ColecoHawk - preliminary text savestates, not complete! still some things in VDP to add in

This commit is contained in:
adelikat 2012-11-20 01:01:51 +00:00
parent 5fda8801f4
commit 3e496ae069
3 changed files with 877 additions and 771 deletions

View File

@ -159,8 +159,46 @@ namespace BizHawk.Emulation.Consoles.Coleco
public bool SaveRamModified { get; set; }
public bool DeterministicEmulation { get { return true; } }
public void SaveStateText(TextWriter writer) { }
public void LoadStateText(TextReader reader) { }
public void SaveStateText(TextWriter writer)
{
writer.WriteLine("[Coleco]\n");
Cpu.SaveStateText(writer);
PSG.SaveStateText(writer);
//VDP.SaveStateText(writer); //TODO
writer.WriteLine("Frame {0}", Frame);
writer.WriteLine("Lag {0}", _lagcount);
writer.Write("RAM ");
Ram.SaveAsHex(writer);
writer.WriteLine("[/Coleco]");
}
public void LoadStateText(TextReader reader)
{
while (true)
{
string[] args = reader.ReadLine().Split(' ');
if (args[0].Trim() == "") continue;
if (args[0] == "[Coleco]") continue;
if (args[0] == "[/Coleco]") break;
else if (args[0] == "Frame")
Frame = int.Parse(args[1]);
else if (args[0] == "Lag")
_lagcount = int.Parse(args[1]);
else if (args[0] == "RAM")
Ram.ReadFromHex(args[1]);
else if (args[0] == "[Z80]")
Cpu.LoadStateText(reader);
else if (args[0] == "[PSG]")
PSG.LoadStateText(reader);
else if (args[0] == "[VDP]")
VDP.LoadStateText(reader);
else
Console.WriteLine("Skipping unrecognized identifier " + args[0]);
}
}
public void SaveStateBinary(BinaryWriter bw) { }
public void LoadStateBinary(BinaryReader br) { }

View File

@ -1,347 +1,349 @@
using System;
using System.Globalization;
using System.IO;
using BizHawk.Emulation.CPUs.Z80;
namespace BizHawk.Emulation.Consoles.Coleco
{
public sealed class TMS9918A : IVideoProvider
{
public byte[] VRAM = new byte[0x4000];
byte[] Registers = new byte[8];
byte StatusByte;
public sealed class TMS9918A : IVideoProvider
{
public byte[] VRAM = new byte[0x4000];
byte[] Registers = new byte[8];
byte StatusByte;
bool VdpWaitingForLatchByte;
byte VdpLatch;
ushort VdpAddress;
byte VdpBuffer;
VdpCommand vdpCommand; // TODO remove?
bool VdpWaitingForLatchByte;
byte VdpLatch;
ushort VdpAddress;
byte VdpBuffer;
VdpCommand vdpCommand; // TODO remove?
int TmsMode;
int TmsMode;
bool Mode1Bit { get { return (Registers[1] & 16) > 0; } }
bool Mode2Bit { get { return (Registers[0] & 2) > 0; } }
bool Mode3Bit { get { return (Registers[1] & 8) > 0; } }
bool Mode1Bit { get { return (Registers[1] & 16) > 0; } }
bool Mode2Bit { get { return (Registers[0] & 2) > 0; } }
bool Mode3Bit { get { return (Registers[1] & 8) > 0; } }
bool EnableDoubledSprites { get { return (Registers[1] & 1) > 0; } }
bool EnableLargeSprites { get { return (Registers[1] & 2) > 0; } }
bool EnableInterrupts { get { return (Registers[1] & 32) > 0; } }
bool DisplayOn { get { return (Registers[1] & 64) > 0; } }
bool Mode4k { get { return (Registers[1] & 128)> 0; } }
// TODO, is 4/16K bit used?
bool EnableDoubledSprites { get { return (Registers[1] & 1) > 0; } }
bool EnableLargeSprites { get { return (Registers[1] & 2) > 0; } }
bool EnableInterrupts { get { return (Registers[1] & 32) > 0; } }
bool DisplayOn { get { return (Registers[1] & 64) > 0; } }
bool Mode4k { get { return (Registers[1] & 128) > 0; } }
// TODO, is 4/16K bit used?
bool InterruptPending
{
get { return (StatusByte & 0x80) != 0; }
set { StatusByte = (byte)((StatusByte & ~0x02) | (value ? 0x80 : 0x00)); }
}
bool InterruptPending
{
get { return (StatusByte & 0x80) != 0; }
set { StatusByte = (byte)((StatusByte & ~0x02) | (value ? 0x80 : 0x00)); }
}
//int NameTableBase;
int ColorTableBase;
int PatternGeneratorBase;
int SpritePatternGeneratorBase;
int TmsPatternNameTableBase;
int TmsSpriteAttributeBase;
//int NameTableBase;
int ColorTableBase;
int PatternGeneratorBase;
int SpritePatternGeneratorBase;
int TmsPatternNameTableBase;
int TmsSpriteAttributeBase;
public void ExecuteFrame()
{
for (int scanLine = 0; scanLine < 262; scanLine++)
{
RenderScanline(scanLine);
public void ExecuteFrame()
{
for (int scanLine = 0; scanLine < 262; scanLine++)
{
RenderScanline(scanLine);
if (scanLine == 192)
{
InterruptPending = true;
if (EnableInterrupts)
Cpu.NonMaskableInterrupt = true;
//Console.WriteLine("Set NMI / VSYNC");
}
if (scanLine == 192)
{
InterruptPending = true;
if (EnableInterrupts)
Cpu.NonMaskableInterrupt = true;
//Console.WriteLine("Set NMI / VSYNC");
}
Cpu.ExecuteCycles(228);
}
Cpu.ExecuteCycles(228);
}
}
}
public void WriteVdpControl(byte value)
{
if (VdpWaitingForLatchByte)
{
VdpLatch = value;
VdpWaitingForLatchByte = false;
VdpAddress = (ushort)((VdpAddress & 0xFF00) | value);
return;
}
public void WriteVdpControl(byte value)
{
if (VdpWaitingForLatchByte)
{
VdpLatch = value;
VdpWaitingForLatchByte = false;
VdpAddress = (ushort)((VdpAddress & 0xFF00) | value);
return;
}
VdpWaitingForLatchByte = true;
VdpAddress = (ushort)(((value & 63) << 8) | VdpLatch);
switch (value & 0xC0)
{
case 0x00: // read VRAM
vdpCommand = VdpCommand.VramRead;
VdpBuffer = VRAM[VdpAddress & 0x3FFF];
VdpAddress++;
break;
case 0x40: // write VRAM
vdpCommand = VdpCommand.VramWrite;
break;
case 0x80: // VDP register write
vdpCommand = VdpCommand.RegisterWrite;
int reg = value & 0x0F;
WriteRegister(reg, VdpLatch);
break;
}
}
VdpWaitingForLatchByte = true;
VdpAddress = (ushort)(((value & 63) << 8) | VdpLatch);
switch (value & 0xC0)
{
case 0x00: // read VRAM
vdpCommand = VdpCommand.VramRead;
VdpBuffer = VRAM[VdpAddress & 0x3FFF];
VdpAddress++;
break;
case 0x40: // write VRAM
vdpCommand = VdpCommand.VramWrite;
break;
case 0x80: // VDP register write
vdpCommand = VdpCommand.RegisterWrite;
int reg = value & 0x0F;
WriteRegister(reg, VdpLatch);
break;
}
}
public void WriteVdpData(byte value)
{
VdpWaitingForLatchByte = true;
VdpBuffer = value;
// Write VRAM and update pre-computed pattern buffer.
//UpdatePatternBuffer((ushort)(VdpAddress & 0x3FFF), value);
//Console.WriteLine("VRAM[{0:X4}] = {1:X2}", VdpAddress & 0x3FFF, value);
VRAM[VdpAddress & 0x3FFF] = value;
VdpAddress++;
}
public void WriteVdpData(byte value)
{
VdpWaitingForLatchByte = true;
VdpBuffer = value;
void WriteRegister(int reg, byte data)
{
if (reg >= 8) return;
// Write VRAM and update pre-computed pattern buffer.
//UpdatePatternBuffer((ushort)(VdpAddress & 0x3FFF), value);
//Console.WriteLine("VRAM[{0:X4}] = {1:X2}", VdpAddress & 0x3FFF, value);
VRAM[VdpAddress & 0x3FFF] = value;
Console.WriteLine("Write register {0} : {1:X2}", reg, data);
Registers[reg] = data;
switch (reg)
{
case 0: // Mode Control Register 1
CheckVideoMode();
break;
case 1: // Mode Control Register 2
CheckVideoMode();
Cpu.NonMaskableInterrupt = (EnableInterrupts && InterruptPending);
Console.WriteLine("4k bit "+ Mode4k);
break;
case 2: // Name Table Base Address
TmsPatternNameTableBase = (Registers[2] << 10) & 0x3C00;
break;
case 3: // Color Table Base Address
ColorTableBase = (Registers[3] << 6) & 0x3FC0;
break;
case 4: // Pattern Generator Base Address
PatternGeneratorBase = (Registers[4] << 11) & 0x3800;
break;
case 5: // Sprite Attribute Table Base Address
TmsSpriteAttributeBase = (Registers[5] << 7) & 0x3F80;
break;
case 6: // Sprite Pattern Generator Base Adderss
SpritePatternGeneratorBase = (Registers[6] << 11) & 0x3800;
break;
}
}
VdpAddress++;
}
public byte ReadVdpStatus()
{
VdpWaitingForLatchByte = true;
byte returnValue = StatusByte;
StatusByte &= 0x1F;
Cpu.NonMaskableInterrupt = false;
void WriteRegister(int reg, byte data)
{
if (reg >= 8) return;
//Console.WriteLine("Clear NMI / read status");
return returnValue;
}
Console.WriteLine("Write register {0} : {1:X2}", reg, data);
Registers[reg] = data;
switch (reg)
{
case 0: // Mode Control Register 1
CheckVideoMode();
break;
case 1: // Mode Control Register 2
CheckVideoMode();
Cpu.NonMaskableInterrupt = (EnableInterrupts && InterruptPending);
Console.WriteLine("4k bit " + Mode4k);
break;
case 2: // Name Table Base Address
TmsPatternNameTableBase = (Registers[2] << 10) & 0x3C00;
break;
case 3: // Color Table Base Address
ColorTableBase = (Registers[3] << 6) & 0x3FC0;
break;
case 4: // Pattern Generator Base Address
PatternGeneratorBase = (Registers[4] << 11) & 0x3800;
break;
case 5: // Sprite Attribute Table Base Address
TmsSpriteAttributeBase = (Registers[5] << 7) & 0x3F80;
break;
case 6: // Sprite Pattern Generator Base Adderss
SpritePatternGeneratorBase = (Registers[6] << 11) & 0x3800;
break;
}
}
public byte ReadData()
{
VdpWaitingForLatchByte = true;
byte value = VdpBuffer;
VdpBuffer = VRAM[VdpAddress & 0x3FFF];
VdpAddress++;
return value;
}
public byte ReadVdpStatus()
{
VdpWaitingForLatchByte = true;
byte returnValue = StatusByte;
StatusByte &= 0x1F;
Cpu.NonMaskableInterrupt = false;
void CheckVideoMode()
{
if (Mode1Bit) TmsMode = 1;
else if (Mode2Bit) TmsMode = 2;
else if (Mode3Bit) TmsMode = 3;
else TmsMode = 0;
//Console.WriteLine("Clear NMI / read status");
return returnValue;
}
Console.WriteLine("video mode {0}", TmsMode);
}
public byte ReadData()
{
VdpWaitingForLatchByte = true;
byte value = VdpBuffer;
VdpBuffer = VRAM[VdpAddress & 0x3FFF];
VdpAddress++;
return value;
}
void RenderScanline(int scanLine)
{
if (scanLine >= 192)
return;
void CheckVideoMode()
{
if (Mode1Bit) TmsMode = 1;
else if (Mode2Bit) TmsMode = 2;
else if (Mode3Bit) TmsMode = 3;
else TmsMode = 0;
if (TmsMode == 2)
{
RenderBackgroundM2(scanLine);
RenderTmsSprites(scanLine);
}
else if (TmsMode == 0)
{
RenderBackgroundM0(scanLine);
RenderTmsSprites(scanLine);
}
}
Console.WriteLine("video mode {0}", TmsMode);
}
void RenderBackgroundM0(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
void RenderScanline(int scanLine)
{
if (scanLine >= 192)
return;
int yc = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yc * 32);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
if (TmsMode == 2)
{
RenderBackgroundM2(scanLine);
RenderTmsSprites(scanLine);
}
else if (TmsMode == 0)
{
RenderBackgroundM0(scanLine);
RenderTmsSprites(scanLine);
}
}
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++];
int pv = VRAM[PatternGeneratorBase + (pn * 8) + yofs];
int colorEntry = VRAM[ColorTableBase + (pn / 8)];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
void RenderBackgroundM0(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
int yc = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yc * 32);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
void RenderBackgroundM2(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++];
int pv = VRAM[PatternGeneratorBase + (pn * 8) + yofs];
int colorEntry = VRAM[ColorTableBase + (pn / 8)];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
int yrow = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yrow * 32);
int PatternGeneratorOffset = (((Registers[4] & 4) << 11) & 0x2000);// +((yrow / 8) * 0x100);
int ColorOffset = (ColorTableBase & 0x2000);// +((yrow / 8) * 0x100);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++] + ((yrow / 8) * 0x100);
int pv = VRAM[PatternGeneratorOffset + (pn * 8) + yofs];
int colorEntry = VRAM[ColorOffset + (pn * 8) + yofs];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
void RenderBackgroundM2(int scanLine)
{
if (DisplayOn == false)
{
Array.Clear(FrameBuffer, scanLine * 256, 256);
return;
}
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
int yrow = scanLine / 8;
int yofs = scanLine % 8;
int FrameBufferOffset = scanLine * 256;
int PatternNameOffset = TmsPatternNameTableBase + (yrow * 32);
int PatternGeneratorOffset = (((Registers[4] & 4) << 11) & 0x2000);// +((yrow / 8) * 0x100);
int ColorOffset = (ColorTableBase & 0x2000);// +((yrow / 8) * 0x100);
int ScreenBGColor = PaletteTMS9918[Registers[7] & 0x0F];
byte[] ScanlinePriorityBuffer = new byte[256];
byte[] SpriteCollisionBuffer = new byte[256];
for (int xc = 0; xc < 32; xc++)
{
int pn = VRAM[PatternNameOffset++] + ((yrow / 8) * 0x100);
int pv = VRAM[PatternGeneratorOffset + (pn * 8) + yofs];
int colorEntry = VRAM[ColorOffset + (pn * 8) + yofs];
int fgIndex = (colorEntry >> 4) & 0x0F;
int bgIndex = colorEntry & 0x0F;
int fgColor = fgIndex == 0 ? ScreenBGColor : PaletteTMS9918[fgIndex];
int bgColor = bgIndex == 0 ? ScreenBGColor : PaletteTMS9918[bgIndex];
void RenderTmsSprites(int scanLine)
{
if (DisplayOn == false) return;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x80) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x40) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x20) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x10) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x08) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x04) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x02) > 0) ? fgColor : bgColor;
FrameBuffer[FrameBufferOffset++] = ((pv & 0x01) > 0) ? fgColor : bgColor;
}
}
Array.Clear(ScanlinePriorityBuffer, 0, 256);
Array.Clear(SpriteCollisionBuffer, 0, 256);
byte[] ScanlinePriorityBuffer = new byte[256];
byte[] SpriteCollisionBuffer = new byte[256];
bool Double = EnableDoubledSprites;
bool LargeSprites = EnableLargeSprites;
void RenderTmsSprites(int scanLine)
{
if (DisplayOn == false) return;
int SpriteSize = 8;
if (LargeSprites) SpriteSize *= 2;
if (Double) SpriteSize *= 2;
int OneCellSize = Double ? 16 : 8;
Array.Clear(ScanlinePriorityBuffer, 0, 256);
Array.Clear(SpriteCollisionBuffer, 0, 256);
int NumSpritesOnScanline = 0;
for (int i = 0; i < 32; i++)
{
int SpriteBase = TmsSpriteAttributeBase + (i * 4);
int y = VRAM[SpriteBase++];
int x = VRAM[SpriteBase++];
int Pattern = VRAM[SpriteBase++];
int Color = VRAM[SpriteBase];
bool Double = EnableDoubledSprites;
bool LargeSprites = EnableLargeSprites;
if (y == 208) break; // terminator sprite
if (y > 224) y -= 256; // sprite Y wrap
y++; // inexplicably, sprites start on Y+1
if (y > scanLine || y + SpriteSize <= scanLine) continue; // sprite is not on this scanline
if ((Color & 0x80) > 0) x -= 32; // Early Clock adjustment
int SpriteSize = 8;
if (LargeSprites) SpriteSize *= 2;
if (Double) SpriteSize *= 2;
int OneCellSize = Double ? 16 : 8;
if (++NumSpritesOnScanline == 5)
{
StatusByte &= 0xE0; // Clear FS0-FS4 bits
StatusByte |= (byte)i; // set 5th sprite index
StatusByte |= 0x40; // set overflow bit
break;
}
int NumSpritesOnScanline = 0;
for (int i = 0; i < 32; i++)
{
int SpriteBase = TmsSpriteAttributeBase + (i * 4);
int y = VRAM[SpriteBase++];
int x = VRAM[SpriteBase++];
int Pattern = VRAM[SpriteBase++];
int Color = VRAM[SpriteBase];
if (LargeSprites) Pattern &= 0xFC; // 16x16 sprites forced to 4-byte alignment
int SpriteLine = scanLine - y;
if (Double) SpriteLine /= 2;
if (y == 208) break; // terminator sprite
if (y > 224) y -= 256; // sprite Y wrap
y++; // inexplicably, sprites start on Y+1
if (y > scanLine || y + SpriteSize <= scanLine) continue; // sprite is not on this scanline
if ((Color & 0x80) > 0) x -= 32; // Early Clock adjustment
byte pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine];
if (++NumSpritesOnScanline == 5)
{
StatusByte &= 0xE0; // Clear FS0-FS4 bits
StatusByte |= (byte)i; // set 5th sprite index
StatusByte |= 0x40; // set overflow bit
break;
}
for (int xp = 0; xp < SpriteSize && x + xp < 256; xp++)
{
if (x + xp < 0) continue;
if (LargeSprites && xp == OneCellSize)
pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine + 16];
if (LargeSprites) Pattern &= 0xFC; // 16x16 sprites forced to 4-byte alignment
int SpriteLine = scanLine - y;
if (Double) SpriteLine /= 2;
if ((pv & (1 << (7 - (xp & 7)))) > 0)
{
if (Color != 0 && ScanlinePriorityBuffer[x + xp] == 0)
{
if (SpriteCollisionBuffer[x + xp] != 0)
StatusByte |= 0x20; // Set sprite collision flag
SpriteCollisionBuffer[x + xp] = 1;
ScanlinePriorityBuffer[x + xp] = 1;
FrameBuffer[(scanLine * 256) + x + xp] = PaletteTMS9918[Color & 0x0F];
}
}
}
}
}
byte pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine];
Z80A Cpu;
public TMS9918A(Z80A cpu)
{
this.Cpu = cpu;
}
for (int xp = 0; xp < SpriteSize && x + xp < 256; xp++)
{
if (x + xp < 0) continue;
if (LargeSprites && xp == OneCellSize)
pv = VRAM[SpritePatternGeneratorBase + (Pattern * 8) + SpriteLine + 16];
public int[] FrameBuffer = new int[256 * 192];
public int[] GetVideoBuffer() { return FrameBuffer; }
if ((pv & (1 << (7 - (xp & 7)))) > 0)
{
if (Color != 0 && ScanlinePriorityBuffer[x + xp] == 0)
{
if (SpriteCollisionBuffer[x + xp] != 0)
StatusByte |= 0x20; // Set sprite collision flag
SpriteCollisionBuffer[x + xp] = 1;
ScanlinePriorityBuffer[x + xp] = 1;
FrameBuffer[(scanLine * 256) + x + xp] = PaletteTMS9918[Color & 0x0F];
}
}
}
}
}
public int VirtualWidth { get { return 256; } }
public int BufferWidth { get { return 256; } }
public int BufferHeight { get { return 192; } }
public int BackgroundColor { get { return 0; } }
Z80A Cpu;
public TMS9918A(Z80A cpu)
{
this.Cpu = cpu;
}
enum VdpCommand { VramRead, VramWrite, RegisterWrite }
public int[] FrameBuffer = new int[256 * 192];
public int[] GetVideoBuffer() { return FrameBuffer; }
int[] PaletteTMS9918 = new int[]
{
public int VirtualWidth { get { return 256; } }
public int BufferWidth { get { return 256; } }
public int BufferHeight { get { return 192; } }
public int BackgroundColor { get { return 0; } }
enum VdpCommand { VramRead, VramWrite, RegisterWrite }
int[] PaletteTMS9918 = new int[]
{
unchecked((int)0x00000000),
unchecked((int)0xFF000000),
unchecked((int)0xFF47B73B),
@ -359,5 +361,66 @@ namespace BizHawk.Emulation.Consoles.Coleco
unchecked((int)0xFFCCCCCC),
unchecked((int)0xFFFFFFFF)
};
}
public void SaveStateText(TextWriter writer)
{
//TODO - finish
writer.WriteLine("[VDP]");
writer.WriteLine("StatusByte {0:X2}", StatusByte);
writer.WriteLine("WaitingForLatchByte {0}", VdpWaitingForLatchByte);
writer.WriteLine("Latch {0:X2}", VdpLatch);
writer.WriteLine("ReadBuffer {0:X2}", VdpBuffer);
writer.WriteLine("VdpAddress {0:X4}", VdpAddress);
writer.WriteLine("Command " + Enum.GetName(typeof(VdpCommand), vdpCommand));
writer.Write("Registers ");
Registers.SaveAsHex(writer);
writer.Write("VRAM ");
VRAM.SaveAsHex(writer);
writer.WriteLine("[/VDP]");
writer.WriteLine();
}
public void LoadStateText(TextReader reader)
{
//TODO - finish
while (true)
{
string[] args = reader.ReadLine().Split(' ');
if (args[0].Trim() == "") continue;
if (args[0] == "[/VDP]") break;
if (args[0] == "StatusByte")
StatusByte = byte.Parse(args[1], NumberStyles.HexNumber);
else if (args[0] == "WaitingForLatchByte")
VdpWaitingForLatchByte = bool.Parse(args[1]);
else if (args[0] == "Latch")
VdpLatch = byte.Parse(args[1], NumberStyles.HexNumber);
else if (args[0] == "ReadBuffer")
VdpBuffer = byte.Parse(args[1], NumberStyles.HexNumber);
else if (args[0] == "VdpAddress")
VdpAddress = ushort.Parse(args[1], NumberStyles.HexNumber);
else if (args[0] == "Command")
vdpCommand = (VdpCommand)Enum.Parse(typeof(VdpCommand), args[1]);
else if (args[0] == "Registers")
Registers.ReadFromHex(args[1]);
else if (args[0] == "VRAM")
VRAM.ReadFromHex(args[1]);
else
Console.WriteLine("Skipping unrecognized identifier " + args[0]);
}
for (int i = 0; i < Registers.Length; i++)
WriteRegister(i, Registers[i]);
}
public void SaveStateBinary(BinaryWriter writer)
{
//TODO
}
public void LoadStateBinary(BinaryReader reader)
{
//TODO
}
}
}

File diff suppressed because it is too large Load Diff