.kil, 0, 0, m.SBC, m.INC, 0, m.SED, m.SBC, 0, 0, m.top, m.SBC, m.INC, m.isb /*F*/
};
static readonly a[] AddressingModeMatrix = {
// 0 1 2 3 4 5 6 7 8 9 A B C D E F
/*0*/ a.IMP, a.IDX, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.ACC, 0, a.ABS, a.ABS, a.ABS, 0,/*0*/
/*1*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, 0,/*1*/
/*2*/ a.ABS, a.IDX, a.IMP, 0, a.ZPG, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.ACC, 0, a.ABS, a.ABS, a.ABS, 0,/*2*/
/*3*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, a.ABX,/*3*/
/*4*/ a.IMP, a.IDY, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.ACC, 0, a.ABS, a.ABS, a.ABS, 0,/*4*/
/*5*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, 0,/*5*/
/*6*/ a.IMP, a.IDX, a.IMP, 0, 0, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.ACC, 0, a.IND, a.ABS, a.ABS, 0,/*6*/
/*7*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPX, a.ZPX, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, 0,/*7*/
/*8*/ 0, a.IDY, 0, a.IDX, a.ZPG, a.ZPG, a.ZPG, a.ZPG, a.IMP, 0, a.IMP, 0, a.ABS, a.ABS, a.ABS, a.ABS,/*8*/
/*9*/ a.REL, a.IDY, a.IMP, 0, a.ZPX, a.ZPX, a.ZPY, a.ZPY, a.IMP, a.ABY, a.IMP, 0, a.ABS, a.ABX, 0, 0,/*9*/
/*A*/ a.IMM, a.IND, a.IMM, a.IDX, a.ZPG, a.ZPG, a.ZPG, a.ZPX, a.IMP, a.IMM, a.IMP, 0, a.ABS, a.ABS, a.ABS, a.ABS,/*A*/
/*B*/ a.REL, a.IDY, a.IMP, a.IDY, a.ZPX, a.ZPX, a.ZPY, a.ZPY, a.IMP, a.ABY, a.IMP, 0, a.ABX, a.ABX, a.ABY, a.ABY,/*B*/
/*C*/ a.IMM, a.IDX, 0, 0, a.ZPG, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.IMP, 0, a.ABS, a.ABS, a.ABS, 0,/*C*/
/*D*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPX, a.ZPX, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, 0,/*D*/
/*E*/ a.IMM, a.IDX, 0, 0, a.ZPG, a.ZPG, a.ZPG, 0, a.IMP, a.IMM, a.IMP, 0, a.ABS, a.ABS, a.ABS, a.ABS,/*E*/
/*F*/ a.REL, a.IDY, a.IMP, 0, 0, a.ZPX, a.ZPX, 0, a.IMP, a.ABY, 0, 0, a.ABS, a.ABX, a.ABX, a.ABX /*F*/
};
public static string GetRegisters(M6502 cpu)
{
var dSB = new StringBuilder();
dSB.Append(String.Format(
"PC:{0:x4} A:{1:x2} X:{2:x2} Y:{3:x2} S:{4:x2} P:",
cpu.PC, cpu.A, cpu.X, cpu.Y, cpu.S));
const string flags = "nv0bdizcNV1BDIZC";
for (var i = 0; i < 8; i++)
{
dSB.Append(((cpu.P & (1 << (7 - i))) == 0) ? flags[i] : flags[i + 8]);
}
return dSB.ToString();
}
public static string Disassemble(AddressSpace addrSpace, ushort atAddr, ushort untilAddr)
{
var dSB = new StringBuilder();
var dPC = atAddr;
while (atAddr < untilAddr)
{
dSB.AppendFormat("{0:x4}: ", dPC);
var len = GetInstructionLength(addrSpace, dPC);
for (var i = 0; i < 3; i++)
{
if (i < len)
{
dSB.AppendFormat("{0:x2} ", addrSpace[atAddr++]);
}
else
{
dSB.Append(" ");
}
}
dSB.AppendFormat("{0,-15}{1}", RenderOpCode(addrSpace, dPC), Environment.NewLine);
dPC += (ushort)len;
}
if (dSB.Length > 0)
{
dSB.Length--; // Trim trailing newline
}
return dSB.ToString();
}
public static string MemDump(AddressSpace addrSpace, ushort atAddr, ushort untilAddr)
{
var dSB = new StringBuilder();
var len = untilAddr - atAddr;
while (len-- >= 0)
{
dSB.AppendFormat("{0:x4}: ", atAddr);
for (var i = 0; i < 8; i++)
{
dSB.AppendFormat("{0:x2} ", addrSpace[atAddr++]);
if (i == 3)
{
dSB.Append(" ");
}
}
dSB.Append("\n");
}
if (dSB.Length > 0)
{
dSB.Length--; // Trim trailing newline
}
return dSB.ToString();
}
public static string RenderOpCode(AddressSpace addrSpace, ushort PC)
{
var num_operands = GetInstructionLength(addrSpace, PC) - 1;
var PC1 = (ushort)(PC + 1);
string addrmodeStr;
switch (AddressingModeMatrix[addrSpace[PC]])
{
case a.REL:
addrmodeStr = String.Format("${0:x4}", (ushort)(PC + (sbyte)(addrSpace[PC1]) + 2));
break;
case a.ZPG:
case a.ABS:
addrmodeStr = RenderEA(addrSpace, PC1, num_operands);
break;
case a.ZPX:
case a.ABX:
addrmodeStr = RenderEA(addrSpace, PC1, num_operands) + ",X";
break;
case a.ZPY:
case a.ABY:
addrmodeStr = RenderEA(addrSpace, PC1, num_operands) + ",Y";
break;
case a.IDX:
addrmodeStr = "(" + RenderEA(addrSpace, PC1, num_operands) + ",X)";
break;
case a.IDY:
addrmodeStr = "(" + RenderEA(addrSpace, PC1, num_operands) + "),Y";
break;
case a.IND:
addrmodeStr = "(" + RenderEA(addrSpace, PC1, num_operands) + ")";
break;
case a.IMM:
addrmodeStr = "#" + RenderEA(addrSpace, PC1, num_operands);
break;
default:
// a.IMP, a.ACC
addrmodeStr = string.Empty;
break;
}
return string.Format("{0} {1}", MnemonicMatrix[addrSpace[PC]], addrmodeStr);
}
static int GetInstructionLength(AddressSpace addrSpace, ushort PC)
{
switch (AddressingModeMatrix[addrSpace[PC]])
{
case a.ACC:
case a.IMP:
return 1;
case a.REL:
case a.ZPG:
case a.ZPX:
case a.ZPY:
case a.IDX:
case a.IDY:
case a.IMM:
return 2;
default:
return 3;
}
}
static string RenderEA(AddressSpace addrSpace, ushort PC, int bytes)
{
var lsb = addrSpace[PC];
var msb = (bytes == 2) ? addrSpace[(ushort)(PC + 1)] : (byte)0;
var ea = (ushort)(lsb | (msb << 8));
return string.Format((bytes == 1) ? "${0:x2}" : "${0:x4}", ea);
}
}
}

View File

@ -1,112 +0,0 @@
/*
* Machine2600.cs
*
* The realization of a 2600 machine.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
namespace EMU7800.Core
{
public class Machine2600 : MachineBase
{
#region Fields
protected TIA TIA { get; set; }
#endregion
public override void Reset()
{
base.Reset();
TIA.Reset();
PIA.Reset();
CPU.Reset();
}
public override void ComputeNextFrame(FrameBuffer frameBuffer)
{
base.ComputeNextFrame(frameBuffer);
TIA.StartFrame();
CPU.RunClocks = (FrameBuffer.Scanlines + 3) * 76;
while (CPU.RunClocks > 0 && !CPU.Jammed)
{
if (TIA.WSYNCDelayClocks > 0)
{
CPU.Clock += (ulong)TIA.WSYNCDelayClocks / 3;
CPU.RunClocks -= TIA.WSYNCDelayClocks / 3;
TIA.WSYNCDelayClocks = 0;
}
if (TIA.EndOfFrame)
{
break;
}
CPU.Execute();
}
TIA.EndFrame();
}
public Machine2600(Cart cart, ILogger logger, int slines, int startl, int fHZ, int sRate, int[] p)
: base(logger, slines, startl, fHZ, sRate, p, 160)
{
Mem = new AddressSpace(this, 13, 6); // 2600: 13bit, 64byte pages
CPU = new M6502(this, 1);
TIA = new TIA(this);
for (ushort i = 0; i < 0x1000; i += 0x100)
{
Mem.Map(i, 0x0080, TIA);
}
PIA = new PIA(this);
for (ushort i = 0x0080; i < 0x1000; i += 0x100)
{
Mem.Map(i, 0x0080, PIA);
}
Cart = cart;
Mem.Map(0x1000, 0x1000, Cart);
}
#region Serialization Members
public Machine2600(DeserializationContext input, int[] palette) : base(input, palette)
{
input.CheckVersion(1);
Mem = input.ReadAddressSpace(this, 13, 6); // 2600: 13bit, 64byte pages
CPU = input.ReadM6502(this, 1);
TIA = input.ReadTIA(this);
for (ushort i = 0; i < 0x1000; i += 0x100)
{
Mem.Map(i, 0x0080, TIA);
}
PIA = input.ReadPIA(this);
for (ushort i = 0x0080; i < 0x1000; i += 0x100)
{
Mem.Map(i, 0x0080, PIA);
}
Cart = input.ReadCart(this);
Mem.Map(0x1000, 0x1000, Cart);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(Mem);
output.Write(CPU);
output.Write(TIA);
output.Write(PIA);
output.Write(Cart);
}
#endregion
}
}

View File

@ -1,30 +0,0 @@
namespace EMU7800.Core
{
public sealed class Machine2600NTSC : Machine2600
{
public override string ToString()
{
return GetType().Name;
}
public Machine2600NTSC(Cart cart, ILogger logger)
: base(cart, logger, 262, 16, 60, 31440 /* NTSC_SAMPLES_PER_SEC */, TIATables.NTSCPalette)
{
}
#region Serialization Members
public Machine2600NTSC(DeserializationContext input) : base(input, TIATables.NTSCPalette)
{
input.CheckVersion(1);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
}
#endregion
}
}

View File

@ -1,30 +0,0 @@
namespace EMU7800.Core
{
public sealed class Machine2600PAL : Machine2600
{
public override string ToString()
{
return GetType().Name;
}
public Machine2600PAL(Cart cart, ILogger logger)
: base(cart, logger, 312, 32, 50, 31200 /* PAL_SAMPLES_PER_SEC */, TIATables.PALPalette)
{
}
#region Serialization Members
public Machine2600PAL(DeserializationContext input) : base(input, TIATables.PALPalette)
{
input.CheckVersion(1);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
}
#endregion
}
}

View File

@ -1,244 +0,0 @@
/*
* Machine7800.cs
*
* The realization of a 7800 machine.
*
* Copyright © 2003-2005 Mike Murphy
*
*/
namespace EMU7800.Core
{
public class Machine7800 : MachineBase
{
#region Fields
protected Maria Maria { get; set; }
protected RAM6116 RAM1 { get; set; }
protected RAM6116 RAM2 { get; set; }
protected Bios7800 BIOS { get; private set; }
protected HSC7800 HSC { get; private set; }
#endregion
public void SwapInBIOS()
{
if (BIOS == null)
return;
Mem.Map((ushort)(0x10000 - BIOS.Size), BIOS.Size, BIOS);
}
public void SwapOutBIOS()
{
if (BIOS == null)
return;
Mem.Map((ushort)(0x10000 - BIOS.Size), BIOS.Size, Cart);
}
public override void Reset()
{
base.Reset();
SwapInBIOS();
if (HSC != null)
HSC.Reset();
Cart.Reset();
Maria.Reset();
PIA.Reset();
CPU.Reset();
}
public override void ComputeNextFrame(FrameBuffer frameBuffer)
{
base.ComputeNextFrame(frameBuffer);
AssertDebug(CPU.Jammed || CPU.RunClocks <= 0 && (CPU.RunClocks % CPU.RunClocksMultiple) == 0);
AssertDebug(CPU.Jammed || ((CPU.Clock + (ulong)(CPU.RunClocks / CPU.RunClocksMultiple)) % (114 * (ulong)FrameBuffer.Scanlines)) == 0);
ulong startOfScanlineCpuClock = 0;
Maria.StartFrame();
Cart.StartFrame();
for (var i = 0; i < FrameBuffer.Scanlines && !CPU.Jammed; i++)
{
AssertDebug(CPU.RunClocks <= 0 && (CPU.RunClocks % CPU.RunClocksMultiple) == 0);
var newStartOfScanlineCpuClock = CPU.Clock + (ulong)(CPU.RunClocks / CPU.RunClocksMultiple);
AssertDebug(startOfScanlineCpuClock == 0 || newStartOfScanlineCpuClock == startOfScanlineCpuClock + 114);
startOfScanlineCpuClock = newStartOfScanlineCpuClock;
CPU.RunClocks += (7 * CPU.RunClocksMultiple);
var remainingRunClocks = (114 - 7) * CPU.RunClocksMultiple;
CPU.Execute();
if (CPU.Jammed)
break;
if (CPU.EmulatorPreemptRequest)
{
Maria.DoDMAProcessing();
var remainingCpuClocks = 114 - (CPU.Clock - startOfScanlineCpuClock);
CPU.Clock += remainingCpuClocks;
CPU.RunClocks = 0;
continue;
}
var dmaClocks = Maria.DoDMAProcessing();
// CHEAT: Ace of Aces: Title screen has a single scanline flicker without this. Maria DMA clock counting probably not 100% accurate.
if (i == 203 && FrameBuffer.Scanlines == 262 /*NTSC*/ || i == 228 && FrameBuffer.Scanlines == 312 /*PAL*/)
if (dmaClocks == 152 && remainingRunClocks == 428 && (CPU.RunClocks == -4 || CPU.RunClocks == -8))
dmaClocks -= 4;
// Unsure exactly what to do if Maria DMA processing extends past the current scanline.
// For now, throw away half remaining until we are within the current scanline.
// KLAX initialization starts DMA without initializing the DLL data structure.
// Maria processing then runs away causing an invalid CPU opcode to be executed that jams the machine.
// So Maria must give up at some point, but not clear exactly how.
// Anyway, this makes KLAX work without causing breakage elsewhere.
while ((CPU.RunClocks + remainingRunClocks) < dmaClocks)
{
dmaClocks >>= 1;
}
// Assume the CPU waits until the next div4 boundary to proceed after DMA processing.
if ((dmaClocks & 3) != 0)
{
dmaClocks += 4;
dmaClocks -= (dmaClocks & 3);
}
CPU.Clock += (ulong)(dmaClocks / CPU.RunClocksMultiple);
CPU.RunClocks -= dmaClocks;
CPU.RunClocks += remainingRunClocks;
CPU.Execute();
if (CPU.Jammed)
break;
if (CPU.EmulatorPreemptRequest)
{
var remainingCpuClocks = 114 - (CPU.Clock - startOfScanlineCpuClock);
CPU.Clock += remainingCpuClocks;
CPU.RunClocks = 0;
}
}
Cart.EndFrame();
Maria.EndFrame();
}
public Machine7800(Cart cart, Bios7800 bios, HSC7800 hsc, ILogger logger, int scanlines, int startl, int fHZ, int sRate, int[] p)
: base(logger, scanlines, startl, fHZ, sRate, p, 320)
{
Mem = new AddressSpace(this, 16, 6); // 7800: 16bit, 64byte pages
CPU = new M6502(this, 4);
Maria = new Maria(this, scanlines);
Mem.Map(0x0000, 0x0040, Maria);
Mem.Map(0x0100, 0x0040, Maria);
Mem.Map(0x0200, 0x0040, Maria);
Mem.Map(0x0300, 0x0040, Maria);
PIA = new PIA(this);
Mem.Map(0x0280, 0x0080, PIA);
Mem.Map(0x0480, 0x0080, PIA);
Mem.Map(0x0580, 0x0080, PIA);
RAM1 = new RAM6116();
RAM2 = new RAM6116();
Mem.Map(0x1800, 0x0800, RAM1);
Mem.Map(0x2000, 0x0800, RAM2);
Mem.Map(0x0040, 0x00c0, RAM2); // page 0 shadow
Mem.Map(0x0140, 0x00c0, RAM2); // page 1 shadow
Mem.Map(0x2800, 0x0800, RAM2); // shadow1
Mem.Map(0x3000, 0x0800, RAM2); // shadow2
Mem.Map(0x3800, 0x0800, RAM2); // shadow3
BIOS = bios;
HSC = hsc;
if (HSC != null)
{
Mem.Map(0x1000, 0x800, HSC.SRAM);
Mem.Map(0x3000, 0x1000, HSC);
Logger.WriteLine("7800 Highscore Cartridge Installed");
}
Cart = cart;
Mem.Map(0x4000, 0xc000, Cart);
}
#region Serialization Members
public Machine7800(DeserializationContext input, int[] palette, int scanlines) : base(input, palette)
{
input.CheckVersion(1);
Mem = input.ReadAddressSpace(this, 16, 6); // 7800: 16bit, 64byte pages
CPU = input.ReadM6502(this, 4);
Maria = input.ReadMaria(this, scanlines);
Mem.Map(0x0000, 0x0040, Maria);
Mem.Map(0x0100, 0x0040, Maria);
Mem.Map(0x0200, 0x0040, Maria);
Mem.Map(0x0300, 0x0040, Maria);
PIA = input.ReadPIA(this);
Mem.Map(0x0280, 0x0080, PIA);
Mem.Map(0x0480, 0x0080, PIA);
Mem.Map(0x0580, 0x0080, PIA);
RAM1 = input.ReadRAM6116();
RAM2 = input.ReadRAM6116();
Mem.Map(0x1800, 0x0800, RAM1);
Mem.Map(0x2000, 0x0800, RAM2);
Mem.Map(0x0040, 0x00c0, RAM2); // page 0 shadow
Mem.Map(0x0140, 0x00c0, RAM2); // page 1 shadow
Mem.Map(0x2800, 0x0800, RAM2); // shadow1
Mem.Map(0x3000, 0x0800, RAM2); // shadow2
Mem.Map(0x3800, 0x0800, RAM2); // shadow3
BIOS = input.ReadOptionalBios7800();
HSC = input.ReadOptionalHSC7800();
if (HSC != null)
{
Mem.Map(0x1000, 0x800, HSC.SRAM);
Mem.Map(0x3000, 0x1000, HSC);
}
Cart = input.ReadCart(this);
Mem.Map(0x4000, 0xc000, Cart);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
output.Write(Mem);
output.Write(CPU);
output.Write(Maria);
output.Write(PIA);
output.Write(RAM1);
output.Write(RAM2);
output.WriteOptional(BIOS);
output.WriteOptional(HSC);
output.Write(Cart);
}
#endregion
#region Helpers
[System.Diagnostics.Conditional("DEBUG")]
void AssertDebug(bool cond)
{
if (!cond)
System.Diagnostics.Debugger.Break();
}
#endregion
}
}

View File

@ -1,30 +0,0 @@
namespace EMU7800.Core
{
public sealed class Machine7800NTSC : Machine7800
{
public override string ToString()
{
return GetType().Name;
}
public Machine7800NTSC(Cart cart, Bios7800 bios, HSC7800 hsc, ILogger logger)
: base(cart, bios, hsc, logger, 262, 16, 60, 31440 /* NTSC_SAMPLES_PER_SEC */, MariaTables.NTSCPalette)
{
}
#region Serialization Members
public Machine7800NTSC(DeserializationContext input) : base(input, MariaTables.NTSCPalette, 262)
{
input.CheckVersion(1);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
}
#endregion
}
}

View File

@ -1,30 +0,0 @@
namespace EMU7800.Core
{
public sealed class Machine7800PAL : Machine7800
{
public override string ToString()
{
return GetType().Name;
}
public Machine7800PAL(Cart cart, Bios7800 bios, HSC7800 hsc, ILogger logger)
: base(cart, bios, hsc, logger, 312, 34, 50, 31200 /* PAL_SAMPLES_PER_SEC */, MariaTables.PALPalette)
{
}
#region Serialization Members
public Machine7800PAL(DeserializationContext input) : base(input, MariaTables.PALPalette, 312)
{
input.CheckVersion(1);
}
public override void GetObjectData(SerializationContext output)
{
base.GetObjectData(output);
output.WriteVersion(1);
}
#endregion
}
}

View File

@ -1,331 +0,0 @@
/*
/*
* MachineBase.cs
*
* Abstraction of an emulated machine.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
using System;
using System.IO;
using System.Reflection;
namespace EMU7800.Core
{
public abstract class MachineBase
{
#region Fields
ILogger _Logger;
FrameBuffer _FrameBuffer;
bool _MachineHalt;
int _FrameHZ;
readonly int _VisiblePitch, _Scanlines;
protected Cart Cart { get; set; }
#endregion
#region Internal Properties
internal FrameBuffer FrameBuffer
{
get
{
AssertDebug(_FrameBuffer != null);
return _FrameBuffer;
}
}
#endregion
#region Public Properties
/// <summary>
/// The machine's Central Processing Unit.
/// </summary>
public M6502 CPU { get; protected set; }
/// <summary>
/// The machine's Address Space.
/// </summary>
public AddressSpace Mem { get; protected set; }
/// <summary>
/// The machine's Peripheral Interface Adaptor device.
/// </summary>
public PIA PIA { get; protected set; }
/// <summary>
/// Reports whether the machine has been halted due to an internal condition or error.
/// </summary>
public bool MachineHalt
{
get { return _MachineHalt; }
internal set { if (value) _MachineHalt = true; }
}
/// <summary>
/// The machine input state.
/// </summary>
public InputState InputState { get; private set; }
/// <summary>
/// The current frame number.
/// </summary>
public long FrameNumber { get; private set; }
/// <summary>
/// The first scanline that is visible.
/// </summary>
public int FirstScanline { get; private set; }
/// <summary>
/// Frame rate.
/// </summary>
public int FrameHZ
{
get { return _FrameHZ < 1 ? 1 : _FrameHZ; }
set { _FrameHZ = value < 1 ? 1 : value; }
}
/// <summary>
/// Number of sound samples per second.
/// </summary>
public int SoundSampleFrequency { get; private set; }
/// <summary>
/// The color palette for the configured machine.
/// </summary>
public int[] Palette { get; internal set; }
/// <summary>
/// Dumps CPU registers to the log when NOP instructions are encountered.
/// </summary>
public bool NOPRegisterDumping { get; set; }
/// <summary>
/// The configured logger sink.
/// </summary>
public ILogger Logger
{
get { return _Logger ?? (_Logger = new NullLogger()); }
set { _Logger = value; }
}
#endregion
#region Public Methods
/// <summary>
/// Creates an instance of the specified machine.
/// </summary>
/// <param name="machineType"></param>
/// <param name="cart"></param>
/// <param name="bios">7800 BIOS, optional.</param>
/// <param name="hsc">7800 High Score cart, optional.</param>
/// <param name="p1">Left controller, optional.</param>
/// <param name="p2">Right controller, optional.</param>
/// <param name="logger"></param>
/// <exception cref="ArgumentNullException">Cart must not be null.</exception>
/// <exception cref="Emu7800Exception">Specified MachineType is unexpected.</exception>
public static MachineBase Create(MachineType machineType, Cart cart, Bios7800 bios, HSC7800 hsc, Controller p1, Controller p2, ILogger logger)
{
if (cart == null)
throw new ArgumentNullException("cart");
MachineBase m;
switch (machineType)
{
case MachineType.A2600NTSC:
m = new Machine2600NTSC(cart, logger);
break;
case MachineType.A2600PAL:
m = new Machine2600PAL(cart, logger);
break;
case MachineType.A7800NTSC:
m = new Machine7800NTSC(cart, bios, hsc, logger);
break;
case MachineType.A7800PAL:
m = new Machine7800PAL(cart, bios, hsc, logger);
break;
default:
throw new Emu7800Exception("Unexpected MachineType: " + machineType);
}
m.InputState.LeftControllerJack = p1;
m.InputState.RightControllerJack = p2;
m.Reset();
return m;
}
/// <summary>
/// Deserialize a <see cref="MachineBase"/> from the specified stream.
/// </summary>
/// <param name="binaryReader"/>
/// <exception cref="ArgumentNullException"/>
/// <exception cref="Emu7800SerializationException"/>
public static MachineBase Deserialize(BinaryReader binaryReader)
{
var context = new DeserializationContext(binaryReader);
MachineBase m;
try
{
m = context.ReadMachine();
}
catch (Emu7800SerializationException)
{
throw;
}
catch (TargetInvocationException ex)
{
// TargetInvocationException wraps exceptions that unwind an Activator.CreateInstance() frame.
throw new Emu7800SerializationException("Serialization stream does not describe a valid machine.", ex.InnerException);
}
catch (Exception ex)
{
throw new Emu7800SerializationException("Serialization stream does not describe a valid machine.", ex);
}
return m;
}
/// <summary>
/// Resets the state of the machine.
/// </summary>
public virtual void Reset()
{
Logger.WriteLine("Machine {0} reset ({1} HZ {2} scanlines)", this, FrameHZ, _Scanlines);
FrameNumber = 0;
_MachineHalt = false;
InputState.ClearAllInput();
}
/// <summary>
/// Computes the next machine frame, updating contents of the provided <see cref="FrameBuffer"/>.
/// </summary>
/// <param name="frameBuffer">The framebuffer to contain the computed output.</param>
/// <exception cref="ArgumentNullException"></exception>
/// <exception cref="ArgumentException">frameBuffer is incompatible with machine.</exception>
public virtual void ComputeNextFrame(FrameBuffer frameBuffer)
{
if (MachineHalt)
return;
InputState.CaptureInputState();
_FrameBuffer = frameBuffer;
FrameNumber++;
for (var i = 0; i < _FrameBuffer.SoundBufferElementLength; i++)
_FrameBuffer.SoundBuffer[i].ClearAll();
}
/// <summary>
/// Create a <see cref="FrameBuffer"/> with compatible dimensions for this machine.
/// </summary>
public FrameBuffer CreateFrameBuffer()
{
var fb = new FrameBuffer(_VisiblePitch, _Scanlines);
return fb;
}
/// <summary>
/// Serialize the state of the machine to the specified stream.
/// </summary>
/// <param name="binaryWriter"/>
/// <exception cref="ArgumentNullException"/>
/// <exception cref="Emu7800SerializationException"/>
public void Serialize(BinaryWriter binaryWriter)
{
var context = new SerializationContext(binaryWriter);
try
{
context.Write(this);
}
catch (Emu7800SerializationException)
{
throw;
}
catch (Exception ex)
{
throw new Emu7800SerializationException("Problem serializing specified machine.", ex);
}
}
#endregion
#region Constructors
private MachineBase()
{
}
protected MachineBase(ILogger logger, int scanLines, int firstScanline, int fHZ, int soundSampleFreq, int[] palette, int vPitch) : this()
{
InputState = new InputState();
Logger = logger;
_Scanlines = scanLines;
FirstScanline = firstScanline;
FrameHZ = fHZ;
SoundSampleFrequency = soundSampleFreq;
Palette = palette;
_VisiblePitch = vPitch;
}
#endregion
#region Serialization Members
protected MachineBase(DeserializationContext input, int[] palette)
{
if (input == null)
throw new ArgumentNullException("input");
if (palette == null)
throw new ArgumentNullException("palette");
if (palette.Length != 0x100)
throw new ArgumentException("palette incorrect size, must be 256.");
input.CheckVersion(1);
_MachineHalt = input.ReadBoolean();
_FrameHZ = input.ReadInt32();
_VisiblePitch = input.ReadInt32();
_Scanlines = input.ReadInt32();
FirstScanline = input.ReadInt32();
SoundSampleFrequency = input.ReadInt32();
NOPRegisterDumping = input.ReadBoolean();
InputState = input.ReadInputState();
Palette = palette;
Logger = null;
}
public virtual void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(_MachineHalt);
output.Write(_FrameHZ);
output.Write(_VisiblePitch);
output.Write(_Scanlines);
output.Write(FirstScanline);
output.Write(SoundSampleFrequency);
output.Write(NOPRegisterDumping);
output.Write(InputState);
}
#endregion
[System.Diagnostics.Conditional("DEBUG")]
void AssertDebug(bool cond)
{
if (!cond)
System.Diagnostics.Debugger.Break();
}
}
}

View File

@ -1,42 +0,0 @@
/*
* HostInput.cs
*
* Copyright © 2009 Mike Murphy
*
*/
namespace EMU7800.Core
{
public enum MachineInput
{
End,
Pause,
Mute,
Fire,
Fire2,
Left,
Right,
Up,
Down,
NumPad1, NumPad2, NumPad3,
NumPad4, NumPad5, NumPad6,
NumPad7, NumPad8, NumPad9,
NumPadMult, NumPad0, NumPadHash,
Driving0, Driving1, Driving2, Driving3,
Reset,
Select,
Color,
LeftDifficulty,
RightDifficulty,
SetKeyboardToPlayer1,
SetKeyboardToPlayer2,
SetKeyboardToPlayer3,
SetKeyboardToPlayer4,
PanLeft, PanRight, PanUp, PanDown,
SaveMachine,
TakeScreenshot,
LeftPaddleSwap,
GameControllerSwap,
RightPaddleSwap,
ShowFrameStats,
}
}

View File

@ -1,19 +0,0 @@
/*
* MachineType.cs
*
* The set of known machines.
*
* Copyright © 2010 Mike Murphy
*
*/
namespace EMU7800.Core
{
public enum MachineType
{
None,
A2600NTSC,
A2600PAL,
A7800NTSC,
A7800PAL
};
}

File diff suppressed because it is too large Load Diff

View File

@ -1,180 +0,0 @@
/*
* MariaTables.cs
*
* Palette tables for the Maria class.
* All derived from Dan Boris' 7800/MAME code.
*
* Copyright © 2004 Mike Murphy
*
*/
namespace EMU7800.Core
{
public static class MariaTables
{
public static readonly int[] NTSCPalette =
{
0x000000, 0x1c1c1c, 0x393939, 0x595959, // Grey
0x797979, 0x929292, 0xababab, 0xbcbcbc,
0xcdcdcd, 0xd9d9d9, 0xe6e6e6, 0xececec,
0xf2f2f2, 0xf8f8f8, 0xffffff, 0xffffff,
0x391701, 0x5e2304, 0x833008, 0xa54716, // Gold
0xc85f24, 0xe37820, 0xff911d, 0xffab1d,
0xffc51d, 0xffce34, 0xffd84c, 0xffe651,
0xfff456, 0xfff977, 0xffff98, 0xffff98,
0x451904, 0x721e11, 0x9f241e, 0xb33a20, // Orange
0xc85122, 0xe36920, 0xff811e, 0xff8c25,
0xff982c, 0xffae38, 0xffc545, 0xffc559,
0xffc66d, 0xffd587, 0xffe4a1, 0xffe4a1,
0x4a1704, 0x7e1a0d, 0xb21d17, 0xc82119, // Red Orange
0xdf251c, 0xec3b38, 0xfa5255, 0xfc6161,
0xff706e, 0xff7f7e, 0xff8f8f, 0xff9d9e,
0xffabad, 0xffb9bd, 0xffc7ce, 0xffc7ce,
0x050568, 0x3b136d, 0x712272, 0x8b2a8c, // Pink
0xa532a6, 0xb938ba, 0xcd3ecf, 0xdb47dd,
0xea51eb, 0xf45ff5, 0xfe6dff, 0xfe7afd,
0xff87fb, 0xff95fd, 0xffa4ff, 0xffa4ff,
0x280479, 0x400984, 0x590f90, 0x70249d, // Purple
0x8839aa, 0xa441c3, 0xc04adc, 0xd054ed,
0xe05eff, 0xe96dff, 0xf27cff, 0xf88aff,
0xff98ff, 0xfea1ff, 0xfeabff, 0xfeabff,
0x35088a, 0x420aad, 0x500cd0, 0x6428d0, // Purple Blue
0x7945d0, 0x8d4bd4, 0xa251d9, 0xb058ec,
0xbe60ff, 0xc56bff, 0xcc77ff, 0xd183ff,
0xd790ff, 0xdb9dff, 0xdfaaff, 0xdfaaff,
0x051e81, 0x0626a5, 0x082fca, 0x263dd4, // Blue1
0x444cde, 0x4f5aee, 0x5a68ff, 0x6575ff,
0x7183ff, 0x8091ff, 0x90a0ff, 0x97a9ff,
0x9fb2ff, 0xafbeff, 0xc0cbff, 0xc0cbff,
0x0c048b, 0x2218a0, 0x382db5, 0x483ec7, // Blue2
0x584fda, 0x6159ec, 0x6b64ff, 0x7a74ff,
0x8a84ff, 0x918eff, 0x9998ff, 0xa5a3ff,
0xb1aeff, 0xb8b8ff, 0xc0c2ff, 0xc0c2ff,
0x1d295a, 0x1d3876, 0x1d4892, 0x1c5cac, // Light Blue
0x1c71c6, 0x3286cf, 0x489bd9, 0x4ea8ec,
0x55b6ff, 0x70c7ff, 0x8cd8ff, 0x93dbff,
0x9bdfff, 0xafe4ff, 0xc3e9ff, 0xc3e9ff,
0x2f4302, 0x395202, 0x446103, 0x417a12, // Turquoise
0x3e9421, 0x4a9f2e, 0x57ab3b, 0x5cbd55,
0x61d070, 0x69e27a, 0x72f584, 0x7cfa8d,
0x87ff97, 0x9affa6, 0xadffb6, 0xadffb6,
0x0a4108, 0x0d540a, 0x10680d, 0x137d0f, // Green Blue
0x169212, 0x19a514, 0x1cb917, 0x1ec919,
0x21d91b, 0x47e42d, 0x6ef040, 0x78f74d,
0x83ff5b, 0x9aff7a, 0xb2ff9a, 0xb2ff9a,
0x04410b, 0x05530e, 0x066611, 0x077714, // Green
0x088817, 0x099b1a, 0x0baf1d, 0x48c41f,
0x86d922, 0x8fe924, 0x99f927, 0xa8fc41,
0xb7ff5b, 0xc9ff6e, 0xdcff81, 0xdcff81,
0x02350f, 0x073f15, 0x0c4a1c, 0x2d5f1e, // Yellow Green
0x4f7420, 0x598324, 0x649228, 0x82a12e,
0xa1b034, 0xa9c13a, 0xb2d241, 0xc4d945,
0xd6e149, 0xe4f04e, 0xf2ff53, 0xf2ff53,
0x263001, 0x243803, 0x234005, 0x51541b, // Orange Green
0x806931, 0x978135, 0xaf993a, 0xc2a73e,
0xd5b543, 0xdbc03d, 0xe1cb38, 0xe2d836,
0xe3e534, 0xeff258, 0xfbff7d, 0xfbff7d,
0x401a02, 0x581f05, 0x702408, 0x8d3a13, // Light Orange
0xab511f, 0xb56427, 0xbf7730, 0xd0853a,
0xe19344, 0xeda04e, 0xf9ad58, 0xfcb75c,
0xffc160, 0xffc671, 0xffcb83, 0xffcb83
};
public static readonly int[] PALPalette =
{
0x000000, 0x1c1c1c, 0x393939, 0x595959, // Grey
0x797979, 0x929292, 0xababab, 0xbcbcbc,
0xcdcdcd, 0xd9d9d9, 0xe6e6e6, 0xececec,
0xf2f2f2, 0xf8f8f8, 0xffffff, 0xffffff,
0x263001, 0x243803, 0x234005, 0x51541b, // Orange Green
0x806931, 0x978135, 0xaf993a, 0xc2a73e,
0xd5b543, 0xdbc03d, 0xe1cb38, 0xe2d836,
0xe3e534, 0xeff258, 0xfbff7d, 0xfbff7d,
0x263001, 0x243803, 0x234005, 0x51541b, // Orange Green
0x806931, 0x978135, 0xaf993a, 0xc2a73e,
0xd5b543, 0xdbc03d, 0xe1cb38, 0xe2d836,
0xe3e534, 0xeff258, 0xfbff7d, 0xfbff7d,
0x401a02, 0x581f05, 0x702408, 0x8d3a13, // Light Orange
0xab511f, 0xb56427, 0xbf7730, 0xd0853a,
0xe19344, 0xeda04e, 0xf9ad58, 0xfcb75c,
0xffc160, 0xffc671, 0xffcb83, 0xffcb83,
0x391701, 0x5e2304, 0x833008, 0xa54716, // Gold
0xc85f24, 0xe37820, 0xff911d, 0xffab1d,
0xffc51d, 0xffce34, 0xffd84c, 0xffe651,
0xfff456, 0xfff977, 0xffff98, 0xffff98,
0x451904, 0x721e11, 0x9f241e, 0xb33a20, // Orange
0xc85122, 0xe36920, 0xff811e, 0xff8c25,
0xff982c, 0xffae38, 0xffc545, 0xffc559,
0xffc66d, 0xffd587, 0xffe4a1, 0xffe4a1,
0x4a1704, 0x7e1a0d, 0xb21d17, 0xc82119, // Red Orange
0xdf251c, 0xec3b38, 0xfa5255, 0xfc6161,
0xff706e, 0xff7f7e, 0xff8f8f, 0xff9d9e,
0xffabad, 0xffb9bd, 0xffc7ce, 0xffc7ce,
0x050568, 0x3b136d, 0x712272, 0x8b2a8c, // Pink
0xa532a6, 0xb938ba, 0xcd3ecf, 0xdb47dd,
0xea51eb, 0xf45ff5, 0xfe6dff, 0xfe7afd,
0xff87fb, 0xff95fd, 0xffa4ff, 0xffa4ff,
0x280479, 0x400984, 0x590f90, 0x70249d, // Purple
0x8839aa, 0xa441c3, 0xc04adc, 0xd054ed,
0xe05eff, 0xe96dff, 0xf27cff, 0xf88aff,
0xff98ff, 0xfea1ff, 0xfeabff, 0xfeabff,
0x051e81, 0x0626a5, 0x082fca, 0x263dd4, // Blue1
0x444cde, 0x4f5aee, 0x5a68ff, 0x6575ff,
0x7183ff, 0x8091ff, 0x90a0ff, 0x97a9ff,
0x9fb2ff, 0xafbeff, 0xc0cbff, 0xc0cbff,
0x0c048b, 0x2218a0, 0x382db5, 0x483ec7, // Blue2
0x584fda, 0x6159ec, 0x6b64ff, 0x7a74ff,
0x8a84ff, 0x918eff, 0x9998ff, 0xa5a3ff,
0xb1aeff, 0xb8b8ff, 0xc0c2ff, 0xc0c2ff,
0x1d295a, 0x1d3876, 0x1d4892, 0x1c5cac, // Light Blue
0x1c71c6, 0x3286cf, 0x489bd9, 0x4ea8ec,
0x55b6ff, 0x70c7ff, 0x8cd8ff, 0x93dbff,
0x9bdfff, 0xafe4ff, 0xc3e9ff, 0xc3e9ff,
0x2f4302, 0x395202, 0x446103, 0x417a12, // Turquoise
0x3e9421, 0x4a9f2e, 0x57ab3b, 0x5cbd55,
0x61d070, 0x69e27a, 0x72f584, 0x7cfa8d,
0x87ff97, 0x9affa6, 0xadffb6, 0xadffb6,
0x0a4108, 0x0d540a, 0x10680d, 0x137d0f, // Green Blue
0x169212, 0x19a514, 0x1cb917, 0x1ec919,
0x21d91b, 0x47e42d, 0x6ef040, 0x78f74d,
0x83ff5b, 0x9aff7a, 0xb2ff9a, 0xb2ff9a,
0x04410b, 0x05530e, 0x066611, 0x077714, // Green
0x088817, 0x099b1a, 0x0baf1d, 0x48c41f,
0x86d922, 0x8fe924, 0x99f927, 0xa8fc41,
0xb7ff5b, 0xc9ff6e, 0xdcff81, 0xdcff81,
0x02350f, 0x073f15, 0x0c4a1c, 0x2d5f1e, // Yellow Green
0x4f7420, 0x598324, 0x649228, 0x82a12e,
0xa1b034, 0xa9c13a, 0xb2d241, 0xc4d945,
0xd6e149, 0xe4f04e, 0xf2ff53, 0xf2ff53
};
}
}

View File

@ -1,78 +0,0 @@
/*
* NullDevice.cs
*
* Default memory mappable device.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class NullDevice : IDevice
{
MachineBase M { get; set; }
#region IDevice Members
public void Reset()
{
Log("{0} reset", this);
}
public byte this[ushort addr]
{
get
{
LogDebug("NullDevice: Peek at ${0:x4}, PC=${1:x4}", addr, M.CPU.PC);
return 0;
}
set
{
LogDebug("NullDevice: Poke at ${0:x4},${1:x2}, PC=${2:x4}", addr, value, M.CPU.PC);
}
}
#endregion
public override String ToString()
{
return "NullDevice";
}
#region Constructors
private NullDevice()
{
}
public NullDevice(MachineBase m)
{
if (m == null)
throw new ArgumentNullException("m");
M = m;
}
#endregion
#region Helpers
void Log(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
[System.Diagnostics.Conditional("DEBUG")]
void LogDebug(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
#endregion
}
}

View File

@ -1,21 +0,0 @@
namespace EMU7800.Core
{
public class NullLogger : ILogger
{
public void WriteLine(string format, params object[] args)
{
}
public void WriteLine(object value)
{
}
public void Write(string format, params object[] args)
{
}
public void Write(object value)
{
}
}
}

View File

@ -1,348 +0,0 @@
/*
* PIA.cs
*
* The Peripheral Interface Adapter (6532) device.
* a.k.a. RIOT (RAM I/O Timer?)
*
* Copyright © 2003, 2004, 2012 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class PIA : IDevice
{
readonly MachineBase M;
readonly byte[] RAM = new byte[0x80];
ulong TimerTarget;
int TimerShift;
bool IRQEnabled, IRQTriggered;
public byte DDRA { get; private set; }
public byte DDRB { get; private set; }
public byte WrittenPortA { get; private set; }
public byte WrittenPortB { get; private set; }
#region IDevice Members
public void Reset()
{
// Some games will loop/hang on $0284 if these are initialized to zero
TimerShift = 10;
TimerTarget = M.CPU.Clock + (ulong)(0xff << TimerShift);
IRQEnabled = false;
IRQTriggered = false;
DDRA = 0;
Log("{0} reset", this);
}
public byte this[ushort addr]
{
get { return peek(addr); }
set { poke(addr, value); }
}
#endregion
public override string ToString()
{
return "PIA/RIOT M6532";
}
#region Constructors
private PIA()
{
}
public PIA(MachineBase m)
{
if (m == null)
throw new ArgumentNullException("m");
M = m;
}
#endregion
byte peek(ushort addr)
{
if ((addr & 0x200) == 0)
{
return RAM[addr & 0x7f];
}
switch ((byte)(addr & 7))
{
case 0: // SWCHA: Controllers
return ReadPortA();
case 1: // SWCHA DDR: 0=input, 1=output
return DDRA;
case 2: // SWCHB: Console switches (on 7800, PB2 & PB4 are used)
return ReadPortB();
case 3: // SWCHB DDR: 0=input, 1=output
return 0;
case 4: // INTIM
case 6:
return ReadTimerRegister();
case 5: // INTFLG
case 7:
return ReadInterruptFlag();
default:
LogDebug("PIA: Unhandled peek ${0:x4}, PC=${1:x4}", addr, M.CPU.PC);
return 0;
}
}
void poke(ushort addr, byte data)
{
if ((addr & 0x200) == 0)
{
RAM[addr & 0x7f] = data;
return;
}
// A2 Distinguishes I/O registers from the Timer
if ((addr & 0x04) != 0)
{
if ((addr & 0x10) != 0)
{
IRQEnabled = (addr & 0x08) != 0;
SetTimerRegister(data, addr & 3);
}
else
{
LogDebug("PIA: Timer: Unhandled poke ${0:x4} w/${1:x2}, PC=${2:x4}", addr, data, M.CPU.PC);
}
}
else
{
switch ((byte)(addr & 3))
{
case 0: // SWCHA: Port A
WritePortA(data);
break;
case 1: // SWACNT: Port A DDR
DDRA = data;
break;
case 2: // SWCHB: Port B
WritePortB(data);
break;
case 3: // SWBCNT: Port B DDR
DDRB = data;
break;
}
}
}
// 0: TIM1T: set 1 clock interval ( 838 nsec/interval)
// 1: TIM8T: set 8 clock interval ( 6.7 usec/interval)
// 2: TIM64T: set 64 clock interval ( 53.6 usec/interval)
// 3: T1024T: set 1024 clock interval (858.2 usec/interval)
void SetTimerRegister(byte data, int interval)
{
IRQTriggered = false;
TimerShift = new[] { 0, 3, 6, 10 }[interval];
TimerTarget = M.CPU.Clock + (ulong)(data << TimerShift);
}
byte ReadTimerRegister()
{
IRQTriggered = false;
var delta = (int)(TimerTarget - M.CPU.Clock);
if (delta >= 0)
{
return (byte)(delta >> TimerShift);
}
if (delta != -1)
{
IRQTriggered = true;
}
return (byte)(delta >= -256 ? delta : 0);
}
byte ReadInterruptFlag()
{
var delta = (int)(TimerTarget - M.CPU.Clock);
return (byte)((delta >= 0 || IRQEnabled && IRQTriggered) ? 0x00 : 0x80);
}
// PortA: Controller Jacks
//
// Left Jack Right Jack
// ------------- -------------
// \ 1 2 3 4 5 / \ 1 2 3 4 5 /
// \ 6 7 8 9 / \ 6 7 8 9 /
// --------- ---------
//
// pin 1 D4 PIA SWCHA D0 PIA SWCHA
// pin 2 D5 PIA SWCHA D1 PIA SWCHA
// pin 3 D6 PIA SWCHA D2 PIA SWCHA
// pin 4 D7 PIA SWCHA D3 PIA SWCHA
// pin 5 D7 TIA INPT1 (Dumped) D7 TIA INPT3 (Dumped) 7800: Right Fire
// pin 6 D7 TIA INPT4 (Latched) D7 TIA INPT5 (Latched) 2600: Fire
// pin 7 +5 +5
// pin 8 GND GND
// pin 9 D7 TIA INPT0 (Dumped) D7 TIA INPT2 (Dumped) 7800: Left Fire
//
byte ReadPortA()
{
var porta = 0;
var mi = M.InputState;
switch (mi.LeftControllerJack)
{
case Controller.Joystick:
case Controller.ProLineJoystick:
case Controller.BoosterGrip:
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Up) ? 0 : (1 << 4);
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Down) ? 0 : (1 << 5);
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Left) ? 0 : (1 << 6);
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Right) ? 0 : (1 << 7);
break;
case Controller.Driving:
porta |= mi.SampleCapturedDrivingState(0) << 4;
break;
case Controller.Paddles:
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Trigger) ? 0 : (1 << 7);
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Trigger) ? 0 : (1 << 6);
break;
case Controller.Lightgun:
porta |= mi.SampleCapturedControllerActionState(0, ControllerAction.Trigger) ? (1 << 4) : 0;
break;
}
switch (mi.RightControllerJack)
{
case Controller.Joystick:
case Controller.ProLineJoystick:
case Controller.BoosterGrip:
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Up) ? 0 : (1 << 0);
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Down) ? 0 : (1 << 1);
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Left) ? 0 : (1 << 2);
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Right) ? 0 : (1 << 3);
break;
case Controller.Driving:
porta |= mi.SampleCapturedDrivingState(1);
break;
case Controller.Paddles:
porta |= mi.SampleCapturedControllerActionState(2, ControllerAction.Trigger) ? 0 : (1 << 3);
porta |= mi.SampleCapturedControllerActionState(3, ControllerAction.Trigger) ? 0 : (1 << 2);
break;
case Controller.Lightgun:
porta |= mi.SampleCapturedControllerActionState(1, ControllerAction.Trigger) ? (1 << 0) : 0;
break;
}
return (byte)porta;
}
void WritePortA(byte porta)
{
WrittenPortA = (byte)((porta & DDRA) | (WrittenPortA & (~DDRA)));
}
void WritePortB(byte portb)
{
WrittenPortB = (byte)((portb & DDRB) | (WrittenPortB & (~DDRB)));
}
// PortB: Console Switches
//
// D0 Game Reset 0=on
// D1 Game Select 0=on
// D2 (used on 7800)
// D3 Console Color 1=Color, 0=B/W
// D4 (used on 7800)
// D5 (unused)
// D6 Left Difficulty A 1=A (pro), 0=B (novice)
// D7 Right Difficulty A 1=A (pro), 0=B (novice)
//
byte ReadPortB()
{
var portb = 0;
var mi = M.InputState;
portb |= mi.SampleCapturedConsoleSwitchState(ConsoleSwitch.GameReset) ? 0 : (1 << 0);
portb |= mi.SampleCapturedConsoleSwitchState(ConsoleSwitch.GameSelect) ? 0 : (1 << 1);
portb |= mi.SampleCapturedConsoleSwitchState(ConsoleSwitch.GameBW) ? 0 : (1 << 3);
portb |= mi.SampleCapturedConsoleSwitchState(ConsoleSwitch.LeftDifficultyA) ? (1 << 6) : 0;
portb |= mi.SampleCapturedConsoleSwitchState(ConsoleSwitch.RightDifficultyA) ? (1 << 7) : 0;
return (byte)portb;
}
#region Serialization Members
public PIA(DeserializationContext input, MachineBase m) : this(m)
{
if (input == null)
throw new ArgumentNullException("input");
var version = input.CheckVersion(1, 2);
RAM = input.ReadExpectedBytes(0x80);
TimerTarget = input.ReadUInt64();
TimerShift = input.ReadInt32();
IRQEnabled = input.ReadBoolean();
IRQTriggered = input.ReadBoolean();
DDRA = input.ReadByte();
WrittenPortA = input.ReadByte();
if (version > 1)
{
DDRB = input.ReadByte();
WrittenPortB = input.ReadByte();
}
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(2);
output.Write(RAM);
output.Write(TimerTarget);
output.Write(TimerShift);
output.Write(IRQEnabled);
output.Write(IRQTriggered);
output.Write(DDRA);
output.Write(WrittenPortA);
output.Write(DDRB);
output.Write(WrittenPortB);
}
#endregion
#region Helpers
void Log(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
[System.Diagnostics.Conditional("DEBUG")]
void LogDebug(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
[System.Diagnostics.Conditional("DEBUG")]
void AssertDebug(bool cond)
{
if (!cond)
System.Diagnostics.Debugger.Break();
}
#endregion
}
}

View File

@ -1,437 +0,0 @@
/*
* PokeySound.cs
*
* Emulation of the audio features of the Atari Pot Keyboard Integrated Circuit (POKEY, C012294).
*
* Implementation inspired by prior works of Greg Stanton (ProSystem Emulator) and Ron Fries.
*
* Copyright © 2012 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class PokeySound
{
#region Constants and Tables
const int
AUDF1 = 0x00, // write reg: channel 1 frequency
AUDC1 = 0x01, // write reg: channel 1 generator
AUDF2 = 0x02, // write reg: channel 2 frequency
AUDC2 = 0x03, // write reg: channel 2 generator
AUDF3 = 0x04, // write reg: channel 3 frequency
AUDC3 = 0x05, // write reg: channel 3 generator
AUDF4 = 0x06, // write reg: channel 4 frequency
AUDC4 = 0x07, // write reg: channel 4 generator
AUDCTL = 0x08, // write reg: control over audio channels
SKCTL = 0x0f, // write reg: control over serial port
RANDOM = 0x0a; // read reg: random number generator value
const int
AUDCTL_POLY9 = 0x80, // make 17-bit poly counter into a 9-bit poly counter
AUDCTL_CH1_179 = 0x40, // clocks channel 1 with 1.79 MHz, instead of 64 kHz
AUDCTL_CH3_179 = 0x20, // clocks channel 3 with 1.79 MHz, instead of 64 kHz
AUDCTL_CH1_CH2 = 0x10, // clock channel 2 with channel 1, instead of 64 kHz (16-bit)
AUDCTL_CH3_CH4 = 0x08, // clock channel 4 with channel 3, instead of 64 kHz (16-bit)
AUDCTL_CH1_FILTER = 0x04, // inserts high-pass filter into channel 1, clocked by channel 3
AUDCTL_CH2_FILTER = 0x02, // inserts high-pass filter into channel 2, clocked by channel 4
AUDCTL_CLOCK_15 = 0x01; // change normal clock base from 64 kHz to 15 kHz
const int
AUDC_NOTPOLY5 = 0x80,
AUDC_POLY4 = 0x40,
AUDC_PURE = 0x20,
AUDC_VOLUME_ONLY = 0x10,
AUDC_VOLUME_MASK = 0x0f;
const int
DIV_64 = 28,
DIV_15 = 114,
POLY9_SIZE = 0x01ff,
POLY17_SIZE = 0x0001ffff,
POKEY_FREQ = 1787520,
SKCTL_RESET = 3;
const int CPU_TICKS_PER_AUDIO_SAMPLE = 57;
readonly byte[] _poly04 = { 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 };
readonly byte[] _poly05 = { 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1 };
readonly byte[] _poly17 = new byte[POLY9_SIZE]; // should be POLY17_SIZE, but instead wrapping around to conserve storage
readonly Random _random = new Random();
#endregion
#region Object State
readonly MachineBase M;
readonly int _pokeyTicksPerSample;
int _pokeyTicks;
ulong _lastUpdateCpuClock;
int _bufferIndex;
readonly byte[] _audf = new byte[4];
readonly byte[] _audc = new byte[4];
byte _audctl, _skctl;
int _baseMultiplier;
int _poly04Counter;
int _poly05Counter;
int _poly17Counter, _poly17Size;
readonly int[] _divideMax = new int[4];
readonly int[] _divideCount = new int[4];
readonly byte[] _output = new byte[4];
readonly byte[] _outvol = new byte[4];
#endregion
#region Public Members
public void Reset()
{
_poly04Counter = _poly05Counter = _poly17Counter = _audctl = _skctl = 0;
_baseMultiplier = DIV_64;
_poly17Size = POLY17_SIZE;
_pokeyTicks = 0;
for (var ch = 0; ch < 4; ch++)
{
_outvol[ch] = _output[ch] = _audc[ch] = _audf[ch] = 0;
_divideCount[ch] = Int32.MaxValue;
_divideMax[ch] = Int32.MaxValue;
}
}
public void StartFrame()
{
_lastUpdateCpuClock = M.CPU.Clock;
_bufferIndex = 0;
}
public void EndFrame()
{
RenderSamples(M.FrameBuffer.SoundBufferByteLength - _bufferIndex);
}
public byte Read(ushort addr)
{
addr &= 0xf;
switch (addr)
{
// If the 2 least significant bits of SKCTL are 0, the random number generator is disabled (return all 1s.)
// Ballblazer music relies on this.
case RANDOM:
return (_skctl & SKCTL_RESET) == 0 ? (byte)0xff : (byte)_random.Next(0xff);
default:
return 0;
}
}
public void Update(ushort addr, byte data)
{
if (M.CPU.Clock > _lastUpdateCpuClock)
{
var updCpuClocks = (int)(M.CPU.Clock - _lastUpdateCpuClock);
var samples = updCpuClocks / CPU_TICKS_PER_AUDIO_SAMPLE;
RenderSamples(samples);
_lastUpdateCpuClock += (ulong)(samples * CPU_TICKS_PER_AUDIO_SAMPLE);
}
addr &= 0xf;
switch (addr)
{
case AUDF1:
_audf[0] = data;
ResetChannel1();
if ((_audctl & AUDCTL_CH1_CH2) != 0)
ResetChannel2();
break;
case AUDC1:
_audc[0] = data;
ResetChannel1();
break;
case AUDF2:
_audf[1] = data;
ResetChannel2();
break;
case AUDC2:
_audc[1] = data;
ResetChannel2();
break;
case AUDF3:
_audf[2] = data;
ResetChannel3();
if ((_audctl & AUDCTL_CH3_CH4) != 0)
ResetChannel4();
break;
case AUDC3:
_audc[2] = data;
ResetChannel3();
break;
case AUDF4:
_audf[3] = data;
ResetChannel4();
break;
case AUDC4:
_audc[3] = data;
ResetChannel4();
break;
case AUDCTL:
_audctl = data;
_poly17Size = ((_audctl & AUDCTL_POLY9) != 0) ? POLY9_SIZE : POLY17_SIZE;
_baseMultiplier = ((_audctl & AUDCTL_CLOCK_15) != 0) ? DIV_15 : DIV_64;
ResetChannel1();
ResetChannel2();
ResetChannel3();
ResetChannel4();
break;
case SKCTL:
_skctl = data;
break;
}
}
#endregion
#region Constructors
private PokeySound()
{
_random.NextBytes(_poly17);
for (var i = 0; i < _poly17.Length; i++)
_poly17[i] &= 0x01;
Reset();
}
public PokeySound(MachineBase m) : this()
{
if (m == null)
throw new ArgumentNullException("m");
M = m;
// Add 8-bits of fractional representation to reduce distortion on output
_pokeyTicksPerSample = (POKEY_FREQ << 8) / M.SoundSampleFrequency;
}
#endregion
#region Serialization Members
public PokeySound(DeserializationContext input, MachineBase m) : this(m)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
_lastUpdateCpuClock = input.ReadUInt64();
_bufferIndex = input.ReadInt32();
_audf = input.ReadBytes();
_audc = input.ReadBytes();
_audctl = input.ReadByte();
_skctl = input.ReadByte();
_output = input.ReadBytes();
_outvol = input.ReadBytes();
_divideMax = input.ReadIntegers(4);
_divideCount = input.ReadIntegers(4);
_pokeyTicks = input.ReadInt32();
_pokeyTicksPerSample = input.ReadInt32();
_baseMultiplier = input.ReadInt32();
_poly04Counter = input.ReadInt32();
_poly05Counter = input.ReadInt32();
_poly17Counter = input.ReadInt32();
_poly17Size = input.ReadInt32();
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(_lastUpdateCpuClock);
output.Write(_bufferIndex);
output.Write(_audf);
output.Write(_audc);
output.Write(_audctl);
output.Write(_skctl);
output.Write(_output);
output.Write(_outvol);
output.Write(_divideMax);
output.Write(_divideCount);
output.Write(_pokeyTicks);
output.Write(_pokeyTicksPerSample);
output.Write(_baseMultiplier);
output.Write(_poly04Counter);
output.Write(_poly05Counter);
output.Write(_poly17Counter);
output.Write(_poly17Size);
}
#endregion
#region Helpers
void RenderSamples(int count)
{
const int POKEY_SAMPLE = 4;
var poly17Length = (_poly17Size > _poly17.Length ? _poly17.Length : _poly17Size);
while (count > 0 && _bufferIndex < M.FrameBuffer.SoundBufferByteLength)
{
var nextEvent = POKEY_SAMPLE;
var wholeTicksToConsume = (_pokeyTicks >> 8);
for (var ch = 0; ch < 4; ch++)
{
if (_divideCount[ch] <= wholeTicksToConsume)
{
wholeTicksToConsume = _divideCount[ch];
nextEvent = ch;
}
}
for (var ch = 0; ch < 4; ch++)
_divideCount[ch] -= wholeTicksToConsume;
_pokeyTicks -= (wholeTicksToConsume << 8);
if (nextEvent == POKEY_SAMPLE)
{
_pokeyTicks += _pokeyTicksPerSample;
byte sample = 0;
for (var ch = 0; ch < 4; ch++)
sample += _outvol[ch];
M.FrameBuffer.SoundBuffer[_bufferIndex >> BufferElement.SHIFT][_bufferIndex++] += sample;
count--;
continue;
}
_divideCount[nextEvent] += _divideMax[nextEvent];
_poly04Counter += wholeTicksToConsume;
_poly04Counter %= _poly04.Length;
_poly05Counter += wholeTicksToConsume;
_poly05Counter %= _poly05.Length;
_poly17Counter += wholeTicksToConsume;
_poly17Counter %= poly17Length;
if ((_audc[nextEvent] & AUDC_NOTPOLY5) != 0 || _poly05[_poly05Counter] != 0)
{
if ((_audc[nextEvent] & AUDC_PURE) != 0)
_output[nextEvent] ^= 1;
else if ((_audc[nextEvent] & AUDC_POLY4) != 0)
_output[nextEvent] = _poly04[_poly04Counter];
else
_output[nextEvent] = _poly17[_poly17Counter];
}
_outvol[nextEvent] = (_output[nextEvent] != 0) ? (byte)(_audc[nextEvent] & AUDC_VOLUME_MASK) : (byte)0;
}
}
// As defined in the manual, the exact divider values are different depending on the frequency and resolution:
// 64 kHz or 15 kHz AUDF + 1
// 1 MHz, 8-bit AUDF + 4
// 1 MHz, 16-bit AUDF[CHAN1] + 256 * AUDF[CHAN2] + 7
void ResetChannel1()
{
var val = ((_audctl & AUDCTL_CH1_179) != 0) ? (_audf[0] + 4) : ((_audf[0] + 1) * _baseMultiplier);
if (val != _divideMax[0])
{
_divideMax[0] = val;
if (val < _divideCount[0])
_divideCount[0] = val;
}
UpdateVolumeSettingsForChannel(0);
}
void ResetChannel2()
{
int val;
if ((_audctl & AUDCTL_CH1_CH2) != 0)
{
val = ((_audctl & AUDCTL_CH1_179) != 0) ? (_audf[1] * 256 + _audf[0] + 7) : ((_audf[1] * 256 + _audf[0] + 1) * _baseMultiplier);
}
else
{
val = ((_audf[1] + 1) * _baseMultiplier);
}
if (val != _divideMax[1])
{
_divideMax[1] = val;
if (val < _divideCount[1])
_divideCount[1] = val;
}
UpdateVolumeSettingsForChannel(1);
}
void ResetChannel3()
{
var val = ((_audctl & AUDCTL_CH3_179) != 0) ? (_audf[2] + 4) : ((_audf[2] + 1) * _baseMultiplier);
if (val != _divideMax[2])
{
_divideMax[2] = val;
if (val < _divideCount[2])
_divideCount[2] = val;
}
UpdateVolumeSettingsForChannel(2);
}
void ResetChannel4()
{
int val;
if ((_audctl & AUDCTL_CH3_CH4) != 0)
{
val = ((_audctl & AUDCTL_CH3_179) != 0) ? (_audf[3] * 256 + _audf[2] + 7) : ((_audf[3] * 256 + _audf[2] + 1) * _baseMultiplier);
}
else
{
val = ((_audf[3] + 1) * _baseMultiplier);
}
if (val != _divideMax[3])
{
_divideMax[3] = val;
if (val < _divideCount[3])
_divideCount[3] = val;
}
UpdateVolumeSettingsForChannel(3);
}
void UpdateVolumeSettingsForChannel(int ch)
{
if (((_audc[ch] & AUDC_VOLUME_ONLY) != 0) || ((_audc[ch] & AUDC_VOLUME_MASK) == 0) || (_divideMax[ch] < (_pokeyTicksPerSample >> 8)))
{
_outvol[ch] = (byte)(_audc[ch] & AUDC_VOLUME_MASK);
_divideCount[ch] = Int32.MaxValue;
_divideMax[ch] = Int32.MaxValue;
}
}
[System.Diagnostics.Conditional("DEBUG")]
void LogDebug(string format, params object[] args)
{
if (M == null || M.Logger == null)
return;
M.Logger.WriteLine(format, args);
}
#endregion
}
}

View File

@ -1,65 +0,0 @@
/*
* RAM6116.cs
*
* Implements a 6116 RAM device found in the 7800.
*
* Copyright © 2004 Mike Murphy
*
*/
using System;
namespace EMU7800.Core
{
public sealed class RAM6116 : IDevice
{
readonly byte[] RAM;
#region IDevice Members
public void Reset() {}
public byte this[ushort addr]
{
get { return RAM[addr & 0x07ff]; }
set { RAM[addr & 0x07ff] = value; }
}
#endregion
#region Constructors
public RAM6116()
{
RAM = new byte[0x800];
}
public RAM6116(byte[] ram)
{
RAM = ram;
}
#endregion
#region Serialization Members
public RAM6116(DeserializationContext input)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
RAM = input.ReadExpectedBytes(0x800);
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(RAM);
}
#endregion
}
}

View File

@ -1,230 +0,0 @@
using System;
using System.IO;
namespace EMU7800.Core
{
/// <summary>
/// A context for serializing <see cref="MachineBase"/> objects.
/// </summary>
public class SerializationContext
{
#region Fields
readonly BinaryWriter _binaryWriter;
#endregion
public void Write(byte value)
{
_binaryWriter.Write(value);
}
public void Write(ushort value)
{
_binaryWriter.Write(value);
}
public void Write(int value)
{
_binaryWriter.Write(value);
}
public void Write(uint value)
{
_binaryWriter.Write(value);
}
public void Write(long value)
{
_binaryWriter.Write(value);
}
public void Write(ulong value)
{
_binaryWriter.Write(value);
}
public void Write(bool value)
{
_binaryWriter.Write(value);
}
public void Write(double value)
{
_binaryWriter.Write(value);
}
public void Write(BufferElement bufferElement)
{
for (var i = 0; i < BufferElement.SIZE; i++)
Write(bufferElement[i]);
}
public void Write(byte[] bytes)
{
_binaryWriter.Write(bytes.Length);
if (bytes.Length > 0)
_binaryWriter.Write(bytes);
}
public void Write(ushort[] ushorts)
{
var bytes = new byte[ushorts.Length << 1];
Buffer.BlockCopy(ushorts, 0, bytes, 0, bytes.Length);
Write(bytes);
}
public void Write(int[] ints)
{
var bytes = new byte[ints.Length << 2];
Buffer.BlockCopy(ints, 0, bytes, 0, bytes.Length);
Write(bytes);
}
public void Write(uint[] uints)
{
var bytes = new byte[uints.Length << 2];
Buffer.BlockCopy(uints, 0, bytes, 0, bytes.Length);
Write(bytes);
}
public void Write(bool[] booleans)
{
var bytes = new byte[booleans.Length];
for (var i = 0; i < bytes.Length; i++)
{
bytes[i] = (byte)(booleans[i] ? 0xff : 0x00);
}
Write(bytes);
}
public void Write(MachineBase m)
{
WriteTypeName(m);
m.GetObjectData(this);
}
public void Write(AddressSpace mem)
{
mem.GetObjectData(this);
}
public void Write(M6502 cpu)
{
cpu.GetObjectData(this);
}
public void Write(PIA pia)
{
pia.GetObjectData(this);
}
public void Write(TIA tia)
{
tia.GetObjectData(this);
}
public void Write(TIASound tiaSound)
{
tiaSound.GetObjectData(this);
}
public void Write(Maria maria)
{
maria.GetObjectData(this);
}
public void Write(Cart cart)
{
WriteTypeName(cart);
cart.GetObjectData(this);
}
public void Write(RAM6116 ram6116)
{
ram6116.GetObjectData(this);
}
public void Write(InputState inputState)
{
inputState.GetObjectData(this);
}
public void WriteVersion(int version)
{
Write(0x78000087);
Write(version);
}
public void WriteOptional(byte[] bytes)
{
var hasBytes = (bytes != null);
_binaryWriter.Write(hasBytes);
if (!hasBytes)
return;
_binaryWriter.Write(bytes.Length);
if (bytes.Length > 0)
_binaryWriter.Write(bytes);
}
public void WriteOptional(HSC7800 hsc7800)
{
var exist = (hsc7800 != null);
Write(exist);
if (!exist)
return;
hsc7800.GetObjectData(this);
}
public void WriteOptional(Bios7800 bios7800)
{
var exist = (bios7800 != null);
Write(exist);
if (!exist)
return;
bios7800.GetObjectData(this);
}
public void WriteOptional(PokeySound pokeySound)
{
var exist = (pokeySound != null);
Write(exist);
if (!exist)
return;
pokeySound.GetObjectData(this);
}
#region Constructors
private SerializationContext()
{
}
/// <summary>
/// Instantiates a new instance of <see cref="SerializationContext"/>.
/// </summary>
/// <param name="binaryWriter"/>
internal SerializationContext(BinaryWriter binaryWriter)
{
if (binaryWriter == null)
throw new ArgumentNullException("binaryWriter");
_binaryWriter = binaryWriter;
}
#endregion
#region Helpers
void WriteTypeName(object o)
{
if (o == null)
throw new Emu7800SerializationException("Type unexpectedly null.");
var typeName = o.GetType().FullName;
if (string.IsNullOrWhiteSpace(typeName))
throw new Emu7800SerializationException("Unable to discover type name.");
_binaryWriter.Write(typeName);
}
#endregion
}
}

File diff suppressed because it is too large Load Diff

View File

@ -1,361 +0,0 @@
/*
* TIASound.cs
*
* Sound emulation for the 2600. Based upon TIASound © 1997 by Ron Fries.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
/*****************************************************************************/
/* */
/* License Information and Copyright Notice */
/* ======================================== */
/* */
/* TiaSound is Copyright(c) 1997 by Ron Fries */
/* */
/* This library is free software; you can redistribute it and/or modify it */
/* under the terms of version 2 of the GNU Library General Public License */
/* as published by the Free Software Foundation. */
/* */
/* This library is distributed in the hope that it will be useful, but */
/* WITHOUT ANY WARRANTY; without even the implied warranty of */
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library */
/* General Public License for more details. */
/* To obtain a copy of the GNU Library General Public License, write to the */
/* Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
/* */
/* Any permitted reproduction of these routines, in whole or in part, must */
/* bear this legend. */
/* */
/*****************************************************************************/
using System;
namespace EMU7800.Core
{
public sealed class TIASound
{
#region Constants and Tables
// Clock Source Clock Modifier Source Pattern
const int
SET_TO_1 = 0x00, // 0 0 0 0 3.58 Mhz/114 none (pure) none
//POLY4 = 0x01, // 0 0 0 1 3.58 Mhz/114 none (pure) 4-bit poly
//DIV31_POLY4 = 0x02, // 0 0 1 0 3.58 Mhz/114 divide by 31 4-bit poly
//POLY5_POLY4 = 0x03, // 0 0 1 1 3.58 Mhz/114 5-bit poly 4-bit poly
//PURE = 0x04, // 0 1 0 0 3.58 Mhz/114 none (pure) pure (~Q)
//PURE2 = 0x05, // 0 1 0 1 3.58 Mhz/114 none (pure) pure (~Q)
//DIV31_PURE = 0x06, // 0 1 1 0 3.58 Mhz/114 divide by 31 pure (~Q)
//POLY5_2 = 0x07, // 0 1 1 1 3.58 Mhz/114 5-bit poly pure (~Q)
POLY9 = 0x08; // 1 0 0 0 3.58 Mhz/114 none (pure) 9-bit poly
//POLY5 = 0x09, // 1 0 0 1 3.58 Mhz/114 none (pure) 5-bit poly
//DIV31_POLY5 = 0x0a, // 1 0 1 0 3.58 Mhz/114 divide by 31 5-bit poly
//POLY5_POLY5 = 0x0b, // 1 0 1 1 3.58 Mhz/114 5-bit poly 5-bit poly
//DIV3_PURE = 0x0c, // 1 1 0 0 1.19 Mhz/114 none (pure) pure (~Q)
//DIV3_PURE2 = 0x0d, // 1 1 0 1 1.19 Mhz/114 none (pure) pure (~Q)
//DIV93_PURE = 0x0e, // 1 1 1 0 1.19 Mhz/114 divide by 31 pure (~Q)
//DIV3_POLY5 = 0x0f; // 1 1 1 1 1.19 Mhz/114 5-bit poly pure (~Q)
const int
AUDC0 = 0x15, // audio control 0 (D3-0)
AUDC1 = 0x16, // audio control 1 (D4-0)
AUDF0 = 0x17, // audio frequency 0 (D4-0)
AUDF1 = 0x18, // audio frequency 1 (D3-0)
AUDV0 = 0x19, // audio volume 0 (D3-0)
AUDV1 = 0x1a; // audio volume 1 (D3-0)
// The 4bit and 5bit patterns are the identical ones used in the tia chip.
readonly byte[] Bit4 = new byte[] { 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0 }; // 2^4 - 1 = 15
readonly byte[] Bit5 = new byte[] { 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1 }; // 2^5 - 1 = 31
// [Ron] treated the 'Div by 31' counter as another polynomial because of
// the way it operates. It does not have a 50% duty cycle, but instead
// has a 13:18 ratio (of course, 13+18 = 31). This could also be
// implemented by using counters.
readonly byte[] Div31 = new byte[] { 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
// Rather than have a table with 511 entries, I use a random number
readonly byte[] Bit9 = new byte[511]; // 2^9 - 1 = 511
readonly int[] P4 = new int[2]; // Position counter for the 4-bit POLY array
readonly int[] P5 = new int[2]; // Position counter for the 5-bit POLY array
readonly int[] P9 = new int[2]; // Position counter for the 9-bit POLY array
readonly int[] DivByNCounter = new int[2]; // Divide by n counter, one for each channel
readonly int[] DivByNMaximum = new int[2]; // Divide by n maximum, one for each channel
readonly int _cpuClocksPerSample;
#endregion
#region Object State
readonly MachineBase M;
// The TIA Sound registers
readonly byte[] AUDC = new byte[2];
readonly byte[] AUDF = new byte[2];
readonly byte[] AUDV = new byte[2];
// The last output volume for each channel
readonly byte[] OutputVol = new byte[2];
// Used to determine how much sound to render
ulong LastUpdateCPUClock;
int BufferIndex;
#endregion
#region Public Members
public void Reset()
{
for (var chan = 0; chan < 2; chan++)
{
OutputVol[chan] = 0;
DivByNCounter[chan] = 0;
DivByNMaximum[chan] = 0;
AUDC[chan] = 0;
AUDF[chan] = 0;
AUDV[chan] = 0;
P4[chan] = 0;
P5[chan] = 0;
P9[chan] = 0;
}
}
public void StartFrame()
{
LastUpdateCPUClock = M.CPU.Clock;
BufferIndex = 0;
}
public void EndFrame()
{
RenderSamples(M.FrameBuffer.SoundBufferByteLength - BufferIndex);
}
public void Update(ushort addr, byte data)
{
if (M.CPU.Clock > LastUpdateCPUClock)
{
var updCPUClocks = (int)(M.CPU.Clock - LastUpdateCPUClock);
var samples = updCPUClocks / _cpuClocksPerSample;
RenderSamples(samples);
LastUpdateCPUClock += (ulong)(samples * _cpuClocksPerSample);
}
byte chan;
switch (addr)
{
case AUDC0:
AUDC[0] = (byte)(data & 0x0f);
chan = 0;
break;
case AUDC1:
AUDC[1] = (byte)(data & 0x0f);
chan = 1;
break;
case AUDF0:
AUDF[0] = (byte)(data & 0x1f);
chan = 0;
break;
case AUDF1:
AUDF[1] = (byte)(data & 0x1f);
chan = 1;
break;
case AUDV0:
AUDV[0] = (byte)(data & 0x0f);
chan = 0;
break;
case AUDV1:
AUDV[1] = (byte)(data & 0x0f);
chan = 1;
break;
default:
return;
}
byte new_divn_max;
if (AUDC[chan] == SET_TO_1)
{
// indicate the clock is zero so no process will occur
new_divn_max = 0;
// and set the output to the selected volume
OutputVol[chan] = AUDV[chan];
}
else
{
// otherwise calculate the 'divide by N' value
new_divn_max = (byte)(AUDF[chan] + 1);
// if bits D2 & D3 are set, then multiply the 'div by n' count by 3
if ((AUDC[chan] & 0x0c) == 0x0c)
{
new_divn_max *= 3;
}
}
// only reset those channels that have changed
if (new_divn_max != DivByNMaximum[chan])
{
DivByNMaximum[chan] = new_divn_max;
// if the channel is now volume only or was volume only...
if (DivByNCounter[chan] == 0 || new_divn_max == 0)
{
// reset the counter (otherwise let it complete the previous)
DivByNCounter[chan] = new_divn_max;
}
}
}
#endregion
#region Constructors
private TIASound()
{
var r = new Random();
r.NextBytes(Bit9);
for (var i = 0; i < Bit9.Length; i++)
{
Bit9[i] &= 0x01;
}
}
public TIASound(MachineBase m, int cpuClocksPerSample) : this()
{
if (m == null)
throw new ArgumentNullException("m");
if (cpuClocksPerSample <= 0)
throw new ArgumentException("cpuClocksPerSample must be positive.");
M = m;
_cpuClocksPerSample = cpuClocksPerSample;
}
#endregion
#region Serialization Members
public TIASound(DeserializationContext input, MachineBase m, int cpuClocksPerSample) : this(m, cpuClocksPerSample)
{
if (input == null)
throw new ArgumentNullException("input");
input.CheckVersion(1);
Bit9 = input.ReadExpectedBytes(511);
P4 = input.ReadIntegers(2);
P5 = input.ReadIntegers(2);
P9 = input.ReadIntegers(2);
DivByNCounter = input.ReadIntegers(2);
DivByNMaximum = input.ReadIntegers(2);
AUDC = input.ReadExpectedBytes(2);
AUDF = input.ReadExpectedBytes(2);
AUDV = input.ReadExpectedBytes(2);
OutputVol = input.ReadExpectedBytes(2);
LastUpdateCPUClock = input.ReadUInt64();
BufferIndex = input.ReadInt32();
}
public void GetObjectData(SerializationContext output)
{
if (output == null)
throw new ArgumentNullException("output");
output.WriteVersion(1);
output.Write(Bit9);
output.Write(P4);
output.Write(P5);
output.Write(P9);
output.Write(DivByNCounter);
output.Write(DivByNMaximum);
output.Write(AUDC);
output.Write(AUDF);
output.Write(AUDV);
output.Write(OutputVol);
output.Write(LastUpdateCPUClock);
output.Write(BufferIndex);
}
#endregion
#region Helpers
void RenderSamples(int count)
{
for (; BufferIndex < M.FrameBuffer.SoundBufferByteLength && count-- > 0; BufferIndex++)
{
if (DivByNCounter[0] > 1)
{
DivByNCounter[0]--;
}
else if (DivByNCounter[0] == 1)
{
DivByNCounter[0] = DivByNMaximum[0];
ProcessChannel(0);
}
if (DivByNCounter[1] > 1)
{
DivByNCounter[1]--;
}
else if (DivByNCounter[1] == 1)
{
DivByNCounter[1] = DivByNMaximum[1];
ProcessChannel(1);
}
M.FrameBuffer.SoundBuffer[BufferIndex >> BufferElement.SHIFT][BufferIndex] += (byte)(OutputVol[0] + OutputVol[1]);
}
}
void ProcessChannel(int chan)
{
// the P5 counter has multiple uses, so we inc it here
if (++P5[chan] >= 31)
{ // POLY5 size: 2^5 - 1 = 31
P5[chan] = 0;
}
// check clock modifier for clock tick
if ((AUDC[chan] & 0x02) == 0 ||
((AUDC[chan] & 0x01) == 0 && Div31[P5[chan]] == 1) ||
((AUDC[chan] & 0x01) == 1 && Bit5[P5[chan]] == 1))
{
if ((AUDC[chan] & 0x04) != 0)
{ // pure modified clock selected
OutputVol[chan] = (OutputVol[chan] != 0) ? (byte)0 : AUDV[chan];
}
else if ((AUDC[chan] & 0x08) != 0)
{ // check for poly5/poly9
if (AUDC[chan] == POLY9)
{ // check for poly9
if (++P9[chan] >= 511)
{ // poly9 size: 2^9 - 1 = 511
P9[chan] = 0;
}
OutputVol[chan] = (Bit9[P9[chan]] == 1) ? AUDV[chan] : (byte)0;
}
else
{ // must be poly5
OutputVol[chan] = (Bit5[P5[chan]] == 1) ? AUDV[chan] : (byte)0;
}
}
else
{ // poly4 is the only remaining possibility
if (++P4[chan] >= 15)
{ // POLY4 size: 2^4 - 1 = 15
P4[chan] = 0;
}
OutputVol[chan] = (Bit4[P4[chan]] == 1) ? AUDV[chan] : (byte)0;
}
}
}
#endregion
}
}

View File

@ -1,424 +0,0 @@
/*
* TIATables.cs
*
* Mask tables for the Television Interface Adaptor class. All derived from
* Bradford Mott's Stella code.
*
* Copyright © 2003, 2004 Mike Murphy
*
*/
namespace EMU7800.Core
{
public static class TIATables
{
public static readonly TIACxPairFlags[] CollisionMask = BuildCollisionMaskTable();
public static readonly uint[][] PFMask = BuildPFMaskTable();
public static readonly bool[][] BLMask = BuildBLMaskTable();
public static readonly bool[][][] MxMask = BuildMxMaskTable();
public static readonly byte[][][] PxMask = BuildPxMaskTable();
public static readonly byte[] GRPReflect = BuildGRPReflectTable();
public static readonly int[] NTSCPalette =
{
0x000000, 0x000000, 0x4a4a4a, 0x4a4a4a,
0x6f6f6f, 0x6f6f6f, 0x8e8e8e, 0x8e8e8e,
0xaaaaaa, 0xaaaaaa, 0xc0c0c0, 0xc0c0c0,
0xd6d6d6, 0xd6d6d6, 0xececec, 0xececec,
0x484800, 0x484800, 0x69690f, 0x69690f,
0x86861d, 0x86861d, 0xa2a22a, 0xa2a22a,
0xbbbb35, 0xbbbb35, 0xd2d240, 0xd2d240,
0xe8e84a, 0xe8e84a, 0xfcfc54, 0xfcfc54,
0x7c2c00, 0x7c2c00, 0x904811, 0x904811,
0xa26221, 0xa26221, 0xb47a30, 0xb47a30,
0xc3903d, 0xc3903d, 0xd2a44a, 0xd2a44a,
0xdfb755, 0xdfb755, 0xecc860, 0xecc860,
0x901c00, 0x901c00, 0xa33915, 0xa33915,
0xb55328, 0xb55328, 0xc66c3a, 0xc66c3a,
0xd5824a, 0xd5824a, 0xe39759, 0xe39759,
0xf0aa67, 0xf0aa67, 0xfcbc74, 0xfcbc74,
0x940000, 0x940000, 0xa71a1a, 0xa71a1a,
0xb83232, 0xb83232, 0xc84848, 0xc84848,
0xd65c5c, 0xd65c5c, 0xe46f6f, 0xe46f6f,
0xf08080, 0xf08080, 0xfc9090, 0xfc9090,
0x840064, 0x840064, 0x97197a, 0x97197a,
0xa8308f, 0xa8308f, 0xb846a2, 0xb846a2,
0xc659b3, 0xc659b3, 0xd46cc3, 0xd46cc3,
0xe07cd2, 0xe07cd2, 0xec8ce0, 0xec8ce0,
0x500084, 0x500084, 0x68199a, 0x68199a,
0x7d30ad, 0x7d30ad, 0x9246c0, 0x9246c0,
0xa459d0, 0xa459d0, 0xb56ce0, 0xb56ce0,
0xc57cee, 0xc57cee, 0xd48cfc, 0xd48cfc,
0x140090, 0x140090, 0x331aa3, 0x331aa3,
0x4e32b5, 0x4e32b5, 0x6848c6, 0x6848c6,
0x7f5cd5, 0x7f5cd5, 0x956fe3, 0x956fe3,
0xa980f0, 0xa980f0, 0xbc90fc, 0xbc90fc,
0x000094, 0x000094, 0x181aa7, 0x181aa7,
0x2d32b8, 0x2d32b8, 0x4248c8, 0x4248c8,
0x545cd6, 0x545cd6, 0x656fe4, 0x656fe4,
0x7580f0, 0x7580f0, 0x8490fc, 0x8490fc,
0x001c88, 0x001c88, 0x183b9d, 0x183b9d,
0x2d57b0, 0x2d57b0, 0x4272c2, 0x4272c2,
0x548ad2, 0x548ad2, 0x65a0e1, 0x65a0e1,
0x75b5ef, 0x75b5ef, 0x84c8fc, 0x84c8fc,
0x003064, 0x003064, 0x185080, 0x185080,
0x2d6d98, 0x2d6d98, 0x4288b0, 0x4288b0,
0x54a0c5, 0x54a0c5, 0x65b7d9, 0x65b7d9,
0x75cceb, 0x75cceb, 0x84e0fc, 0x84e0fc,
0x004030, 0x004030, 0x18624e, 0x18624e,
0x2d8169, 0x2d8169, 0x429e82, 0x429e82,
0x54b899, 0x54b899, 0x65d1ae, 0x65d1ae,
0x75e7c2, 0x75e7c2, 0x84fcd4, 0x84fcd4,
0x004400, 0x004400, 0x1a661a, 0x1a661a,
0x328432, 0x328432, 0x48a048, 0x48a048,
0x5cba5c, 0x5cba5c, 0x6fd26f, 0x6fd26f,
0x80e880, 0x80e880, 0x90fc90, 0x90fc90,
0x143c00, 0x143c00, 0x355f18, 0x355f18,
0x527e2d, 0x527e2d, 0x6e9c42, 0x6e9c42,
0x87b754, 0x87b754, 0x9ed065, 0x9ed065,
0xb4e775, 0xb4e775, 0xc8fc84, 0xc8fc84,
0x303800, 0x303800, 0x505916, 0x505916,
0x6d762b, 0x6d762b, 0x88923e, 0x88923e,
0xa0ab4f, 0xa0ab4f, 0xb7c25f, 0xb7c25f,
0xccd86e, 0xccd86e, 0xe0ec7c, 0xe0ec7c,
0x482c00, 0x482c00, 0x694d14, 0x694d14,
0x866a26, 0x866a26, 0xa28638, 0xa28638,
0xbb9f47, 0xbb9f47, 0xd2b656, 0xd2b656,
0xe8cc63, 0xe8cc63, 0xfce070, 0xfce070
};
public static readonly int[] PALPalette =
{
0x000000, 0x000000, 0x2b2b2b, 0x2b2b2b,
0x525252, 0x525252, 0x767676, 0x767676,
0x979797, 0x979797, 0xb6b6b6, 0xb6b6b6,
0xd2d2d2, 0xd2d2d2, 0xececec, 0xececec,
0x000000, 0x000000, 0x2b2b2b, 0x2b2b2b,
0x525252, 0x525252, 0x767676, 0x767676,
0x979797, 0x979797, 0xb6b6b6, 0xb6b6b6,
0xd2d2d2, 0xd2d2d2, 0xececec, 0xececec,
0x805800, 0x000000, 0x96711a, 0x2b2b2b,
0xab8732, 0x525252, 0xbe9c48, 0x767676,
0xcfaf5c, 0x979797, 0xdfc06f, 0xb6b6b6,
0xeed180, 0xd2d2d2, 0xfce090, 0xececec,
0x445c00, 0x000000, 0x5e791a, 0x2b2b2b,
0x769332, 0x525252, 0x8cac48, 0x767676,
0xa0c25c, 0x979797, 0xb3d76f, 0xb6b6b6,
0xc4ea80, 0xd2d2d2, 0xd4fc90, 0xececec,
0x703400, 0x000000, 0x89511a, 0x2b2b2b,
0xa06b32, 0x525252, 0xb68448, 0x767676,
0xc99a5c, 0x979797, 0xdcaf6f, 0xb6b6b6,
0xecc280, 0xd2d2d2, 0xfcd490, 0xececec,
0x006414, 0x000000, 0x1a8035, 0x2b2b2b,
0x329852, 0x525252, 0x48b06e, 0x767676,
0x5cc587, 0x979797, 0x6fd99e, 0xb6b6b6,
0x80ebb4, 0xd2d2d2, 0x90fcc8, 0xececec,
0x700014, 0x000000, 0x891a35, 0x2b2b2b,
0xa03252, 0x525252, 0xb6486e, 0x767676,
0xc95c87, 0x979797, 0xdc6f9e, 0xb6b6b6,
0xec80b4, 0xd2d2d2, 0xfc90c8, 0xececec,
0x005c5c, 0x000000, 0x1a7676, 0x2b2b2b,
0x328e8e, 0x525252, 0x48a4a4, 0x767676,
0x5cb8b8, 0x979797, 0x6fcbcb, 0xb6b6b6,
0x80dcdc, 0xd2d2d2, 0x90ecec, 0xececec,
0x70005c, 0x000000, 0x841a74, 0x2b2b2b,
0x963289, 0x525252, 0xa8489e, 0x767676,
0xb75cb0, 0x979797, 0xc66fc1, 0xb6b6b6,
0xd380d1, 0xd2d2d2, 0xe090e0, 0xececec,
0x003c70, 0x000000, 0x195a89, 0x2b2b2b,
0x2f75a0, 0x525252, 0x448eb6, 0x767676,
0x57a5c9, 0x979797, 0x68badc, 0xb6b6b6,
0x79ceec, 0xd2d2d2, 0x88e0fc, 0xececec,
0x580070, 0x000000, 0x6e1a89, 0x2b2b2b,
0x8332a0, 0x525252, 0x9648b6, 0x767676,
0xa75cc9, 0x979797, 0xb76fdc, 0xb6b6b6,
0xc680ec, 0xd2d2d2, 0xd490fc, 0xececec,
0x002070, 0x000000, 0x193f89, 0x2b2b2b,
0x2f5aa0, 0x525252, 0x4474b6, 0x767676,
0x578bc9, 0x979797, 0x68a1dc, 0xb6b6b6,
0x79b5ec, 0xd2d2d2, 0x88c8fc, 0xececec,
0x340080, 0x000000, 0x4a1a96, 0x2b2b2b,
0x5f32ab, 0x525252, 0x7248be, 0x767676,
0x835ccf, 0x979797, 0x936fdf, 0xb6b6b6,
0xa280ee, 0xd2d2d2, 0xb090fc, 0xececec,
0x000088, 0x000000, 0x1a1a9d, 0x2b2b2b,
0x3232b0, 0x525252, 0x4848c2, 0x767676,
0x5c5cd2, 0x979797, 0x6f6fe1, 0xb6b6b6,
0x8080ef, 0xd2d2d2, 0x9090fc, 0xececec,
0x000000, 0x000000, 0x2b2b2b, 0x2b2b2b,
0x525252, 0x525252, 0x767676, 0x767676,
0x979797, 0x979797, 0xb6b6b6, 0xb6b6b6,
0xd2d2d2, 0xd2d2d2, 0xececec, 0xececec,
0x000000, 0x000000, 0x2b2b2b, 0x2b2b2b,
0x525252, 0x525252, 0x767676, 0x767676,
0x979797, 0x979797, 0xb6b6b6, 0xb6b6b6,
0xd2d2d2, 0xd2d2d2, 0xececec, 0xececec
};
static uint[][] BuildPFMaskTable()
{
var tabl = new uint[2][];
tabl[0] = new uint[160];
tabl[1] = new uint[160];
for (var i = 0; i < 20; i++)
{
uint mask = 0;
if (i < 4)
{
mask = (uint)(1 << i);
}
else if (i < 12)
{
mask = (uint)(1 << (11 + 4 - i));
}
else if (i < 20)
{
mask = (uint)(1 << i);
}
for (var j = 0; j < 4; j++)
{
// for non-reflected mode
tabl[0][4 * i + j] = mask;
tabl[0][80 + 4 * i + j] = mask;
// for reflected mode
tabl[1][4 * i + j] = mask;
tabl[1][159 - 4 * i - j] = mask;
}
}
return tabl;
}
static bool[][] BuildBLMaskTable()
{
var tabl = new bool[4][];
for (var size = 0; size < 4; size++)
{
tabl[size] = new bool[160];
for (var i = 0; i < 160; i++)
{
tabl[size][i] = false;
}
for (var i = 0; i < (1 << size); i++)
{
tabl[size][i] = true;
}
}
return tabl;
}
static bool[][][] BuildMxMaskTable()
{
var tabl = new bool[4][][];
for (var i = 0; i < 4; i++)
{
tabl[i] = new bool[8][];
for (var j = 0; j < 8; j++)
{
tabl[i][j] = new bool[160];
for (var k = 0; k < 160; k++)
{
tabl[i][j][k] = false;
}
}
}
for (var size = 0; size < 4; size++)
{
for (var i = 0; i < (1 << size); i++)
{
tabl[size][0][i] = true;
tabl[size][1][i] = true;
tabl[size][1][i + 16] = true;
tabl[size][2][i] = true;
tabl[size][2][i + 32] = true;
tabl[size][3][i] = true;
tabl[size][3][i + 16] = true;
tabl[size][3][i + 32] = true;
tabl[size][4][i] = true;
tabl[size][4][i + 64] = true;
tabl[size][5][i] = true;
tabl[size][6][i] = true;
tabl[size][6][i + 32] = true;
tabl[size][6][i + 64] = true;
tabl[size][7][i] = true;
}
}
return tabl;
}
static byte[][][] BuildPxMaskTable()
{
// [suppress mode, nusiz, pixel]
// suppress=1: suppress on
// suppress=0: suppress off
var tabl = new byte[2][][]; //2 8 160
tabl[0] = new byte[8][];
tabl[1] = new byte[8][];
for (var nusiz = 0; nusiz < 8; nusiz++)
{
tabl[0][nusiz] = new byte[160];
tabl[1][nusiz] = new byte[160];
for (var hpos = 0; hpos < 160; hpos++)
{
// nusiz:
// 0: one copy
// 1: two copies-close
// 2: two copies-med
// 3: three copies-close
// 4: two copies-wide
// 5: double size player
// 6: 3 copies medium
// 7: quad sized player
tabl[0][nusiz][hpos] = tabl[1][nusiz][hpos] = 0;
if (nusiz >= 0 && nusiz <= 4 || nusiz == 6)
{
if (hpos >= 0 && hpos < 8)
{
tabl[0][nusiz][hpos] = (byte)(1 << (7 - hpos));
}
}
if (nusiz == 1 || nusiz == 3)
{
if (hpos >= 16 && hpos < 24)
{
tabl[0][nusiz][hpos] = (byte)(1 << (23 - hpos));
tabl[1][nusiz][hpos] = (byte)(1 << (23 - hpos));
}
}
if (nusiz == 2 || nusiz == 3 || nusiz == 6)
{
if (hpos >= 32 && hpos < 40)
{
tabl[0][nusiz][hpos] = (byte)(1 << (39 - hpos));
tabl[1][nusiz][hpos] = (byte)(1 << (39 - hpos));
}
}
if (nusiz == 4 || nusiz == 6)
{
if (hpos >= 64 && hpos < 72)
{
tabl[0][nusiz][hpos] = (byte)(1 << (71 - hpos));
tabl[1][nusiz][hpos] = (byte)(1 << (71 - hpos));
}
}
if (nusiz == 5)
{
if (hpos >= 0 && hpos < 16)
{
tabl[0][nusiz][hpos] = (byte)(1 << ((15 - hpos) >> 1));
}
}
if (nusiz == 7)
{
if (hpos >= 0 && hpos < 32)
{
tabl[0][nusiz][hpos] = (byte)(1 << ((31 - hpos) >> 2));
}
}
}
var shift = nusiz == 5 || nusiz == 7 ? 2 : 1;
while (shift-- > 0)
{
for (var i = 159; i > 0; i--)
{
tabl[0][nusiz][i] = tabl[0][nusiz][i - 1];
tabl[1][nusiz][i] = tabl[1][nusiz][i - 1];
}
tabl[0][nusiz][0] = tabl[1][nusiz][0] = 0;
}
}
return tabl;
}
static byte[] BuildGRPReflectTable()
{
var tabl = new byte[256];
for (var i = 0; i < 256; i++)
{
var s = (byte)i;
var r = (byte)0;
for (var j = 0; j < 8; j++)
{
r <<= 1;
r |= (byte)(s & 1);
s >>= 1;
}
tabl[i] = r;
}
return tabl;
}
static bool tstCx(int i, TIACxFlags cxf1, TIACxFlags cxf2)
{
var f1 = (int)cxf1;
var f2 = (int)cxf2;
return ((i & f1) != 0) && ((i & f2) != 0);
}
static TIACxPairFlags[] BuildCollisionMaskTable()
{
var tabl = new TIACxPairFlags[64];
for (var i = 0; i < 64; i++)
{
tabl[i] = 0;
if (tstCx(i, TIACxFlags.M0, TIACxFlags.P1)) { tabl[i] |= TIACxPairFlags.M0P1; }
if (tstCx(i, TIACxFlags.M0, TIACxFlags.P0)) { tabl[i] |= TIACxPairFlags.M0P0; }
if (tstCx(i, TIACxFlags.M1, TIACxFlags.P0)) { tabl[i] |= TIACxPairFlags.M1P0; }
if (tstCx(i, TIACxFlags.M1, TIACxFlags.P1)) { tabl[i] |= TIACxPairFlags.M1P1; }
if (tstCx(i, TIACxFlags.P0, TIACxFlags.PF)) { tabl[i] |= TIACxPairFlags.P0PF; }
if (tstCx(i, TIACxFlags.P0, TIACxFlags.BL)) { tabl[i] |= TIACxPairFlags.P0BL; }
if (tstCx(i, TIACxFlags.P1, TIACxFlags.PF)) { tabl[i] |= TIACxPairFlags.P1PF; }
if (tstCx(i, TIACxFlags.P1, TIACxFlags.BL)) { tabl[i] |= TIACxPairFlags.P1BL; }
if (tstCx(i, TIACxFlags.M0, TIACxFlags.PF)) { tabl[i] |= TIACxPairFlags.M0PF; }
if (tstCx(i, TIACxFlags.M0, TIACxFlags.BL)) { tabl[i] |= TIACxPairFlags.M0BL; }
if (tstCx(i, TIACxFlags.M1, TIACxFlags.PF)) { tabl[i] |= TIACxPairFlags.M1PF; }
if (tstCx(i, TIACxFlags.M1, TIACxFlags.BL)) { tabl[i] |= TIACxPairFlags.M1BL; }
if (tstCx(i, TIACxFlags.BL, TIACxFlags.PF)) { tabl[i] |= TIACxPairFlags.BLPF; }
if (tstCx(i, TIACxFlags.P0, TIACxFlags.P1)) { tabl[i] |= TIACxPairFlags.P0P1; }
if (tstCx(i, TIACxFlags.M0, TIACxFlags.M1)) { tabl[i] |= TIACxPairFlags.M0M1; }
}
return tabl;
}
}
}

View File

@ -1,76 +0,0 @@
/*
* GameProgram.cs
*
* Represents attribute data associated with ROMs
*
* Copyright 2003, 2004, 2010 © Mike Murphy
*
*/
/*
* unlike EMU7800 Core stuff, this has been hacked around a bit
*/
using System.Text;
using EMU7800.Core;
namespace EMU7800.Win
{
public class GameProgram
{
public string MD5 { get; set; }
public string Title { get; set; }
public string Manufacturer { get; set; }
public string Author { get; set; }
public string Year { get; set; }
public string ModelNo { get; set; }
public string Rarity { get; set; }
public CartType CartType { get; set; }
public MachineType MachineType { get; set; }
public Controller LController { get; set; }
public Controller RController { get; set; }
public string HelpUri { get; set; }
public string DiscoveredRomFullName { get; set; }
public override string ToString()
{
var s = new StringBuilder("GameSettings:\n");
s.AppendFormat(" MD5: {0}\n", MD5);
s.AppendFormat(" Title: {0}\n", Title);
s.AppendFormat(" Manufacturer: {0}\n", Manufacturer);
s.AppendFormat(" Author: {0}\n", Author);
s.AppendFormat(" Year: {0}\n", Year);
s.AppendFormat(" ModelNo: {0}\n", ModelNo);
s.AppendFormat(" Rarity: {0}\n", Rarity);
s.AppendFormat(" CartType: {0}\n", CartType);
s.AppendFormat(" MachineType: {0}\n", MachineType);
s.AppendFormat(" LController: {0}\n", LController);
s.AppendFormat(" RController: {0}\n", RController);
s.AppendFormat(" HelpUri: {0}", HelpUri);
if (DiscoveredRomFullName != null) s.AppendFormat("\n Discovered Rom Filename: {0}", DiscoveredRomFullName);
return s.ToString();
}
public GameProgram(string md5)
{
MD5 = md5;
}
/// <summary>
/// not in db, so guess
/// </summary>
/// <param name="md5"></param>
/// <returns></returns>
public static GameProgram GetCompleteGuess(string md5)
{
GameProgram ret = new GameProgram(md5);
ret.Title = "UNKNOWN";
//ret.CartType = CartType.A7848; // will be guessed for us
ret.MachineType = MachineType.A7800NTSC;
ret.LController = Controller.Joystick;
ret.RController = Controller.Joystick;
return ret;
}
}
}

View File

@ -1,383 +0,0 @@
using System;
using System.Collections.Generic;
using System.IO;
using System.Security.Cryptography;
using System.Text;
using EMU7800.Core;
/*
* unlike EMU7800 Core stuff, this has been hacked around significantly
*/
namespace EMU7800.Win
{
public class GameProgramLibrary : Dictionary<string, GameProgram>
{
#region Fields
const string
BIOS78_NTSC_MD5 = "0763f1ffb006ddbe32e52d497ee848ae",
BIOS78_NTSC_ALTERNATE_MD5 = "b32526ea179dc9ab9b2e5f8a2662b298",
BIOS78_PAL_MD5 = "397bb566584be7b9764e7a68974c4263",
HSC78_MD5 = "c8a73288ab97226c52602204ab894286";
/*
readonly IDictionary<string, string> _misc7800DiscoveredRoms = new Dictionary<string, string>();
*/
// these enums are used for matching column names in the .csv file
enum Column
{
None,
MD5,
Title,
Manufacturer,
Author,
Year,
ModelNo,
Rarity,
CartType,
MachineType,
LController,
RController,
HelpUri
};
//const string RomPropertiesFileName = "ROMProperties.csv";
static readonly Dictionary<Column, int> _columnPositions = new Dictionary<Column, int>
{
{ Column.MD5, -1},
{ Column.Title, -1},
{ Column.Manufacturer, -1},
{ Column.Author, -1 },
{ Column.Year, - 1},
{ Column.ModelNo, -1},
{ Column.Rarity, -1},
{ Column.CartType, -1},
{ Column.MachineType, -1},
{ Column.LController, -1},
{ Column.RController, -1},
{ Column.HelpUri, -1},
};
//readonly RomFileAccessor _romFileAccessor = new RomFileAccessor();
readonly MD5CryptoServiceProvider _cryptoProvider = new MD5CryptoServiceProvider();
readonly StringBuilder _sb = new StringBuilder();
//readonly ILogger _logger;
#endregion
public static GameProgramLibrary EMU7800DB = null;
#region Constructors
private GameProgramLibrary()
{
}
public GameProgramLibrary(TextReader r)//, ILogger logger)
{
//if (logger == null)
// throw new ArgumentNullException("logger");
//_logger = logger;
//var settings = new GlobalSettings(logger);
//var fn = Path.Combine(settings.BaseDirectory, RomPropertiesFileName);
Clear();
//StreamReader r = null;
try
{
//r = new StreamReader(fn);
InitializeColumnPos(r.ReadLine());
while (true)
{
var line = r.ReadLine();
if (line == null)
break;
var gp = CreateGameSettingsFromLine(line);
if (gp == null)
continue;
if (ContainsKey(gp.MD5))
Console.WriteLine("7800DB: Duplicate MD5 key found: {0}", gp.MD5); else Add(gp.MD5, gp);
}
r.Close();
}
catch (Exception ex)
{
//if (Util.IsCriticalException(ex))
throw;
//_logger.WriteLine(ex);
}
finally
{
if (r != null)
r.Dispose();
}
Console.WriteLine("7800DB: {0} entries loaded.", Count);
}
#endregion
#region Game Program Accessors
public GameProgram TryRecognizeRom(byte[] bytes)
{
//if (string.IsNullOrWhiteSpace(fullName))
// throw new ArgumentException("fullName");
//var bytes = _romFileAccessor.GetRomBytes(fullName);
if (bytes == null)
return null;
var md5 = ComputeMD5Digest(bytes);
if (string.IsNullOrWhiteSpace(md5))
return null;
var gp = GetGameProgramFromMd5(md5);
if (gp == null)
gp = GameProgram.GetCompleteGuess(md5);
//gp.DiscoveredRomFullName = fullName;
if (gp.CartType == CartType.None)
{
switch (gp.MachineType)
{
case MachineType.A2600NTSC:
case MachineType.A2600PAL:
switch (bytes.Length)
{
case 2048: gp.CartType = CartType.A2K; break;
case 4096: gp.CartType = CartType.A4K; break;
case 8192: gp.CartType = CartType.A8K; break;
case 16384: gp.CartType = CartType.A16K; break;
}
break;
case MachineType.A7800NTSC:
case MachineType.A7800PAL:
switch (bytes.Length)
{
case 8192: gp.CartType = CartType.A7808; break;
case 16384: gp.CartType = CartType.A7816; break;
case 32768: gp.CartType = CartType.A7832; break;
case 49152: gp.CartType = CartType.A7848; break;
}
break;
}
}
return gp;
/*
if (md5.Equals(HSC78_MD5, StringComparison.OrdinalIgnoreCase))
{
if (!_misc7800DiscoveredRoms.ContainsKey(md5))
_misc7800DiscoveredRoms.Add(md5, fullName);
_logger.WriteLine("Found 7800 Highscore Cart: {0}", fullName);
return null;
}
if (md5.Equals(BIOS78_NTSC_MD5, StringComparison.OrdinalIgnoreCase))
{
if (!_misc7800DiscoveredRoms.ContainsKey(md5))
_misc7800DiscoveredRoms.Add(md5, fullName);
_logger.WriteLine("Found 7800 NTSC BIOS: {0}", fullName);
return null;
}
if (md5.Equals(BIOS78_NTSC_ALTERNATE_MD5, StringComparison.OrdinalIgnoreCase))
{
if (!_misc7800DiscoveredRoms.ContainsKey(md5))
_misc7800DiscoveredRoms.Add(md5, fullName);
_logger.WriteLine("Found incorrect but widely used 7800 NTSC BIOS: {0}", fullName);
return null;
}
if (md5.Equals(BIOS78_PAL_MD5, StringComparison.OrdinalIgnoreCase))
{
if (!_misc7800DiscoveredRoms.ContainsKey(md5))
_misc7800DiscoveredRoms.Add(md5, fullName);
_logger.WriteLine("Found 7800 PAL BIOS: {0}", fullName);
return null;
}
*/
}
/*
public GameProgram GetGameProgramFromFullName(string fullName)
{
var bytes = _romFileAccessor.GetRomBytes(fullName);
if (bytes == null)
throw new ArgumentException("File not readable: {0}", fullName);
var md5 = ComputeMD5Digest(bytes);
return !string.IsNullOrWhiteSpace(md5) ? GetGameProgramFromMd5(md5) : null;
}
*/
public GameProgram GetGameProgramFromMd5(string md5)
{
if (string.IsNullOrWhiteSpace(md5))
throw new ArgumentNullException("md5");
GameProgram gp;
return TryGetValue(md5, out gp) ? gp : null;
}
/*
public byte[] GetRomBytes(string fullName)
{
return _romFileAccessor.GetRomBytes(fullName);
}
public byte[] Get78HighScoreCartBytes()
{
string fullName;
if (!_misc7800DiscoveredRoms.TryGetValue(HSC78_MD5, out fullName))
return null;
return _romFileAccessor.GetRomBytes(fullName);
}
public byte[] Get78BiosBytes(MachineType machineType)
{
string fullName = null;
switch (machineType)
{
case MachineType.A7800NTSC:
if (!_misc7800DiscoveredRoms.TryGetValue(BIOS78_NTSC_MD5, out fullName))
_misc7800DiscoveredRoms.TryGetValue(BIOS78_NTSC_ALTERNATE_MD5, out fullName);
break;
case MachineType.A7800PAL:
_misc7800DiscoveredRoms.TryGetValue(BIOS78_PAL_MD5, out fullName);
break;
}
if (string.IsNullOrWhiteSpace(fullName))
return null;
return _romFileAccessor.GetRomBytes(fullName);
}*/
#endregion
#region Game Progam Related Utilities
/*
public string ComputeMD5Digest(string fullName)
{
var bytes = _romFileAccessor.GetRomBytes(fullName);
if (bytes == null)
throw new ArgumentException("File not readable: {0}", fullName);
return ComputeMD5Digest(bytes);
}
*/
#endregion
#region Helpers
static void InitializeColumnPos(string line)
{
var colno = 0;
var columnNames = line.Split(',');
foreach (var columnName in columnNames)
{
var col = ToColumn(columnName);
if (col != Column.None)
_columnPositions[col] = colno;
colno++;
}
if (_columnPositions[Column.MD5] < 0)
throw new ApplicationException("ROMProperties.csv: Required column missing: MD5");
if (_columnPositions[Column.CartType] < 0)
throw new ApplicationException("ROMProperties.csv: Required column missing: CartType");
if (_columnPositions[Column.MachineType] < 0)
throw new ApplicationException("ROMProperties.csv: Required column missing: MachineType");
if (_columnPositions[Column.LController] < 0)
throw new ApplicationException("ROMProperties.csv: Required column missing: LController");
if (_columnPositions[Column.RController] < 0)
throw new ApplicationException("ROMProperties.csv: Required column missing: RController");
}
static GameProgram CreateGameSettingsFromLine(string line)
{
var row = new string[13];
var linesplit = line.Split(',');
for (var i = 0; i < row.Length && i < linesplit.Length; i++)
row[i] = linesplit[i];
var md5 = row[_columnPositions[Column.MD5]];
var gp = new GameProgram(md5)
{
Title = _columnPositions[Column.Title] >= 0 ? row[_columnPositions[Column.Title]] : string.Empty,
Manufacturer = _columnPositions[Column.Manufacturer] >= 0 ? row[_columnPositions[Column.Manufacturer]] : string.Empty,
Author = _columnPositions[Column.Author] >= 0 ? row[_columnPositions[Column.Author]] : string.Empty,
Year = _columnPositions[Column.Year] >= 0 ? row[_columnPositions[Column.Year]] : string.Empty,
ModelNo = _columnPositions[Column.ModelNo] >= 0 ? row[_columnPositions[Column.ModelNo]] : string.Empty,
Rarity = _columnPositions[Column.Rarity] >= 0 ? row[_columnPositions[Column.Rarity]] : string.Empty,
CartType = ToCartType(row[_columnPositions[Column.CartType]]),
MachineType = ToMachineType(row[_columnPositions[Column.MachineType]])
};
gp.LController = ToController(row[_columnPositions[Column.LController]]);
gp.RController = ToController(row[_columnPositions[Column.RController]]);
if (gp.LController == Controller.None)
gp.LController = GetDefaultController(gp.MachineType);
if (gp.RController == Controller.None)
gp.RController = GetDefaultController(gp.MachineType);
if (_columnPositions[Column.HelpUri] < row.Length)
{
var helpUri = row[_columnPositions[Column.HelpUri]].Trim();
if (!helpUri.Length.Equals(0))
gp.HelpUri = helpUri;
}
return gp;
}
static Controller GetDefaultController(MachineType machineType)
{
switch (machineType)
{
case MachineType.A7800NTSC:
case MachineType.A7800PAL:
return Controller.ProLineJoystick;
default:
return Controller.Joystick;
}
}
static Column ToColumn(string columnName)
{
Column result;
return Enum.TryParse(columnName, true, out result) ? result : Column.None;
}
static CartType ToCartType(string cartType)
{
CartType result;
return Enum.TryParse(cartType, true, out result) ? result : CartType.None;
}
static MachineType ToMachineType(string machineType)
{
MachineType result;
return Enum.TryParse(machineType, true, out result) ? result : MachineType.None;
}
static Controller ToController(string controller)
{
Controller result;
return Enum.TryParse(controller, true, out result) ? result : Controller.None;
}
string ComputeMD5Digest(byte[] bytes)
{
return (bytes != null) ? StringifyMD5(_cryptoProvider.ComputeHash(bytes)) : null;
}
string StringifyMD5(byte[] bytes)
{
if (bytes == null || bytes.Length < 16)
return string.Empty;
_sb.Length = 0;
for (var i = 0; i < 16; i++)
_sb.AppendFormat("{0:x2}", bytes[i]);
return _sb.ToString();
}
#endregion
}
}