more discsys reorg

This commit is contained in:
zeromus 2015-07-08 02:54:05 -05:00
parent 41d5875baf
commit 1026c817cc
8 changed files with 471 additions and 442 deletions

View File

@ -93,12 +93,14 @@
<Compile Include="Internal\Algorithms\ECM.cs" />
<Compile Include="Internal\Algorithms\GPL_ECM.cs" />
<Compile Include="Internal\Algorithms\SubQ_CRC.cs" />
<Compile Include="Internal\Jobs\ApplySBIJob.cs" />
<Compile Include="Internal\Jobs\LoadSBIJob.cs" />
<Compile Include="Internal\Jobs\Synthesize_A0A1A2_Job.cs" />
<Compile Include="Internal\Jobs\Synthesize_DiscStructure_From_DiscTOC_Job.cs" />
<Compile Include="Internal\Jobs\Synthesize_DiscTOC_From_RawTOCEntries_Job.cs" />
<Compile Include="Internal\Jobs\Synthesize_Leadout_Job.cs" />
<Compile Include="Internal\SectorSynth.cs" />
<Compile Include="Internal\SynthUtils.cs" />
<Compile Include="Properties\AssemblyInfo.cs" />
</ItemGroup>
<ItemGroup>

View File

@ -21,6 +21,17 @@ namespace BizHawk.Emulation.DiscSystem
{
public partial class Disc : IDisposable
{
/// <summary>
/// Automagically loads a disc, without any fine-tuned control at all
/// </summary>
public static Disc LoadAutomagic(string path)
{
var job = new DiscMountJob { IN_FromPath = path };
//job.IN_DiscInterface = DiscInterface.MednaDisc; //TEST
job.Run();
return job.OUT_Disc;
}
/// <summary>
/// The DiscStructure corresponding to the TOCRaw
/// </summary>
@ -33,8 +44,9 @@ namespace BizHawk.Emulation.DiscSystem
/// <summary>
/// The DiscTOCRaw corresponding to the RawTOCEntries.
/// TODO - rename to TOC
/// TODO - there's one of these for every session, so... having one here doesnt make sense
/// so...
/// TODO - remove me
/// </summary>
public DiscTOC TOC;
@ -63,7 +75,6 @@ namespace BizHawk.Emulation.DiscSystem
/// </summary>
//public DiscMountPolicy DiscMountPolicy;
//----------------------------------------------------------------------------
/// <summary>
@ -73,6 +84,7 @@ namespace BizHawk.Emulation.DiscSystem
/// <summary>
/// The sectors on the disc
/// TODO - replace with delegate (much faster disc loading, support of reading of arbitrary lead-out and lead-in sectors)
/// </summary>
internal List<ISectorSynthJob2448> Sectors = new List<ISectorSynthJob2448>();
@ -81,441 +93,11 @@ namespace BizHawk.Emulation.DiscSystem
/// </summary>
internal SectorSynthParams SynthParams = new SectorSynthParams();
/// <summary>
/// Forbid public construction
/// </summary>
internal Disc()
{
}
{}
/// <summary>
/// Automagically loads a disc, without any fine-tuned control at all
/// </summary>
public static Disc LoadAutomagic(string path)
{
var job = new DiscMountJob { IN_FromPath = path };
//job.IN_DiscInterface = DiscInterface.MednaDisc; //TEST
job.Run();
return job.OUT_Disc;
}
class SS_PatchQ : ISectorSynthJob2448
{
public ISectorSynthJob2448 Original;
public byte[] Buffer_SubQ = new byte[12];
public void Synth(SectorSynthJob job)
{
Original.Synth(job);
if ((job.Parts & ESectorSynthPart.SubchannelQ) == 0)
return;
//apply patched subQ
for (int i = 0; i < 12; i++)
job.DestBuffer2448[2352 + 12 + i] = Buffer_SubQ[i];
}
}
/// <summary>
/// applies an SBI file to the disc
/// </summary>
public void ApplySBI(SBI.SubQPatchData sbi, bool asMednafen)
{
//TODO - could implement as a blob, to avoid allocating so many byte buffers
//save this, it's small, and we'll want it for disc processing a/b checks
Memos["sbi"] = sbi;
DiscSectorReader dsr = new DiscSectorReader(this);
int n = sbi.ABAs.Count;
int b=0;
for (int i = 0; i < n; i++)
{
int lba = sbi.ABAs[i] - 150;
//create a synthesizer which can return the patched data
var ss_patchq = new SS_PatchQ() { Original = this.Sectors[lba+150] };
byte[] subQbuf = ss_patchq.Buffer_SubQ;
//read the old subcode
dsr.ReadLBA_SubQ(lba, subQbuf, 0);
//insert patch
Sectors[lba + 150] = ss_patchq;
//apply SBI patch
for (int j = 0; j < 12; j++)
{
short patch = sbi.subq[b++];
if (patch == -1) continue;
else subQbuf[j] = (byte)patch;
}
//Apply mednafen hacks
//The reasoning here is that we know we expect these sectors to have a wrong checksum. therefore, generate a checksum, and make it wrong
//However, this seems senseless to me. The whole point of the SBI data is that it stores the patches needed to generate an acceptable subQ, right?
if (asMednafen)
{
SynthUtils.SubQ_SynthChecksum(subQbuf, 0);
subQbuf[10] ^= 0xFF;
subQbuf[11] ^= 0xFF;
}
}
}
static byte IntToBCD(int n)
{
int ones;
int tens = Math.DivRem(n,10,out ones);
return (byte)((tens<<4)|ones);
}
}
/// <summary>
/// encapsulates a 2 digit BCD number as used various places in the CD specs
/// </summary>
public struct BCD2
{
/// <summary>
/// The raw BCD value. you can't do math on this number! but you may be asked to supply it to a game program.
/// The largest number it can logically contain is 99
/// </summary>
public byte BCDValue;
/// <summary>
/// The derived decimal value. you can do math on this! the largest number it can logically contain is 99.
/// </summary>
public int DecimalValue
{
get { return (BCDValue & 0xF) + ((BCDValue >> 4) & 0xF) * 10; }
set { BCDValue = IntToBCD(value); }
}
/// <summary>
/// makes a BCD2 from a decimal number. don't supply a number > 99 or you might not like the results
/// </summary>
public static BCD2 FromDecimal(int d)
{
return new BCD2 {DecimalValue = d};
}
public static BCD2 FromBCD(byte b)
{
return new BCD2 { BCDValue = b };
}
public static int BCDToInt(byte n)
{
var bcd = new BCD2();
bcd.BCDValue = n;
return bcd.DecimalValue;
}
public static byte IntToBCD(int n)
{
int ones;
int tens = Math.DivRem(n, 10, out ones);
return (byte)((tens << 4) | ones);
}
public override string ToString()
{
return BCDValue.ToString("X2");
}
}
/// <summary>
/// todo - rename to MSF? It can specify durations, so maybe it should be not suggestive of timestamp
/// TODO - can we maybe use BCD2 in here
/// </summary>
public struct Timestamp
{
/// <summary>
/// Checks if the string is a legit MSF. It's strict.
/// </summary>
public static bool IsMatch(string str)
{
return new Timestamp(str).Valid;
}
/// <summary>
/// creates a timestamp from a string in the form mm:ss:ff
/// </summary>
public Timestamp(string str)
{
if (str.Length != 8) goto BOGUS;
if (str[0] < '0' || str[0] > '9') goto BOGUS;
if (str[1] < '0' || str[1] > '9') goto BOGUS;
if (str[2] != ':') goto BOGUS;
if (str[3] < '0' || str[3] > '9') goto BOGUS;
if (str[4] < '0' || str[4] > '9') goto BOGUS;
if (str[5] != ':') goto BOGUS;
if (str[6] < '0' || str[6] > '9') goto BOGUS;
if (str[7] < '0' || str[7] > '9') goto BOGUS;
MIN = (byte)((str[0] - '0') * 10 + (str[1] - '0'));
SEC = (byte)((str[3] - '0') * 10 + (str[4] - '0'));
FRAC = (byte)((str[6] - '0') * 10 + (str[7] - '0'));
Valid = true;
Negative = false;
return;
BOGUS:
MIN = SEC = FRAC = 0;
Valid = false;
Negative = false;
return;
}
/// <summary>
/// The string representation of the MSF
/// </summary>
public string Value
{
get
{
if (!Valid) return "--:--:--";
return string.Format("{0}{1:D2}:{2:D2}:{3:D2}", Negative?'-':'+',MIN, SEC, FRAC);
}
}
public readonly byte MIN, SEC, FRAC;
public readonly bool Valid, Negative;
/// <summary>
/// The fully multiplied out flat-address Sector number
/// </summary>
public int Sector { get { return MIN * 60 * 75 + SEC * 75 + FRAC; } }
/// <summary>
/// creates timestamp from the supplied MSF
/// </summary>
public Timestamp(int m, int s, int f)
{
MIN = (byte)m;
SEC = (byte)s;
FRAC = (byte)f;
Valid = true;
Negative = false;
}
/// <summary>
/// creates timestamp from supplied SectorNumber
/// </summary>
public Timestamp(int SectorNumber)
{
if (SectorNumber < 0)
{
SectorNumber = -SectorNumber;
Negative = true;
}
else Negative = false;
MIN = (byte)(SectorNumber / (60 * 75));
SEC = (byte)((SectorNumber / 75) % 60);
FRAC = (byte)(SectorNumber % 75);
Valid = true;
}
public override string ToString()
{
return Value;
}
}
static class SynthUtils
{
/// <summary>
/// Calculates the checksum of the provided Q subchannel buffer and emplaces it
/// </summary>
/// <param name="buffer">12 byte Q subchannel buffer: input and output buffer for operation</param>
/// <param name="offset">location within buffer of Q subchannel</param>
public static ushort SubQ_SynthChecksum(byte[] buf12, int offset)
{
ushort crc16 = CRC16_CCITT.Calculate(buf12, offset, 10);
//CRC is stored inverted and big endian
buf12[offset + 10] = (byte)(~(crc16 >> 8));
buf12[offset + 11] = (byte)(~(crc16));
return crc16;
}
/// <summary>
/// Caclulates the checksum of the provided Q subchannel buffer
/// </summary>
public static ushort SubQ_CalcChecksum(byte[] buf12, int offset)
{
return CRC16_CCITT.Calculate(buf12, offset, 10);
}
/// <summary>
/// Serializes the provided SubchannelQ structure into a buffer
/// Returns the crc, calculated or otherwise.
/// </summary>
public static ushort SubQ_Serialize(byte[] buf12, int offset, ref SubchannelQ sq)
{
buf12[offset + 0] = sq.q_status;
buf12[offset + 1] = sq.q_tno.BCDValue;
buf12[offset + 2] = sq.q_index.BCDValue;
buf12[offset + 3] = sq.min.BCDValue;
buf12[offset + 4] = sq.sec.BCDValue;
buf12[offset + 5] = sq.frame.BCDValue;
buf12[offset + 6] = sq.zero;
buf12[offset + 7] = sq.ap_min.BCDValue;
buf12[offset + 8] = sq.ap_sec.BCDValue;
buf12[offset + 9] = sq.ap_frame.BCDValue;
return SubQ_SynthChecksum(buf12, offset);
}
/// <summary>
/// Synthesizes the typical subP data into the provided buffer depending on the indicated pause flag
/// </summary>
public static void SubP(byte[] buffer12, int offset, bool pause)
{
byte val = (byte)(pause ? 0xFF : 0x00);
for (int i = 0; i < 12; i++)
buffer12[offset + i] = val;
}
/// <summary>
/// Synthesizes a data sector header
/// </summary>
public static void SectorHeader(byte[] buffer16, int offset, int LBA, byte mode)
{
buffer16[offset + 0] = 0x00;
for (int i = 1; i < 11; i++) buffer16[offset + i] = 0xFF;
buffer16[offset + 11] = 0x00;
Timestamp ts = new Timestamp(LBA + 150);
buffer16[offset + 12] = BCD2.IntToBCD(ts.MIN);
buffer16[offset + 13] = BCD2.IntToBCD(ts.SEC);
buffer16[offset + 14] = BCD2.IntToBCD(ts.FRAC);
buffer16[offset + 15] = mode;
}
/// <summary>
/// Synthesizes the EDC checksum for a Mode 2 Form 1 data sector (and puts it in place)
/// </summary>
public static void EDC_Mode2_Form1(byte[] buf2352, int offset)
{
uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2048 + 8);
ECM.PokeUint(buf2352, offset + 2072, edc);
}
/// <summary>
/// Synthesizes the EDC checksum for a Mode 2 Form 2 data sector (and puts it in place)
/// </summary>
public static void EDC_Mode2_Form2(byte[] buf2352, int offset)
{
uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2324 + 8);
ECM.PokeUint(buf2352, offset + 2348, edc);
}
/// <summary>
/// Synthesizes the complete ECM data (EDC + ECC) for a Mode 1 data sector (and puts it in place)
/// Make sure everything else in the sector userdata is done before calling this
/// </summary>
public static void ECM_Mode1(byte[] buf2352, int offset, int LBA)
{
//EDC
uint edc = ECM.EDC_Calc(buf2352, offset, 2064);
ECM.PokeUint(buf2352, offset + 2064, edc);
//reserved, zero
for (int i = 0; i < 8; i++) buf2352[offset + 2068 + i] = 0;
//ECC
ECM.ECC_Populate(buf2352, offset, buf2352, offset, false);
}
/// <summary>
/// Converts the useful (but unrealistic) deinterleaved subchannel data into the useless (but realistic) interleaved format.
/// in_buf and out_buf should not overlap
/// </summary>
public static void InterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index)
{
for (int d = 0; d < 12; d++)
{
for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
int rawb = 0;
for (int ch = 0; ch < 8; ch++)
{
rawb |= ((in_buf[ch * 12 + d + in_buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle + out_buf_index] = (byte)rawb;
}
}
}
/// <summary>
/// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format.
/// in_buf and out_buf should not overlap
/// </summary>
public static void DeinterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index)
{
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int ch = 0; ch < 8; ch++)
{
for (int i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3) + out_buf_index] |= (byte)(((in_buf[i + in_buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7)));
}
}
}
/// <summary>
/// Converts the useful (but unrealistic) deinterleaved data into the useless (but realistic) interleaved subchannel format.
/// </summary>
public unsafe static void InterleaveSubcodeInplace(byte[] buf, int buf_index)
{
byte* out_buf = stackalloc byte[96];
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int d = 0; d < 12; d++)
{
for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
int rawb = 0;
for (int ch = 0; ch < 8; ch++)
{
rawb |= ((buf[ch * 12 + d + buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle] = (byte)rawb;
}
}
for (int i = 0; i < 96; i++)
buf[i + buf_index] = out_buf[i];
}
/// <summary>
/// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format.
/// </summary>
public unsafe static void DeinterleaveSubcodeInplace(byte[] buf, int buf_index)
{
byte* out_buf = stackalloc byte[96];
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int ch = 0; ch < 8; ch++)
{
for (int i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3)] |= (byte)(((buf[i + buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7)));
}
}
for (int i = 0; i < 96; i++)
buf[i + buf_index] = out_buf[i];
}
}
}

View File

@ -6,8 +6,11 @@ using System.Collections.Generic;
namespace BizHawk.Emulation.DiscSystem
{
/// <summary>
/// A Job interface for mounting discs.
/// This is publicly exposed because it's the main point of control for fine-tuning disc loading options.
/// This would typically be used to load discs.
/// </summary>
public partial class DiscMountJob : DiscJob
{
/// <summary>
@ -142,10 +145,10 @@ namespace BizHawk.Emulation.DiscSystem
var sbiPath = Path.ChangeExtension(IN_FromPath, ".sbi");
if (File.Exists(sbiPath) && SBI.SBIFormat.QuickCheckISSBI(sbiPath))
{
var sbiJob = new SBI.LoadSBIJob();
sbiJob.IN_Path = sbiPath;
sbiJob.Run();
OUT_Disc.ApplySBI(sbiJob.OUT_Data, IN_DiscMountPolicy.SBI_As_Mednafen);
var loadSbiJob = new SBI.LoadSBIJob() { IN_Path = sbiPath };
loadSbiJob.Run();
var applySbiJob = new ApplySBIJob();
applySbiJob.Run(OUT_Disc, loadSbiJob.OUT_Data, IN_DiscMountPolicy.SBI_As_Mednafen);
}
}
else if (ext == ".ccd")

View File

@ -27,4 +27,153 @@ namespace BizHawk.Emulation.DiscSystem
Type10_CDI = 0x10,
Type20_CDXA = 0x20
}
/// <summary>
/// encapsulates a 2 digit BCD number as used various places in the CD specs
/// </summary>
public struct BCD2
{
/// <summary>
/// The raw BCD value. you can't do math on this number! but you may be asked to supply it to a game program.
/// The largest number it can logically contain is 99
/// </summary>
public byte BCDValue;
/// <summary>
/// The derived decimal value. you can do math on this! the largest number it can logically contain is 99.
/// </summary>
public int DecimalValue
{
get { return (BCDValue & 0xF) + ((BCDValue >> 4) & 0xF) * 10; }
set { BCDValue = IntToBCD(value); }
}
/// <summary>
/// makes a BCD2 from a decimal number. don't supply a number > 99 or you might not like the results
/// </summary>
public static BCD2 FromDecimal(int d)
{
return new BCD2 { DecimalValue = d };
}
public static BCD2 FromBCD(byte b)
{
return new BCD2 { BCDValue = b };
}
public static int BCDToInt(byte n)
{
var bcd = new BCD2();
bcd.BCDValue = n;
return bcd.DecimalValue;
}
public static byte IntToBCD(int n)
{
int ones;
int tens = Math.DivRem(n, 10, out ones);
return (byte)((tens << 4) | ones);
}
public override string ToString()
{
return BCDValue.ToString("X2");
}
}
/// <summary>
/// todo - rename to MSF? It can specify durations, so maybe it should be not suggestive of timestamp
/// TODO - can we maybe use BCD2 in here
/// </summary>
public struct Timestamp
{
/// <summary>
/// Checks if the string is a legit MSF. It's strict.
/// </summary>
public static bool IsMatch(string str)
{
return new Timestamp(str).Valid;
}
/// <summary>
/// creates a timestamp from a string in the form mm:ss:ff
/// </summary>
public Timestamp(string str)
{
if (str.Length != 8) goto BOGUS;
if (str[0] < '0' || str[0] > '9') goto BOGUS;
if (str[1] < '0' || str[1] > '9') goto BOGUS;
if (str[2] != ':') goto BOGUS;
if (str[3] < '0' || str[3] > '9') goto BOGUS;
if (str[4] < '0' || str[4] > '9') goto BOGUS;
if (str[5] != ':') goto BOGUS;
if (str[6] < '0' || str[6] > '9') goto BOGUS;
if (str[7] < '0' || str[7] > '9') goto BOGUS;
MIN = (byte)((str[0] - '0') * 10 + (str[1] - '0'));
SEC = (byte)((str[3] - '0') * 10 + (str[4] - '0'));
FRAC = (byte)((str[6] - '0') * 10 + (str[7] - '0'));
Valid = true;
Negative = false;
return;
BOGUS:
MIN = SEC = FRAC = 0;
Valid = false;
Negative = false;
return;
}
/// <summary>
/// The string representation of the MSF
/// </summary>
public string Value
{
get
{
if (!Valid) return "--:--:--";
return string.Format("{0}{1:D2}:{2:D2}:{3:D2}", Negative ? '-' : '+', MIN, SEC, FRAC);
}
}
public readonly byte MIN, SEC, FRAC;
public readonly bool Valid, Negative;
/// <summary>
/// The fully multiplied out flat-address Sector number
/// </summary>
public int Sector { get { return MIN * 60 * 75 + SEC * 75 + FRAC; } }
/// <summary>
/// creates timestamp from the supplied MSF
/// </summary>
public Timestamp(int m, int s, int f)
{
MIN = (byte)m;
SEC = (byte)s;
FRAC = (byte)f;
Valid = true;
Negative = false;
}
/// <summary>
/// creates timestamp from supplied SectorNumber
/// </summary>
public Timestamp(int SectorNumber)
{
if (SectorNumber < 0)
{
SectorNumber = -SectorNumber;
Negative = true;
}
else Negative = false;
MIN = (byte)(SectorNumber / (60 * 75));
SEC = (byte)((SectorNumber / 75) % 60);
FRAC = (byte)(SectorNumber % 75);
Valid = true;
}
public override string ToString()
{
return Value;
}
}
}

View File

@ -1,7 +1,16 @@
using System;
namespace BizHawk.Emulation.DiscSystem
{
public static class DiscUtils
{
static byte IntToBCD(int n)
{
int ones;
int tens = Math.DivRem(n, 10, out ones);
return (byte)((tens << 4) | ones);
}
/// <summary>
/// converts the given int to a BCD value
/// </summary>

View File

@ -0,0 +1,61 @@
using System;
using System.Linq;
using System.Text;
using System.IO;
using System.Collections.Generic;
//TODO - generate correct Q subchannel CRC
namespace BizHawk.Emulation.DiscSystem
{
class ApplySBIJob
{
/// <summary>
/// applies an SBI file to the disc
/// </summary>
public void Run(Disc disc, SBI.SubQPatchData sbi, bool asMednafen)
{
//TODO - could implement as a blob, to avoid allocating so many byte buffers
//save this, it's small, and we'll want it for disc processing a/b checks
disc.Memos["sbi"] = sbi;
DiscSectorReader dsr = new DiscSectorReader(disc);
int n = sbi.ABAs.Count;
int b = 0;
for (int i = 0; i < n; i++)
{
int lba = sbi.ABAs[i] - 150;
//create a synthesizer which can return the patched data
var ss_patchq = new SS_PatchQ() { Original = disc.Sectors[lba + 150] };
byte[] subQbuf = ss_patchq.Buffer_SubQ;
//read the old subcode
dsr.ReadLBA_SubQ(lba, subQbuf, 0);
//insert patch
disc.Sectors[lba + 150] = ss_patchq;
//apply SBI patch
for (int j = 0; j < 12; j++)
{
short patch = sbi.subq[b++];
if (patch == -1) continue;
else subQbuf[j] = (byte)patch;
}
//Apply mednafen hacks
//The reasoning here is that we know we expect these sectors to have a wrong checksum. therefore, generate a checksum, and make it wrong
//However, this seems senseless to me. The whole point of the SBI data is that it stores the patches needed to generate an acceptable subQ, right?
if (asMednafen)
{
SynthUtils.SubQ_SynthChecksum(subQbuf, 0);
subQbuf[10] ^= 0xFF;
subQbuf[11] ^= 0xFF;
}
}
}
}
}

View File

@ -126,4 +126,24 @@ namespace BizHawk.Emulation.DiscSystem
public long[] BlobOffsets;
public MednaDisc MednaDisc;
}
class SS_PatchQ : ISectorSynthJob2448
{
public ISectorSynthJob2448 Original;
public byte[] Buffer_SubQ = new byte[12];
public void Synth(SectorSynthJob job)
{
Original.Synth(job);
if ((job.Parts & ESectorSynthPart.SubchannelQ) == 0)
return;
//apply patched subQ
for (int i = 0; i < 12; i++)
job.DestBuffer2448[2352 + 12 + i] = Buffer_SubQ[i];
}
}
}

View File

@ -0,0 +1,203 @@
using System;
using System.Collections.Generic;
using System.IO;
namespace BizHawk.Emulation.DiscSystem
{
static class SynthUtils
{
/// <summary>
/// Calculates the checksum of the provided Q subchannel buffer and emplaces it
/// </summary>
/// <param name="buffer">12 byte Q subchannel buffer: input and output buffer for operation</param>
/// <param name="offset">location within buffer of Q subchannel</param>
public static ushort SubQ_SynthChecksum(byte[] buf12, int offset)
{
ushort crc16 = CRC16_CCITT.Calculate(buf12, offset, 10);
//CRC is stored inverted and big endian
buf12[offset + 10] = (byte)(~(crc16 >> 8));
buf12[offset + 11] = (byte)(~(crc16));
return crc16;
}
/// <summary>
/// Caclulates the checksum of the provided Q subchannel buffer
/// </summary>
public static ushort SubQ_CalcChecksum(byte[] buf12, int offset)
{
return CRC16_CCITT.Calculate(buf12, offset, 10);
}
/// <summary>
/// Serializes the provided SubchannelQ structure into a buffer
/// Returns the crc, calculated or otherwise.
/// </summary>
public static ushort SubQ_Serialize(byte[] buf12, int offset, ref SubchannelQ sq)
{
buf12[offset + 0] = sq.q_status;
buf12[offset + 1] = sq.q_tno.BCDValue;
buf12[offset + 2] = sq.q_index.BCDValue;
buf12[offset + 3] = sq.min.BCDValue;
buf12[offset + 4] = sq.sec.BCDValue;
buf12[offset + 5] = sq.frame.BCDValue;
buf12[offset + 6] = sq.zero;
buf12[offset + 7] = sq.ap_min.BCDValue;
buf12[offset + 8] = sq.ap_sec.BCDValue;
buf12[offset + 9] = sq.ap_frame.BCDValue;
return SubQ_SynthChecksum(buf12, offset);
}
/// <summary>
/// Synthesizes the typical subP data into the provided buffer depending on the indicated pause flag
/// </summary>
public static void SubP(byte[] buffer12, int offset, bool pause)
{
byte val = (byte)(pause ? 0xFF : 0x00);
for (int i = 0; i < 12; i++)
buffer12[offset + i] = val;
}
/// <summary>
/// Synthesizes a data sector header
/// </summary>
public static void SectorHeader(byte[] buffer16, int offset, int LBA, byte mode)
{
buffer16[offset + 0] = 0x00;
for (int i = 1; i < 11; i++) buffer16[offset + i] = 0xFF;
buffer16[offset + 11] = 0x00;
Timestamp ts = new Timestamp(LBA + 150);
buffer16[offset + 12] = BCD2.IntToBCD(ts.MIN);
buffer16[offset + 13] = BCD2.IntToBCD(ts.SEC);
buffer16[offset + 14] = BCD2.IntToBCD(ts.FRAC);
buffer16[offset + 15] = mode;
}
/// <summary>
/// Synthesizes the EDC checksum for a Mode 2 Form 1 data sector (and puts it in place)
/// </summary>
public static void EDC_Mode2_Form1(byte[] buf2352, int offset)
{
uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2048 + 8);
ECM.PokeUint(buf2352, offset + 2072, edc);
}
/// <summary>
/// Synthesizes the EDC checksum for a Mode 2 Form 2 data sector (and puts it in place)
/// </summary>
public static void EDC_Mode2_Form2(byte[] buf2352, int offset)
{
uint edc = ECM.EDC_Calc(buf2352, offset + 16, 2324 + 8);
ECM.PokeUint(buf2352, offset + 2348, edc);
}
/// <summary>
/// Synthesizes the complete ECM data (EDC + ECC) for a Mode 1 data sector (and puts it in place)
/// Make sure everything else in the sector userdata is done before calling this
/// </summary>
public static void ECM_Mode1(byte[] buf2352, int offset, int LBA)
{
//EDC
uint edc = ECM.EDC_Calc(buf2352, offset, 2064);
ECM.PokeUint(buf2352, offset + 2064, edc);
//reserved, zero
for (int i = 0; i < 8; i++) buf2352[offset + 2068 + i] = 0;
//ECC
ECM.ECC_Populate(buf2352, offset, buf2352, offset, false);
}
/// <summary>
/// Converts the useful (but unrealistic) deinterleaved subchannel data into the useless (but realistic) interleaved format.
/// in_buf and out_buf should not overlap
/// </summary>
public static void InterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index)
{
for (int d = 0; d < 12; d++)
{
for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
int rawb = 0;
for (int ch = 0; ch < 8; ch++)
{
rawb |= ((in_buf[ch * 12 + d + in_buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle + out_buf_index] = (byte)rawb;
}
}
}
/// <summary>
/// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format.
/// in_buf and out_buf should not overlap
/// </summary>
public static void DeinterleaveSubcode(byte[] in_buf, int in_buf_index, byte[] out_buf, int out_buf_index)
{
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int ch = 0; ch < 8; ch++)
{
for (int i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3) + out_buf_index] |= (byte)(((in_buf[i + in_buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7)));
}
}
}
/// <summary>
/// Converts the useful (but unrealistic) deinterleaved data into the useless (but realistic) interleaved subchannel format.
/// </summary>
public unsafe static void InterleaveSubcodeInplace(byte[] buf, int buf_index)
{
byte* out_buf = stackalloc byte[96];
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int d = 0; d < 12; d++)
{
for (int bitpoodle = 0; bitpoodle < 8; bitpoodle++)
{
int rawb = 0;
for (int ch = 0; ch < 8; ch++)
{
rawb |= ((buf[ch * 12 + d + buf_index] >> (7 - bitpoodle)) & 1) << (7 - ch);
}
out_buf[(d << 3) + bitpoodle] = (byte)rawb;
}
}
for (int i = 0; i < 96; i++)
buf[i + buf_index] = out_buf[i];
}
/// <summary>
/// Converts the useless (but realistic) interleaved subchannel data into a useful (but unrealistic) deinterleaved format.
/// </summary>
public unsafe static void DeinterleaveSubcodeInplace(byte[] buf, int buf_index)
{
byte* out_buf = stackalloc byte[96];
for (int i = 0; i < 96; i++)
out_buf[i] = 0;
for (int ch = 0; ch < 8; ch++)
{
for (int i = 0; i < 96; i++)
{
out_buf[(ch * 12) + (i >> 3)] |= (byte)(((buf[i + buf_index] >> (7 - ch)) & 0x1) << (7 - (i & 0x7)));
}
}
for (int i = 0; i < 96; i++)
buf[i + buf_index] = out_buf[i];
}
}
}