BizHawk/waterbox/picodrive/pico/sound/ym2612.c

2057 lines
56 KiB
C
Raw Normal View History

2017-07-02 17:47:43 +00:00
/*
** This is a bunch of remains of original fm.c from MAME project. All stuff
** unrelated to ym2612 was removed, multiple chip support was removed,
** some parts of code were slightly rewritten and tied to the emulator.
**
** SSG-EG was also removed, because it's rarely used, Sega2.doc even does not
** document it ("proprietary") and tells to write 0 to SSG-EG control register.
*/
/*
**
** File: fm.c -- software implementation of Yamaha FM sound generator
**
** Copyright (C) 2001, 2002, 2003 Jarek Burczynski (bujar at mame dot net)
** Copyright (C) 1998 Tatsuyuki Satoh , MultiArcadeMachineEmulator development
**
** Version 1.4 (final beta)
**
*/
/*
** History:
**
** 03-08-2003 Jarek Burczynski:
** - fixed YM2608 initial values (after the reset)
** - fixed flag and irqmask handling (YM2608)
** - fixed BUFRDY flag handling (YM2608)
**
** 14-06-2003 Jarek Burczynski:
** - implemented all of the YM2608 status register flags
** - implemented support for external memory read/write via YM2608
** - implemented support for deltat memory limit register in YM2608 emulation
**
** 22-05-2003 Jarek Burczynski:
** - fixed LFO PM calculations (copy&paste bugfix)
**
** 08-05-2003 Jarek Burczynski:
** - fixed SSG support
**
** 22-04-2003 Jarek Burczynski:
** - implemented 100% correct LFO generator (verified on real YM2610 and YM2608)
**
** 15-04-2003 Jarek Burczynski:
** - added support for YM2608's register 0x110 - status mask
**
** 01-12-2002 Jarek Burczynski:
** - fixed register addressing in YM2608, YM2610, YM2610B chips. (verified on real YM2608)
** The addressing patch used for early Neo-Geo games can be removed now.
**
** 26-11-2002 Jarek Burczynski, Nicola Salmoria:
** - recreated YM2608 ADPCM ROM using data from real YM2608's output which leads to:
** - added emulation of YM2608 drums.
** - output of YM2608 is two times lower now - same as YM2610 (verified on real YM2608)
**
** 16-08-2002 Jarek Burczynski:
** - binary exact Envelope Generator (verified on real YM2203);
** identical to YM2151
** - corrected 'off by one' error in feedback calculations (when feedback is off)
** - corrected connection (algorithm) calculation (verified on real YM2203 and YM2610)
**
** 18-12-2001 Jarek Burczynski:
** - added SSG-EG support (verified on real YM2203)
**
** 12-08-2001 Jarek Burczynski:
** - corrected ym_sin_tab and ym_tl_tab data (verified on real chip)
** - corrected feedback calculations (verified on real chip)
** - corrected phase generator calculations (verified on real chip)
** - corrected envelope generator calculations (verified on real chip)
** - corrected FM volume level (YM2610 and YM2610B).
** - changed YMxxxUpdateOne() functions (YM2203, YM2608, YM2610, YM2610B, YM2612) :
** this was needed to calculate YM2610 FM channels output correctly.
** (Each FM channel is calculated as in other chips, but the output of the channel
** gets shifted right by one *before* sending to accumulator. That was impossible to do
** with previous implementation).
**
** 23-07-2001 Jarek Burczynski, Nicola Salmoria:
** - corrected YM2610 ADPCM type A algorithm and tables (verified on real chip)
**
** 11-06-2001 Jarek Burczynski:
** - corrected end of sample bug in ADPCMA_calc_cha().
** Real YM2610 checks for equality between current and end addresses (only 20 LSB bits).
**
** 08-12-98 hiro-shi:
** rename ADPCMA -> ADPCMB, ADPCMB -> ADPCMA
** move ROM limit check.(CALC_CH? -> 2610Write1/2)
** test program (ADPCMB_TEST)
** move ADPCM A/B end check.
** ADPCMB repeat flag(no check)
** change ADPCM volume rate (8->16) (32->48).
**
** 09-12-98 hiro-shi:
** change ADPCM volume. (8->16, 48->64)
** replace ym2610 ch0/3 (YM-2610B)
** change ADPCM_SHIFT (10->8) missing bank change 0x4000-0xffff.
** add ADPCM_SHIFT_MASK
** change ADPCMA_DECODE_MIN/MAX.
*/
/************************************************************************/
/* comment of hiro-shi(Hiromitsu Shioya) */
/* YM2610(B) = OPN-B */
/* YM2610 : PSG:3ch FM:4ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
/* YM2610B : PSG:3ch FM:6ch ADPCM(18.5KHz):6ch DeltaT ADPCM:1ch */
/************************************************************************/
//#include <stdio.h>
#include <string.h>
#include <math.h>
#include "ym2612.h"
#ifndef EXTERNAL_YM2612
#include <stdlib.h>
// let it be 1 global to simplify things
YM2612 ym2612;
#else
extern YM2612 *ym2612_940;
#define ym2612 (*ym2612_940)
#endif
void memset32(int *dest, int c, int count);
#ifndef __GNUC__
#pragma warning (disable:4100) // unreferenced formal parameter
#pragma warning (disable:4244)
#pragma warning (disable:4245) // signed/unsigned in conversion
#pragma warning (disable:4710)
#pragma warning (disable:4018) // signed/unsigned
#endif
#ifndef INLINE
#define INLINE static __inline
#endif
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
/* globals */
#define FREQ_SH 16 /* 16.16 fixed point (frequency calculations) */
#define EG_SH 16 /* 16.16 fixed point (envelope generator timing) */
#define LFO_SH 25 /* 7.25 fixed point (LFO calculations) */
#define TIMER_SH 16 /* 16.16 fixed point (timers calculations) */
#define ENV_BITS 10
#define ENV_LEN (1<<ENV_BITS)
#define ENV_STEP (128.0/ENV_LEN)
#define MAX_ATT_INDEX (ENV_LEN-1) /* 1023 */
#define MIN_ATT_INDEX (0) /* 0 */
#define EG_ATT 4
#define EG_DEC 3
#define EG_SUS 2
#define EG_REL 1
#define EG_OFF 0
#define SIN_BITS 10
#define SIN_LEN (1<<SIN_BITS)
#define SIN_MASK (SIN_LEN-1)
#define TL_RES_LEN (256) /* 8 bits addressing (real chip) */
#define EG_TIMER_OVERFLOW (3*(1<<EG_SH)) /* envelope generator timer overflows every 3 samples (on real chip) */
#define MAXOUT (+32767)
#define MINOUT (-32768)
/* limitter */
#define Limit(val, max,min) { \
if ( val > max ) val = max; \
else if ( val < min ) val = min; \
}
/* TL_TAB_LEN is calculated as:
* 13 - sinus amplitude bits (Y axis)
* 2 - sinus sign bit (Y axis)
* TL_RES_LEN - sinus resolution (X axis)
*/
//#define TL_TAB_LEN (13*2*TL_RES_LEN)
#define TL_TAB_LEN (13*TL_RES_LEN*256/8) // 106496*2
UINT16 ym_tl_tab[TL_TAB_LEN];
/* ~3K wasted but oh well */
UINT16 ym_tl_tab2[13*TL_RES_LEN];
#define ENV_QUIET (2*13*TL_RES_LEN/8)
/* sin waveform table in 'decibel' scale (use only period/4 values) */
static UINT16 ym_sin_tab[256];
/* sustain level table (3dB per step) */
/* bit0, bit1, bit2, bit3, bit4, bit5, bit6 */
/* 1, 2, 4, 8, 16, 32, 64 (value)*/
/* 0.75, 1.5, 3, 6, 12, 24, 48 (dB)*/
/* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
#define SC(db) (UINT32) ( db * (4.0/ENV_STEP) )
static const UINT32 sl_table[16]={
SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
};
#undef SC
#if 0
#define RATE_STEPS (8)
static const UINT8 eg_inc[19*RATE_STEPS]={
/*cycle:0 1 2 3 4 5 6 7*/
/* 0 */ 0,1, 0,1, 0,1, 0,1, /* rates 00..11 0 (increment by 0 or 1) */
/* 1 */ 0,1, 0,1, 1,1, 0,1, /* rates 00..11 1 */
/* 2 */ 0,1, 1,1, 0,1, 1,1, /* rates 00..11 2 */
/* 3 */ 0,1, 1,1, 1,1, 1,1, /* rates 00..11 3 */
/* 4 */ 1,1, 1,1, 1,1, 1,1, /* rate 12 0 (increment by 1) */
/* 5 */ 1,1, 1,2, 1,1, 1,2, /* rate 12 1 */
/* 6 */ 1,2, 1,2, 1,2, 1,2, /* rate 12 2 */
/* 7 */ 1,2, 2,2, 1,2, 2,2, /* rate 12 3 */
/* 8 */ 2,2, 2,2, 2,2, 2,2, /* rate 13 0 (increment by 2) */
/* 9 */ 2,2, 2,4, 2,2, 2,4, /* rate 13 1 */
/*10 */ 2,4, 2,4, 2,4, 2,4, /* rate 13 2 */
/*11 */ 2,4, 4,4, 2,4, 4,4, /* rate 13 3 */
/*12 */ 4,4, 4,4, 4,4, 4,4, /* rate 14 0 (increment by 4) */
/*13 */ 4,4, 4,8, 4,4, 4,8, /* rate 14 1 */
/*14 */ 4,8, 4,8, 4,8, 4,8, /* rate 14 2 */
/*15 */ 4,8, 8,8, 4,8, 8,8, /* rate 14 3 */
/*16 */ 8,8, 8,8, 8,8, 8,8, /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
/*17 */ 16,16,16,16,16,16,16,16, /* rates 15 2, 15 3 for attack */
/*18 */ 0,0, 0,0, 0,0, 0,0, /* infinity rates for attack and decay(s) */
};
#endif
#define PACK(a0,a1,a2,a3,a4,a5,a6,a7) ((a7<<21)|(a6<<18)|(a5<<15)|(a4<<12)|(a3<<9)|(a2<<6)|(a1<<3)|(a0<<0))
static const UINT32 eg_inc_pack[19] =
{
/* 0 */ PACK(0,1,0,1,0,1,0,1), /* rates 00..11 0 (increment by 0 or 1) */
/* 1 */ PACK(0,1,0,1,1,1,0,1), /* rates 00..11 1 */
/* 2 */ PACK(0,1,1,1,0,1,1,1), /* rates 00..11 2 */
/* 3 */ PACK(0,1,1,1,1,1,1,1), /* rates 00..11 3 */
/* 4 */ PACK(1,1,1,1,1,1,1,1), /* rate 12 0 (increment by 1) */
/* 5 */ PACK(1,1,1,2,1,1,1,2), /* rate 12 1 */
/* 6 */ PACK(1,2,1,2,1,2,1,2), /* rate 12 2 */
/* 7 */ PACK(1,2,2,2,1,2,2,2), /* rate 12 3 */
/* 8 */ PACK(2,2,2,2,2,2,2,2), /* rate 13 0 (increment by 2) */
/* 9 */ PACK(2,2,2,3,2,2,2,3), /* rate 13 1 */
/*10 */ PACK(2,3,2,3,2,3,2,3), /* rate 13 2 */
/*11 */ PACK(2,3,3,3,2,3,3,3), /* rate 13 3 */
/*12 */ PACK(3,3,3,3,3,3,3,3), /* rate 14 0 (increment by 4) */
/*13 */ PACK(3,3,3,4,3,3,3,4), /* rate 14 1 */
/*14 */ PACK(3,4,3,4,3,4,3,4), /* rate 14 2 */
/*15 */ PACK(3,4,4,4,3,4,4,4), /* rate 14 3 */
/*16 */ PACK(4,4,4,4,4,4,4,4), /* rates 15 0, 15 1, 15 2, 15 3 (increment by 8) */
/*17 */ PACK(5,5,5,5,5,5,5,5), /* rates 15 2, 15 3 for attack */
/*18 */ PACK(0,0,0,0,0,0,0,0), /* infinity rates for attack and decay(s) */
};
//#define O(a) (a*RATE_STEPS)
#define O(a) a
/*note that there is no O(17) in this table - it's directly in the code */
static const UINT8 eg_rate_select[32+64+32]={ /* Envelope Generator rates (32 + 64 rates + 32 RKS) */
/* 32 infinite time rates */
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
O(18),O(18),O(18),O(18),O(18),O(18),O(18),O(18),
/* rates 00-11 */
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
O( 0),O( 1),O( 2),O( 3),
/* rate 12 */
O( 4),O( 5),O( 6),O( 7),
/* rate 13 */
O( 8),O( 9),O(10),O(11),
/* rate 14 */
O(12),O(13),O(14),O(15),
/* rate 15 */
O(16),O(16),O(16),O(16),
/* 32 dummy rates (same as 15 3) */
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16),
O(16),O(16),O(16),O(16),O(16),O(16),O(16),O(16)
};
#undef O
/*rate 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15*/
/*shift 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0, 0, 0, 0, 0 */
/*mask 2047, 1023, 511, 255, 127, 63, 31, 15, 7, 3, 1, 0, 0, 0, 0, 0 */
#define O(a) (a*1)
static const UINT8 eg_rate_shift[32+64+32]={ /* Envelope Generator counter shifts (32 + 64 rates + 32 RKS) */
/* 32 infinite time rates */
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
O(0),O(0),O(0),O(0),O(0),O(0),O(0),O(0),
/* rates 00-11 */
O(11),O(11),O(11),O(11),
O(10),O(10),O(10),O(10),
O( 9),O( 9),O( 9),O( 9),
O( 8),O( 8),O( 8),O( 8),
O( 7),O( 7),O( 7),O( 7),
O( 6),O( 6),O( 6),O( 6),
O( 5),O( 5),O( 5),O( 5),
O( 4),O( 4),O( 4),O( 4),
O( 3),O( 3),O( 3),O( 3),
O( 2),O( 2),O( 2),O( 2),
O( 1),O( 1),O( 1),O( 1),
O( 0),O( 0),O( 0),O( 0),
/* rate 12 */
O( 0),O( 0),O( 0),O( 0),
/* rate 13 */
O( 0),O( 0),O( 0),O( 0),
/* rate 14 */
O( 0),O( 0),O( 0),O( 0),
/* rate 15 */
O( 0),O( 0),O( 0),O( 0),
/* 32 dummy rates (same as 15 3) */
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),
O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0),O( 0)
};
#undef O
static const UINT8 dt_tab[4 * 32]={
/* this is YM2151 and YM2612 phase increment data (in 10.10 fixed point format)*/
/* FD=0 */
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
/* FD=1 */
0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2,
2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7, 8, 8, 8, 8,
/* FD=2 */
1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5,
5, 6, 6, 7, 8, 8, 9,10,11,12,13,14,16,16,16,16,
/* FD=3 */
2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 6, 6, 7,
8 ,8, 9,10,11,12,13,14,16,17,19,20,22,22,22,22
};
/* OPN key frequency number -> key code follow table */
/* fnum higher 4bit -> keycode lower 2bit */
static const UINT8 opn_fktable[16] = {0,0,0,0,0,0,0,1,2,3,3,3,3,3,3,3};
/* 8 LFO speed parameters */
/* each value represents number of samples that one LFO level will last for */
static const UINT32 lfo_samples_per_step[8] = {108, 77, 71, 67, 62, 44, 8, 5};
/*There are 4 different LFO AM depths available, they are:
0 dB, 1.4 dB, 5.9 dB, 11.8 dB
Here is how it is generated (in EG steps):
11.8 dB = 0, 2, 4, 6, 8, 10,12,14,16...126,126,124,122,120,118,....4,2,0
5.9 dB = 0, 1, 2, 3, 4, 5, 6, 7, 8....63, 63, 62, 61, 60, 59,.....2,1,0
1.4 dB = 0, 0, 0, 0, 1, 1, 1, 1, 2,...15, 15, 15, 15, 14, 14,.....0,0,0
(1.4 dB is loosing precision as you can see)
It's implemented as generator from 0..126 with step 2 then a shift
right N times, where N is:
8 for 0 dB
3 for 1.4 dB
1 for 5.9 dB
0 for 11.8 dB
*/
static const UINT8 lfo_ams_depth_shift[4] = {8, 3, 1, 0};
/*There are 8 different LFO PM depths available, they are:
0, 3.4, 6.7, 10, 14, 20, 40, 80 (cents)
Modulation level at each depth depends on F-NUMBER bits: 4,5,6,7,8,9,10
(bits 8,9,10 = FNUM MSB from OCT/FNUM register)
Here we store only first quarter (positive one) of full waveform.
Full table (lfo_pm_table) containing all 128 waveforms is build
at run (init) time.
One value in table below represents 4 (four) basic LFO steps
(1 PM step = 4 AM steps).
For example:
at LFO SPEED=0 (which is 108 samples per basic LFO step)
one value from "lfo_pm_output" table lasts for 432 consecutive
samples (4*108=432) and one full LFO waveform cycle lasts for 13824
samples (32*432=13824; 32 because we store only a quarter of whole
waveform in the table below)
*/
static const UINT8 lfo_pm_output[7*8][8]={ /* 7 bits meaningful (of F-NUMBER), 8 LFO output levels per one depth (out of 32), 8 LFO depths */
/* FNUM BIT 4: 000 0001xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 6 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 7 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* FNUM BIT 5: 000 0010xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 5 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 6 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 7 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* FNUM BIT 6: 000 0100xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 3 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 4 */ {0, 0, 0, 0, 0, 0, 0, 1},
/* DEPTH 5 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 6 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* DEPTH 7 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* FNUM BIT 7: 000 1000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 2 */ {0, 0, 0, 0, 0, 0, 1, 1},
/* DEPTH 3 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 4 */ {0, 0, 0, 1, 1, 1, 1, 2},
/* DEPTH 5 */ {0, 0, 1, 1, 2, 2, 2, 3},
/* DEPTH 6 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* DEPTH 7 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* FNUM BIT 8: 001 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 1, 1, 1, 1},
/* DEPTH 2 */ {0, 0, 0, 1, 1, 1, 2, 2},
/* DEPTH 3 */ {0, 0, 1, 1, 2, 2, 3, 3},
/* DEPTH 4 */ {0, 0, 1, 2, 2, 2, 3, 4},
/* DEPTH 5 */ {0, 0, 2, 3, 4, 4, 5, 6},
/* DEPTH 6 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* DEPTH 7 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* FNUM BIT 9: 010 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 2, 2, 2, 2},
/* DEPTH 2 */ {0, 0, 0, 2, 2, 2, 4, 4},
/* DEPTH 3 */ {0, 0, 2, 2, 4, 4, 6, 6},
/* DEPTH 4 */ {0, 0, 2, 4, 4, 4, 6, 8},
/* DEPTH 5 */ {0, 0, 4, 6, 8, 8, 0xa, 0xc},
/* DEPTH 6 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* DEPTH 7 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
/* FNUM BIT10: 100 0000xxxx */
/* DEPTH 0 */ {0, 0, 0, 0, 0, 0, 0, 0},
/* DEPTH 1 */ {0, 0, 0, 0, 4, 4, 4, 4},
/* DEPTH 2 */ {0, 0, 0, 4, 4, 4, 8, 8},
/* DEPTH 3 */ {0, 0, 4, 4, 8, 8, 0xc, 0xc},
/* DEPTH 4 */ {0, 0, 4, 8, 8, 8, 0xc,0x10},
/* DEPTH 5 */ {0, 0, 8, 0xc,0x10,0x10,0x14,0x18},
/* DEPTH 6 */ {0, 0,0x10,0x18,0x20,0x20,0x28,0x30},
/* DEPTH 7 */ {0, 0,0x20,0x30,0x40,0x40,0x50,0x60},
};
/* all 128 LFO PM waveforms */
static INT32 lfo_pm_table[128*8*32]; /* 128 combinations of 7 bits meaningful (of F-NUMBER), 8 LFO depths, 32 LFO output levels per one depth */
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
but LFO works with one more bit of a precision so we really need 4096 elements */
static UINT32 fn_table[4096]; /* fnumber->increment counter */
static int g_lfo_ampm = 0;
/* register number to channel number , slot offset */
#define OPN_CHAN(N) (N&3)
#define OPN_SLOT(N) ((N>>2)&3)
/* slot number */
#define SLOT1 0
#define SLOT2 2
#define SLOT3 1
#define SLOT4 3
/* OPN Mode Register Write */
INLINE void set_timers( int v )
{
/* b7 = CSM MODE */
/* b6 = 3 slot mode */
/* b5 = reset b */
/* b4 = reset a */
/* b3 = timer enable b */
/* b2 = timer enable a */
/* b1 = load b */
/* b0 = load a */
ym2612.OPN.ST.mode = v;
/* reset Timer b flag */
if( v & 0x20 )
ym2612.OPN.ST.status &= ~2;
/* reset Timer a flag */
if( v & 0x10 )
ym2612.OPN.ST.status &= ~1;
}
INLINE void FM_KEYON(int c , int s )
{
FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];
if( !SLOT->key )
{
SLOT->key = 1;
SLOT->phase = 0; /* restart Phase Generator */
SLOT->state = EG_ATT; /* phase -> Attack */
ym2612.slot_mask |= (1<<s) << (c*4);
}
}
INLINE void FM_KEYOFF(int c , int s )
{
FM_SLOT *SLOT = &ym2612.CH[c].SLOT[s];
if( SLOT->key )
{
SLOT->key = 0;
if (SLOT->state>EG_REL)
SLOT->state = EG_REL;/* phase -> Release */
}
}
/* set detune & multiple */
INLINE void set_det_mul(FM_CH *CH, FM_SLOT *SLOT, int v)
{
SLOT->mul = (v&0x0f)? (v&0x0f)*2 : 1;
SLOT->DT = ym2612.OPN.ST.dt_tab[(v>>4)&7];
CH->SLOT[SLOT1].Incr=-1;
}
/* set total level */
INLINE void set_tl(FM_SLOT *SLOT, int v)
{
SLOT->tl = (v&0x7f)<<(ENV_BITS-7); /* 7bit TL */
}
/* set attack rate & key scale */
INLINE void set_ar_ksr(FM_CH *CH, FM_SLOT *SLOT, int v)
{
UINT8 old_KSR = SLOT->KSR;
SLOT->ar = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
SLOT->KSR = 3-(v>>6);
if (SLOT->KSR != old_KSR)
{
CH->SLOT[SLOT1].Incr=-1;
}
else
{
int eg_sh_ar, eg_sel_ar;
/* refresh Attack rate */
if ((SLOT->ar + SLOT->ksr) < 32+62)
{
eg_sh_ar = eg_rate_shift [SLOT->ar + SLOT->ksr ];
eg_sel_ar = eg_rate_select[SLOT->ar + SLOT->ksr ];
}
else
{
eg_sh_ar = 0;
eg_sel_ar = 17;
}
SLOT->eg_pack_ar = eg_inc_pack[eg_sel_ar] | (eg_sh_ar<<24);
}
}
/* set decay rate */
INLINE void set_dr(FM_SLOT *SLOT, int v)
{
int eg_sh_d1r, eg_sel_d1r;
SLOT->d1r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
eg_sh_d1r = eg_rate_shift [SLOT->d1r + SLOT->ksr];
eg_sel_d1r= eg_rate_select[SLOT->d1r + SLOT->ksr];
SLOT->eg_pack_d1r = eg_inc_pack[eg_sel_d1r] | (eg_sh_d1r<<24);
}
/* set sustain rate */
INLINE void set_sr(FM_SLOT *SLOT, int v)
{
int eg_sh_d2r, eg_sel_d2r;
SLOT->d2r = (v&0x1f) ? 32 + ((v&0x1f)<<1) : 0;
eg_sh_d2r = eg_rate_shift [SLOT->d2r + SLOT->ksr];
eg_sel_d2r= eg_rate_select[SLOT->d2r + SLOT->ksr];
SLOT->eg_pack_d2r = eg_inc_pack[eg_sel_d2r] | (eg_sh_d2r<<24);
}
/* set release rate */
INLINE void set_sl_rr(FM_SLOT *SLOT, int v)
{
int eg_sh_rr, eg_sel_rr;
SLOT->sl = sl_table[ v>>4 ];
SLOT->rr = 34 + ((v&0x0f)<<2);
eg_sh_rr = eg_rate_shift [SLOT->rr + SLOT->ksr];
eg_sel_rr = eg_rate_select[SLOT->rr + SLOT->ksr];
SLOT->eg_pack_rr = eg_inc_pack[eg_sel_rr] | (eg_sh_rr<<24);
}
INLINE signed int op_calc(UINT32 phase, unsigned int env, signed int pm)
{
int ret, sin = (phase>>16) + (pm>>1);
int neg = sin & 0x200;
if (sin & 0x100) sin ^= 0xff;
sin&=0xff;
env&=~1;
// this was already checked
// if (env >= ENV_QUIET) // 384
// return 0;
ret = ym_tl_tab[sin | (env<<7)];
return neg ? -ret : ret;
}
INLINE signed int op_calc1(UINT32 phase, unsigned int env, signed int pm)
{
int ret, sin = (phase+pm)>>16;
int neg = sin & 0x200;
if (sin & 0x100) sin ^= 0xff;
sin&=0xff;
env&=~1;
// if (env >= ENV_QUIET) // 384
// return 0;
ret = ym_tl_tab[sin | (env<<7)];
return neg ? -ret : ret;
}
#if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)
/* advance LFO to next sample */
INLINE int advance_lfo(int lfo_ampm, UINT32 lfo_cnt_old, UINT32 lfo_cnt)
{
UINT8 pos;
UINT8 prev_pos;
prev_pos = (lfo_cnt_old >> LFO_SH) & 127;
pos = (lfo_cnt >> LFO_SH) & 127;
/* update AM when LFO output changes */
if (prev_pos != pos)
{
lfo_ampm &= 0xff;
/* triangle */
/* AM: 0 to 126 step +2, 126 to 0 step -2 */
if (pos<64)
lfo_ampm |= ((pos&63) * 2) << 8; /* 0 - 126 */
else
lfo_ampm |= (126 - (pos&63)*2) << 8;
}
else
{
return lfo_ampm;
}
/* PM works with 4 times slower clock */
prev_pos >>= 2;
pos >>= 2;
/* update PM when LFO output changes */
if (prev_pos != pos)
{
lfo_ampm &= ~0xff;
lfo_ampm |= pos; /* 0 - 32 */
}
return lfo_ampm;
}
#define EG_INC_VAL() \
((1 << ((pack >> ((eg_cnt>>shift)&7)*3)&7)) >> 1)
INLINE UINT32 update_eg_phase(FM_SLOT *SLOT, UINT32 eg_cnt)
{
INT32 volume = SLOT->volume;
switch(SLOT->state)
{
case EG_ATT: /* attack phase */
{
UINT32 pack = SLOT->eg_pack_ar;
UINT32 shift = pack>>24;
if ( !(eg_cnt & ((1<<shift)-1) ) )
{
volume += ( ~volume * EG_INC_VAL() ) >>4;
if (volume <= MIN_ATT_INDEX)
{
volume = MIN_ATT_INDEX;
SLOT->state = EG_DEC;
}
}
break;
}
case EG_DEC: /* decay phase */
{
UINT32 pack = SLOT->eg_pack_d1r;
UINT32 shift = pack>>24;
if ( !(eg_cnt & ((1<<shift)-1) ) )
{
volume += EG_INC_VAL();
if ( volume >= (INT32) SLOT->sl )
SLOT->state = EG_SUS;
}
break;
}
case EG_SUS: /* sustain phase */
{
UINT32 pack = SLOT->eg_pack_d2r;
UINT32 shift = pack>>24;
if ( !(eg_cnt & ((1<<shift)-1) ) )
{
volume += EG_INC_VAL();
if ( volume >= MAX_ATT_INDEX )
{
volume = MAX_ATT_INDEX;
/* do not change SLOT->state (verified on real chip) */
}
}
break;
}
case EG_REL: /* release phase */
{
UINT32 pack = SLOT->eg_pack_rr;
UINT32 shift = pack>>24;
if ( !(eg_cnt & ((1<<shift)-1) ) )
{
volume += EG_INC_VAL();
if ( volume >= MAX_ATT_INDEX )
{
volume = MAX_ATT_INDEX;
SLOT->state = EG_OFF;
}
}
break;
}
}
SLOT->volume = volume;
return SLOT->tl + ((UINT32)volume); /* tl is 7bit<<3, volume 0-1023 (0-2039 total) */
}
#endif
typedef struct
{
UINT16 vol_out1; /* 00: current output from EG circuit (without AM from LFO) */
UINT16 vol_out2;
UINT16 vol_out3;
UINT16 vol_out4;
UINT32 pad[2];
UINT32 phase1; /* 10 */
UINT32 phase2;
UINT32 phase3;
UINT32 phase4;
UINT32 incr1; /* 20: phase step */
UINT32 incr2;
UINT32 incr3;
UINT32 incr4;
UINT32 lfo_cnt; /* 30 */
UINT32 lfo_inc;
INT32 mem; /* one sample delay memory */
UINT32 eg_cnt; /* envelope generator counter */
FM_CH *CH; /* 40: envelope generator counter */
UINT32 eg_timer;
UINT32 eg_timer_add;
UINT32 pack; // 4c: stereo, lastchan, disabled, lfo_enabled | pan_r, pan_l, ams[2] | AMmasks[4] | FB[4] | lfo_ampm[16]
UINT32 algo; /* 50: algo[3], was_update */
INT32 op1_out;
#ifdef _MIPS_ARCH_ALLEGREX
UINT32 pad1[3+8];
#endif
} chan_rend_context;
#if !defined(_ASM_YM2612_C) || defined(EXTERNAL_YM2612)
static void chan_render_loop(chan_rend_context *ct, int *buffer, int length)
{
int scounter; /* sample counter */
/* sample generating loop */
for (scounter = 0; scounter < length; scounter++)
{
int smp = 0; /* produced sample */
unsigned int eg_out, eg_out2, eg_out4;
if (ct->pack & 8) { /* LFO enabled ? (test Earthworm Jim in between demo 1 and 2) */
ct->pack = (ct->pack&0xffff) | (advance_lfo(ct->pack >> 16, ct->lfo_cnt, ct->lfo_cnt + ct->lfo_inc) << 16);
ct->lfo_cnt += ct->lfo_inc;
}
ct->eg_timer += ct->eg_timer_add;
while (ct->eg_timer >= EG_TIMER_OVERFLOW)
{
ct->eg_timer -= EG_TIMER_OVERFLOW;
ct->eg_cnt++;
if (ct->CH->SLOT[SLOT1].state != EG_OFF) ct->vol_out1 = update_eg_phase(&ct->CH->SLOT[SLOT1], ct->eg_cnt);
if (ct->CH->SLOT[SLOT2].state != EG_OFF) ct->vol_out2 = update_eg_phase(&ct->CH->SLOT[SLOT2], ct->eg_cnt);
if (ct->CH->SLOT[SLOT3].state != EG_OFF) ct->vol_out3 = update_eg_phase(&ct->CH->SLOT[SLOT3], ct->eg_cnt);
if (ct->CH->SLOT[SLOT4].state != EG_OFF) ct->vol_out4 = update_eg_phase(&ct->CH->SLOT[SLOT4], ct->eg_cnt);
}
if (ct->pack & 4) continue; /* output disabled */
/* calculate channel sample */
eg_out = ct->vol_out1;
if ( (ct->pack & 8) && (ct->pack&(1<<(SLOT1+8))) ) eg_out += ct->pack >> (((ct->pack&0xc0)>>6)+24);
if( eg_out < ENV_QUIET ) /* SLOT 1 */
{
int out = 0;
if (ct->pack&0xf000) out = ((ct->op1_out>>16) + ((ct->op1_out<<16)>>16)) << ((ct->pack&0xf000)>>12); /* op1_out0 + op1_out1 */
ct->op1_out <<= 16;
ct->op1_out |= (unsigned short)op_calc1(ct->phase1, eg_out, out);
} else {
ct->op1_out <<= 16; /* op1_out0 = op1_out1; op1_out1 = 0; */
}
eg_out = ct->vol_out3; // volume_calc(&CH->SLOT[SLOT3]);
eg_out2 = ct->vol_out2; // volume_calc(&CH->SLOT[SLOT2]);
eg_out4 = ct->vol_out4; // volume_calc(&CH->SLOT[SLOT4]);
if (ct->pack & 8) {
unsigned int add = ct->pack >> (((ct->pack&0xc0)>>6)+24);
if (ct->pack & (1<<(SLOT3+8))) eg_out += add;
if (ct->pack & (1<<(SLOT2+8))) eg_out2 += add;
if (ct->pack & (1<<(SLOT4+8))) eg_out4 += add;
}
switch( ct->CH->ALGO )
{
case 0:
{
/* M1---C1---MEM---M2---C2---OUT */
int m2,c1,c2=0; /* Phase Modulation input for operators 2,3,4 */
m2 = ct->mem;
c1 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
c2 = op_calc(ct->phase3, eg_out, m2);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
ct->mem = op_calc(ct->phase2, eg_out2, c1);
}
else ct->mem = 0;
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp = op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 1:
{
/* M1------+-MEM---M2---C2---OUT */
/* C1-+ */
int m2,c2=0;
m2 = ct->mem;
ct->mem = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
c2 = op_calc(ct->phase3, eg_out, m2);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
ct->mem+= op_calc(ct->phase2, eg_out2, 0);
}
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp = op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 2:
{
/* M1-----------------+-C2---OUT */
/* C1---MEM---M2-+ */
int m2,c2;
m2 = ct->mem;
c2 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
c2 += op_calc(ct->phase3, eg_out, m2);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
ct->mem = op_calc(ct->phase2, eg_out2, 0);
}
else ct->mem = 0;
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp = op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 3:
{
/* M1---C1---MEM------+-C2---OUT */
/* M2-+ */
int c1,c2;
c2 = ct->mem;
c1 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
c2 += op_calc(ct->phase3, eg_out, 0);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
ct->mem = op_calc(ct->phase2, eg_out2, c1);
}
else ct->mem = 0;
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp = op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 4:
{
/* M1---C1-+-OUT */
/* M2---C2-+ */
/* MEM: not used */
int c1,c2=0;
c1 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
c2 = op_calc(ct->phase3, eg_out, 0);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
smp = op_calc(ct->phase2, eg_out2, c1);
}
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp+= op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 5:
{
/* +----C1----+ */
/* M1-+-MEM---M2-+-OUT */
/* +----C2----+ */
int m2,c1,c2;
m2 = ct->mem;
ct->mem = c1 = c2 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
smp = op_calc(ct->phase3, eg_out, m2);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
smp+= op_calc(ct->phase2, eg_out2, c1);
}
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp+= op_calc(ct->phase4, eg_out4, c2);
}
break;
}
case 6:
{
/* M1---C1-+ */
/* M2-+-OUT */
/* C2-+ */
/* MEM: not used */
int c1;
c1 = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
smp = op_calc(ct->phase3, eg_out, 0);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
smp+= op_calc(ct->phase2, eg_out2, c1);
}
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp+= op_calc(ct->phase4, eg_out4, 0);
}
break;
}
case 7:
{
/* M1-+ */
/* C1-+-OUT */
/* M2-+ */
/* C2-+ */
/* MEM: not used*/
smp = ct->op1_out>>16;
if( eg_out < ENV_QUIET ) { /* SLOT 3 */
smp += op_calc(ct->phase3, eg_out, 0);
}
if( eg_out2 < ENV_QUIET ) { /* SLOT 2 */
smp += op_calc(ct->phase2, eg_out2, 0);
}
if( eg_out4 < ENV_QUIET ) { /* SLOT 4 */
smp += op_calc(ct->phase4, eg_out4, 0);
}
break;
}
}
/* done calculating channel sample */
/* mix sample to output buffer */
if (smp) {
if (ct->pack & 1) { /* stereo */
if (ct->pack & 0x20) /* L */ /* TODO: check correctness */
buffer[scounter*2] += smp;
if (ct->pack & 0x10) /* R */
buffer[scounter*2+1] += smp;
} else {
buffer[scounter] += smp;
}
ct->algo = 8; // algo is only used in asm, here only bit3 is used
}
/* update phase counters AFTER output calculations */
ct->phase1 += ct->incr1;
ct->phase2 += ct->incr2;
ct->phase3 += ct->incr3;
ct->phase4 += ct->incr4;
}
}
#else
void chan_render_loop(chan_rend_context *ct, int *buffer, unsigned short length);
#endif
static chan_rend_context crct;
static void chan_render_prep(void)
{
crct.eg_timer_add = ym2612.OPN.eg_timer_add;
crct.lfo_inc = ym2612.OPN.lfo_inc;
}
static void chan_render_finish(void)
{
ym2612.OPN.eg_cnt = crct.eg_cnt;
ym2612.OPN.eg_timer = crct.eg_timer;
g_lfo_ampm = crct.pack >> 16; // need_save
ym2612.OPN.lfo_cnt = crct.lfo_cnt;
}
static int chan_render(int *buffer, int length, int c, UINT32 flags) // flags: stereo, ?, disabled, ?, pan_r, pan_l
{
crct.CH = &ym2612.CH[c];
crct.mem = crct.CH->mem_value; /* one sample delay memory */
crct.lfo_cnt = ym2612.OPN.lfo_cnt;
flags &= 0x35;
if (crct.lfo_inc) {
flags |= 8;
flags |= g_lfo_ampm << 16;
flags |= crct.CH->AMmasks << 8;
if (crct.CH->ams == 8) // no ams
flags &= ~0xf00;
else flags |= (crct.CH->ams&3)<<6;
}
flags |= (crct.CH->FB&0xf)<<12; /* feedback shift */
crct.pack = flags;
crct.eg_cnt = ym2612.OPN.eg_cnt; /* envelope generator counter */
crct.eg_timer = ym2612.OPN.eg_timer;
/* precalculate phase modulation incr */
crct.phase1 = crct.CH->SLOT[SLOT1].phase;
crct.phase2 = crct.CH->SLOT[SLOT2].phase;
crct.phase3 = crct.CH->SLOT[SLOT3].phase;
crct.phase4 = crct.CH->SLOT[SLOT4].phase;
/* current output from EG circuit (without AM from LFO) */
crct.vol_out1 = crct.CH->SLOT[SLOT1].tl + ((UINT32)crct.CH->SLOT[SLOT1].volume);
crct.vol_out2 = crct.CH->SLOT[SLOT2].tl + ((UINT32)crct.CH->SLOT[SLOT2].volume);
crct.vol_out3 = crct.CH->SLOT[SLOT3].tl + ((UINT32)crct.CH->SLOT[SLOT3].volume);
crct.vol_out4 = crct.CH->SLOT[SLOT4].tl + ((UINT32)crct.CH->SLOT[SLOT4].volume);
crct.op1_out = crct.CH->op1_out;
crct.algo = crct.CH->ALGO & 7;
if(crct.CH->pms)
{
/* add support for 3 slot mode */
UINT32 block_fnum = crct.CH->block_fnum;
UINT32 fnum_lfo = ((block_fnum & 0x7f0) >> 4) * 32 * 8;
INT32 lfo_fn_table_index_offset = lfo_pm_table[ fnum_lfo + crct.CH->pms + ((crct.pack>>16)&0xff) ];
if (lfo_fn_table_index_offset) /* LFO phase modulation active */
{
UINT8 blk;
UINT32 fn;
int kc,fc;
blk = block_fnum >> 11;
block_fnum = block_fnum*2 + lfo_fn_table_index_offset;
fn = block_fnum & 0xfff;
/* keyscale code */
kc = (blk<<2) | opn_fktable[fn >> 8];
/* phase increment counter */
fc = fn_table[fn]>>(7-blk);
crct.incr1 = ((fc+crct.CH->SLOT[SLOT1].DT[kc])*crct.CH->SLOT[SLOT1].mul) >> 1;
crct.incr2 = ((fc+crct.CH->SLOT[SLOT2].DT[kc])*crct.CH->SLOT[SLOT2].mul) >> 1;
crct.incr3 = ((fc+crct.CH->SLOT[SLOT3].DT[kc])*crct.CH->SLOT[SLOT3].mul) >> 1;
crct.incr4 = ((fc+crct.CH->SLOT[SLOT4].DT[kc])*crct.CH->SLOT[SLOT4].mul) >> 1;
}
else /* LFO phase modulation = zero */
{
crct.incr1 = crct.CH->SLOT[SLOT1].Incr;
crct.incr2 = crct.CH->SLOT[SLOT2].Incr;
crct.incr3 = crct.CH->SLOT[SLOT3].Incr;
crct.incr4 = crct.CH->SLOT[SLOT4].Incr;
}
}
else /* no LFO phase modulation */
{
crct.incr1 = crct.CH->SLOT[SLOT1].Incr;
crct.incr2 = crct.CH->SLOT[SLOT2].Incr;
crct.incr3 = crct.CH->SLOT[SLOT3].Incr;
crct.incr4 = crct.CH->SLOT[SLOT4].Incr;
}
chan_render_loop(&crct, buffer, length);
crct.CH->op1_out = crct.op1_out;
crct.CH->mem_value = crct.mem;
if (crct.CH->SLOT[SLOT1].state | crct.CH->SLOT[SLOT2].state | crct.CH->SLOT[SLOT3].state | crct.CH->SLOT[SLOT4].state)
{
crct.CH->SLOT[SLOT1].phase = crct.phase1;
crct.CH->SLOT[SLOT2].phase = crct.phase2;
crct.CH->SLOT[SLOT3].phase = crct.phase3;
crct.CH->SLOT[SLOT4].phase = crct.phase4;
}
else
ym2612.slot_mask &= ~(0xf << (c*4));
return (crct.algo & 8) >> 3; // had output
}
/* update phase increment and envelope generator */
INLINE void refresh_fc_eg_slot(FM_SLOT *SLOT, int fc, int kc)
{
int ksr, fdt;
/* (frequency) phase increment counter */
fdt = fc+SLOT->DT[kc];
/* detect overflow */
// if (fdt < 0) fdt += fn_table[0x7ff*2] >> (7-blk-1);
if (fdt < 0) fdt += fn_table[0x7ff*2] >> 2;
SLOT->Incr = fdt*SLOT->mul >> 1;
ksr = kc >> SLOT->KSR;
if( SLOT->ksr != ksr )
{
int eg_sh, eg_sel;
SLOT->ksr = ksr;
/* calculate envelope generator rates */
if ((SLOT->ar + ksr) < 32+62)
{
eg_sh = eg_rate_shift [SLOT->ar + ksr ];
eg_sel = eg_rate_select[SLOT->ar + ksr ];
}
else
{
eg_sh = 0;
eg_sel = 17;
}
SLOT->eg_pack_ar = eg_inc_pack[eg_sel] | (eg_sh<<24);
eg_sh = eg_rate_shift [SLOT->d1r + ksr];
eg_sel = eg_rate_select[SLOT->d1r + ksr];
SLOT->eg_pack_d1r = eg_inc_pack[eg_sel] | (eg_sh<<24);
eg_sh = eg_rate_shift [SLOT->d2r + ksr];
eg_sel = eg_rate_select[SLOT->d2r + ksr];
SLOT->eg_pack_d2r = eg_inc_pack[eg_sel] | (eg_sh<<24);
eg_sh = eg_rate_shift [SLOT->rr + ksr];
eg_sel = eg_rate_select[SLOT->rr + ksr];
SLOT->eg_pack_rr = eg_inc_pack[eg_sel] | (eg_sh<<24);
}
}
/* update phase increment counters */
INLINE void refresh_fc_eg_chan(FM_CH *CH)
{
if( CH->SLOT[SLOT1].Incr==-1){
int fc = CH->fc;
int kc = CH->kcode;
refresh_fc_eg_slot(&CH->SLOT[SLOT1] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT2] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT3] , fc , kc );
refresh_fc_eg_slot(&CH->SLOT[SLOT4] , fc , kc );
}
}
INLINE void refresh_fc_eg_chan_sl3(void)
{
if( ym2612.CH[2].SLOT[SLOT1].Incr==-1)
{
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT1], ym2612.OPN.SL3.fc[1], ym2612.OPN.SL3.kcode[1] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT2], ym2612.OPN.SL3.fc[2], ym2612.OPN.SL3.kcode[2] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT3], ym2612.OPN.SL3.fc[0], ym2612.OPN.SL3.kcode[0] );
refresh_fc_eg_slot(&ym2612.CH[2].SLOT[SLOT4], ym2612.CH[2].fc , ym2612.CH[2].kcode );
}
}
/* initialize time tables */
static void init_timetables(const UINT8 *dttable)
{
int i,d;
double rate;
/* DeTune table */
for (d = 0;d <= 3;d++){
for (i = 0;i <= 31;i++){
rate = ((double)dttable[d*32 + i]) * SIN_LEN * ym2612.OPN.ST.freqbase * (1<<FREQ_SH) / ((double)(1<<20));
ym2612.OPN.ST.dt_tab[d][i] = (INT32) rate;
ym2612.OPN.ST.dt_tab[d+4][i] = -ym2612.OPN.ST.dt_tab[d][i];
}
}
}
static void reset_channels(FM_CH *CH)
{
int c,s;
ym2612.OPN.ST.mode = 0; /* normal mode */
ym2612.OPN.ST.TA = 0;
ym2612.OPN.ST.TAC = 0;
ym2612.OPN.ST.TB = 0;
ym2612.OPN.ST.TBC = 0;
for( c = 0 ; c < 6 ; c++ )
{
CH[c].fc = 0;
for(s = 0 ; s < 4 ; s++ )
{
CH[c].SLOT[s].state= EG_OFF;
CH[c].SLOT[s].volume = MAX_ATT_INDEX;
}
CH[c].mem_value = CH[c].op1_out = 0;
}
ym2612.slot_mask = 0;
}
/* initialize generic tables */
static void init_tables(void)
{
signed int i,x,y,p;
signed int n;
double o,m;
for (i=0; i < 256; i++)
{
/* non-standard sinus */
m = sin( ((i*2)+1) * M_PI / SIN_LEN ); /* checked against the real chip */
/* we never reach zero here due to ((i*2)+1) */
if (m>0.0)
o = 8*log(1.0/m)/log(2); /* convert to 'decibels' */
else
o = 8*log(-1.0/m)/log(2); /* convert to 'decibels' */
o = o / (ENV_STEP/4);
n = (int)(2.0*o);
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
ym_sin_tab[ i ] = n;
//dprintf("FM.C: sin [%4i]= %4i", i, ym_sin_tab[i]);
}
//dprintf("FM.C: ENV_QUIET= %08x", ENV_QUIET );
for (x=0; x < TL_RES_LEN; x++)
{
m = (1<<16) / pow(2, (x+1) * (ENV_STEP/4.0) / 8.0);
m = floor(m);
/* we never reach (1<<16) here due to the (x+1) */
/* result fits within 16 bits at maximum */
n = (int)m; /* 16 bits here */
n >>= 4; /* 12 bits here */
if (n&1) /* round to nearest */
n = (n>>1)+1;
else
n = n>>1;
/* 11 bits here (rounded) */
n <<= 2; /* 13 bits here (as in real chip) */
ym_tl_tab2[ x ] = n;
for (i=1; i < 13; i++)
{
ym_tl_tab2[ x + i*TL_RES_LEN ] = n >> i;
}
}
for (x=0; x < 256; x++)
{
int sin = ym_sin_tab[ x ];
for (y=0; y < 2*13*TL_RES_LEN/8; y+=2)
{
p = (y<<2) + sin;
if (p >= 13*TL_RES_LEN)
ym_tl_tab[(y<<7) | x] = 0;
else ym_tl_tab[(y<<7) | x] = ym_tl_tab2[p];
}
}
/* build LFO PM modulation table */
for(i = 0; i < 8; i++) /* 8 PM depths */
{
UINT8 fnum;
for (fnum=0; fnum<128; fnum++) /* 7 bits meaningful of F-NUMBER */
{
UINT8 value;
UINT8 step;
UINT32 offset_depth = i;
UINT32 offset_fnum_bit;
UINT32 bit_tmp;
for (step=0; step<8; step++)
{
value = 0;
for (bit_tmp=0; bit_tmp<7; bit_tmp++) /* 7 bits */
{
if (fnum & (1<<bit_tmp)) /* only if bit "bit_tmp" is set */
{
offset_fnum_bit = bit_tmp * 8;
value += lfo_pm_output[offset_fnum_bit + offset_depth][step];
}
}
lfo_pm_table[(fnum*32*8) + (i*32) + step + 0] = value;
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+ 8] = value;
lfo_pm_table[(fnum*32*8) + (i*32) + step +16] = -value;
lfo_pm_table[(fnum*32*8) + (i*32) +(step^7)+24] = -value;
}
}
}
}
/* CSM Key Controll */
#if 0
INLINE void CSMKeyControll(FM_CH *CH)
{
/* this is wrong, atm */
/* all key on */
FM_KEYON(CH,SLOT1);
FM_KEYON(CH,SLOT2);
FM_KEYON(CH,SLOT3);
FM_KEYON(CH,SLOT4);
}
#endif
/* prescaler set (and make time tables) */
static void OPNSetPres(int pres)
{
int i;
/* frequency base */
ym2612.OPN.ST.freqbase = (ym2612.OPN.ST.rate) ? ((double)ym2612.OPN.ST.clock / ym2612.OPN.ST.rate) / pres : 0;
ym2612.OPN.eg_timer_add = (1<<EG_SH) * ym2612.OPN.ST.freqbase;
/* make time tables */
init_timetables( dt_tab );
/* there are 2048 FNUMs that can be generated using FNUM/BLK registers
but LFO works with one more bit of a precision so we really need 4096 elements */
/* calculate fnumber -> increment counter table */
for(i = 0; i < 4096; i++)
{
/* freq table for octave 7 */
/* OPN phase increment counter = 20bit */
fn_table[i] = (UINT32)( (double)i * 32 * ym2612.OPN.ST.freqbase * (1<<(FREQ_SH-10)) ); /* -10 because chip works with 10.10 fixed point, while we use 16.16 */
}
/* LFO freq. table */
for(i = 0; i < 8; i++)
{
/* Amplitude modulation: 64 output levels (triangle waveform); 1 level lasts for one of "lfo_samples_per_step" samples */
/* Phase modulation: one entry from lfo_pm_output lasts for one of 4 * "lfo_samples_per_step" samples */
ym2612.OPN.lfo_freq[i] = (1.0 / lfo_samples_per_step[i]) * (1<<LFO_SH) * ym2612.OPN.ST.freqbase;
}
}
/* write a OPN register (0x30-0xff) */
static int OPNWriteReg(int r, int v)
{
int ret = 1;
FM_CH *CH;
FM_SLOT *SLOT;
UINT8 c = OPN_CHAN(r);
if (c == 3) return 0; /* 0xX3,0xX7,0xXB,0xXF */
if (r >= 0x100) c+=3;
CH = &ym2612.CH[c];
SLOT = &(CH->SLOT[OPN_SLOT(r)]);
switch( r & 0xf0 ) {
case 0x30: /* DET , MUL */
set_det_mul(CH,SLOT,v);
break;
case 0x40: /* TL */
set_tl(SLOT,v);
break;
case 0x50: /* KS, AR */
set_ar_ksr(CH,SLOT,v);
break;
case 0x60: /* bit7 = AM ENABLE, DR | depends on ksr */
set_dr(SLOT,v);
if(v&0x80) CH->AMmasks |= 1<<OPN_SLOT(r);
else CH->AMmasks &= ~(1<<OPN_SLOT(r));
break;
case 0x70: /* SR | depends on ksr */
set_sr(SLOT,v);
break;
case 0x80: /* SL, RR | depends on ksr */
set_sl_rr(SLOT,v);
break;
case 0x90: /* SSG-EG */
// removed.
ret = 0;
break;
case 0xa0:
switch( OPN_SLOT(r) ){
case 0: /* 0xa0-0xa2 : FNUM1 | depends on fn_h (below) */
{
UINT32 fn = (((UINT32)( (CH->fn_h)&7))<<8) + v;
UINT8 blk = CH->fn_h>>3;
/* keyscale code */
CH->kcode = (blk<<2) | opn_fktable[fn >> 7];
/* phase increment counter */
CH->fc = fn_table[fn*2]>>(7-blk);
/* store fnum in clear form for LFO PM calculations */
CH->block_fnum = (blk<<11) | fn;
CH->SLOT[SLOT1].Incr=-1;
}
break;
case 1: /* 0xa4-0xa6 : FNUM2,BLK */
CH->fn_h = v&0x3f;
ret = 0;
break;
case 2: /* 0xa8-0xaa : 3CH FNUM1 */
if(r < 0x100)
{
UINT32 fn = (((UINT32)(ym2612.OPN.SL3.fn_h&7))<<8) + v;
UINT8 blk = ym2612.OPN.SL3.fn_h>>3;
/* keyscale code */
ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
/* phase increment counter */
ym2612.OPN.SL3.fc[c] = fn_table[fn*2]>>(7-blk);
ym2612.OPN.SL3.block_fnum[c] = (blk<<11) | fn;
ym2612.CH[2].SLOT[SLOT1].Incr=-1;
}
break;
case 3: /* 0xac-0xae : 3CH FNUM2,BLK */
if(r < 0x100)
ym2612.OPN.SL3.fn_h = v&0x3f;
ret = 0;
break;
default:
ret = 0;
break;
}
break;
case 0xb0:
switch( OPN_SLOT(r) ){
case 0: /* 0xb0-0xb2 : FB,ALGO */
{
int feedback = (v>>3)&7;
CH->ALGO = v&7;
CH->FB = feedback ? feedback+6 : 0;
}
break;
case 1: /* 0xb4-0xb6 : L , R , AMS , PMS (YM2612/YM2610B/YM2610/YM2608) */
{
int panshift = c<<1;
/* b0-2 PMS */
CH->pms = (v & 7) * 32; /* CH->pms = PM depth * 32 (index in lfo_pm_table) */
/* b4-5 AMS */
CH->ams = lfo_ams_depth_shift[(v>>4) & 3];
/* PAN : b7 = L, b6 = R */
ym2612.OPN.pan &= ~(3<<panshift);
ym2612.OPN.pan |= ((v & 0xc0) >> 6) << panshift; // ..LRLR
}
break;
default:
ret = 0;
break;
}
break;
default:
ret = 0;
break;
}
return ret;
}
/*******************************************************************************/
/* YM2612 local section */
/*******************************************************************************/
/* Generate samples for YM2612 */
int YM2612UpdateOne_(int *buffer, int length, int stereo, int is_buf_empty)
{
int pan;
int active_chs = 0;
// if !is_buf_empty, it means it has valid samples to mix with, else it may contain trash
if (is_buf_empty) memset32(buffer, 0, length<<stereo);
/*
{
int c, s;
ppp();
for (c = 0; c < 6; c++) {
int slr = 0, slm;
printf("%i: ", c);
for (s = 0; s < 4; s++) {
if (ym2612.CH[c].SLOT[s].state != EG_OFF) slr = 1;
printf(" %i", ym2612.CH[c].SLOT[s].state != EG_OFF);
}
slm = (ym2612.slot_mask&(0xf<<(c*4))) ? 1 : 0;
printf(" | %i", slm);
printf(" | %i\n", ym2612.CH[c].SLOT[SLOT1].Incr==-1);
if (slr != slm) exit(1);
}
}
*/
/* refresh PG and EG */
refresh_fc_eg_chan( &ym2612.CH[0] );
refresh_fc_eg_chan( &ym2612.CH[1] );
if( (ym2612.OPN.ST.mode & 0xc0) )
/* 3SLOT MODE */
refresh_fc_eg_chan_sl3();
else
refresh_fc_eg_chan( &ym2612.CH[2] );
refresh_fc_eg_chan( &ym2612.CH[3] );
refresh_fc_eg_chan( &ym2612.CH[4] );
refresh_fc_eg_chan( &ym2612.CH[5] );
pan = ym2612.OPN.pan;
if (stereo) stereo = 1;
/* mix to 32bit dest */
// flags: stereo, ?, disabled, ?, pan_r, pan_l
chan_render_prep();
if (ym2612.slot_mask & 0x00000f) active_chs |= chan_render(buffer, length, 0, stereo|((pan&0x003)<<4)) << 0;
if (ym2612.slot_mask & 0x0000f0) active_chs |= chan_render(buffer, length, 1, stereo|((pan&0x00c)<<2)) << 1;
if (ym2612.slot_mask & 0x000f00) active_chs |= chan_render(buffer, length, 2, stereo|((pan&0x030) )) << 2;
if (ym2612.slot_mask & 0x00f000) active_chs |= chan_render(buffer, length, 3, stereo|((pan&0x0c0)>>2)) << 3;
if (ym2612.slot_mask & 0x0f0000) active_chs |= chan_render(buffer, length, 4, stereo|((pan&0x300)>>4)) << 4;
if (ym2612.slot_mask & 0xf00000) active_chs |= chan_render(buffer, length, 5, stereo|((pan&0xc00)>>6)|(ym2612.dacen<<2)) << 5;
chan_render_finish();
return active_chs; // 1 if buffer updated
}
/* initialize YM2612 emulator */
void YM2612Init_(int clock, int rate)
{
memset(&ym2612, 0, sizeof(ym2612));
init_tables();
ym2612.OPN.ST.clock = clock;
ym2612.OPN.ST.rate = rate;
OPNSetPres( 6*24 );
/* Extend handler */
YM2612ResetChip_();
}
/* reset */
void YM2612ResetChip_(void)
{
int i;
memset(ym2612.REGS, 0, sizeof(ym2612.REGS));
set_timers( 0x30 ); /* mode 0 , timer reset */
ym2612.REGS[0x27] = 0x30;
ym2612.OPN.eg_timer = 0;
ym2612.OPN.eg_cnt = 0;
ym2612.OPN.ST.status = 0;
reset_channels( &ym2612.CH[0] );
for(i = 0xb6 ; i >= 0xb4 ; i-- )
{
OPNWriteReg(i ,0xc0);
OPNWriteReg(i|0x100,0xc0);
ym2612.REGS[i ] = 0xc0;
ym2612.REGS[i|0x100] = 0xc0;
}
for(i = 0xb2 ; i >= 0x30 ; i-- )
{
OPNWriteReg(i ,0);
OPNWriteReg(i|0x100,0);
}
for(i = 0x26 ; i >= 0x20 ; i-- ) OPNWriteReg(i,0);
/* DAC mode clear */
ym2612.dacen = 0;
ym2612.addr_A1 = 0;
}
/* YM2612 write */
/* a = address */
/* v = value */
/* returns 1 if sample affecting state changed */
int YM2612Write_(unsigned int a, unsigned int v)
{
int addr, ret=1;
v &= 0xff; /* adjust to 8 bit bus */
switch( a&3){
case 0: /* address port 0 */
ym2612.OPN.ST.address = v;
ym2612.addr_A1 = 0;
ret=0;
break;
case 1: /* data port 0 */
if (ym2612.addr_A1 != 0) {
ret=0;
break; /* verified on real YM2608 */
}
addr = ym2612.OPN.ST.address;
switch( addr & 0xf0 )
{
case 0x20: /* 0x20-0x2f Mode */
switch( addr )
{
case 0x22: /* LFO FREQ (YM2608/YM2610/YM2610B/YM2612) */
if (v&0x08) /* LFO enabled ? */
{
ym2612.OPN.lfo_inc = ym2612.OPN.lfo_freq[v&7];
}
else
{
ym2612.OPN.lfo_inc = 0;
}
break;
#if 0 // handled elsewhere
case 0x24: { // timer A High 8
int TAnew = (ym2612.OPN.ST.TA & 0x03)|(((int)v)<<2);
if(ym2612.OPN.ST.TA != TAnew) {
// we should reset ticker only if new value is written. Outrun requires this.
ym2612.OPN.ST.TA = TAnew;
ym2612.OPN.ST.TAC = (1024-TAnew)*18;
ym2612.OPN.ST.TAT = 0;
}
}
ret=0;
break;
case 0x25: { // timer A Low 2
int TAnew = (ym2612.OPN.ST.TA & 0x3fc)|(v&3);
if(ym2612.OPN.ST.TA != TAnew) {
ym2612.OPN.ST.TA = TAnew;
ym2612.OPN.ST.TAC = (1024-TAnew)*18;
ym2612.OPN.ST.TAT = 0;
}
}
ret=0;
break;
case 0x26: // timer B
if(ym2612.OPN.ST.TB != v) {
ym2612.OPN.ST.TB = v;
ym2612.OPN.ST.TBC = (256-v)<<4;
ym2612.OPN.ST.TBC *= 18;
ym2612.OPN.ST.TBT = 0;
}
ret=0;
break;
#endif
case 0x27: /* mode, timer control */
set_timers( v );
ret=0;
break;
case 0x28: /* key on / off */
{
UINT8 c;
c = v & 0x03;
if( c == 3 ) { ret=0; break; }
if( v&0x04 ) c+=3;
if(v&0x10) FM_KEYON(c,SLOT1); else FM_KEYOFF(c,SLOT1);
if(v&0x20) FM_KEYON(c,SLOT2); else FM_KEYOFF(c,SLOT2);
if(v&0x40) FM_KEYON(c,SLOT3); else FM_KEYOFF(c,SLOT3);
if(v&0x80) FM_KEYON(c,SLOT4); else FM_KEYOFF(c,SLOT4);
break;
}
case 0x2a: /* DAC data (YM2612) */
ym2612.dacout = ((int)v - 0x80) << 6; /* level unknown (notaz: 8 seems to be too much) */
ret=0;
break;
case 0x2b: /* DAC Sel (YM2612) */
/* b7 = dac enable */
ym2612.dacen = v & 0x80;
ret=0;
break;
default:
break;
}
break;
default: /* 0x30-0xff OPN section */
/* write register */
ret = OPNWriteReg(addr,v);
}
break;
case 2: /* address port 1 */
ym2612.OPN.ST.address = v;
ym2612.addr_A1 = 1;
ret=0;
break;
case 3: /* data port 1 */
if (ym2612.addr_A1 != 1) {
ret=0;
break; /* verified on real YM2608 */
}
addr = ym2612.OPN.ST.address | 0x100;
ret = OPNWriteReg(addr, v);
break;
}
return ret;
}
#if 0
UINT8 YM2612Read_(void)
{
return ym2612.OPN.ST.status;
}
int YM2612PicoTick_(int n)
{
int ret = 0;
// timer A
if(ym2612.OPN.ST.mode & 0x01 && (ym2612.OPN.ST.TAT+=64*n) >= ym2612.OPN.ST.TAC) {
ym2612.OPN.ST.TAT -= ym2612.OPN.ST.TAC;
if(ym2612.OPN.ST.mode & 0x04) ym2612.OPN.ST.status |= 1;
// CSM mode total level latch and auto key on
if(ym2612.OPN.ST.mode & 0x80) {
CSMKeyControll( &(ym2612.CH[2]) ); // Vectorman2, etc.
ret = 1;
}
}
// timer B
if(ym2612.OPN.ST.mode & 0x02 && (ym2612.OPN.ST.TBT+=64*n) >= ym2612.OPN.ST.TBC) {
ym2612.OPN.ST.TBT -= ym2612.OPN.ST.TBC;
if(ym2612.OPN.ST.mode & 0x08) ym2612.OPN.ST.status |= 2;
}
return ret;
}
#endif
void YM2612PicoStateLoad_(void)
{
reset_channels( &ym2612.CH[0] );
ym2612.slot_mask = 0xffffff;
}
/* rather stupid design because I wanted to fit in unused register "space" */
typedef struct
{
UINT32 state_phase;
INT16 volume;
} ym_save_addon_slot;
typedef struct
{
UINT32 magic;
UINT8 address;
UINT8 status;
UINT8 addr_A1;
UINT8 unused;
int TAT;
int TBT;
UINT32 eg_cnt; // 10
UINT32 eg_timer;
UINT32 lfo_cnt;
UINT16 lfo_ampm;
UINT16 unused2;
UINT32 keyon_field; // 20
UINT32 kcode_fc_sl3_3;
UINT32 reserved[2];
} ym_save_addon;
typedef struct
{
UINT16 block_fnum[6];
UINT16 block_fnum_sl3[3];
UINT16 reserved[7];
} ym_save_addon2;
void YM2612PicoStateSave2(int tat, int tbt)
{
ym_save_addon_slot ss;
ym_save_addon2 sa2;
ym_save_addon sa;
unsigned char *ptr;
int c, s;
memset(&sa, 0, sizeof(sa));
memset(&sa2, 0, sizeof(sa2));
// chans 1,2,3
ptr = &ym2612.REGS[0x0b8];
for (c = 0; c < 3; c++)
{
for (s = 0; s < 4; s++) {
ss.state_phase = (ym2612.CH[c].SLOT[s].state << 29) | (ym2612.CH[c].SLOT[s].phase >> 3);
ss.volume = ym2612.CH[c].SLOT[s].volume;
if (ym2612.CH[c].SLOT[s].key)
sa.keyon_field |= 1 << (c*4 + s);
memcpy(ptr, &ss, 6);
ptr += 6;
}
sa2.block_fnum[c] = ym2612.CH[c].block_fnum;
}
// chans 4,5,6
ptr = &ym2612.REGS[0x1b8];
for (; c < 6; c++)
{
for (s = 0; s < 4; s++) {
ss.state_phase = (ym2612.CH[c].SLOT[s].state << 29) | (ym2612.CH[c].SLOT[s].phase >> 3);
ss.volume = ym2612.CH[c].SLOT[s].volume;
if (ym2612.CH[c].SLOT[s].key)
sa.keyon_field |= 1 << (c*4 + s);
memcpy(ptr, &ss, 6);
ptr += 6;
}
sa2.block_fnum[c] = ym2612.CH[c].block_fnum;
}
for (c = 0; c < 3; c++)
{
sa2.block_fnum_sl3[c] = ym2612.OPN.SL3.block_fnum[c];
}
memcpy(&ym2612.REGS[0], &sa2, sizeof(sa2)); // 0x20 max
// other things
ptr = &ym2612.REGS[0x100];
sa.magic = 0x41534d59; // 'YMSA'
sa.address = ym2612.OPN.ST.address;
sa.status = ym2612.OPN.ST.status;
sa.addr_A1 = ym2612.addr_A1;
sa.TAT = tat;
sa.TBT = tbt;
sa.eg_cnt = ym2612.OPN.eg_cnt;
sa.eg_timer = ym2612.OPN.eg_timer;
sa.lfo_cnt = ym2612.OPN.lfo_cnt;
sa.lfo_ampm = g_lfo_ampm;
memcpy(ptr, &sa, sizeof(sa)); // 0x30 max
}
int YM2612PicoStateLoad2(int *tat, int *tbt)
{
ym_save_addon_slot ss;
ym_save_addon2 sa2;
ym_save_addon sa;
unsigned char *ptr;
UINT32 fn;
UINT8 blk;
int c, s;
ptr = &ym2612.REGS[0x100];
memcpy(&sa, ptr, sizeof(sa)); // 0x30 max
if (sa.magic != 0x41534d59) return -1;
ptr = &ym2612.REGS[0];
memcpy(&sa2, ptr, sizeof(sa2));
ym2612.OPN.ST.address = sa.address;
ym2612.OPN.ST.status = sa.status;
ym2612.addr_A1 = sa.addr_A1;
ym2612.OPN.eg_cnt = sa.eg_cnt;
ym2612.OPN.eg_timer = sa.eg_timer;
ym2612.OPN.lfo_cnt = sa.lfo_cnt;
g_lfo_ampm = sa.lfo_ampm;
if (tat != NULL) *tat = sa.TAT;
if (tbt != NULL) *tbt = sa.TBT;
// chans 1,2,3
ptr = &ym2612.REGS[0x0b8];
for (c = 0; c < 3; c++)
{
for (s = 0; s < 4; s++) {
memcpy(&ss, ptr, 6);
ym2612.CH[c].SLOT[s].state = ss.state_phase >> 29;
ym2612.CH[c].SLOT[s].phase = ss.state_phase << 3;
ym2612.CH[c].SLOT[s].volume = ss.volume;
ym2612.CH[c].SLOT[s].key = (sa.keyon_field & (1 << (c*4 + s))) ? 1 : 0;
ym2612.CH[c].SLOT[s].ksr = (UINT8)-1;
ptr += 6;
}
ym2612.CH[c].SLOT[SLOT1].Incr=-1;
ym2612.CH[c].block_fnum = sa2.block_fnum[c];
fn = ym2612.CH[c].block_fnum & 0x7ff;
blk = ym2612.CH[c].block_fnum >> 11;
ym2612.CH[c].kcode= (blk<<2) | opn_fktable[fn >> 7];
ym2612.CH[c].fc = fn_table[fn*2]>>(7-blk);
}
// chans 4,5,6
ptr = &ym2612.REGS[0x1b8];
for (; c < 6; c++)
{
for (s = 0; s < 4; s++) {
memcpy(&ss, ptr, 6);
ym2612.CH[c].SLOT[s].state = ss.state_phase >> 29;
ym2612.CH[c].SLOT[s].phase = ss.state_phase << 3;
ym2612.CH[c].SLOT[s].volume = ss.volume;
ym2612.CH[c].SLOT[s].key = (sa.keyon_field & (1 << (c*4 + s))) ? 1 : 0;
ym2612.CH[c].SLOT[s].ksr = (UINT8)-1;
ptr += 6;
}
ym2612.CH[c].SLOT[SLOT1].Incr=-1;
ym2612.CH[c].block_fnum = sa2.block_fnum[c];
fn = ym2612.CH[c].block_fnum & 0x7ff;
blk = ym2612.CH[c].block_fnum >> 11;
ym2612.CH[c].kcode= (blk<<2) | opn_fktable[fn >> 7];
ym2612.CH[c].fc = fn_table[fn*2]>>(7-blk);
}
for (c = 0; c < 3; c++)
{
ym2612.OPN.SL3.block_fnum[c] = sa2.block_fnum_sl3[c];
fn = ym2612.OPN.SL3.block_fnum[c] & 0x7ff;
blk = ym2612.OPN.SL3.block_fnum[c] >> 11;
ym2612.OPN.SL3.kcode[c]= (blk<<2) | opn_fktable[fn >> 7];
ym2612.OPN.SL3.fc[c] = fn_table[fn*2]>>(7-blk);
}
return 0;
}
void *YM2612GetRegs(void)
{
return ym2612.REGS;
}